
Herb.jl: A Fast and Efficient Program Synthesis
Library

Tilman Hinnerichs1[0000−0003−4155−0239], Reuben Gardos
Reid1[0000−0002−3491−9686], Pamela Wochner1[0000−0003−4066−8614], Issa
Hanou1[0000−0001−5873−5139], Sebastijan Dumancic1[0000−0003−0915−8034]

1Technische Universiteit Delft, Delft, Netherlands
{t.r.hinnerichs, r.j.gardosreid, p.wochner, i.k.hanou,

s.dumancic}@tudelft.nl

Abstract. Herb.jl is a modular library for program synthesis written in
Julia. It decomposes synthesizers into reusable components and provides
standardized benchmarks, enabling rapid prototyping, fair comparison,
and easier combination of ideas.

Keywords: Program Synthesis · Automated Programming · Neuro-Symbolic
AI.

1 Introduction

Wouldn’t it be great if computers programmed themselves? Program synthesis [7]
aims to do exactly that — given a description of the intended behavior and
a target language, it generates a program with the desired behavior. It has
exciting applications in areas ranging from automated software development to
robotics [9, 10, 6].

Despite decades of progress, program synthesis research faces recurring is-
sues common to research software: implementations are often domain-specific,
difficult to adapt, and hard to compare fairly [4, 8, 12, 5]. Further, benchmarks
and methods are inconsistently defined, making reproducibility and evaluation
tricky. These obstacles slow down research and progress within the field and
force unnecessary re-implementation of ideas.

We present Herb.jl 1, a unifying program synthesis library written in Julia
that tackles these issues head-on. Herb.jl decomposes synthesizers into modular,
reusable components, allowing researchers to easily re-implement old and novel
ideas, and fairly compare approaches. We provide a standardized but easily ex-
tensible formulation for all core concepts in program synthesis, i.e., grammars,
specifications, interpreters, constraints, and search methods. Herb.jl also includes
a collection of human-readable benchmarks and ready-to-use implementations of
common synthesizers, giving a solid starting point to enable rapid prototyping
of novel synthesis methods.
1 https://herb-ai.github.io/

2 Hinnerichs et al.

2 Preliminaries

Herb.jl aims to make formulating and solving a program synthesis problem as
easy as possible. Here, we use Herb.jl to introduce a simple program synthesis
problem, defined by a specification of the intended behavior of the program in
the form of input/output examples

problem = Problem([
IOExample(Dict(:x => 0), 1), # when input x = 0, output 1
IOExample(Dict(:x => 1), 3), # when x = 1, output 3
IOExample(Dict(:x => 3), 7)

])

and a target language in the form of a context-free grammar

grammar = @cfgrammar begin
Number = |(1:2) # A `Number` can be 1 or 2
Number = x # or an input `x`
Number = Number + Number # or the addition of two `Number`s

end

3 Overview and Design

Herb.jl is organized into Julia subpackages, each handling a specific aspect of syn-
thesis—from defining specifications and grammars (HerbSpecification, HerbGrammar),
to interpreting semantics (HerbInterpret), enforcing constraints (HerbConstraints),
and searching program spaces (HerbSearch). Standard interfaces make these
components interchangeable: users can swap grammars, interpreters, or search
strategies with minimal changes. Additional modules include HerbCore for shared
interfaces, and HerbBenchmarks for standardized problem sets.

A key design principle is the explicit separation of syntax and semantics,
allowing program enumeration to operate purely on abstract syntax trees before
execution. We implement two families of search methods: top-down and bottom-
up search. Here, the enumeration order is customizable, making it straightfor-
ward to implement search strategies such as depth-first [7], but also state-of-the-
art enumeration, such as cost-based search [2, 11, 3], or genetic search [7, 6, 13].
To illustrate Herb.jl ’s flexibility, the companion Garden.jl repository includes
clean, performant implementations of existing synthesizers built directly from
Herb.jl ’s building blocks [1, 3].

4 Conclusion and Future Work

Although Herb.jl already provides modular components that allow us to imple-
ment many approaches, we are continually expanding its toolkit to capture an
ever-wider range of ideas.

Herb.jl: A Fast and Efficient Program Synthesis Library 3

References

1. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program syn-
thesis via divide and conquer. In: Legay, A., Margaria, T. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 23rd Interna-
tional Conference, TACAS 2017, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 10205, pp. 319–336 (2017). https://doi.org/10.1007/978-3-662-54577-5_18,
https://doi.org/10.1007/978-3-662-54577-5_18

2. Ameen, S., Lelis, L.H.S.: Program synthesis with best-first bottom-up search. J.
Artif. Intell. Res. 77, 1275–1310 (2023). https://doi.org/10.1613/JAIR.1.14394,
https://doi.org/10.1613/jair.1.14394

3. Barke, S., Peleg, H., Polikarpova, N.: Just-in-time learning for bottom-up enumer-
ative synthesis. Proc. ACM Program. Lang. 4(OOPSLA), 227:1–227:29 (2020).
https://doi.org/10.1145/3428295, https://doi.org/10.1145/3428295

4. Chen, A., Wong, C., Sharif, B., Peruma, A.: Exploring code compre-
hension in scientific programming: Preliminary insights from research sci-
entists. In: 33rd IEEE/ACM International Conference on Program Com-
prehension, ICPC@ICSE 2025, Ottawa, ON, Canada, April 27-28, 2025.
pp. 350–354. IEEE (2025). https://doi.org/10.1109/ICPC66645.2025.00043,
https://doi.org/10.1109/ICPC66645.2025.00043

5. Cropper, A., Dumancic, S., Evans, R., Muggleton, S.H.: Inductive logic program-
ming at 30. Mach. Learn. 111(1), 147–172 (2022). https://doi.org/10.1007/S10994-
021-06089-1, https://doi.org/10.1007/s10994-021-06089-1

6. Gulwani, S.: Dimensions in program synthesis. In: Bloem, R., Sharygina, N. (eds.)
Proceedings of 10th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23. p. 1. IEEE
(2010), https://ieeexplore.ieee.org/document/5770924/

7. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends
Program. Lang. 4(1-2), 1–119 (2017). https://doi.org/10.1561/2500000010,
https://doi.org/10.1561/2500000010

8. Kanewala, U., Bieman, J.M.: Testing scientific software: A sys-
tematic literature review. Inf. Softw. Technol. 56(10), 1219–
1232 (2014). https://doi.org/10.1016/J.INFSOF.2014.05.006,
https://doi.org/10.1016/j.infsof.2014.05.006

9. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Software synthesis procedures. Com-
munications of the ACM 55(2), 103–111 (2012)

10. Kuniyoshi, Y., Inaba, M., Inoue, H.: Learning by watching: Extracting reusable
task knowledge from visual observation of human performance. IEEE transactions
on robotics and automation 10(6), 799–822 (1994)

11. Matricon, T., Fijalkow, N., Lagarde, G.: Eco search: A no-delay best-first
search algorithm for program synthesis. In: Walsh, T., Shah, J., Kolter, Z.
(eds.) AAAI-25, Sponsored by the Association for the Advancement of Arti-
ficial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA. pp.
19432–19439. AAAI Press (2025). https://doi.org/10.1609/AAAI.V39I18.34139,
https://doi.org/10.1609/aaai.v39i18.34139

12. Muggleton, S.H., Raedt, L.D., Poole, D., Bratko, I., Flach, P.A., In-
oue, K., Srinivasan, A.: ILP turns 20 - biography and future challenges.
Mach. Learn. 86(1), 3–23 (2012). https://doi.org/10.1007/S10994-011-5259-2,
https://doi.org/10.1007/s10994-011-5259-2

4 Hinnerichs et al.

13. Sobania, D., Schweim, D., Rothlauf, F.: A comprehensive survey on pro-
gram synthesis with evolutionary algorithms. IEEE Trans. Evol. Com-
put. 27(1), 82–97 (2023). https://doi.org/10.1109/TEVC.2022.3162324,
https://doi.org/10.1109/TEVC.2022.3162324

