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Abstract

As deep learning models continue to scale, the growing computational demands
have amplified the need for effective coreset selection techniques. Coreset selection
aims to accelerate training by identifying small, representative subsets of data
that approximate the performance of the full dataset. Among various approaches,
gradient-based methods stand out due to their strong theoretical underpinnings
and practical benefits, particularly under limited data budgets. However, these
methods face challenges such as naive stochastic gradient descent (SGD) acting as
a surprisingly strong baseline and the breakdown of representativeness due to loss
curvature mismatches over time.

In this work, we propose a novel framework that addresses these limitations.
First, we establish a connection between posterior sampling and loss landscapes,
enabling robust coreset selection even in high-data-corruption scenarios. Second,
we introduce a smoothed loss function based on posterior sampling onto the model
weights, enhancing stability and generalization while maintaining computational
efficiency. We also present a novel convergence analysis for our sampling-based
coreset selection method. Finally, through extensive experiments, we demonstrate
how our approach achieves faster training and enhanced generalization across
diverse datasets than the current state of the art. (Code are available in: https:
//github.com/changwk1001/stable-coreset.git)

1 Introduction

Modern deep learning thrives on massive datasets, but training on all available data can be prohibitively
slow. Coreset selection aims to address this issue by selecting a small, representative subset of training
data that can be used in lieu of the full dataset, thus accelerating training while preserving model
performance. Recent gradient-based coreset methods (Mirzasoleiman et al., 2020; Killamsetty et al.}
2021a;|Pooladzandi et al.| [2022} [Yang et al.| | 2023)) have shown promise by approximating the full-data
gradient using a subset. In practice, however, we observe a critical failure mode in these approaches:
the loss landscape induced by the selected subset is often misaligned with that of the full dataset. This
misalignment becomes especially pronounced under realistic conditions like label noise, adversarial
corruptions, or very small subset budgets, leading to poor generalization despite the subset’s seeming
adequacy in matching gradients at selection time.

To illustrate this misalignment problem, consider a model selecting a coreset on a noisy dataset.
Gradient-based selection methods tend to prioritize examples with large gradient magnitudes. If some
training labels are corrupted (or the model is under-trained, the coreset size is small), such methods
can inadvertently overweight outliers or mislabeled examples simply because they induce large
immediate loss gradients. The resulting subset produces a distorted loss surface: the model trained on
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(a) (d)
Figure 1: (Left) The smoothed surface: The loss landscape generated by coresets selected by (a)

Craig (Mirzasoleiman et al.,[2020) The loss landscape generated by the coreset of (b) our method.
Our method smoothens the induced landscape. The graph is generated with CIFAR10 data and
ResNet20 using 1% data budget. (Right) Better match in loss landscape: The black line in both
the figures represent the loss landscape of the full training set for MNIST with LeNet using 1% data
budget for coreset selection. (d) Our method matches the underlying landscape better than (c) Craig.
The mean square error between the two landscapes for Craig and our method are 0.0703 and 0.0662
respectively. (see details in Appendix [B.4|and Figure|[6})

this subset will descend along directions that differ from those it would follow if it saw all data (See
Section[A.8). In other words, the subset’s gradient and curvature information (its geometry) deviate
from the full data’s. In fact, even without noisy labels, minor aberrations in gradient approximations
(e.g. due to small coreset bugdet) can distort the induced loss landscape (see Figure[I] (Left)). We
term this phenomenon loss landscape misalignment. Over time this discrepancy can magnify — the
model’s update on the subset can lead it into a region of parameter space that is suboptimal for the true
objective. Empirically, we observe that with 20%—-50% label noise on benchmarks like CIFAR-10,
CIFAR-100, and TinyImageNet, the performance of many gradient-matching based methods degrades
catastrophically — in some cases barely above chance — revealing their brittleness in the face of
corrupted data.

Prior attempts to address this instability have looked to second-order information. By incorporating
Hessian estimates, one can in principle better align a coreset’s loss landscape with the full data’s
landscape. Indeed, recent methods have tried to match not only gradients but also curvatures (e.g.
using approximate Hessians) to select more robust subsets [2023). Unfortunately, these
second-order approaches come with serious drawbacks. Computing or approximating Hessians in
deep networks is extremely costly and often numerically unstable. The required computations can
nullify the very speed-ups that coreset selection aims to achieve (as noted by Okanovic et al.[(2023);
Mahmood et al|(2025)). Further, we empirically also observe these methods are still susceptible to
noise in the labels and can even diverge due to sensitivity to noisy curvature estimates.

We propose a new perspective: posterior smoothing for coreset selection. Rather than deterministically
matching gradients or explicitly calculating Hessians, we sample model weight perturbations from a
Gaussian posterior centered at the current parameters, and use these perturbed weights to estimate
the landscape and evaluate the coreset selection criteria. Intuitively, this strategy smoothens out the
loss landscape by marginalizing over a local neighborhood in weight space, effectively simulating a
Bayesian posterior over models. By averaging gradient information across multiple weight samples,
our method obtains a Monte Carlo smoothing of the coreset objective, and yields a more stable and
geometry-aligned selection criterion. This yields a smoothed loss function that closely preserves the
underlying structure of the true loss landscape while damping spurious oscillations due to noise or
small sample size.

The proposed posterior-sampling strategy is both scalable and theoretically grounded. It requires
no explicit Hessian computations; the added overhead is merely a handful of forward passes for
sampling, which is much faster compared to full gradient evaluation. We provide a rigorous analysis
showing that posterior smoothing provably improves alignment between the induced and full-data
loss landscapes. In particular, under standard smoothness assumptions, we prove that our posterior
sampling leads to tighter approximation of the true gradient and Hessian of the entire dataset (see
Theorem [3.2)). This result formalizes the notion of “geometry alignment”: the subset sees nearly
the same curvature as the full data (see Figure |I| (Right) for a real-world illustration). Finally, we
derive convergence guarantees for training on smoothed coresets: under standard assumptions (e.g.
smoothness and bounded curvature), we prove that optimizing on the coreset will converge to a



solution that is e-close to the full data optimum. As a side effect, we improve the best known previous

rate under the same set of assumptions by O(1/+/ M) for multiplicative noise, where M is the number
of samples used in Monte Carlo smoothing.

Empirical results on a wide range of datasets strongly support our claims. Our posterior-based coreset
selection consistently outperforms state-of-the-art methods in both accuracy and convergence speed,
while using a fraction of the data. The gains are most pronounced in high-noise settings — for instance,
with 50% corrupted labels on SNLI, our approach outperforms the next best method by 7% absolute
accuracy. Interestingly, for this setting the next best method is Random Sampling — a notoriously
strong baseline in data selection. We find that our method handily beats the baselines across almost
all settings across multiple datasets (SNLI, TinyImageNet, ImageNet-1k, CIFAR-100, CIFAR-10,
MNIST), across different architectures (LeNet on MNIST to ResNet-50 on TinyImageNet/Imagenet-
1k and RoBERTa on SNLI), across different subset sizes and different noise corruption levels. Further,
our memory footprint is smaller, especially compared to the next most frequently best method
(Crest (Yang et al., [2023)) which requires expensive Hessian approximations and sometimes has
larger memory footprint (see Figure 2] (Right)) with longer run time than our method and sometimes
even full data training. To further solidify the supremacy of our method, we also achieve 20% — 200%
speedup for time-to-highest-accuracy compared to Crest across several different datasets. Our
ablation studies reveal practical insights as well. For example, we find that posterior sampling through
normalization layers (rather than into all model weights or final-layer weights) provides an optimal
trade-off between perturbation and stability, further boosting performance (See Table [2).

To summarize, we make the following technical contributions in this paper:

* Robust coreset selection via posterior sampling. We introduce a novel posterior smoothing
framework for loss landscape alignment under subset selection. We prove that sampling
weights from a local Gaussian posterior yields more faithful gradient and curvature estimates
for the subset, resulting in provable improvements in both Hessian alignment and Newton-
step similarity between the coreset and full dataset (see Theorem [3.2)). This perspective
opens up a new family of coreset methods that rigorously account for model uncertainty
during selection.

Extended convergence theory. We provide a comprehensive convergence analysis for
sampling-based coreset SGD, strengthening and improving prior theoretical results.(see
Theorem [3.3) Our analysis accounts for the dual sources of randomness — subset selection
and weight sampling — and characterizes how different noise structures (e.g. spherical vs.
Hessian-informed Gaussian) influence convergence rates.

Exhaustive empirical validation. Through extensive experiments on vision and NLP
benchmarks, we demonstrate that our approach consistently outperforms existing coreset
methods across both clean and corrupted datasets across different noise levels and model
architectures. Notably, under severe label noise (20-50% of labels corrupted on CIFAR-10,
CIFAR-100, TinyImageNet, ImageNet-1k, SNLI), our method remains remarkably robust
while prior gradient-based approaches fail. We also highlight key implementation findings
— for example, the importance of imposing posteriors in solely the normalization layers —
that further enhance coreset effectiveness. Together, our results establish a new state of the
art with minimal overhead and memory footprint in both accuracy and stability for coreset
selection in deep learning.

For a detailed review of related work, please refer to Appendix[A.1]

2 Background

The classic training objective is to optimize the Empirical Risk Minimization (ERM) on the training
dataset.

w* = argminl(w) = argminZli(w). (1)
w w i=1

For tractability and better generalization, in practice, we use SGD (stochastic gradient descent) for
optimization of (1] can lead to large memory burden and can be inefficient due to the calculation time.



Algorithm 1 Ensemble Coreset(r, E, T, B, w;, 1, P)

1: Parameters: Subsample size R, Ensemble size M, Max epochs 7', Number of Batch B, Initial
model parameters wy, Learning rate 1, Number of batch selection P, Gaussian Prior §, minibatch
size m

:fort=1toT do
forp=1to Pdo

Select random subset V,, C S, |V,| = R
Select S, € argming, cy, Zz‘evp minjes, Es||VIj(ws +0) — Vij(ws +9)[], [Sp] <m
end for
St = UpE[P}{SP}
for b =1to B do
Sample batch S, C Sy, |Sp| = m
Wy pp1 = Wep — NV, (Wi p)
end for
end for
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The iterative update of the model parameter can be written as:
Wi41 = W — UVZS/(wt)- (2)

where s is the random subset sampled from the whole training dataset and the gradient Vi (w;)
is evaluated on the subset. Several studies have investigated the convergence rate of stochastic
gradient descent (SGD) under different settings. In particular,(Ghadimi & Lan|(2013) established a
convergence rate of O(%) , while [ Xiao et al.| (2015)) extended this analysis to the mini-batch setting,

obtaining O(\/%), where R represents the mini-batch size.

Building up on the SGD, the gradient-based coreset selections (Mirzasoleiman et al., [2020; [Killam+
setty et al.| 2021aj [Pooladzandi et al.,|2022) aim to find a subset of data whose gradient aligns with
the gradient direction of whole training dataset. The formulation is as follows.

S* = argmin |S’| s.t max Vi (wy) — VL (w,)]] < e
S’Q%nge' | wf,eWHiEZS (we) j;l% i (we)]| 3)

Here ~; is the weight for the specific sample i. The goal is to jointly optimize for both—the subset .S’
out of the full dataset .S and the weights ; while ensuring an error of at most €. Practically, the inner
optimization over W is often omitted by setting W = {w; }, the singleton set of the current iterate in
the SGD. As pointed out by Mirzasoleiman et al.|(2020), we can transform the problem into a
submodular cover problem (see Appendix [A.6|for details):

§% = argmin|5'] s. min ||VI;(wg) — Vij(wy)|]| < e
gmin || j;,iesll (wr) = VI (wy)| "

3 Posterior-Stable Coreset Selection: New Paradigm for Landscape-Aligned
Subsets

The stability in optimization and its importance for generalization is widely studied in the [Nguyen
et al.| (2022)); |Chen et al.| (2018)); [Lei1 (2023)); [Harrison et al.| (2022); |Attia & Koren| (2022). For
example, Bisla et al.| (2022)); Duchi et al.|(2012) suggest making the model more stable by sampling
model weights with Gaussian posterior. This leads to smoothening of the loss surface and the induced
stability can help with generalization. [Liu et al|(2022) adapted a similar idea to sharpness-aware
minimization algorithm to help stabilize the training process and gain performance advantage.

We build on these previous works and seek a related but different goal. Subset selection can lead to
highly unstable and non-smooth loss surfaces (Shin et al.l 2023) (see Figure[I). How do we choose a
coreset that improves stability of the selection process so that the induced loss landscape matches
with the underlying ERM loss landscape ? Towards this end, we first propose a new definition for the
stability of the selected coresets:



Gradient Difference Comparison

—— Our Method
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Figure 2: (Left) Gradient match: The average gradient estimation error for our
method and Craig selection method using LeNet on MNIST. The error is calculated with

‘IT{’\ Yies Vii(w) — ﬁ djes 'ijlj(wt)‘, where S is the training set and S’ is the subset se-

lected. Our method generally produces smaller gradient errors and better gradient estimation com-
pared to the Craig method. (Right) Memory buffer: The memory consumption for Tinylmagenet.
Our method shows less memory during the training process. Crest(|Yang et al.|(2023)) requires to
maintain the information of Hessian during training and the intermediate calculation such as checking
the threshold calculation of Hessian norm also require large memory buffer. For the plot, we use
running average to average over the time step and show the mean value.

Definition 3.1. (o, €, w)-Stability. A subset S’ is called (o, €, w)-stable if there exists o, € such that

EwNN(iD,a'I)HVZS’ (U}) - vz(’w)H% < €, (5)

where Vig/(w) is the weighted gradient over the subset S” and VI(w) is the full gradient over the
entire dataset. This definition captures the essence of stability by quantifying how much the gradient
varies when considering perturbations around the model parameter w. Similar stability frameworks
have been explored in the literature (Bisla et al., 2022; |Liu et al.,[2022; |Duchi et al., 2012) highlighting
the crucial role of stability in ensuring that machine learning models for generalization and robustness.
A key side-effect of the stability is the smoothening of the function (See Theorem 1 in Bisla et al.
(2022))).

Algorithm Our goal is to select the (o, ¢, w)-stable coresets instead of solving the classic coreset
problem (3) by replacing the maximization over the domain W with the stability constraint. Similar
to the transformed coreset problem (@), we write our coreset selection optimization problem:

= in|S’| s.t in Es||VIj(w+ ) — Vij(w+6)|| <
S agg/;rgn;n|5| S lezsyélsr} sV (w +8) — Vi(w +6)|| <e, )

where § ~ N(0,c01) as o is a hyperparameter or a design variable that controls the perturbation of
the weights w. By optimizing this selection process, we aim to ensure that the coreset S’ retains the
essential characteristics of the original dataset while adhering to the stability constraints characterized.

Our algorithm is presented in Algorithm|[I] (For time complexity analysis, please refer to appendix [C)
In each epoch ¢, create a pseudo dataset by subsampling stable gradient-matched data points, P times.
Instead of solving the constrained selection to match full gradient up to €, we select m data points
each time as is standard in other implementations of similar algorithms. This creates a shadow dataset
S; of size P x m. We then use the shadow dataset .S; to compute the gradients and optimize the
model parameters using batched stochastic gradient descent on S;. This iterative approach allows for
refining the model with each epoch, progressively improving its convergence properties and stability.
(For more detailed discussion, see Appendix and Appendix [C)

For deep neural networks (DNN5s), adding stability to the entire w; can be prohibitively expensive.
Previous works have tried to mitigate this by focusing on the parameters in the last layer of the neural
network (Yang et al., 2023} Killamsetty et al., [2021a; |Pooladzandi et al.l [2022). However, more
recent research (Mahmood et al.,|2025) has shown that such strategies can be detrimental because of
implicit regularization properties of the SGD. Motivated by the recent studies (Mueller et al., 2023}
Frankle et al.,[2021; Xu et al.,2019) on importance of normalization layers for stability and improved



(a) CIFAR-10 (b) CIFAR-100 (c) Tinylmagenet (d) Imagenet-1k

Figure 3: Time-to-accuracy: We plot the time taken to achieve certain validation accuracy against
the state-of-the-art Crest|Yang et al.|(2023)) which uses 2" order information for coreset selection
and show that our proposed method is more efficient and faster in achieving the same validation
accuracies.

predictive performance in DNNs, we focus on our attention for sampling in the batch normalization
layers.

We now discuss theoretical properties of stable coresets. Our algorithm can be viewed as coreset
selection on the smoothed loss function that leads to stable and better performance on we shall see
in the sequel. Furthermore, we establish the relationship between the posterior sampling and the
loss landscape. Previous works have proposed that in order to successfully select key samples in
training dataset, the loss landscape over selected samples must match to the loss landscape of the
whole training dataset. To do so, these works relied on calculating or approximating the parameter
Hessian matrix which can be prohibitively expensive and can even offset the speedup obtained by
using coresets while also requiring additional memory. Instead, our sampling based strategy is a
cheaper and faster way to match the underlying loss landscape without direct calculation Hessians.
To understand the relationship between the Gaussian perturbation and loss landscape matching. We
propose a our theory in the following. (The proof is in appendix [A.2)

Theorem 3.2. Suppose a subset S’ C S is (0, €, w)-stable and let the Hessian difference be Hg: ,, —
Hg ., =: &, then,

(1) The Hessian difference matrix £ satisfies:
€]l < O(c?) and tx(€%) < O(%).
(2) The difference between newton step of two subset is bounded.
| Hg Vis (w) = Hg, Vis(w)]| < O(e).

Discussion: Theorem [3.2)formalizes the notion that posterior sampling provides an effective means
to ensure the alignment of the loss landscape of the chosen coreset with that of the underlying data.
Specifically, if the gradients of a selected subset match those of the full dataset under Gaussian
posterior sampling, the discrepancy between their Hessians remains small. This aligns with the
findings of |Shin et al.|(2023)), which emphasize the necessity of Hessian similarity across subsets.
Furthermore, our approach implicitly ensures that inverse-Hessian weighted gradients are also aligned,
satisfying the selection criteria established by Pooladzandi et al.| (2022). By leveraging posterior
sampling, we circumvent the computational challenges associated with direct Hessian comparisons
while preserving theoretical rigor. For even greater control over this alignment, more sophisticated
posterior distributions can be designed to precisely fine-tune the loss landscape matching between the
coreset and the full training dataset (see appendix [A.5).

Convergence Analysis Lastly, we also provide convergence analysis for the coresets Mini-batch
Stochastic GD along the lines of SGD analysis of|Yang et al.| (2023) except that we generalize it for
the stability setting and improve on their convergence rate.

Theorem 3.3. Say w ~ N(wy,021) at epoch t. Assume the (-) is f-smooth, and the expectation
in (6) is calculated by taking M samples. We consider noise in the gradients resulting from the
random sampling of batches and coreset selection as &1 and &; respectively:

Vi(w) = Vis(w) + & + &
(1) (Absolute noise) If the noise in coreset selection is of the form:

Ell|&2]l] <e,
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Figure 4: Strong against all baseline: Performance at different corrupt ratio with respect to MNIST,
EMINST, CIFAR-10 and CIFAR-100. Our method (purple line) consistantly outperform others
method at different corrupt ratio, and the performance drop is less when raising the corrupt ratio.
Note that the Random sampling method still suffer sharp drop in the high corrupt ratio region in
CIFAR-100 dataset.

then by setting the learning rate to be n = min{ %7 %} and o3d = 1/? We can have convergence
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2. (Multiplicative noise) If the noise in estimation of gradients is of the form below
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Discussion Theorem studies the tradeoff between noise levels and corresponding convergence
rates. In case 1 of relatively larger absolute noise, we improve certain terms over previously known
standard SGD rates by a factor of M, though we have an additional term due to the noise injected
into the model weights. These trade-off between different forms of noise actually give us some
room for engineering the overall training process. For example, we could avoid the additional term
by switching to the naive SGD when close to end of the training. Another observation is that the
trade-off will be more favorable towards our method when the random sampling noise o1 becomes
large which can happen in the corrupt learning situation (data corruption) making our method more
stable in such a situation. In the second case of smaller (proportional to the gradient magnitude)

noise, we improve the convergence rate from O(\/%) (Yang et al., 2023) to O( \/ﬁ)

Selective Sampling and Stability Batch Normalization (BN) and related normalization techniques
are central to the training and generalization of deep learning models, influencing both the loss
landscape and optimization behavior (Santurkar et al., 2019; Sun et al., 2020; |Wang et al., [2021]).
Recent studies also emphasize the role of noise in normalization layers (Kosson et al., 2023} |Liang
et al.,[2019), underscoring their importance in stabilizing learning.

Our method involves sampling around model weights to capture curvature information without
explicitly computing the Hessian. However, full-model sampling is computationally expensive, and
larger variance (e.g., o3d) leads to smoother loss surfaces but slower convergence (see Theorem [3.3)).
To balance efficiency and stability, we restrict sampling to the batch normalization layers. This choice
is supported by recent findings that highlight the unique role of BN layers in controlling sharpness
and enabling efficient optimization (Mueller et al., 2023} [Frankle et al.,[2021} Xu et al.}2019). While
this design is empirically motivated, developing a full theoretical understanding of BN’s stabilizing
effect remains an open question.

4 Experiments: When Does Posterior Sampling Help Most

To evaluate our method. We test our method on ResNet models (ResNet20, ResNet18 and ResNet
50) and transformer based models (ViT, RoOBERTa and ELECTRA-small-discriminator) with vision
datasets (MNIST, EMNIST, CIFAR10, CIFAR100, TinyImagenet, Imagenet) and language datasets



(SNLI, REC-50). It achieves state-of-the-art accuracy with improved time and memory efficiency,
and demonstrates greater robustness to label noise than baselinesﬂ All results are averaged over
three random seeds for reproducibility. To reduce compute overhead, we apply Gaussian sampling
only to batch normalization layers. Each experiment uses 4 sampled models, with o selected via
cross-validation from 0.1,0.01, 0.001. Sampling is performed dynamically during forward passes,
eliminating the need for separate model copies and adding at most one extra layer’s memory overhead.
This makes our method scalable to larger networks. (See Appendix [B| for full setup details and
Appendix [A.9|for more experiment setting such as training budget and archtectures.)

Gradient Matching: Importance of loss landscape. As noted by (Yang et al.,|2023;|Shin et al.,
2023)), naive optimization of the coreset function (3] to match the gradients without accounting for
the loss landscape as done by Craig (Mirzasoleiman et al.,[2020) may not actually yield the the best
quality subset. We verify this, and show that even on a simple dataset like MNIST, coresets outputted
by Craig as vastly inferior to the ones we generate in matching the gradient of the full dataset. The
results are presented in Figure

Dataset Corruption  Our Method Random Crest
0.0 0.9132+0.0013  0.9046+0.0020  0.9098+0.0022
SNLI 0.1 0.8664+0.0012  0.8324+0.0054  0.8254+0.0028
0.3 0.7841+0.0021  0.7529+0.0031  0.7587+0.0042
0.5 0.6062+0.0016  0.5316+0.0024  0.5104+0.0055
0.0 0.5732+0.0011  0.5520+0.0094  0.5609+0.0040
TinyImaeeNet 0.1 0.5526+0.0041  0.5176+0.0057  0.5150+0.0641
yimag 03 0.4832£0.0043  0.4193+0.0063  0.4760+0.0061
0.5 0.3644+0.0058  0.2857+0.0137  0.3567+0.0069
0.0 0.7091+0.0004  0.7074+0.0004  0.7136+0.0015
ImageNet-1k 0.1 0.6977+0.0016 0.6905+0.0016  0.6946+0.0035
& B 0.3 0.6837+0.0007  0.6514+0.0001  0.6606+0.0024
0.5 0.6388+0.0008 0.5939+0.0017  0.6051+0.0009

Table 1: Large scale experiment: Test accuracy under varying corruption levels on SNLI, TinyIm-
ageNet, and ImageNet-1k. Our method consistently outperforms Random and Crest. We did not
compare to Craig and Glister on Tinylmagent as we run into Out-Of-Memory errors while using
code base mentioned in Appendix [B] Note that despite Crest marginally outperform our method in
Imagenet-1k at zero corruption, the time taken is double of our method (Crest: 42 hours, Ours: 20
hours) along with triple memory consumption.

The role of sampling in batch normalization. Our decision to conduct sampling on BN layers is
motivated by both computational efficiency and their fundamental role in shaping model behavior.
Empirical studies show that sampling on various layers improves performance, but BN layers
consistently yield the best results across different models and datasets. Given this trade-off between
computational cost and effectiveness, we focus on BN layer sampling to demonstrate the robustness
of our method. The table 2] (Left) is performance comparison between sampling at different layers of
ResNet20 for CIFAR-10 dataset.

Test performance: Robustness and Accuracy. We perform an extensive study across different
datasets and label corruption ratios to show the advantage of our method. We summarize the numerical
results in Figure 4] For raw numbers, see Table |4|in the appendix. We can observe that our method
outperforms established benchmarks across several different settings, especially when the label
corruption ratio is high. Most methods suffer a drastic performance drop when the corrupt ratio is
increased due to the stability. Naive SGD has been shown to be a strong baseline |(Okanovic et al.
(2023) with little overhead, and our experiments confirm its effectiveness over several traditional
baselines. However, its performance also deteriorates significantly with increasing corruption. We
attribute this to increased stability of our method compared to other methods. In fact, we also observed
that some methods can fail the training as the instability arising out of coreset selections for noisy data
can cause the loss to go infinitely large (see caption in Table[d)). To further demonstrate the advantage
of our method, we conduct an experiment on even higher corrupt ratio (0.6 - 0.9) in table 2] (Right)
and find that our method offers strong performance compared to others. Finally, many methods in
coreset selection could not scale to large datasets such as SNLI, TinyImagenet and Imagenet-1k (see
Table[T).

Training dynamics: Memory Footprint and Time-to-Accuracy. As shown in Figure [2] it requires
significantly less memory than Crest which performs 2nd best accuracy-wise after our method in

'For the comparison with [Pooladzandi et al.| (2022), see Appendix@



Dataset Corrupt Our Random Crest

Ratio Method
0.6 0.6704 +0.0063  0.6422 +0.0185 0.3374 +0.0912
Layer 0.0 0.1 03 0.5 crFAR0 07 0.5511£0.0221  0.5221 £0.0341  0.2853 +0.0328
Al 0.8654%0.0094 0.8479%0.0081 0.8079%0.0084 0.7288 % 0.0140 0.8 0.3701 £0.0053 03011 +0.0084  0.1520 £ 0.0276
BN 0.8757 £0.0029  0.8544 +0.0034  0.8120 £ 0.0058 0.7318 £ 0.0143 0.9 0.0953 £0.0183  0.0950 +0.0286  0.0938 +0.0108
FC 0.8705+0.0019  0.8525+0.0033 0.8099 +0.0043 0.7232 +0.0171 056 039112 0.0063 025282 0.0131  0.3306 £ 0.0054
CIFAR-100 07 0.2810  0.0048  0.1504 +0.0036  0.2442 + 0.0028
0.8 0.1680  0.0107  0.0863 £ 0.0211  0.1613 + 0.0084
0.9 0.0761 £ 0.0029  0.0367 +0.0087  0.0707 + 0.0061

Table 2: (Left) Sampling at different layers: CIFAR-10 test accuracy under varying corruption
ratios. BN: BatchNorm; FC: Fully Connected; All: All parameters perturbed. (Right) Robust at
even higher corruption: Performance comparison on CIFAR-10 and CIFAR-100 under corruption
ratios from 0.6 to 0.9. Our method consistently outperforms Random selection and Crest.

predictive performance on non-corrupted data,. Crest consumes up to three times more memory than
full training due to tracking additional statistics(their algorithm maintains Hessian and accumulated
gradient steps for adaptive coreset updates). While their strategy reduces re-selection frequency for
coresets, the computational overhead often negates its theoretical potential benefits (Figure [3)) and
lead to slower training. Our method consistently outperforms Crest across various settings, from
small-scale models (MNIST + LeNet) to large-scale architectures (TinyImagenet / Imagenet / SNLI +
ResNet50 / RoBERTa).

Design of more effective posteriors The choice of posterior can influence the tradeoff between
fidelity to the loss landscape and stability. We test with different posteriors - (a) the spherical Gaussian
prior with a fixed hyper-parameter o, Gaussian with the Hessian-inverse as the covariance matrix, and
an Ensemble of models with 4 different random seed with coresets selected as per Algorithm|[I] For
Ensemble, we average the gradients of the final layer and use it for coreset calculation. As shown in
Table 3] the Spherical-Gaussian posterior achieves the highest final accuracy across various scenarios.
We analyze potential failure modes associated with different posteriors, with Figure [5] (in Appendix)
illustrating key failure reasons. For CIFAR-10 we observe that Hessian-Gaussian, Ensemble, and
Gaussian posteriors require 5962.6s, 3454.2s (parallel), and 2073.5s, respectively, compared to
3553.5s for full training. Notably, only the Spherical-Gaussian posterior offers a speed-up. While
training multiple models with different random seeds can be parallelized, the increased memory
overhead outweighs the benefits, making it a less favorable trade-off.

Dataset Corrupt Ratio Hessian-Gaussian Ensemble Spherical-Gaussian
0.0 0.8721 + 0.0035 0.8738 = 0.0010 0.8757 £ 0.0029
CIFAR-10 0.1 0.8523 +0.0022 0.8506 + 0.0010 0.8544 + 0.0034
) 0.3 0.8041 £0.0240  0.8036 +0.0010 0.8120 + 0.0058
0.5 0.5870 £0.0156  0.7216 £ 0.0030 0.7318 + 0.0143
0.0 0.6841 £0.0045  0.6968 + 0.0070 0.6986 + 0.0025
CIFAR-100 0.1 0.6438 £0.0043  0.6618 £ 0.0030 0.6644 + 0.0034
0.3 0.5731+£0.0032  0.6066 + 0.0020 0.6085 + 0.0044
0.5 0.4340 £ 0.0051  0.4965 + 0.0060 0.5014 + 0.0068

Table 3: Sampling with different posterior: Comparison of posterior sampling methods under
different corruption ratios. Bold values indicate best performance. We can observe that for method
required accurate Hessian estimation, the performance drop sharper compared to the others.

5 Future Directions and limitation

The limitation of work lies in that for more general data type like sound or video, the generalization
is not guarantee as those data type may impose even harder tasks for the models which is beyond the
scope and guarantee in this work.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ” ”, it is perfectly acceptable to answer ”
provided a proper justification is given (e.g., “error bars are not reported because it would be too
computationally expensive” or "we were unable to find the license for the dataset we used”). In
general, answering ”’ ” or ’[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

’

* Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”,
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: see main context and abstract
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: see experiment and limitation at the end
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: See proof in appendix[A.2]and appendix[A.3and theory section
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See experiment section and algorithm and details in
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: Will provide code in camera ready version once accpeted
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See experiment details in appendix [B]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See experiment section and details in appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See experiment section in main content and details in section [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: See details in appendix [B|
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See experiment section in main context and detail in appendix (B and
related work

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Will complete if accepted and release in camera ready version
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Related work

Coreset methods To facilitate the training of deep learning models, various methods have been
proposed to select informative or representative samples based on the uncertainty of models toward
these samples such as|Sachdeva et al.| (2021)) and |Coleman et al.|(2020). Another line of work selects
samples based on their loss difference or degree of error. Methods such as Forgetting Events [Toneva
et al.| (2019), GraNd [Paul et al.| (2023) have employed this strategy to prioritize samples. These
methods aim to reduce the variance of the gradient, thereby improving efficiency of reducing the loss.
Another line of work use Bayesian perspective to perform coreset selection/Zhang et al.|(2021);|Guha
et al.|(2021) which aims to select subset that is equally representative across assigned posteriors.

Additionally, some methods emphasize the centrality of features or embeddings, forming subsets
that best represent clusters of samples. Examples include Herding (Chen et al.| (2012), K-Center
Greedy Ding et al.| (2019), and Prototypes [Sorscher et al.|(2023)). Another category of methods bases
their selection strategy on observations from a validation set |Killamsetty et al.|(2021b), leveraging
additional information to identify the samples most beneficial for training.

Despite lacking rigorous theoretical proof for the advantages of selection strategies, these approaches
have demonstrated empirical improvements in speed or performance. Gradient-based methods
Mirzasoleiman et al.| (2020); Killamsetty et al.|(2021a)); Pooladzandi et al.|(2022) on the other hand,
select samples that best approximate the gradient of the entire dataset (training or validation sets).
These methods offer theoretically sound support and provide guarantees for the training process.
Additionally, several works |Zhang et al.|(2021)); Pooladzandi et al.|(2022); [Shin et al.|(2023) in this
direction propose to further match the subset with the loss landscape using information in Hessian
matrix and show better convergent result and generalization performance. Our method builds on this
direction and addresses the shortcomings of previous work.

Smoothness and Stability The optimization of deep learning models has been active area of studied
to understand the reasons behind their superior performance in practice. For instance, the Random
Weight Perturbation (RWP) algorithm has been shown to smooth the objective function (Bisla et al.,
2022; [Li et al.,2024) and improve generalization error (Zhou et al., 2019} Jin et al.,[2019; Wang &
Maol |2022)) despite its simplicity. By perturbing model weights, several studies have demonstrated
an increased ability to escape minima with poor generalization and enhance the stability of the
optimization process. Our work draws connection to this approach. Instead of explicitly optimizing
using a smoothed objective, we select samples that capture similar features, thereby achieving
comparable effects. This novel perspective enables us to leverage the benefits of smoothness without
directly modifying the optimization objective.

Bayesian Methods in Deep Learning Various parameter distributions have been proposed in
deep learning to address tasks such as uncertainty estimation, out-of-distribution detection, and
classification. Markov chain Monte Carlo (MCMC) methods |Chen et al.|(2014); [Welling & Teh
(2011) leverage gradient information for inference, while Laplace approximation-based approaches
MacKay| (1992); [Kirkpatrick et al.|(2017); Ritter et al.|(2018a)) employ Gaussian distributions with
the Fisher information matrix or Hessian as the covariance matrix. Other methods explore different
strategies: [Maddox et al.| (2019) average models across different time steps, and [Fort et al.| (2020)
utilize models trained independently with different random seeds. In our work, we evaluate models
derived from various posteriors to analyze the trade-offs associated with different sampling strategies.

A.2 Second order proof

Theorem A.l. Suppose a subset S’ C S is {o,€,w}-stable and let the Hessian difference be
Hgr ¢ — Hs . =: £, and model has d parameters then,

(1) The gradient at difference of subset at w is upper bounded

1 1
IVis(@) = Vis(@)]| € 5(e10%d +/Gotd? + 4) = O(c}) (10)

(1) The Hessian difference matrix £ satisfies:

2 2
€—c50°d

1
€]l < crod + E\/C%J4d2 +o(e — c302d) and tr(£%) < m

(11
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(2) The difference between newton step of two subset is bounded. (Amax, Amin) are largest and
smallest eigenvalue in Hg

1
11 Arax
|Hg/' Vg () — Hg 1, Vis(w)|| < “(e10%d + \/Botd? + 4e) + ¢ 7 (cod+

>\min 2 min

1
1 Adhax 1 /
f\/c%04d2 + o(e — cdo2d)) + 2 i(CIUQd + 1/ Botd? + de)(cr0d
o

min

1
+ L Jaor® 1 ale— o) + O(lelP)

Proof. Let f(w) = Vig(w) — Vig(w) and V f(w) = VZ1g/ (w) — V2g(w) (difference in terms
of Hessian)

Assumption 1 Suppose we have the V f () being 2¢; -Lipschitz Hessian i.e.,
IVf(w) = V(0| <26 flw - (12)

Assumption 2 Suppose we have the V f(w) being bounded below and above
2eoI X Vf(w), Yuw. (13)

Assumption 3 (Symmetric and non-singular) V f(w) is symmetric and non-singular.

With assumption 1 and assumption 2, we can bound the f (@) by the following through Hefferon
(2017):

collw —w| < [If(w) = f(w) = Vf(w)(w—w)|| < erf|w — @l Vw,w (14)

The assumption is aiming to capture the degree of change of function using polynomial terms. For
more discuss about the assumption of the theory, please refer to appendix

we start with the following
ez [ wpptw)du
— [ (@) + fw) - @) Ppw)du
(15)
= f(w)* + 2f(w) /(f(w) = f(w))p(w)dw + /(f(w) — f(@))?*p(w)dw
> |f(@)* — cro?d|f(w)] + /(f(w) — f(@))?*p(w)dw

For last inequality, we use the following:

f@) [(Fw) = @) = f(@) [ (Fw) 1@ - Tf@)(w o)+ V(@) (w - @))pw)du
= 1(@) [ (7w - @) = V@) w - 0)pw)de + f@) [ V(@) - 0)pwide
= (@) [ (F(w) ~ 1@) = V(@) 0~ D)plwde
<@l [ 11t7w) - f(@) - ¥ f(@)(w - o)llp(w)de

<l @)l [ erllw - wlpw)du
— cillf @15 {lw — all
< all @y Ellw ol
—cillf(@)]oV
(16)
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‘We first focus on the first two terms
e > ||f(@)|I* = cro?d]| f(w)]| (17)

By solving the equation, we can obtain upper bound on the | f ()| as following:

1
(@) < S (er0%d+ \/od +46) = O(e

as a check, if we use linear approximation (i.e., ¢c; = 0) we will have

[ f(@)] < Ve (19)

Nl

) (18)

Now, obtain upper bound on the graident differece at w, we continue on the cross terms

ez [(7w) - f@)plwde
= [(#w) = 7w) = V(@) w = 0) + V(@) 0 - 0)plw)de
~ [ (@) - 1@) = Vi@ 0 - 0)Pplw)du
+2 [(f(w) = f(0) = V(@)w — ) f(@)(w ~ wplw)du + [ (w =) (@) 0~ D)p(w)de

(20)

we continue by noticing that first term is lower bounded in our assumption.

€> C%O’Qd

42 [(f(w) - fw) = V@) w - 0)7 f(@)(w - ap(wdo + [ (0 - 0)7 (@) 0 - Dp(w)de
2D

The first term is obtained through following:

Jlirtw) = 1) = V@) - 0)Ppw)de > [ exllw - ol pw)de

(22)

= c2Bp[||w — w][’]

= 020'2d

Now address the cross term,

Now, we address the last term

/(w — @)E2(w — @) 274 det(o 1)~ exp(—%(w C @)l w—@))dw (4
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By change of variable u = V f(w)(w — @), we can obtain the following by assuming that £ is not
degenerate:

1 1
/|det YjuTu2n~ B det(cl)™2 exp(—iuTgl_l(aI)flé’*lu)du

dUE@DE? | o(o11e)

= |det(E™ -
aer(e™I T -

= tr(cI€?)
> o tr(£?)
> 0 max )\éi
We assume the H ! and V f(w) are symmetry matrix. Here, we utilize two identities for the first
equility and second inequility:
tr(ABC) = tr(BCA) (26)

The second identity follows the following derivation by first noting that symmetry matrix can be
decompose into the spectral form A = Zl A A,iviv;f

B) = Z Ap.i(v] Avy)

>minAg,; Y (v] Av;) (27)
=min Ap ; tr(A4)
Now, we put everything together,
€ > c30°d — 2ci0?dmax As ; + 0 max AZ (28)

we can solve for the largest difference in eigenvalue

1
crod+ f\/c%a4d2 + o(e — c302d) > max Ag ; (29)
o 1

Therefore, we can have that

|Hsr.o — Hs,o| < O(e?) (30)

We can also obtain upper bound on the difference in Hessian in terms of trace
€ — c50%d > —2¢,0? dmax)\,g1 i+ crmax)\gl s
> —2c10%dtr(E?) + o tr(£?) €1y
> o(1 — 2c10d) tr(£?)

and therefore
€ —c30%d

2
(1= 2000 - ") o

Now, to prove the newton step is also similar, we write the overall into the following equation

1S, Vil(w) — Hg i Vis(@)|| = [|(Hs,o + &) (Vis(@) + &) — Hg ; Vis(w)l|  (33)
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To obtain the upper bound of the Hessian inverse, we use inverse perturbation theory

(Hs+ &) ' =Hzy — Hg ,EHg o + O(IE|P) (34)

Now, we obtain upper bound on the magnitude of eigenvalue of the difference on the Hessian
for the subset.(i.e., max; [Ag ;| < ciod + 21/c30*d? + o(e — c202d) and the gradient difference
[Vig(w) = Vig(w)|| < 3(cio0?d + \/c3o'd? + 4e). We can follow to upper bound the desired
quantity || H ST,TEVIS/ (w) — Hg L Vis(w)||3. At this point, we assume that the gradient has bounded
magnitude | Vig(w)| < ¢, VS, w

Put in the above, and assume that the gradient has bounded magnitude ||Vig(w)|| < ¢ VS, w
[, Vil(w) — Hg 3, Vis (@)

= [(Hs.o + &) (Vis(@) + E2) — Hg 1 Vis(0)]|

< || Hg €2 — Hg EHg ; Vis(w) + Hg y EH  E2) + O(I[E]P)|

< | Hg w2l + | Hg wEHg o Vis(@)| + | Hg ,EHg 1 E2)| + O([E]]%)

1

1
11 A Afhax 1 /
: i(claZd +1/c2otd? + de) + c5— 2 X (crod + = \/c otd? + o(e — 302d)) + 2 ( 10%d + [ 2o4d? + 4e)(cxc

)\mln min min

IN

1 2 -4
- 42 _ 202d
/A 4 ole — Go2d) + O(€])

< O(e?)
(35)
At this point, we can conclude that
|Hg/ 5 Vil(w) = Hg 3 Vis(w)|3 < O(e) (36)
O

A.3  Proof for Theorem 3.3

Next, the assumptions required for the proof are listed below:

Assumption 1. Bounded variance and unbiased estimator of the random sampling and coreset
selection subrutine:

E[|Vis(w) = Vi(w)|]’] < of (37)
EVig(w)] = Vi(w) (38)
Assumption 2. a-lipschitz continuity:
H(w) = 1(v) < aflw = vl (39)
Assumption 3. 3-smoothness:
IVi(w) = ViI(©)]] < Bllw = vl]2 (40)
Assumption 4. ¢; € R sampled i.i.d from diagonal gaussian:
€ ~N(0,02I), Vi=1..M 41)

There exist two randomnesses in our formulation. One is the subset obtained through random
sampling from the whole dataset. The other randomness results from the noise inject to model weight.

Uwesn) < Uawe) + V(00T (w1 — ) + 2 s — e

1 M 577 42)
< (wy) —ntvz(wt)TM Z;vsz(wt +e)+ =L |\—szz (wi + )| ?
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‘We rewrite the last term as follows:

ﬁ’”n—Zsz we +€6)|]? = ’3’“ ||7szz we + ) — vz(wt)||2+—2vsz wy + €)VI(we) — [|Vi(we)|[?)
=1

(43)

Input the above into the original formulation:

M
Hwigr) < Uwe) = neVi(w) ™Y Vsl(wr + ) + /Bm ||* ZVSZ w; + )|

i=1

< U(wy) — (1 = e B)Vi(wy)T ZVSwa+eZ Bm ||—szlwt+ez) Vi(wy)||? = [|Vi(we)]]?)

< 1)~ w1 = AU 3Vt + ) — B i+
i=1
M

BntHMZVSZwt—&-el) Vi(w; + €) |\2+ﬁm|\ ZVlwt—i—ez — Vi(w,)|?
(44)

The last two terms are achieved through the identity ||a — b|| < 2(||a — ¢|| 4 ||b — ¢||). We now want
to resolve the second term in the formulation.

Vl(w,g)Ti i Vsl(we + €)= Vl(wt)T(i i Vsl(wy + €;) — Vi(w) + Vi(wy))
M= M=

M
= V1ol + T (57 3 Tsllw + 60) = Tiw)

i=1
= |IVi(we)l]*+
1< 1<
T
Vi(wy) (M ;(VSl(wt +e)— Vi(ws +€)) + i ; Vi(wi + €;) — Vi(wy))
(45)
The term can be simplified by taking the expectation over the randomness in a stochastic subset.
M
r1
Eg[Vi(w)T szz wy + €)] = ||VI(wy)| > + Vi(wy)T sz wy + €) — Vi(wy))
=1
< |[V(w)[]* + *HW(wt 1% + II* ZW (we + €1) = Vi(wy)|[*)
(46)

The last term is achieved through the Cauchy-Schwarz inequality. Therefore,

M M
ol 1 , 1.1 )
—Es[Vi(we)” 47 ;:1 Vsl(we +e)] < =5 [[Vi(w)l|" + 5 (1157 ;:1 Vi(w; + €;) = Vi(w)|[%)

47

We further simplified the formulation by taking the expectation over the randomness in noise injected
to the model weight

M
1 1 1
~ B e i=1..a[Vi(w)" 57 > Vsl(w + )] < —5IVi(wn)|[* + 5 8%03d (48)
=1
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Next, we first solve the fifth term in the original formulation taking the expectation with respect to ¢;
for each 1.

| M | M
/BU?E[HM Z Vi(w; + €;) = Vi(wy)|P] < ﬁﬁfE[HM ZﬁeiHQ]
1=1

i=1
M
1 49)
3,2 2
< 8 57 2 Bl
< Bnjosd
Finally, we deal with the term.
||~ Z Vsl(w + €;) = Vi(w; + &) (50)

Here, we assume two different errors that can arise in practice. The first is the random sampling
batch created by sampling from the entire dataset. The second error originates from the coreset
approximation. We formulate as follows:

Vi(w) = Vsl(w) + & + & (51)

The & is the result of the stochasticity of the random batch generation. The & is the error that
originates from the selection of the coreset. We consider two different forms of error in &5. One is the
absolute error and the other is that the error is propotional to the gradient. We formulate as follows:

Efll&a]ll <€ or Efl|&l]] < €l[VIw)]], €>0 (52)
Note: we assume here that these two errors £1, & are independent to each other.

Situation 1 We first consider the case where the error is absolute.

M M
1 1
ﬁnfEs,Ei,Z-:lmMEH—M §._1 Vsl(w; + €;) — Vi(w; + ¢)]* < Bn?—MQ E._l E||Vsl(w; + €) — VI(ws + €)||?

1 M
= 577152W > Elllér
=1

- mﬁ%umn? 1266 +ieI?)

+ 281 :60, + |62, 7]

< fn —(El +¢) .

The R is the batch size for each batch of random sampling. The cross terms are eliminated due to the
assumption 5.

Integrate those terms into the original formulation.

ne(1 —n:B)
2

2 2 2 2
Bnioi + Bnie +5377t2‘7§d (54)

Hwegr) < Uwe) = nel[Viwe) [ + ME M

B2o3d +

Here, we pick 1, = n (fixed step size) and n < % Rearrange and sum over time step, and we will
have as follows:

T-1 BQU - I&Q T-1 B2 T-1
1Y |[Viw)|* < Uwo) — U(w” Z L+nB8)+ ==Y 1+ > n* (55
t=0 t=0 M t=0 MR t=0



Here, we divide on both sides by T

T-1

1 1 2,24 71 2
fZHvuwt)H?gT—ﬁ(l(w())—z(w*))ﬁ;; S (1409 + 2y 4 50,
=0 t=0 (56)
1 2 2d 3 2d 2 2
= - (Uwn) = 2wy + 2% 2 B T

As we have control for both 1 and o3d, we pick o53d = Mi/:? andn = min{f é} and, therefore,

(I(wo) — I(w*)) max{VT, 8} + \}(2 e e R

ﬂ\'—‘

T—
Z || V1 (wy)
t=0

If we stop at any speciﬁc time step with probability %, and we observe that the average gradient exist
convergent rate f for T large enough which is:

2 3
B < () — ) + =B+ 50+ 2oty 4 L2 "
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Ny 2M M " MR

Situation 2 We now consider the case where the error is propotional to the magnitude of the gradient.
ie.,

Ef||&2|] < €el[VI(w)]], €>0 (59)

We analyze the term as follows:

1 & 1
B Elll 57 D Vsl(wi + &) = Vi(w, +€)]]] < B} 37 EIG 1 + 266 + [1&]17]
i=1 (60)

1 2
< Bn; M(El +e|[Vi(w)[[?)

Integrate the term to previous result.

252
) < 1) = (= 2t 2+ 20 g2z 4 DO gageoss (1)
Set n; = 1. We rearrange and perform same operation and we get:
— 6 20'2d T-1 0_2 T-1
Z = i < twn) — ) + S 1) 4 B2 5 e
2 MR
t= t=0 t=0 (62)
. 262d o2

Divide by T'(n — 5"7262) on both sides and choose step size such that (1 — %) >

(63)

(l(wo) = Uw™)) + B2o3d(1 +np) +

]I

1 T-1
= S IViG)| <
t=0

28



We pick 03d = \/A/}iRT andn =~ %R and we will have

L T2 , 2 . 32 VMR 2803
T ; IVHwnll” < 7t wo) =)+ Zmm U+ B2+ AR (64)
o MlRT(z(z(wO) —U(w")) + % +2607))

Similar to the first situation, we will have convergence rate with
naive SGD.

—L__ which is —= faster than the
VMRT VM
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A4 Data summary

Dataset Corrupt Ratio Random Crest Glister Craig Ours
0 0.9921+0.0008 | 0.9892+0.0005 | 0.9997+0.0001 | (*)0.0972+0.0 | 0.9914+0.0003
MNIST 0.1 0.9854+0.0009 | 0.8384+0.0812 | 0.7676+0.0271 | 0.0961+0.0009 | 0.9876+0.0009
0.3 0.9772+0.0008 | 0.3374+0.3385 | 0.1815+0.0664 | 0.5196+0.2346 | 0.9809+0.0025
0.5 0.962+0.0019 | 0.3277+0.2062 | 0.0725+£0.0109 | 0.4264+0.0131 | 0.9715+0.0021
0 0.8713+0.0026 | 0.7955+0.0196 | 0.8246+0.0049 | (*)0.0219+0.0 | 0.8715+0.0015
EMNIST 0.1 0.8649+0.0016 | 0.7788+0.0132 | 0.6762+0.0094 | 0.0218+0.0007 | 0.8679+0.0012
0.3 0.8557+0.0007 | 0.7621+0.0044 | 0.4748+0.0236 | 0.301+0.2553 | 0.8396+0.0016
0.5 0.8409+0.0024 | 0.7146+0.0051 | 0.2627+0.0172 | 0.321+0.0111 | 0.8100+0.0029
0 0.8660+0.0015 | 0.8724+0.004 | 0.8207+0.0097 | 0.7618+0.008 | 0.8757+0.0029
CIFAR-10 0.1 0.8481+0.001 0.8440+0.003 | 0.6350+0.0261 | 0.7490+0.0066 | 0.8544+0.0034
0.3 0.8063+0.010 | 0.7843+0.004 | 0.3953+0.0548 | 0.7050+0.0112 | 0.8120+0.0058
0.5 0.7257+£0.015 | 0.6652+0.013 | 0.2175+0.0292 | 0.6320+0.0186 | 0.7318+0.0143
0 0.6659+0.0041 | 0.6728+0.003 | 0.6004+0.0052 | 0.5665+0.0053 | 0.6986+0.0025
CIFAR-100 0.1 0.6268+0.005 | 0.6391+0.004 | 0.4538+0.0076 | 0.4629+0.0102 | 0.6644+0.0034
0.3 0.5119+£0.014 | 0.5712+0.006 | 0.2846+0.0074 | 0.2968+0.0162 | 0.6085+0.0044
0.5 0.3293+0.014 | 0.4305+0.026 | 0.1578+0.0218 | 0.1603+£0.0048 | 0.5014+0.0068

Table 4: Performance comparison of different methods across datasets and corruption ratios. Results
are reported as mean + standard deviation. Each experiments are average over 5 different random
seed. The best performance for each setting is highlighted in bold. The * mark the situation in which
has diverging behavior during the optimization. The situation usually occurs in Craig method for
high coruption scenario.

A.5 Discussion about different posterior

Hessian inverse covariance is the one containing exact information about loss landscape of the
models at certain training points and it is also the posterior used in deriving the theory for sampling.
However, calculation of Hessian can introduce large memory footprint as it will require us to keep
track of the Hessian during training as listed in works |Yang et al.| (2023). Not only it can cause
large memory footprint, it is also hard to calculate and require steps of approximation. The selection
strategy involving calculation of Hessian will inevitably be slowed down as it requires at least one
forward, backward propogation and the intermediate calculation. Another issue about Hessian inverse
is that despite it contains the curvetures information, it can easily fail to reflect on the true loss
landscape from sampling viewpoint(see [5). For convex optimization view point, Hessian indeed
captures the global information about the loss landscape, but for non-convex region, it can only
express the local curvature information and sampling according to the local information can easily
lead to sampling of high loss region.

Direct training with different random seeds. The posterior consist of models trained with different
random seeds is studied in |Fort et al.|(2020) and shown be simple and strong base line for posterior
for uncertainty measurement. The prediction of models trained with different random seeds provides
strong diversity compared to the sampling methods which explore only the local region. In practice,
it is easy to implement and applied to various to different leaning scenarios. The shortcoming of
the method is that it requires much larger memory than other method as it stores and trains multiple
models at the same time. Additionally, it did not necessarily violate the above observation as the
models involved in the posteriors are trained simultanously and have low loss guarantee.

Diagonal Gaussian Diagonal Gaussian posteriors is well studied and shown to offer generalization
guarantee. It provides easy control for the region to explore. Despite the fact that it did not contain
local curvetures information, it can still fit in the observation from our theory as long as we select
proper range for the variance. Compared to the two previously mentioned method, it offers better
speed and memory consumption as we only need to sample independent variables for the construction
of the whole distribution. In addition to the advantages mentioned, there is subtle connection between
this posterior and optimization and we will illustrate in the following.

A.6 Details about Greedy selection
Greedy selection method has been studied in many different prior works |Khanna et al.| (2017);

Elenberg et al.| (2017) to set up basis for its correctness and its applicability for different functions.
As pointed out in Mirzasoleiman et al.|(2020), one can transform the coreset problem on gradient
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Speed up | CIFARIO CIFARI100 | Tinylmagenet
Crest 0.46122396 | 1.220357534 | 1.328621908
Our 1.71376899 | 1.227372798 | 1.448220165
Table 5: Our method obtain better speed up compare to the benchmark method and the results also
generalized to different datasets and architectures. The speed up is calculated as (Full training time /
Method training time). The results are average over 5 different random seeds.

Contour Plot of the Loss Function

6 2‘5 5‘0 75 150 lZIS 150 l';S 260
epoch

Figure 5: (Left) We calculate the Hessian for sampling at red dot and sampling (yellow dot) using
the Hessian inverse as a covariance matrix. The motivation for performing sampling of this kind is
that one expect model to be sample lying on the low loss region as it put larger probability density
in the small eigenvalue direction. However, when the Hessian loss its ability to represent the true
loss curvature (non-convex setting), the Hessian posterior can sample models in regions of high loss,
even when the Hessian is computed correctly. (Right) For ensemble method, we find its performance
is competitive to Gaussian posterior. However, we find that there exist performance divergence
in the different models trained with different random seed and the coreset selected show different
performance gain for different models. The coreset selected through this posterior may not be able
offer best performance gain in the ensemble.

into the following submodular cover problem with constant C":

S* = argmin |S’| s.t Z mlnHVl (we) = Vij(wy)|] <€ (65)
S'Cs jeor

The 7 in origin problem will be calculated as the number of times a specific sample j € S’ is used
to achieve minimum distance in the argument right hand side in this transformed problem. Greedy
algorithm is used to calculate the sample being selected in which achieve time complexity O(nk)

in existing work Mirzasoleiman et al.|(2020); [Killamsetty et al.|(2021a); Pooladzandi et al.| (2022)),
where n is the size of the training set and k is the number of samples being selected.

Despite linear complexity in terms of the sample selected, the calculation of the difference norm of
the right hand side is still expansive due to the high dimensional properties of deep learning models.
Several works [Killamsetty et al.| (2021bla); Mirzasoleiman et al.| (2020); [Pooladzandi et al.| (2022)
demonstrate experimentally and theoretically that one can use the gradient with respect to the last
layer for the calculation of gradient difference as it captures the norm of difference properly and
greatly speed up the process for practical application, though a recent work has argued against it.
Lastly, we complete the formulation with the formulation with fix sample size selected k as following:

S* = argmax C — Z argmin||V1; (ws) " — Vi (we)*||
S'CS jes’ €S (66)
st |8 <k

A.7 Details about the algorithm design

In this section, we will briefly discuss the design of the our algorithm. First of all, instead of selecting
the entire training set like [Mirzasoleiman et al.|(2020), we adapt from (2023) to select
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Figure 6: The loss landscape generated by coreset of Craig method and the coreset of our method.
The graph is generated with CIFAR10 data and ResNet20 using 1% data budget.

from mini-batch and union the mini-batch to obtain coreset with specified size. This help to reduce

the selection time as mentioned in the (2023). For the selection, we calculate the expected
version as[fto ensure the properties obtained in the theory remain true. We did not perform threshold

check listed in the (2023)), we instead perform update on each epoch.
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A.8 Toy model: Trajectory difference

Optimization Trajectories

—— Ground Truth
—— Crest (Sharp)
— Our

N

0.4 4

Param 2

—0.4 -0.2 0.0 0.2 0.4
Param 1

Figure 7: The trajectory difference between gradient descent, Crest and gradient descent. To mimic
the gradient mismatch resulting from the label noise, we inject high frequency function into the Crest
and our method. To mimic the smoothed version of the loss landscape, we reduce the magnitude of
the gradient in our method. We can find that the injected noise can drastically change the trajectory
of different methods while the smoothed version can help better recover the ground truth trajectory.
The fluctuation from noise becomes more significant around minima as the gradient around minima
becomes smaller under this simulated experiment.
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A.9 More learning scenarios. (Different training budget, corruption level, and architecture.)

In this section, we perform experiments on even more learning condition such as different corruption
level, training budget, and architecture. For architecture, We extend our result to Vision transformer
to identify whether or not attention based models can work properly with our method and the results
show that our method already outperform others under various structures. For other learning setting,
we also find our method consistently outperform other benchmark which further justify the robustness
of our method.

Budget | Corrupt Ratio Our Method Random Crest
0.2 0.0 0.8969 + 0.0026 | 0.8968 +0.0026 | 0.8083 +0.0125
0.1 0.8795 £ 0.0026 | 0.8788 +0.0032 | 0.8331 +0.0454
0.3 0.8495 + 0.0053 | 0.8483 £0.0027 | 0.7632 +0.0396
0.5 0.8022 £ 0.0020 | 0.8011 +£0.0032 | 0.5308 +0.0103
0.01 0.0 0.6683 £ 0.0044 | 0.6573+0.0211 | 0.4370+0.0184
0.1 0.6216 + 0.0229 | 0.6147 £0.0272 | 0.3631 +0.0496
0.3 0.5667 £ 0.0037 | 0.5431 +£0.0272 | 0.3022 +0.0234
0.5 0.4801 £ 0.0150 | 0.4412+0.0172 | 0.1988 £ 0.0231

Table 6: CIFAR-10. Performance comparison of different methods across varying corruption ratios
and budget levels. The best-performing method for each setting is highlighted in bold.

Budget | Corrupt Ratio Our Method Random Crest
0.2 0.0 0.7337 £ 0.0013 | 0.7291 £ 0.0010 | 0.7172 £ 0.0029
0.1 0.6712 £ 0.0022 | 0.6566 + 0.0045 | 0.6357 +0.0033
0.3 0.5521 £ 0.0021 | 0.5246 £ 0.0061 | 0.5081 + 0.0064
0.5 0.4535 +0.0014 | 0.3884 +0.0059 | 0.3500 + 0.0094
0.01 0.0 0.2660 = 0.0079 | 0.2521 £0.0039 | 0.1672 £0.0126
0.1 0.2396 + 0.0029 | 0.2231 £0.0033 | 0.1469 £ 0.0039
0.3 0.1773 £ 0.0050 | 0.1566 £ 0.0025 | 0.1191 +0.0038
0.5 0.1235 £ 0.0026 | 0.1134 £0.0051 | 0.0823 +0.0021

Table 7: CIFAR-100. Performance comparison of different methods with varying corruption ratios
and budget levels. The best-performing method for each setting is highlighted in bold.

Corrupt Ratio 0.0 0.1 0.3 0.5
Our Method | 0.8294 + 0.0011 | 0.8077 + 0.0008 | 0.7734 + 0.0009 | 0.7064 + 0.0026
Crest 0.8274 £ 0.0038 | 0.8002 +0.0042 | 0.7467 +£0.0137 | 0.6653 £ 0.0112
Random 0.8200 £ 0.0034 | 0.7980 £ 0.0078 | 0.7479 +0.0040 | 0.6806 + 0.0030

Table 8: Performance comparison of different selection methods using pretrained ViT-Base on
CIFAR-100. Our method consistently outperforms both Crest and random sampling. We train with
a learning rate of 0.0003, weight decay of 0.1, and a warm-up scheduling for 20 epochs. The full
training process consists of 100 epochs to fit within the rebuttal time constraints.
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Method 0.0 0.1 0.3 0.5
Ours 0.8773+0.0046  0.8893£0.0172  0.878740.0061 0.8767+0.0042
Crest 0.8707+£0.0163  0.8727£0.0110 0.8593+0.0103  0.872740.0253

Random 0.7520£0.0040 0.7447+0.0142

0.7373+0.0186  0.7400+0.0243

Table 9:

additional experiment on the TREC-50 language dataset using ELECTRA-small-

discriminator, a compact transformer model with approximately 14 million parameters. Alongside
SNLI (used in the main paper), this dataset represents a language inference-style task. We finetune
the pretrained model for 50 epochs under a 10 percent data budget, using AdamW with a learning
rate of le-4, weight decay of 0.01, and standard default settings. We also apply learning rate warm-up

for 1 epoch to stabilize training.

Corruption Ratio RBFNN(Tukan et al., 2023) Craig CREST Ours

0.0 0.644940.0038 0.566540.0053  0.672840.0030 0.6986+0.0025
0.1 0.5248+0.0133 0.4629+0.0102 0.6391+0.0040 0.6644+0.0034
0.3 0.342240.0140 0.29684+0.0162  0.571240.0060 0.6085+0.0044
0.5 0.2868+0.0190 0.1603+0.0048  0.4305+0.0260 0.5014+0.0068

Table 10: CIFAR-100 test accuracy (mean = std) under different corruption ratios. We compare our
method with sensitivity based method (RBFNN(Tukan et al.l2023)) on CIFAR100 dataset under

different corruption level.

Corruption Ratio RBFNN(Tukan et al., 2023) Craig CREST Ours

0.0 0.8255+0.0040 0.7618+0.0080 0.8724+0.0040 0.875740.0029
0.1 0.7924+0.0113 0.7490+0.0066 0.84404+0.0030 0.854440.0034
0.3 0.7280+0.0118 0.7050+£0.0112  0.7843+0.0040 0.812040.0058
0.5 0.6216+0.0241 0.6320+0.0186 0.66524+0.0130 0.7318+0.0143

Table 11: CIFAR-10 test accuracy (mean =+ std) under different corruption ratios. We compare our
method with sensitivity based method (RBFNN(Tukan et al., 2023)) on CIFAR10 dataset under

different corruption level.
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B Experiment details

B.1 Code base

We develop our method base on code provided in Crest (Yang et al.l |2023). For Craig and Glis-
ter, we use code based from CORD (https://github.com/decile-team/cords) with training
hyperparameter changed to our setting.

B.2 Datasets and architectures

In our work, we conduct experiments on various image datasets. MNIST (Deng| [2012), EMNIST
(Cohen et al., 2017), CIFAR10, CIFAR100 (Krizhevskyl, 2009), and Tinyimagenet (Russakovsky et al.,
2015)), SNLI (Bowman et al.|[2015)) and Imagenet-1k dataset. For MNIST and EMNIST datasets, we
use Lenet. For CIFAR10, CIFAR100, Tinyimagenet and Imagenet- 1k, we use respectively ResNet20,
ResNet18 and ResNet50. For SNLI, we use pretrain ROBERTa (Liu et al.| [2019) model. To creat data
corruption, we pick specified portion of training samples and flip the corresponding label to other
classes to ensure the corrupt ratio is rigorous. For all experiments except for Tinyimagenet, we run
on single A10 GPU. For Tinyimagenet, we use single NVIDIA A100 GPU.

B.3 Training hyperparameter

For all experiments, we fix the peak learning rate at 0.1 and total training epoch to 200. The batch size
is set to 128. For the first 20 epochs, we use linear warm up until learning rate reach 0.1 and decrease
the learning rate by factor 0.1 at 120 epoch and 170 epoch. These hyperparameters were consistent
with those in [Yang et al.| (2023) and were chosen to ensure fair comparisons across methods and
datasets.

B.4 Experiment details about loss landscape and its matching

We generate the loss landscape plot using technics in|Li et al.| (2018). We purturb the model weights
using

fla,B) = l(w" + ad + Bn) (67)

In which the ¢ and 7 are two randomly initialized vectors with magnitude scaled to models parameters.
The plots are generated using 20 by 20 grid and for each grid we calculate the loss on the whole
training dataset, Craig subset, and our subset with the same parameter. In the plot, we incorporate
our method to the Craig method and use Gaussian noise 0.01. We select all at once as Craig does to
verify that the method will bring smoothness to the loss surface and we observe that there exist more
sharp corner for the loss surface created by Craig and the loss surface generated by our method is
smoother than Craig method. The loss for Craig and our method are scaled loss using the -y constant
obtain through the greedy selection subroutine. Both plot are generated using 1% data budget for
each selection methods. The 3D plot is in Figure[6]

B.5 Evaluation

We evaluated different methods on various datasets under different corruption ratios, with a fixed data
budget of 10%. We recorded the final test accuracy and measured time as the process wall time (i.e.,
from the start to the end of the process). To ensure reproducibility, all experiments were conducted
using 5 different random seeds, and results were averaged across these runs.

C Time complexity analysis

For Craig, there exist the need for forward propogation for each sample, and the corresponding time
complexity is O(dn). (d:model parameter, n:size of the dataset) The method is to select ¢ fraction
(0 < g < 1) of the whole dataset with size all at once. The greedy selection strategy for selecting gn
samples out n samples is O(qn?). Therefore, the complete time complexity is O(qn? + dn) for each
epoch.
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For Crest, instead of selecting from whole dataset, they select from subset with size M, and the
corresponding time complexity for forward propogation is O(dR). (d:model parameter, n:size of the
dataset) The method is to select m point from the subset. The greedy selection strategy for selecting
Rm samples out n samples is O(Rm). Therefore, the time complexity is O(P(Rm + dR)) where
the P is the number of subset that is manually chosen. The overall time complexity for Crest method
need to multiple by the times they update the coreset within one epoch for fair comparison, but the
average number of update for coreset cannot be calculated as they utilize adaptive strategy which
depend on the curveture of the loss landscape.

For our method, we also select from subset with size R but we need multiple forward propogation
(M times) and the corresponding time complexity is O(MdR). We then select m points from the
subset and the corresponding time complexity is O(mR). We need to perform multiple time to have
q portion of the whole dataset. The overall time complexity is O(q% (MdR + mR)) for one epoch.

For CIFAR-10 dataset, for each epoch, the running time for forward pass to obtain the gradient is
0.136 second for each batch, and the running time for the greedy selection is 0.000612 second for
each batch. Hence, a much larger time is spent on the forward pass instead of the greedy selection
part of the algorithm. The current state of the art method CREST requires expensive tracking of the
Hessian which results in significantly longer training time and memory footprint. As a result, our
method remains competitive in terms of the total training time while offering improved selection
quality.

D Assumptions in the theory

Theorem 4.2 relies on assumptions of third-order smoothness and Hessian symmetry of the loss
function

The assumptions of third-order smoothness and Hessian symmetry are commonly used in deep
learning theory to facilitate theoretical analysis. One key observation in deep learning is that the loss
landscape often exhibits a degree of continuity, meaning that small changes in the parameter space
generally lead to gradual changes in the loss function. This aligns with empirical findings on neural
network optimization, where sharp transitions in loss are rare under typical training conditions.

The symmetry of the Hessian follows naturally from the continuity and differentiability of the loss
function. There are several important results derived using these assumptions. [A, B, C, D, E, F,
G](Martens, 2010; [Kiros| 2013 |Ghorbani et al., |2019; [Kunin et al.,|2021}; Barshan et al., 20205 [Yao
et al.| 2020; Bottou et al., 2018)) While non-linear activation functions introduce complexities, prior
works suggest that, in practice, the loss function remains smooth enough for such assumptions to be
reasonable.[C, H] (Ghorbani et al.}2019;|Liu et al.|2023)). Additionally, there are lines of research
trying to approximate the Hessian using Fisher Information matrix (FIM) such as (Pascanu & Bengiol
2014; |Liao et al., [2018} [Sen et al.| [2024). This implicitly assume that the Hessian is symmetric as
FIM is symmetric according to its definition. Also, there are works(Kirkpatrick et al., 2017 Ritter
et al., 2018b) using Hessain as a precision matrix in probabilistic models, which implicitly assume
symmetry in its structure and receive success in capturing or improving the behavior of deep learning.

Similarly, the third-order smoothness assumption extends this notion by ensuring that second-order
derivatives do not change abruptly, which aligns with empirical observations about the optimization
dynamics of deep networks. These smoothness and regularity conditions are standard in optimization
theory((Jin et al.| |2017a; |Allen-Zhu & Li, 2018} |Carmon et al.l 2017} |Criscitiello & Boumall 2021}
Jin et al., |2017b; Bottou et al.,|2018)) and are widely used to analyze generalization and convergence
properties of deep learning models.

Thus, while these assumptions may not hold universally in all settings (and we are not aware of any
assumptions that hold universally for all models), they are reasonable approximations that enable
theoretical insights into the learning dynamics of deep neural networks. We hope the reviewer agrees
that our results are novel and useful within the context of current understanding of deep neural
networks.
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E Adacore comparison

AdaCore is related to our work in terms of its motivation to capture loss curvature. How-
ever, we were unable to include it in our experiments due to the lack of an accessible or func-
tional implementation. We explored multiple sources, including the official AdaCore repository
(https://github.com/opooladz/AdaCore.git), which has always been empty ever since it was created, as
well as public coreset libraries such as CORD (https://github.com/decile-team/cords) and DeepCore
(https://github.com/PatrickZH/DeepCore.git). We did not find a working implementation of AdaCore
in any of these repositories.

We also attempted to reimplement the method based on the paper, but were unable to reproduce the
reported performance. The method requires several manually tuned hyperparameters and includes
steps involving Hessian computation, which are both computationally intensive and memory demand-
ing. This introduces a significant runtime and scalability barrier, particularly problematic for the
large-scale or noisy settings we focus on, and undermines the motivation for using coresets to speed
up training.

Additionally, we note that AdaCore has not been included in recent coreset benchmarks, such as
those by (Yang et al.| [2023]; |Okanovic et al., 2023) which includes the authors of Adacore themselves,
where efficiency and scalability are prioritized. We believe this omission reflects a broader consensus
that AdaCore, while conceptually interesting, is not competitive in practice under modern resource
constraints.
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