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Abstract

Psychological insights have long shaped piv-
otal NLP breakthroughs, from attention mech-
anisms to reinforcement learning and social
modeling. As Large Language Models (LLMs)
develop, there is a rising consensus that psy-
chology is essential for capturing human-like
cognition, behavior, and interaction. This paper
reviews how psychological theories can inform
and enhance stages of LLM development. Our
review integrates insights from six subfields
of psychology, highlighting current trends and
gaps in how psychological theories are applied.
By examining both cross-domain connections
and points of tension, we aim to bridge disci-
plinary divides and promote more thoughtful
integration of psychology into NLP research.

1 Introduction

As Large Language Models (LLMs) grow in scale
and complexity, the Natural Language Processing
(NLP) community increasingly sees psychology
as key to capturing human-like cognition, behav-
ior, and interaction (Qu et al., 2024; Lewis, 2025).
Psychology, grounded in empirically validated and
computationally adaptable frameworks (Sartori and
Orrt, 2023; Ong, 2024), can address core LLM
challenges such as reasoning fidelity, context re-
tention, and user interaction. Reflecting these
strengths, psychological insights have driven NLP
advances, including the cognitive inspirations of at-
tention mechanisms, formative reinforcement learn-
ing approaches, and social modeling for agents.
Despite extensive multidisciplinary efforts, a
holistic review systematically integrating psychol-
ogy across the LLM lifecycle remains missing.
Most surveys and position papers remain frag-
mented, typically falling into three broad cate-
gories: (1) Some investigate how LLMs can em-
power traditional psychology or cognitive science
research, for instance by modeling human reason-
ing and behavior at scale (Demszky et al., 2023;

Abdurahman et al., 2024; Ong, 2024; Ke et al.,
2024). (2) Others approach LLMs as subjects of
psychological analysis, aiming to adapt or extend
psychological theory, such as personality or cogni-
tion frameworks, to interpret and evaluate model
behavior (Li et al., 2024b; Hagendorff et al., 2023;
tse Huang et al., 2024; Pellert et al., 2024). (3)
Finally, a third group leverages a single or limited
set of psychological constructs to enhance model
alignment or multi-agent frameworks — improving
system reliability, social interaction, and trustwor-
thiness (Liu et al., 2023; Dong et al., 2024b). This
includes research on social influence for Al safety
(Zeng et al., 2024a), moral reasoning in legal tasks
(Almeida et al., 2024), and partial integrations of
social or developmental psychology (Sartori and
Orr, 2023; Zhang et al., 2024c¢; Serapio-Garcia
et al., 2025). However, no existing work provides a
unified map of how diverse psychological sub-areas
can be harnessed, from data through application.
Our survey fills this gap by offering a stage-wise
view of how psychology can strengthen LLM capa-
bilities and alignment across the entire lifecycle.

To address this gap, we present a structured
review that situates psychological theories from
six major areas across the entire LLM develop-
ment pipeline. The contribution of our survey' are
twofold: (1) We systematically review psycholog-
ical theories applied in key stages of LLLM devel-
opment, identifying gaps and inconsistencies. (2)
We highlight under-explored concepts alongside
critical issues and debates at the intersection of psy-
chology and NLP. Collectively, these contributions
demonstrate how integrating diverse psychological
frameworks can strengthen LLM design, enhance
alignment, and broaden the practical and ethical
impact of modern NLP systems.

As shown in Figure 1, the remainder of this pa-

'We survey 227 papers from major *CL venues, plus COL-
ING, NeurIPS, ICML, ICLR, and influential arXiv preprints.
Appendix B details paper selection process.



per illustrates how cognitive, developmental, be-
havioral, social, psycholinguistic, and personality
theories integrate into four key stages of LLM de-
velopment: preprocessing (Section 2), pre-training
(Section 3), post-training (Section 4), and evalua-
tion and application (Section 5). Finally, Section 6
discusses three central questions: How does current
LLM development leverage psychological theories?
Which untapped psychological insights could ad-
vance LLM development? And what debates loom
at the intersection of NLP and psychology?

2 Preprocessing

We begin the stage-by-stage analysis of LLM
development with preprocessing, the foundation
that shapes downstream capabilities. Psychology
provides valuable frameworks for understanding
how humans acquire and filter information, un-
derscoring the need for realistic, developmentally
informed datasets and effective filtering strategies.

Data Construction Recent evidence shows that
LLMs can align with human brain responses under
biologically plausible training conditions (Hosseini
et al., 2024), despite LLMs typically requiring or-
ders of magnitude more training data than human.
This supports the application of ecological valid-
ity (Schmuckler, 2001) that emphasizes real-world
data to mimic cognitive development. To reflect
children’s language acquisition processes, Jagadish
et al. (2024) selects linguistically diverse environ-
ments, Feng et al. (2024) utilizes child-directed
speech, while Nikolaus et al. (2022b) collects child
cartoon. In parallel, incremental numerical un-
derstanding (Piaget, 2013) that views numerical
concepts as gradually acquired through exposure
is applied to sequential data collection with mathe-
matically coherent numeric anchors (Sharma et al.,
2024). Lastly, Reuben et al. (2025) provides a sys-
tematic framework to reformulate psychological
questionnaires for LLM assessment.

Data Preprocessing Data preprocessing in-
spired by cognitive psychology involves refining
data to enhance informational coherence prior to
training. Selective attention (Treisman, 1969), pri-
oritizing salient information while filtering out
irrelevant stimuli, was implemented to develop
a preprocessing model that filters irrelevant data
(Nottingham et al., 2024). Meanwhile, predictive
coding proposing anticipatory processing based
on prior knowledge (Rao and Ballard, 1999), was
leveraged by Araujo et al. (2021) to enable antici-

pation of subsequent content, improving semantic
coherence through expectation-driven processing.
Lastly, drawing insights from knowledge acqui-
sition of children, Ficarra et al. (2025) redefines
lexical knowledge in data to capture distributional
information based on target word.

3 Pre-Training

Building on the foundations established during pre-
processing, pre-training mirrors human cognitive
development, where linguistic and reasoning abili-
ties emerge through exposure to stimuli. This sec-
tion explores how psychology inform observational
learning and knowledge acquisition in LLMs.

Observational Learning Incremental cognitive
development (Piaget, 1976), which posits children
acquire knowledge through sequential tasks, in-
forms how LLMs can master nuanced concepts
with explicit structured exposure. This princi-
ple manifests in Schulze Buschoff et al. (2023)’s
gradually expanding pre-training tasks, Chen et al.
(2024d)’s contradictory historical tasks and Ma
et al. (2025)’s trial-and-demonstration framework.
Additionally, scaffolding theory (Park and Reuter-
Lorenz, 2009), which emphasizes gradually chal-
lenging interactions, informs maintaining coher-
ent learning trajectories through Borges et al.
(2024)’s structured feedback loops and Sonkar et al.
(2023)’s dynamic task complexity.

Knowledge Acquisition Semantic coherence
during pre-training draw insights from top-down
and bottom-up perception (Gregory, 1997), which
Jframes cognition as interaction between concep-
tual frameworks and detailed data. Top-down pro-
cessing is leveraged to prioritize semantic process-
ing before syntactic details (Rawte et al., 2022) and
to generate test cases (Zhang et al., 2024b). Mean-
while, to enhance perception modeling, Pang et al.
(2023) fuses bottom-up encoding with top-down
corrections, and Nikolaus and Fourtassi (2021)
models production-based learning. Introducing
working memory theory (Baddeley and Hitch,
1974) that proposes a short-term system for tem-
porarily holding information, Mita et al. (2025)
simulates critical period dynamics with growing
memory capacity to enhance performance.

4 Post-Training and Alignment

With foundational knowledge acquired in pre-
training, post-training refines LLMs from general
proficiency to task-specific behavior. We explore
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Figure 1: Our structured survey of how psychological theories apply across the main stages of LLM development. Colors
indicate six distinct psychology areas: red for Developmental Psychology ; orange for Behavioral Psychology ; yellow for

Cognitive Psychology ; green for Social Psychology ; blue for Personality Psychology ; purple for Psycholinguistics .

how psychology guide post-training for context-
aware, interpretable, and human-aligned outcomes.
Supervised Fine-Tuning (SFT) In SFT, works
that draw on psychological insights focus on re-
taining and learn contextual information. Building
on working memory theory, Kang et al. (2024)
adds working memory module to retain short-term
information, while Li et al. (2023) dynamically bal-
ances memory with contexts to improve robustness.
Drawing from episodic memory, the ability to re-
trieve specific experiences with contexts(Tulving
et al., 1972), Zhang et al. (2025a) enable LLMs
to learn from episodic experiences for improved
planning, while Chaudhury et al. (2025) introduce
episodic attention for processing long contexts.
Reinforcement Learning from Human Feed-
back (RLHF) A classic behavioral theory, the Op-
erant Conditioning theory posits that behaviors
are systematically strengthened or weakened by
the consequences (rewards or punishments) that
immediately follow them (Thorndike, 1898; Skin-
ner, 1957). The principles of reinforcement learn-
ing align closely with this psychological frame-
work, particularly in the post-training phase of
LLM development, where RLHF explicitly oper-

ationalizes Operant Conditioning theory to align
model behaviors with human values and prefer-
ences. Through repeated feedback, the model grad-
ually adapts to favor outputs that yield higher re-
ward signals—a process akin, in a loose analogy,
to Thorndike’s Law of Effect, which describes
how behaviors followed by satisfying outcomes
tend to recur. While the underlying mechanism
is driven by reward optimization algorithms rather
than psychological intent, the conceptual resem-
blance highlights how reinforcement strategies can
shape model outputs (Lambert et al., 2023). Dur-
ing RLHF, the model generates responses, and a
learned reward function R(x) assigns scores to out-
puts z, guiding subsequent policy updates. For
instance, (Ouyang et al., 2022) train InstructGPT
using Proximal Policy Optimization (Schulman
et al., 2017), rewarding responses preferred by hu-
mans and penalizing less desirable ones. Founda-
tional frameworks (Christiano et al., 2017; Sutton
and Barto, 2018; Stiennon et al., 2022) established
methods for explicitly translating human judgments
into reward signals, operationalizing the insights
of Operant Conditioning. More recent work in-
corporates human cognitive biases (Siththaranjan



et al., 2024) and personalizes reward functions for
individual values (Poddar et al., 2024). These de-
velopments illustrate how Operant Conditioning
remains central to aligning LLMs with nuanced hu-
man values. While our survey focuses on psycho-
logical dimensions, a technical overview of RLHF
methods is provided in Appendix C.

5 Evaluation and Application

Psychology offers tools for both assessing and en-
hancing model behavior in the evaluation and ap-
plication stage. We review three key areas of chal-
lenges where psychology can inform LL.M devel-
opment: (1) evaluating emergent capabilities such
as reasoning, (2) improving task performance in
domains involving human cognition, and (3) de-
signing socially aware, multi-agent systems.

5.1 Benchmarks and Capability Assessment

Evaluating LL.Ms with psychologically grounded
metrics offers a deeper window into their real-
world viability. By mapping classic theories onto
benchmarks that probe model responses under di-
verse, human-like scenarios, researchers can move
beyond surface-level performance measures, re-
vealing emergent model behavior and illuminating
strengths, blind spots, and opportunities to refine
LLM training and alignment practices.

5.1.1 Social Reasoning and Intelligence

Social intelligence is vital for LLMs that navigate
human contexts, enabling the interpretation of im-
plicit cues, adaptation to social norms, and authen-
tic interaction — defining advanced Al beyond mere
text prediction. As LLMs increasingly mediate
communication, their grasp of social dynamics be-
comes pivotal for both efficacy and safety.

Notably, Theory of Mind (ToM) offers a frame-
work for evaluating how individuals understand
and attribute mental states — such as beliefs, de-
sires, and intentions — to others. By measuring
LLMs’ capacity to reason beliefs, researchers can
assess core social intelligence. Recent benchmarks
include ToMBENCH (Chen et al., 2024c), Open-
ToM (Xu et al., 2024a), HITOM (Wu et al., 2023),
and FANTOM (Kim et al., 2023), probing distinct
facets of ToM. Extending the efforts to spoken dia-
logues, Soubki et al. (2024) reveal lingering gaps
between LLM and human performance. Surveys
(Ma et al., 2023; Sap et al., 2022) consolidate meth-
ods and underscore the challenges of robust ToM-
based evaluations.

Beyond individual cognition, social influence
theories like Conformity Theories(Asch, 2016),
capture how group pressure shapes individual
Jjudgments. Recent work tests LLM-based agents’
collaboration and bias dynamics under these princi-
ples (Zhu et al., 2025; Choi et al., 2025; Wu et al.,
2025d; Zhang et al., 2024c; Jin et al., 2024b), bridg-
ing individual and group-level cognition.

Emotion is another pillar of social intelligence.
Ekman’s Basic Emotion Theory (Ekman, 1992)
identifies six universal emotions, often used as
labels, while Dimensional Models like the Circum-
plex Model conceptualize emotions along valence
and arousal (Gong et al., 2024; Morrill et al., 2024).
LLMs advance on emotion recognition, benefiting
dialogue and sentiment tasks (Zhang et al., 2024e;
Wu et al., 2024c¢,d; Sabour et al., 2024).

These efforts collectively demonstrate both
progress and limitations in LLMs’ social cogni-
tion, establishing benchmarks against which future
developments can be measured.

5.1.2 Language Proficiency

Recent work adopts psycholinguistic assessments,
originally designed for humans, to test LLMs’ lan-
guage proficiency. These experiments probe a wide
range of linguistic domains: morphology (Anh
et al., 2024), syntax (Li and Hao, 2025; Amouyal
et al., 2025; Liu et al., 2024b; Hale and Stanojevié,
2024), phonology (Jang et al., 2025; Duan et al.,
2025), semantics (Duan et al., 2025; Hayashi, 2025)
and their interactions (Miaschi et al., 2024; Zhou
et al., 2025a).

Although LLMs exhibit comparable perfor-
mance to human speakers on many psycholinguis-
tic tasks, the underlying processing mechanism
they rely on may seem different from humans
(Pedrotti et al., 2025; Lee et al., 2024). Human
language acquisition is often characterized by the
Poverty of the Stimulus, children acquire complex
grammar from relatively little input (Chomsky,
1980), whereas LLMs typically require develop-
mentally implausible amounts of linguistic data
to learn morphological rules. On the other hand,
some evidence suggests that the learning patterns
of LLMs mirror aspects of human language acqui-
sition (Zhou et al., 2025b; Liu et al., 2024b).

Several studies have explored the pragmatic abil-
ities of LLMs, motivated by the close link between
language and broader cognitive functions in hu-
mans. Grice (1975)’s Theory of conversational
implicature posits that utterance interpretation de-



pends on both literal content and surrounding
context. Researchers (Bender and Koller, 2020;
Gubelmann, 2024) have contrasting perspectives
on LLMs with respect to the Harnad (1990)’s Sym-
bol Grounding Problem, i.e. linguistic symbols
must be grounded in sensorimotor interactions
to be meaningful. Failures of LLMs in pragmatic
and semantic tasks (He et al., 2025; Kibria et al.,
2024; Zeng et al., 2025), as well as their neuron
patterns (Wu et al., 2024b), point to limitations be-
yond pure linguistic knowledge, which potentially
parallel human higher-level cognitive processes.

5.1.3 Memory and Cognitive Evaluation

Assessing memory and cognition is crucial given
LLMs’ limited capacity and risk of catastrophic
forgetting. Memory is measured on parametric
knowledge (Li et al., 2023), n-back tasks (Zhang
et al., 2024a), capacity (Timkey and Linzen, 2023)
and cognitive load (Fu et al., 2025; Xu et al., 2024b;
Zeng et al., 2024b). Meanwhile, cognitive develop-
ment is assessed through cognitive maturity (Wang
et al., 2025b; Laverghetta Jr. and Licato, 2022),
word acquisition (Chang and Bergen, 2022), sub-
Jective similarity (Malloy et al., 2024), reasoning
strategies (Mondorf and Plank, 2024; Yuan et al.,
2023; Ying et al., 2024), zone of proximal (Cui and
Sachan, 2025) and perception (Jung et al., 2024).

5.1.4 Personality Capability

Personality consistency examines how stably
LLMs maintain traits across contexts. Frisch and
Giulianelli (2024) show LLMs with asymmetric
profiles vary in Big Five traits, while Amidei et al.
(2025) find language switching alters GPT-40’s
Eysenck Personality Questionnaire Revised traits,
underscoring challenges in perserving consistency.
Parallel research examines how LLMs display and
control personality traits. Jiang et al. (2024) show
LLMs express distinct traits labeled by human
evaluators. Mao et al. (2024) reveals difficulties
in alignment for Neuroticism, Extraversion and
Agreeableness. Lee et al. (2025b); Li et al. (2025b);
Dan et al. (2025) assess and improve consistency
through alignment with psychometrical training
data, while Hu and Collier (2024) find persona-
based prompting improves annotation accuracy.

5.1.5 Bias and Ethics Evaluation

Evaluating biases and ethical risks is crucial for
responsible Al that avoids reinforcing harmful so-
cial patterns. As LLMs increasingly shape pub-
lic discourse, thorough assessments are essential

to prevent discriminatory outputs and promote eq-
uitable benefits across diverse communities. Re-
cent work tests LLMs on gender (Oba et al., 2024;
Zhao et al., 2024), broader social biases (Shin et al.,
2024; Lee et al., 2023; Nozza et al., 2022), toxic
content (Huang et al., 2025b; Gehman et al., 2020;
Luong et al., 2024; Hui et al., 2024a), and harm-
ful stereotypes (Shrawgi et al., 2024; Huang and
Xiong, 2024; Hui et al., 2024b; Grigoreva et al.,
2024), establishing benchmarks across cultures and
languages. Evidence also suggests that LLMs repli-
cate social identity biases, mirroring human tenden-
cies toward ingroup favoritism and outgroup hostil-
ity (Borah et al., 2025; Hu et al., 2025b; Dong et al.,
2024a) — patterns central to social identity theory,
which posits that group membership shapes self-
concept and intergroup behavior (Tajfel, 1979).

5.2 Task Performance Enhancement

Building on the benchmarks, we review how psy-
chological insights are used improves LLMs perfor-
mance on complex reasoning and enrich dialogue,
which illustrate how psychology improves capabil-
ities and alignment across applications.

5.2.1 Reasoning Enhancement

LLMs often struggle with complex reasoning: so-
cial inference (Liu et al., 2024a), logical errors
(Turpin et al., 2023; McKenna et al., 2023), hallu-
cinations (Huang et al., 2025a; Ai et al., 2024a),
and multi-step planning (Wang et al., 2024a). Re-
searchers address these issues by implementing
analogous cognitive mechanisms. For instance,
Dual-process theory, a social cognition frame-
work, distinguish between fast (System 1) and
slow (System 2) reasoning (Kahneman, 2011), of-
fers a blueprint for LLM improvement. Chain-of-
thought prompting (Wei et al., 2022) operational-
izes System 2 via intermediate steps, while Dyna-
Think (Pan et al., 2024) dynamically selects rapid
or thorough inference. Tree of Thoughts (Yao
et al., 2024) further explores multiple reasoning
paths concurrently. Yang et al. (2025) combine
separate verifier as System 2. More recent appli-
cations includes hallucination mitigation (Cheng
et al., 2025b), real-time human-Al collaboration
(Zhang et al., 2025b), multi-hop QA (Cheng et al.,
2025a), emotion consistency (Wei et al., 2025) and
decoder-level LLMs merging (Hu et al., 2025a).
Similarly, Self-reflection and Meta-cognition,
introspection focused on the self-concept (Phillips,
2020; Flavell, 1979), has guided LLLM enhance-



ments in hallucination mitigation (Ji et al., 2023),
translation (Chen et al., 2024a; Wang et al., 2024e),
tool use (Li et al., 2025a), question-answering
(Li et al., 2024a; Zhang et al., 2024f; Kassner
et al., 2023), retrieval-augmented-generation(RAG)
(Asai et al., 2024; Zhou et al., 2024) and math rea-
soning (Zhang et al., 2024f). Approaches include
iterative self-assessment (Ji et al., 2023; Yan et al.,
2024; Wu et al., 2025¢), task decomposition (Wang
et al., 2024e; Zhang et al., 2024d), self-training
(Dou et al., 2024), and confidence-tuned reward
functions (Xu et al., 2024c). Moreover, ToM adap-
tations boost LLLMs’ interpersonal reasoning, aid-
ing missing knowledge (Bortoletto et al., 2024),
common ground alignment (Qiu et al., 2024), and
cognitive modeling (Wu et al., 2024a).

Beyond social reasoning, perception, attention,
and memory support coherence and retrieval. Ko-
jima et al. (2022) uses “think step by step” prompts
for top-down reasoning. Chen et al. (2025a); Ma-
haraj et al. (2023); Yu et al. (2022) leverages selec-
tive attention and working memory to detect hal-
lucinations and extract relation. Zhu et al. (2024)
employs recitation for retrieval, and Park and Bak
(2024) introduce short/long-term memory modules.
Diao et al. (2025); Wang et al. (2024c¢); Chi et al.
(2023) improve reasoning via symbolic, adaptive
and working memory structures. Lastly, hippocam-
pal indexing theory (Teyler and DiScenna, 1986),
viewing the hippocampus as a pointer to neocor-
tical memory, informs multi-step reasoning with
external knowledge (Gutierrez et al., 2024) and
counterfactual reasoning (Miao et al., 2024a).

5.2.2 Dialogue Understanding and Generation

In dialogue understanding, personality psychology
aids trait-based inferences from user interactions.
NLP research has explored dynamic ways to mea-
sure personality beyond structured tests. The My-
ers—Briggs Type Indicator (MBTI), a self-report
questionnaire that makes pseudo-scientific claims
to categorize individuals into 16 distinct person-
ality types, remains popular (Rao et al., 2023;
Yang et al., 2023), while PsychoGAT (Yang et al.,
2024) gamifies MBTI, and PADO (Yeo et al., 2025)
adopts a Big Five-based multi-agent approach. Be-
yond assessments, traits guide dialogue generation:
Huang and Hadfi (2024) show higher agreeability
improves negotiation, while Cheng et al. (2023)
reveal social and racial biases in persona creation,
raising representational concerns.

Dialogue generation research further incorpo-

rates personality to improve coherence, empathy,
and consistency. Pal et al. (2025); Chen et al.
(2025b) leveraged Reddit-based journal entries
to model Big Five traits in large-scale dialogue
datasets. Big Five-aligned agents also improve on
text based games (Lim et al., 2025) and code gen-
eration(Guo et al., 2025). Other efforts improve
persona consistency without referencing explicit
psychological theory (Wu et al., 2025b; Takayama
et al., 2025). Similarly, personality is used to im-
prove truthfulness, consistency, and context-aware
generation, as further detailed in Appendix D.
These approaches support personality alignment
but lack grounding in deeper psychological theory.

5.3 Collaborative, Multi-Agent Frameworks

Beyond task-specific capabilities, the surge in
multi-agent LLM frameworks reflects a growing
emphasis on collaborative decision-making, where
modeling social dynamics is crucial. Social and
personality psychology theories offer insights to de-
sign agent interaction, negotiation, and consensus,
guiding more socially intelligent LLM systems.

Social Influence Persuasion models (Petty and
Cacioppo, 2012) illustrate kow central/peripheral
routes shape attitudes in collaborative settings.
Leveraging this, Gollapalli and Ng (2025) merges
persuasive dialog acts with RL, Modzelewski et al.
(2025) infuses persuasion knowledge into CoT,
Furumai et al. (2024) combines LLM strategies
and retrieval, Qin et al. (2024); Jin et al. (2024a)
emphasize credibility-aware generation, and Zeng
et al. (2024a) uncovers LLMs’ vulnerabilities.
Multi-agent research simulates personality-driven
negotiation (Huang and Hadfi, 2024; Hu et al,,
2025c¢), boosts truthfulness via structured debates
(Khan et al., 2024), and curates argument-strength
datasets (Rescala et al., 2024).

Social Cognition 7oM complements social in-
fluence by enabling agents to grasp others’ mental
states. Some integrates belief tracking (Sclar et al.,
2023) and coordination (Wang et al., 2022; Sclar
et al., 2022), while others refine ToM via task de-
composition and recursive simulation (Wilf et al.,
2024; Jung et al., 2024; Sarangi et al., 2025).

Role-Play and Multi-Agent Simulation Recent
work on persona-driven LLM agents focuses on
simulating diverse perspectives, persona alignment,
and socially intelligent interactions. Han et al.
(2024) introduces Big Five-based extraversion,



Castricato et al. (2025) presents 1,586 synthetic
personas, and Wu et al. (2025a) releases a bench-
mark with 40K multi-turn dialogues. Agents also
model opinion dynamics (Wang et al., 2025a) and
evaluate social intelligence (Chen et al., 2024b),
with RoleLLM (Wang et al., 2024b), Character100
(Wang et al., 2024d), and persona-aware graph
transformers (Mahajan and Shaikh, 2024) further
supporting multi-party simulations. Lastly, Ku-
marage et al. (2025) simulate social engineering at-
tacks with LLM agents of varied traits, highlighting
how psychological traits shape user vulnerability.

6 Trends and Discussion

6.1 How Does Current LLM Development
Harness Psychological Theories?

We observe psychological theories have been incor-
porated into LLM development in stage-specific
ways, with uneven coverage across theoretical do-
mains. Figure 1 maps this integration across stages.

In preprocessing and pretraining, developmen-
tal psychology is often referenced. Its emphasis on
staged knowledge acquisition aligns with curricu-
lum learning and progressive data exposure, mir-
roring human developmental trajectories. In post-
training, especially RLHF, behavioral psychology
ideas are most prominent. Conditioning, reinforce-
ment schedules, and reward design are commonly
used to guide model alignment with human prefer-
ences. In evaluation and application, theories from
social/personality psychology and psycholinguis-
tics are commonly cited, reflecting a focus on in-
teraction patterns, user modeling, and linguistic
variation — areas traditionally explored within these
sub-fields. Their prominence in later stages aligns
with their emphasis on human-centered commu-
nication. Cognitive psychology appears across
all stages, particularly in modeling internal mech-
anisms such as reasoning, memory, and attention.
Its breadth makes it a foundational influence.

The observed unevenness in integration reflects,
perhaps a gap, but more probably a functional align-
ment — some domains are naturally better suited for
certain stages of LLM development. Meanwhile,
these trends expose under-explored opportunities,
motivating the RQs that follow.

6.2 What Untapped Psychological Insights
Could Advance LLM Development?
Although psychological theory is increasingly ap-
plied in LLM research, its use remains simplified

and uneven. As shown in Tables 1, 2, and 3, many
theories are under-utilized despite their potential to
improve model behavior and interpretability. Be-
low, we outline theories in four key areas that de-
serve greater attention in future LLM research.

Social psychology remains underutilized in ar-
eas like group dynamics and self and identity, lim-
iting personalization, adaptability, and inclusivity.
Prompting LLMs to adopt specific social identities
can reduce bias (Dong et al., 2024a) and mirror
human-like ingroup favoritism (Hu et al., 2025b).
Incorporating social identity frameworks could en-
hance user alignment in identity-sensitive contexts
(Chen et al., 2020). Likewise, while bias detection
is common, classic social influence theories (e.g.,
conformity, obedience) and attitude change the-
ories (e.g., balance theory, cognitive dissonance)
are rarely applied to interaction dynamics or bias
mitigation, despite their relevance to ethical and
socially adaptive behavior. Additionally, malicious
actors leveraging social influence can severely un-
dermine trust in digital spaces (Zeng et al., 2024a;
Liu et al., 2025; Ai et al., 2024b), highlighting the
potential of constructs like inoculation theory to
proactively guard against manipulative strategies.

Behavioral psychology inspires RLHF, yet key
concepts like partial reinforcement, which im-
proves behavior persistence (Ferster, 1966; Jensen,
1961), and shaping, which supports gradual learn-
ing through successive approximations (Love et al.,
2009), are overlooked. Current RLHF relies on
uniform rewards, yet behavioral theory warns that
flawed rewards can lead to reward hacking. Adding
reward variability may reduce premature conver-
gence and improve alignment with human intent
(Dayan and Daw, 2008; Amodei et al., 2016).

Personality Psychology use focuses on Trait
Theory, overlooking developmental theories that
explain how individual traits emerge, evolve, and
adapt across contexts. These developmental mod-
els could enable more coherent and interpretable
personality representations, offering a deeper alter-
native to static prompt-based personas.

Cognitive psychology remains underused, par-
ticularly Schema Theory, which holds that hu-
mans store knowledge as schemas formed through
repeated experience (Anderson and Pearson,
1984), guiding inference, memory, and learning.
Recent work explores schema-inspired methods for
compressing user histories and modeling knowl-
edge activation cycles (Panagoulias et al., 2024;
Xia et al., 2024). Further integration may improve



long-term context handling and generalization.

6.3 What Debates Loom at the NLP—
Psychology Intersection, and Where Next?

A recurring question is whether human psychology
can be directly mapped to LLMs without distor-
tion (Lohn et al., 2024). Below, we highlight key
controversies at this boundary; see Appendix E
for an extended discussion. These challenges mo-
tivate new recommendations and highlight open
directions for cross-disciplinary exploration.

Terminology Mismatches A core tension is the
mismatch between psychological terminology and
their NLP usage. For example, attention in psy-
chology means selective mental focus, but in trans-
formers it is a token weighting mechanism without
cognitive awareness (Lindsay, 2020), leading to
misleading attributions of intentionality. Similarly,
memory in psychology entails structured encoding
and recall, whereas in LLMs it typically refers to
context windows or parameters. Such anthropomor-
phic language is increasingly prevalent and shapes
public and scholarly assumptions about LL.Ms, as
recent studies show rising human-like descriptors
(Ibrahim and Cheng, 2025). This calls for disentan-
gling metaphor from mechanism through a precise
cross-disciplinary lexicon, preventing both over-
simplification and over-anthropomorphization — an
underexplored but crucial research challenge.

Theoretical Discrepancies Beyond terminology,
deeper theoretical mismatches arise when the NLP
community adopts outdated or disputed concepts
from psychology. For instance, predictive coding
(Rao and Ballard, 1999) is used to analogize LLMs’
next-token prediction, although current research
emphasizes hierarchical, multi-scale brain mech-
anisms (Antonello and Huth, 2024; Caucheteux
et al., 2023). Likewise, folk-psychological typolo-
gies like MBTI persist in LLM applications de-
spite its criticized validity and reliability (Pittenger,
1993; McCrae and Costa Jr, 1989). (Wagner et al.,
2025) positions that ToM involves first deciding
depth of mentalizing and then applying reasoning
accordingly, yet most works focus only on the lat-
ter. Working memory (Baddeley and Hitch, 1974)
illustrates another gap: LLM 'memory’ modules
(Kang et al., 2024; Li et al., 2023) do not repli-
cate human constraints, prompting questions about
whether Al should emulate human cognitive limits
or exceed them for performance gains. Behavioral
psychology faces similar critiques (Miller, 2003;

Flavell et al., 2022), as RLHF often focuses on re-
ward optimization (Ouyang et al., 2022; Rafailov
et al., 2023; Ramesh et al., 2024), neglecting inter-
nal states and risking reward hacking (Skalse et al.,
2022; Krakovna, 2020). Broader debates remain
over whether LLMs truly “understand” language
or function as “stochastic parrots” (Ambridge and
Blything, 2024; Park et al., 2024).

In response, we recommend refining how psy-
chological theories are mapped into computational
models, replacing outdated constructs with sup-
ported frameworks, exploring whether human-like
constraints aid interpretability, and designing eval-
uations that track both outputs and internal states.
Sustained collaboration between computational
and psychological sciences is essential for robust
and theory-aligned LLMs.

Evaluation and Validity Debates Another ma-
jor debate is how we evaluate LLM “psychological”
abilities — whether current tests really measure what
they claim. For instance, GPT-4 solves around 75%
of false-belief tasks, matching a 6-year-old’s per-
formance (Kosinski, 2024; Strachan et al., 2024);
some see emergent ToM-like reasoning (Kosinski,
2024), but others argue it may be pattern matching
(Strachan et al., 2024), noting that minor prompt
changes can derail results (Shapira et al., 2024).
Similar controversies involve personality: some
studies find stable simulated traits (Sorokovikova
et al., 2024; Huang et al., 2024), while others re-
veal variability under different prompt conditions
(Gupta et al., 2024; Shu et al., 2024), raising ques-
tions about inherent vs. mimicked personas (Tseng
et al., 2024). This calls for more theory-grounded
evaluation and clearer definitions, showing the need
for a systematic, theory-driven framework beyond
surface metrics, guiding more faithful replication
of human cognition and behavior in LLMs.

7 Conclusions

We systematically review how psychology can
ground LLM innovation in both past and future
across sevearl subfields. By examining how psy-
chological theories inform each stage of LLM de-
velopment, we find both meaningful connections
across domains and critical points of tension, which
are explored through discussion to help bridge in-
terdisciplinary gaps. We hope this review sparks
reflection, and inspires future work to continue in-
tegrating psychological perspectives into NLP.



Limitations

Our review primarily focuses on literature within
NLP, particularly in how personality is modeled,
evaluated, and leveraged in LLMs. As a result, we
do not extensively cover research from psychology
and cognitive sciences that might offer deeper the-
oretical insights into human-like behaviors in Al
This limitation may exclude valuable methodolo-
gies or perspectives that could enhance personality
evaluation frameworks for LLMs. We encourage
future surveys to integrate findings from psychol-
ogy and linguistics to bridge theoretical founda-
tions with computational approaches, fostering a
more comprehensive understanding of personality
in Al systems.

While our survey advocates for a deeper inte-
gration of psychology into LLM design, we also
caution against the ethical risks posed by overuse
or misapplication of psychological principles. A
concrete example is operant conditioning (Skin-
ner, 1957), which describes how behavior can be
shaped by consequences. Applied to LLMs — for
instance, through timely, gratifying feedback to
reinforce engagement — these mechanisms can be
beneficial in contexts like language learning or mo-
tivation. However, reinforcement schedules such as
variable ratio or interval rewards may unintention-
ally condition users to engage compulsively, rais-
ing the risk of manipulative design. This presents
a key ethical limitation: distinguishing between
genuinely supportive interactions and those that
encourage excessive use is inherently difficult. To
address this, we emphasize the need for transparent
disclosure of reinforcement mechanisms and the
establishment of clear ethical guidelines by profes-
sional communities. These safeguards are essential
to ensure that psychological insights enhance user
well-being without enabling exploitative practices.
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Appendix
A Psychology Theories

In Tables 1, 2, and 3, we summarize representative
psychological theories by sub-area and indicate
whether they have been explored in existing LLM
research. Table 1 covers developmental, cognitive,
and behavioral psychology theories; Table 2 fo-
cuses on social psychology theories; and Table 3
presents personality psychology and psycholinguis-
tics theories.

For each theory, the “Explored” column captures
the extent to which it has been applied in LLM re-
search. The symbol v/ denotes multiple surveyed
works explicitly leveraging or referencing the the-
ory, * indicates fewer than three such works, and
X signifies that none were identified in our sur-
vey. The distribution of these marks highlights
which areas of psychological theory have already
influenced LLLM development—such as working
memory theory or reinforcement learning analo-
gies—and which remain largely unexplored, such
as social identity theory or certain psycholinguistic
processing models.

These tables are designed to provide an at-a-
glance view of theoretical coverage and to reveal
underexplored opportunities where insights from
psychology could inspire new approaches to model
different stages of LLMs’ development.

B Search Strategy and Keyword Lists
B.1 Search Strategy and Validation

We survey 227 papers from major *CL venues, plus
COLING, NeurIPS, ICML, ICLR, and influential
arXiv preprints, from 2021 to 2025.

B.1.1 Search strategy:

Each author was assigned specific psychological
domains (domains were consulted with psychology
experts to ensure no major areas were overlooked).
Each paper list was cross-checked by other authors.

Full keywords combined psychological terms
(e.g., “working memory,” “theory of mind,” “oper-
ant conditioning”) with LLM-related terms (e.g.,
“language model,” “transformer™) in systematic
combinations. Full keyword list is provided below.
When in doubt, cross-verification was conducted

with both psychology and NLP experts
B.1.2 Validity of connections:

All psychological connections were rigorously val-
idated through a multi-step process:

26

. Initial connections identified and confirmed
by our team of 5 NLP experts, one of which
with a degree in psychology, ensuring both
technical and theoretical grounding

. Cross-verification conducted across the entire
team, with consultation of external psychol-
ogy experts when connections required spe-
cialized domain knowledge

. Final systematic review by senior co-authors
in both NLP & Psychology, 2 psychologists
with expertise spanning both psychology re-
search and NLP applications

This multi-layered validation process ensures that
every psychological theory-LLLM connection in our
survey is both theoretically sound and technically
feasible.

B.2 Keyword Lists
B.2.1 Developmental Psychology

Subareas: cognitive development; language acqui-
sition (merged into psycholinguistics)

Keywords: ‘“piaget”, “cognitive development”,
“vygotsky”, “sociocultural development”, “scaf-
folding”, “social learning”, “zone of proximal”,

“observational learning”,
“ecological validity”, “ecological systems”,
structivist”, “constructive development”

Reference table: Reference table: Table 1

“moral development”,

L INT3

con-

B.2.2 Cognitive Psychology

Subareas: Perception; Attention; Memory; Rea-
soning & Decision Making
Keywords: “perception”, “
up”’, “contextual information”,
“schemas”, “pattern recognition”,
“knowledge construction”, “predictive coding”,
tention psychology”, “selective attention”, “mem—
ory psychology”, “working memory”, “memory
augmentation”, “long-term memory”, “knowledge
retention”, “episodic memory”, “hippocampal in-
dexing”, “cognitive load”, “dual-process”, “cogni-
tive maturity”, “cognitive biases”, “metacognition”,
“metacognitive learning”, “self-reflection”, “theory
of mind” (the keyword “psychology” was appended
during search as well)

Reference table: Table 1

top down”, “bottom
”, “schema theory”,
” “constructivist”

E3] “

LE T3

B.2.3 Behavioral Psychology

Subareas: Classical Conditioning; Operant Condi-
tioning; Observational Learning (Social Learning);



Psych Area Sub Area Theory Definition Explored
Incremental . . 5 5
Cognitive Children acquire knowledge through sequential tasks with v
increasing complexity (Piaget, 197
e increasing complexity (Piaget, 1976)
g Learning is enhanced through gradually challenging interacti
. Scaffolding Theory with appropriate guidance (Park and Reuter-Lorenz, 2009)
Cognitive Development
I 3 G
X’er::é::;l Numerical concepts are gradually acquired through structured
Developmental N exposure and experience (Piaget, 2013)
Psych Understanding
Zone of Proximal Optimal learning occurs in the gap between what a learner can do
Development independently and with assistance (Wertsch, 1938)
Language Language develop follows predictable patterns through
A Acquisition Theor, exposure to linguistic environments (Chomsky, 1980)
Language Acquisition il Y # 8 (Ciemety
. L. Emphasizes real-world data and environments to mimic natural
Ecological Validity cognitive development (Schmuckler, 2001)
Selective Attention Prioritizes cogqtttvely Sall‘eflt mformatwn while filtering out v
irrelevant stimuli (Treisman, 1969)
Top-down and 6og.. g . ;
Attention and Perception 11;0 ttom-up Distinguishes between concept-driven (top-down) and data-driven v
. (bottom-up) perceptual processing (Gregory, 1997)
Processing
57 q Anticipatory processing based on prior knowledge and prediction of
Predictive Coding expected inputs (Rao and Ballard, 1999)
. Limited-capacity system for temporarily holding and manipulating
Working Memory information (Baddeley and Hitch, 1974) v
Memory Systems Long-term Memory System for storing {'nfarmat'ion'over exfended periods through
. semantic organization (Tulving et al., 1972)
Cognitive Psych
Hippocampal Views the hippocampus as a pointer to neocortical memory
Indexing Theory representations (Teyler and DiScenna, 1986)
5q g Tthe develop and refi; of an individual’s thinking,
Cognitive Maturity r ing, and probl, lving abilities (Ingersoll et al., 1986) ‘/
i . X Theory of Mind The ability to attribute mental states to oneself and others and v
Reasoning and Decision Making Y understand others may have different beliefs (Baron-Cohen et al., 1985)
Knowledge is organized into interconnected patterns that guide
Schema Theory processing and interpretation of new information (Anderson and Pearson,
1984)
Classical Learning occurs when a neutral lus b d with a
Conditioning meaningful one (Pavlov, 1927)
i Behavior is str hened or kened by q such as
i Operant Conditioning rewards or punishments (Skinner, 1957, 1938) v
Behavioral q I
Psych Learning and Conditioning =
Y Thorndike’s Law of Behaviors followed by satisfying outcomes are more likely to be
Effect repeated in the future (Thorndike, 1927)
Premack Principle A preferred activity can rgmforce a less preferred one if access is X
contingent (Premack, 1959)

Table 1: Representative developmental, cognitive, and behavioral psychology theories by sub-area. In the “Explored” column,

indicates multiple surveyed works,
substantially explored).

Behavior Modification and Applied Behavior Anal-
ysis

Keywords: “Behavioral psychology”, “behavior-
ism”, “classical conditioning psychology”, “Pavlo-
vian conditioning”, “unconditioned stimulus”,
“unconditioned response”, “conditioned stimu-
lus”, “conditioned response”, “neutral stimu-
lus”, “acquisition learning”, “extinction”, “sponta-
neous recovery”, “stimulus generalization”, “stim-
ulus discrimination”, “higher-order conditioning”,
“second-order conditioning”, “operant condition-
ing”, “RLHF”, “RLAIF”, “instrumental condi-
tioning”, “law of effect”, “reinforcement learn-
ing”, “reward”, “positive reinforcement”, “nega-
tive reinforcement”, “punishment”, “positive pun-
ishment”, “negative punishment”, “discriminative
stimulus”, “shaping”, “chaining”, “primary rein-
forcer”, “secondary reinforcer”, “conditioned rein-

indicates fewer than three, and Xindicates that none emerged in our survey (i.e., not yet
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forcer”, “continuous reinforcement”, “partial rein-
forcement”, “intermittent reinforcement”, “fixed
interval schedule”, “variable interval schedule”,
“fixed ratio schedule”, “variable ratio schedule”,
“observational learning”, “modeling psychology”,
“imitation”, “vicarious reinforcement”, “vicarious
punishment”, “behavior modification™, “behavior
therapy”, “Applied Behavior Analysis”, “token
economy”’, “aversion therapy”, “aversive condition-
ing”, “contingency management”

Reference table: Table 1

B.2.4 Social Psychology

Subareas: social cognition; social influence; group
dynamics; attitude change; self & identity

Keywords: social cognition; social influence;
group dynamics; attitude change; self and identity;
attribution theory; dual-process; theory of mind;
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Psych Area Sub Area Theory Definition Explored
I Explains how people infer causes of behavior as internal or external
Attribution Theory (Fiske and Taylor, 2020; Baron-Cohen, 2012) X
. . Differentiates between fast, intuitive (System 1) and slow, deliberate
Social Cognition | Dual-Process Theory (System 2) reasoning (Kahneman, 2011) 4
Theory of Mind How individuals understand and attribute mental states to others V4
(ToM) (Baron-Cohen et al., 1985)
. The magnitude of social influence depends on the strength,
Beciallnpgeglieon immediacy, and number of sources (Latané, 1981) X
Conformity Theories Explore how group pressure can alter individual judgments (Asch, Ve
. 2016
Social Influence )
. . D trate how authority infl es behavior, highlighting
Obedience Theories conditions under which individuals comply (Milgram, 1963) X
. Explain how messages processed via central or peripheral routes can
Persuasion Models lead to attitude change (Petty and Cacioppo, 2012) v
Examines how the desire for conformity and group cohesion can
Groupthink lead to flawed decision-making and suppression of dissenting X
Group Dynamics opinions (Janis, 1972)
Social Facilitation Investigates how the presence of others can enhance performance on X
. simple tasks or reduce effort in collective work (Zajonc, 1965; Latané et al.,
and Social Loafing 1979)
‘e ; Explains how inconsistencies between beliefs or behaviors create
. Cognitive D =Xp ) ! A
Social Psych ognt 1;2 issonance discomfort, prompting attitude change to restore consistency (Morvan
geny and O’Connor, 2017)
Elaboration Prop that per: occurs via a central route (deliberate
Likelihood Model processing) or a peripheral route (heuristic processing), depending X
Attitude Change (ELM) on the recipient’s motivation and capacity (Petty and Cacioppo, 2012)
Suggests that individuals strive for consistency among their attitudes
Balance Theory and relationships, adjusting beliefs to maintain cognitive harmony X
(Heider, 1946)
Posits that exposure to weak counterarguments can strengthen
Inoculation Theory resistance to persuasion by preemptively activating defensive
mechanisms (McGuire, 1964)
. Defines the process of introspection, with attention placed on the
Self-Refiection self-concept (Phillips, 2020)
Self-Perception Explains how individuals infer their internal states by observing X
Theory their own behavior (Bem, 1972)
. Social Identity Posits that group membership shapes self-concept and influences
Self and Identity Theory intergroup behavior (Tajfel, 1979)
] Y Expands on social identity theory, describing how individuals
Self Ct]l;legortzatwn classify themselves and others into social groups, shaping social X
€0 norms (Maines, 1989)
Self-Affirmation Suggests that individuals are motivated to maintain their X
Theory self-integrity when faced with threats to their self-concept (Steele, 1988)

Table 2: Representative social psychology theories by sub-area. In the “Explored” column, indicates multiple surveyed works,

indicates fewer than three, and Xindicates that none emerged in our survey (i.e., not yet substantially explored).

social impact; conformity; obedience; persuasion;
groupthink; social facilitation; social loafing; cog-
nitive dissonance; elaboration likelihood model;
balance theory; inoculation theory; self-reflection;
self-perception; social identity; self-categorization;
self-affirmation

Reference table: Table 2

B.2.5 Personality Psychology

Subareas: humanistic theory; psychoanalytic the-
ory; behaviorist theory; social cognitive theory;
trait theory (used in combination with “personal-
ity”)

Keywords: ‘“personality”, “personality psychol-
ogy”, “personality traits”, “the Big Five”, “Big
Five Model”, “OCEAN”, “Myers-Briggs Type In-
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dicator”, “MBTI”, “EPQR-A”, “Eysenck Personal-

ity Questionnaire”, “Socionics”, “temperaments”,
“Personality Factors”

Reference table: Table 3

B.2.6 Psycholinguistics

Keywords: psycholinguistic; linguistic;
phonology/phonological; phonetic; morphol-

ogy/morphological; semantic; syntax/syntactic;
pragmatic
Reference table: Table 3



C Extended Discussion on Reinforement
Learning from Human Feedback
(RLHF)

C.1 Operant Conditioning in RLHF

During RLHF fine-tuning, the model (agent) gen-
erates responses while a learned reward function
R(z), often a neural network trained on preference
data, assigns scores to candidate outputs x. These
scores proxy for human judgment and guide policy
updates to reinforce higher-reward behaviors. For
instance, (Ouyang et al., 2022) trains InstructGPT
via Proximal Policy Optimization (Schulman et al.,
2017): responses deemed more helpful or accu-
rate by human evaluators receive greater reward,
whereas undesirable or incorrect outputs face pe-
nalization. Unlike purely exploration-based RL
methods, this arrangement leverages human insight
to provide a more precise learning signal; how-
ever, success relies on careful and consistent reward
modeling that captures subtle human values.

C.2 Modeling Human Preferences as a
Reward Function

Although extensive work has been conducted in
RLHF, here we primarily highlight recent ap-
proaches or methodologies explicitly grounded in
psychological theories. Building robust reward
functions from heterogeneous or ambiguous feed-
back remains a core challenge in RLHF. Early foun-
dational frameworks (Christiano et al., 2017; Sti-
ennon et al., 2022) laid essential groundwork for
converting human judgments into usable reward
signals, drawing implicitly from principles of Op-
erant Conditioning Theory. More recent advance-
ments explicitly target improvements in stability,
scalability, and fairness, addressing issues arising
from the inherent variability and complexity of hu-
man preferences.

(Rafailov et al., 2023) introduced Direct Pref-
erence Optimization (DPO), simplifying prefer-
ence integration by directly optimizing the pol-
icy through a closed-form solution, thus remov-
ing the need for explicit intermediate reward mod-
eling. Extending these efforts toward equitable
alignment, (Ramesh et al., 2024) proposed Group
Robust Preference Optimization (GRPO), ensur-
ing robustly aligned outcomes across diverse de-
mographic groups, addressing biases commonly
observed in human-driven reward processes.

Further refinements emphasize enhancing align-
ment accuracy through psychological considera-

29

tions. For instance, Contrastive Preference Learn-
ing (Hejna et al., 2024) utilizes regret-based losses
inspired by behavioral economics, facilitating sta-
ble off-policy learning without conventional RL
techniques. Distributional Preference Learning
(Siththaranjan et al., 2024) aligns reward model-
ing more closely with human cognitive patterns
by capturing human values as probability distri-
butions rather than point estimates. Variational
Preference Learning (VPL) (Poddar et al., 2024)
further integrates psychological realism, introduc-
ing latent-variable modeling to personalize RLHF,
reflecting variability in individual user preferences
rather than imposing a universal reward structure.

These advancements collectively illustrate how
psychological theory, particularly Operant Con-
ditioning Theory, continues to shape and inspire
sophisticated techniques for reliably aligning LLM
behavior with nuanced human values.

C.3 Reinforcement Schedules and Feedback
Frequency

In early RLHF, feedback is typically sparse — a
single scalar reward per output — which causes
a credit assignment problem: the model can’t tell
which parts of the output led to the reward. This
is similar to delayed feedback in animal learn-
ing, which slows progress. Psychology shows that
immediate and frequent reinforcement improves
learning. Similarly, recent RLHF methods pro-
vide dense, token-level feedback (e.g., from a critic
model), which improves sample efficiency and
training stability. To address this, (Cao et al., 2024)
propose LLM self-critique, a method that uses a
secondary model to provide dense, token-level feed-
back during generation. This simulates a continu-
ous reinforcement schedule, analogous to real-time
feedback in behavioral training, and leads to more
stable and efficient learning. Another factor is how
often feedback is given: continuous vs. partial rein-
forcement. While human feedback is often sparse
due to cost, using Al feedback models (like RLAIF,
will discuss later) allows for more frequent feed-
back. Even with limited human scores, techniques
like credit assignment can distribute reward across
the output.

C.4 Reward Prediction Errors as a Learning
Driver

At the heart of reinforcement learning lies the con-
cept of reward prediction error (RPE), which arises
when there is a discrepancy between an agent’s ex-



pected reward and the reward it actually receives,
prompting adjustments and driving learning (Sut-
ton and Barto, 2018). This mechanism closely
parallels dopaminergic signaling in animal brains,
where dopamine neurons respond strongly to un-
expected rewards or punishments, effectively re-
inforcing behaviors associated with positive sur-
prises or reducing those linked to disappointments
(Schultz, 1998). In RLHEF, reward prediction errors
similarly guide model updates; each model output
receives a score from a reward model trained on
human preferences, and deviations between these
scores and the model’s predicted rewards are used
to adjust behavior. However, simplistic or flawed
reward models can lead to "reward hacking," where
the model exploits blind spots in the reward func-
tion rather than genuinely aligning with human
values (Amodei et al., 2016). Introducing variabil-
ity in reward signals can encourage exploration
and mitigate premature convergence on suboptimal
strategies (Dayan and Daw, 2008). To address re-
ward hacking and reward-model inconsistencies,
recent approaches have formulated RLHF as a con-
strained Markov decision process with dynamic
weighting (Moskovitz et al., 2024), introduced
information-theoretic regularization techniques (In-
foRM) (Miao et al., 2024b), and proposed methods
such as ConvexDA and reward fusion to stabilize
and enhance reward-model consistency (Shen et al.,
2024).

C.5 Implications for Bias, Alignment, and
Reward Modeling

Employing these behavioral principles may im-
prove how well RLHF handles biases and achieves
robust alignment. For instance, diverse trainers and
variable scenarios can prevent conditioning bias,
where the model overfits to a narrow segment of
human preferences (Sheng et al., 2019). Moreover,
shaping and multi-dimensional reward functions
can address multiple alignment goals simultane-
ously (e.g., factual accuracy and polite style), limit-
ing reward hacking.

At the same time, grounding RLHF in behavioral
theory highlights persistent pitfalls. Models still
lack an intrinsic understanding of human values,
and an imprecise reward signal can reinforce su-
perficial behaviors. To mitigate these risks, a cycle
of model auditing, reward model refinement, and
re-training can mirror how animal trainers contin-
ually adjust reinforcement to avoid unwanted side
effects.
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D Persona-Inspired Dialogue Generation

Personality has also inspired improvements truth-
fulness, response grounding, and broader align-
ments. Zhang et al. (2024d) introduced Self-
Contrast to enhance internal consistency, and Joshi
et al. (2024) proposed the Persona Hypothesis,
linking truthfulness to pretraining structure. Kim
et al. (2024) introduced PANDA to reduce persona
overuse in dialogue. Zhang et al. (2024d) intro-
duced a reflection-based technique to reduce inter-
nal inconsistencies. Lee et al. (2025a) models mul-
tidimensional self-concept to enhance authenticity.
Joshi et al. (2024) proposed the Persona Hypothe-
sis, arguing that LLMs encode truthful and untruth-
ful personas from their training distribution. Kim
et al. (2024) addressed the overuse of persona cues
to improve contextual appropriateness. Persona-
guided generation has been applied to emotionally
supportive role-play settings (Ye et al., 2025; Chen
et al., 2025¢).

E Extended Discussion on Debates over
NLP-Psychology Intersection

A recurring theme is whether human psychology
can be naively mapped onto LLM behavior without
distortion (Lohn et al., 2024). Therefore, in this
section, we discuss several major points of con-
tention at this interdisciplinary boundary. These
issues motivate a set of recommendations and high-
light open directions for future cross-disciplinary
research.

Terminology Mismatches One key issue is the
mismatch in terminology and the anthropomor-
phization of technical concepts. Terms like atten-
tion, memory, and “understanding” have specific
meanings in psychology that differ from their us-
age in NLP. For instance, attention in psychol-
ogy refers to selective mental focus and executive
control, whereas in transformers models, it is a
mathematical mechanism for weighting tokens —
without cognitive awareness (Lindsay, 2020). This
divergence can lead to misleading interpretations,
such as assuming models exhibit intentional fo-
cus when they merely perform matrix operations.
Similar misalignments exist for terms like mem-
ory (which in psychology implies a structured
encoding and recall process, versus an LLM’s con-
text window or weight parameters) and expressions
such as “knows” or “thinks.”

Such anthropomorphic language is increasingly



prevalent and shapes public and scholarly assump-
tions about LLMs. Recent analyses have found
a growing prevalence of human-like descriptors
for LLM behavior, raising calls to carefully dis-
entangle metaphor from mechanism (Ibrahim and
Cheng, 2025). An open research direction is devel-
oping a more precise cross-disciplinary lexicon:
how can we describe model behaviors in ways
that neither oversimplify the psychology nor over-
anthropomorphize the engineering? Improving in-
terdisciplinary communication by explicitly defin-
ing terms and drawing careful analogies remains
an important but under-addressed challenge.

Theoretical Discrepancies in Use of Psychology
Beyond terminology, discrepancies arise in the
adoption of psychological theories within NLP
research. Sometimes, NLP integrates concepts
from psychology that are outdated or contested
in their original fields. For instance, predictive
coding, which proposes that the brain continu-
ously anticipates sensory input and updates via
prediction errors (Rao and Ballard, 1999), is often
used as a metaphor for LLMs’ next-token predic-
tion. However, contemporary studies emphasize
that brain prediction operates across hierarchical
and multi-scale structures (Antonello and Huth,
2024; Caucheteux et al., 2023), cautioning against
simplistic analogies that risk misrepresenting the
theory.

Another example is the lingering use of folk-
psychological typologies like the MBTI in some
LLM studies. Despite its cultural popularity, MBTI
has faced substantial criticism for poor validity and
reliability (Pittenger, 1993). It classifies person-
ality into 16 types based on Jungian dichotomies;
however, research indicates these categories lack
stability and predictive power regarding behavior
(McCrae and Costa Jr, 1989). Nonetheless, the ease
of obtaining of MBTI-labeled data has led some
NLP studies to treat these categories as definitive,
highlighting a theoretical lag where NLP adopts
psychological models that mainstream psychology
has largely moved beyond.

Working memory presents another gap. While
cognitive psychology and neuroscience character-
ize it by limited capacity and active attention con-
trol (Baddeley and Hitch, 1974), LLM approxi-
mations — such as short-term retention modules
(Kang et al., 2024) or memory mechanisms for ex-
ternal context (Li et al., 2023) — do not replicate
these constraints. This raises questions: Should
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Al systems emulate human cognitive limitations
to achieve more human-like reasoning, or should
they leverage their capacity to surpass such con-
straints? If certain human limitations, like bounded
memory, lead to desirable properties such as bet-
ter interpretability or reduced distractions, might
it be useful to impose similar limits on AI? These
questions remain largely open.

Finally, a related debate concerns behavioral psy-
chology. The field has been critiqued for ignor-
ing cognitive processes (Miller, 2003) and internal
mental states (Flavell et al., 2022) that drive the
observed behaviors, limiting its explanatory power.
With the critiques remaining, the superficial appli-
cation of behavioral psychology is also evident in
LLM research. For instance, RLHF draws from
operant conditioning but largely focuses on opti-
mizing rewards (Ouyang et al., 2022; Rafailov et al.,
2023; Ramesh et al., 2024), often neglecting inter-
nal model states. Consequently, a flip-side of such
optimization is reward hacking (Skalse et al., 2022),
where models exploit shortcuts without meeting
true objectives — mirroring human behavior un-
der evaluative pressure (Krakovna, 2020). Deeper
integration of cognitive psychology is needed to
address these limitations in LLM design.

The debate over whether LLLMs possess a true
understanding of language or merely function as
"stochastic parrots" (Bender et al., 2021) remains
ongoing. Linguists have largely been skeptical
(Ambridge and Blything, 2024), arguing that lan-
guage ability is inherently abstract and complex,
extending beyond mere statistical pattern recogni-
tion. (Park et al., 2024) connection between mathe-
matical reasoning and high-level linguistic compre-
hension.

Evaluation and Validity Debates Anoter central
debate concerns how we evaluate LLMs on pur-
portedly “psychological” abilities — and whether
current tests measure what we assume. For exam-
ple, advanced LLMs like GPT-4 perform well on
traditional ToM tasks, solving around 75% of false-
belief scenarios, comparable to a 6-year-old child
(Kosinski, 2024; Strachan et al., 2024). Some inter-
pret this as emergent ToM-like reasoning (Kosinski,
2024), but others caution that high performance
may reflect surface-level pattern matching rather
than genuine mental-state attribution. Researchers
emphasize that correct answers do not imply men-
talizing ability (Strachan et al., 2024), and minor
prompt changes can significantly impair model per-



formance (Shapira et al., 2024). This underscores
the need for more rigorous, theory-grounded evalu-
ations and clearer cross-disciplinary definitions.

A similar controversy surrounds personality
modeling. Some studies suggest LLMs exhibit sta-
ble simulated personality traits (Sorokovikova et al.,
2024; Huang et al., 2024), enabling consistent per-
sona simulation across prompts. However, others
show that LLM responses vary with prompt fram-
ing and response order, undermining test reliability
(Gupta et al., 2024; Shu et al., 2024). Tseng et al.
(2024) distinguish between role-playing (adopting
assigned traits) and personalization (adapting to
users), raising a fundamental question: do LLMs
have inherent personalities, or merely mimic be-
havior? While LLMs can simulate personality, in-
consistent assessments cast doubt on whether such
traits are emergent or engineered — an open direc-
tion for future work.

In summary, these debates highlight the need for
a systematic, theory-driven framework that goes
beyond superficial performance metrics, thereby
enhancing model interpretability and guiding the
development of LLMs to more faithfully replicate
the complexities of human cognition and behavior.
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Psych Area Sub Area Theory Definition Explored
The Five-Factor Model (FFM), also known as OCEAN, categorizes
Big Five Model personality into five dimensions: Openness to experience, v
Conscientiousness, Extraversion, Agreeableness, Neuroticism (Roccas
etal., 2002)
. . . Classifies individuals into 16 personality types based on four
Personality traits Myers-Briggs Type dichotomies (e.g., Introversion vs. Extraversion) (Myers and Myers, 1995). /
Indicator (MBTI) While widely used, MBTI has been criticized for lacking empirical validity, reliability,
and independence between its categories. (Pittenger, 1993)
Eysenck Personality Contains a 24-item personality test that measures extraversion,
Questionnaire- neuroticism, psychoticism, and social desirability. (Eysenck and Eysenck, v
Revised (EPQR-A) 1984)
Emphasizes free will, personal growth, and self-actualization. This
. Humanistic Theory | perspective focuses on individuals’ subjective experiences and their X
Pel['foml‘lllty drive to achieve their full potential. (Stefaroi, 2015)
sycl
. Originating from Freud, this theory conceptualizes personality as
Psychoanalytic the dynamic interplay between the id, ego, and superego, with X
Theory unconscious processes playing a central role in shaping behavior.
(Scharff et al., 2013)
Personality Theories Views per.’wn_ality asa se‘t of learnefi ,respoflses shaped by )
Behaviorist Theory envir reinforcel .and P s, Tfus perspective, X
pioneered by figures like Skinner and Watson, rejects internal
mental states in favor of observable behaviors. (Pierce and Cheney, 2008)
Social Cognitive ’ngl:lltghts the role: of cognitive processes in personality,
Th p ing how exp beliefs, and observational learning X
€ory shape behavior. (Spielman et al., 2024)
Trait Theory Facyses on identifyi'ng and : ing stable per: lity traits that
influence behavior across different contexts. (Cartwright, 1979)
Universal Grammar | Froposes an innate linguistic capacity that guides language learning V4
(Chomsky, 1957, 1965)
Lanzuazepiedusiien Emphasizes the role of social interaction and cognitive processes in
Usage-Based Theory language learning, rather than innate universal grammatical
Structures (Tomasello, 2005)
Describes how people backtrack and reanalyze the sentence
Garden Path Theory structure when encountering unexpected linguistic elements that
challenge their initial understanding (Frazier and Rayner, 1982)
Language processing is an interactive, probabilistic process where
Constraint-Based multiple sources of information simultaneously contribute to
Models understanding, rather than following a strict, tial parsing
approach (MacDonald et al., 1994)
Language Comprehension .
Psycholinguistics guag P Proposes that humans comprehend language through approximate,
Good-Enough ically-focused repr ions that capture the core meaning X
Processing rather than constructing syntactically perfect linguistic
interpretations (Ferreira and Patson, 2007)
Describes text comprehension as a two-stage process where readers
Construction- first generate multiple, loosely connected propositions and then X
Integration Model systematically filter and integrate them into a coherent, meaningful
understanding. (Kintsch, 1988)
7 h A 114 ], X
WEAVER++ Model Comprehensive framework for sp pre asa D X

Language Production

Interactive Two-Step
Model

multi-stag, parallel process (Levelt et al., 1999)

An interactive, probabilistic process of lexical selection and
phonological encoding, where multiple linguistic levels
simultaneously influence each other during speech generation
(Goldrick and Rapp, 2007)

Table 3: Representative personality psychology and psycholinguistics theories by sub-area. In the “Explored” column, indicates

multiple surveyed works,

explored).
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indicates fewer than three, and Xindicates that none emerged in our survey (i.e., not yet substantially
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