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and easier combination of ideas.
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1 Introduction

Wouldn’t it be great if computers programmed themselves? Program synthesis [7]
aims to do exactly that — given a description of the intended behavior and
a target language, it generates a program with the desired behavior. It has
exciting applications in areas ranging from automated software development to
robotics [9, 10, 6].

Despite decades of progress, program synthesis research faces recurring is-
sues common to research software: implementations are often domain-specific,
difficult to adapt, and hard to compare fairly [4, 8, 12, 5]. Further, benchmarks
and methods are inconsistently defined, making reproducibility and evaluation
tricky. These obstacles slow down research and progress within the field and
force unnecessary re-implementation of ideas.

We present Herb.jl 1, a unifying program synthesis library written in Julia
that tackles these issues head-on. Herb.jl decomposes synthesizers into modular,
reusable components, allowing researchers to easily re-implement old and novel
ideas, and fairly compare approaches. We provide a standardized but easily ex-
tensible formulation for all core concepts in program synthesis, i.e., grammars,
specifications, interpreters, constraints, and search methods. Herb.jl also includes
a collection of human-readable benchmarks and ready-to-use implementations of
common synthesizers, giving a solid starting point to enable rapid prototyping
of novel synthesis methods.
1 https://herb-ai.github.io/
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2 Preliminaries

Herb.jl aims to make formulating and solving a program synthesis problem as
easy as possible. Here, we use Herb.jl to introduce a simple program synthesis
problem, defined by a specification of the intended behavior of the program in
the form of input/output examples

problem = Problem([
IOExample(Dict(:x => 0), 1), # when input x = 0, output 1
IOExample(Dict(:x => 1), 3), # when x = 1, output 3
IOExample(Dict(:x => 3), 7)

])

and a target language in the form of a context-free grammar

grammar = @cfgrammar begin
Number = |(1:2) # A `Number` can be 1 or 2
Number = x # or an input `x`
Number = Number + Number # or the addition of two `Number`s

end

3 Overview and Design

Herb.jl is organized into Julia subpackages, each handling a specific aspect of syn-
thesis—from defining specifications and grammars (HerbSpecification, HerbGrammar),
to interpreting semantics (HerbInterpret), enforcing constraints (HerbConstraints),
and searching program spaces (HerbSearch). Standard interfaces make these
components interchangeable: users can swap grammars, interpreters, or search
strategies with minimal changes. Additional modules include HerbCore for shared
interfaces, and HerbBenchmarks for standardized problem sets.

A key design principle is the explicit separation of syntax and semantics,
allowing program enumeration to operate purely on abstract syntax trees before
execution. We implement two families of search methods: top-down and bottom-
up search. Here, the enumeration order is customizable, making it straightfor-
ward to implement search strategies such as depth-first [7], but also state-of-the-
art enumeration, such as cost-based search [2, 11, 3], or genetic search [7, 6, 13].
To illustrate Herb.jl ’s flexibility, the companion Garden.jl repository includes
clean, performant implementations of existing synthesizers built directly from
Herb.jl ’s building blocks [1, 3].

4 Conclusion and Future Work

Although Herb.jl already provides modular components that allow us to imple-
ment many approaches, we are continually expanding its toolkit to capture an
ever-wider range of ideas.
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