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ABSTRACT

Large Language Models (LLMs) have recently improved mathematical reasoning
through Reinforcement Learning with Verifiable Reward (RLVR). However, exist-
ing RLVR algorithms require large query budgets, making annotation costly. We
investigate whether fewer but more informative queries can yield similar or supe-
rior performance, introducing active learning (AL) into RLVR. We identify that
classic AL sampling strategies fail to outperform random selection in this setting,
due to ignoring objective uncertainty when only selecting by subjective uncer-
tainty. This work proposes an uncertainty consistency metric to evaluate how
well subjective uncertainty aligns with objective uncertainty. In the offline set-
ting, this alignment is measured using the Point-Biserial Correlation Coefficient
(PBC). For online training, because of limited sampling and dynamically shifting
output distributions, PBC estimation is difficult. Therefore, we introduce a new
online variant, computed from normalized advantage and subjective uncertainty.
Theoretically, we prove that the online variant is strictly negatively correlated with
offline PBC and supports better sample selection. Experiments show our method
consistently outperforms random and classic AL baselines, achieving full-dataset
performance while training on only 30% of the data, effectively reducing the cost
of RLVR for reasoning tasks.1

1 INTRODUCTION

Large Language Models (LLMs) (Guo et al., 2025; Team et al., 2023; Achiam et al., 2023; Yang
et al., 2024) have recently advanced complex mathematical reasoning. A key driver is Reinforcement
Learning with Verifiable Reward (RLVR) (Shao et al., 2024), which leverages explicit, verifiable re-
wards in math tasks (correct vs. incorrect). This property allows us to obviate the need for learned
reward models and critics commonly used in actor-critic methods. Instead, group-based normal-
ized rewards are used to estimate sequence-level advantages, as implemented in methods such as
GRPO (Shao et al., 2024), DAPO (Yu et al., 2025), REINFORCE++ (Hu, 2025), and RLOO (Ah-
madian et al., 2024).

However, these algorithms typically require tens of thousands of queries to reach optimal perfor-
mance, while annotating answers for mathematical reasoning tasks incurs substantial cost. More-
over, previous RL research has overlooked the influence of query selection on reasoning ability.
Poor query selection can bias models, induce entropy collapse, gradient instability, and hinder con-
vergence (Yu et al., 2025; Cui et al., 2025; Cheng et al., 2025; Wang et al., 2025). So this leads
to a pivotal question: Can we achieve comparable or superior performance with fewer but more
informative queries in the RL reasoning task? Active learning (AL) (Wang & Shang, 2014) offers
a promising approach.

In classic AL, a model selects a budgeted subset of unlabeled queries for annotation based on un-
certainty (Citovsky et al., 2021; Wang & Shang, 2014; Geifman & El-Yaniv, 2017) or feature-space

∗Corresponding author.
1The code is available at https://github.com/yihao-123/uncertainty-consistency.
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coverage(Ash et al., 2021; Agarwal et al., 2020; Sener & Savarese, 2017). The goal is to label the
most valuable examples, thus improving generalization with minimal annotations. Similar ideas ap-
pear in LLMs for in-context learning (Diao et al., 2023; Du et al., 2024), preference alignment (Chen
et al., 2024; Muldrew et al., 2024), supervised fine-tuning (Bayer, 2025), and knowledge distilla-
tion(Zhang et al., 2023). Therefore, we assess classic AL strategies in the offline reasoning RL
setting. We first conduct a pilot experiment with Qwen2.5-0.5B (Qwen et al., 2025) on the MATH
dataset (Hendrycks et al., 2021), as shown in Table 1. The results clearly show that classic AL
strategies fail to improve performance in our setting. This raises an important question: why do tra-
ditional AL methods fail here? To investigate this, we perform an additional analysis focusing on the
relationship between subjective uncertainty (e.g., perplexity estimated by the model) and objective
uncertainty (i.e., rule-based reward), shown in Figure 1a. Consistency samples (orange curve in Fig-
ure 1a) are those which subjective and objective uncertainty are simultaneously high or low. How-
ever, Figure 1a reveals that samples with high subjective uncertainty but correct answers produce
extreme policy gradients. These outlier gradients induce high variance, destabilizing RL training
and hindering reasoning performance. In contrast, consistency samples yield more stable training
dynamics. For a concrete illustration why inconsistent samples tend to induce larger variance in
gradient norms, consider that in a consistent positive sample, the average generation probability of
tokens might be around 0.9, whereas in an inconsistent positive sample it may be around 0.3. Since
policy gradient methods tend to increase the probabilities of positive sample tokens toward 1, incon-
sistent samples have a larger margin for probability improvement, thereby making large-norm and
unstable gradients more likely. The same reasoning applies to negative samples. Motivated by these
findings, we propose that focusing on consistency samples rather than simply those with the highest
subjective uncertainty would be more beneficial for stable and effective RL training.

In the offline setting, we measure the uncertainty consistency using the Point-Biserial Correlation
Coefficient (rpb) (MacCallum, 2002), and select the top p% samples with minimal rpb for RL. How-
ever, estimating rpb becomes challenging in online settings due to limited sampling and dynamical
change in output distributions (Guo et al., 2025). To address this, we propose an online uncertainty
consistency metric, ronlinepb , calculated from the normalized advantage and the current model’s un-
certainty. Theoretically, we prove that the online metric is strictly negatively correlated with its
offline counterpart, and under mild conditions, its maximization matches optimizing sample-wise
uncertainty. These results provide a solid theoretical foundation for the proposed method.

Experimental results show that in the offline setting, selecting samples with lower offline consistency
metrics noteblely outperforms random selection and classic active learning strategies. In the online
setting, our method achieves performance comparable to or better than RL with the full dataset by
training on only 30% of the data. This validates our metrics’ efficacy in query selection for RL
reasoning.

Table 1: Results of different AL strategies on MATH task using GRPO on Qwen2.5-0.5B. Full de-
notes the use of the full dataset, while other strategies employ offline sampling with a sampling ratio
of 10%. Every experiment is conduct 5 times using different random seed. The result shows that
classic AL strategies, whether based on uncertainty (PPL, Entropy (Wang & Shang, 2014)), features
(K-means2, K-center (Sener & Savarese, 2017)), or LLM-based prompting (AskLLM (Sachdeva
et al., 2024)), demonstrate no marked difference compared to the Random strategy. AskLLM
prompt is shown in Appendix C and more experimental setup refers to Appendix D.

Q2.5-0.5B Full Random PPL Entropy K-center K-means AskLLM

MATH 33.2
(±0.1)

31.0
(±0.2)

30.8
(±0.6)

29.9
(±0.3)

31.1
(±0.3)

30.4
(±0.5)

30.9
(±0.7)

2 RELATED WORK

Reinforcement learning base on verifiable reward (RLVR). Building on the noteble perfor-
mance of reinforcement learning methods in aligning LLMs with human feedback, for example

2Featured by Qwen3-8B-Embedding (Zhang et al., 2025). Choosing the points to be labeled as the centers
of k-means.

2



Published as a conference paper at ICLR 2026

0 10 20 30 40 50
Training Step

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Gr
ad

 N
or

m

Var(actor.grad) = 0.0662
Var(actor.grad) = 0.0101

qwen2.5-3b - gsm8k
inconsistent
consistent

0 10 20 30 40 50
Training Step

0.0

0.5

1.0

1.5

2.0

2.5

Gr
ad

 N
or

m

Var(actor.grad) = 0.1743
Var(actor.grad) = 0.0014

qwen2.5-3b - math
inconsistent
consistent

0 10 20 30 40 50
Training Step

0

10

20

30

40

Gr
ad

 N
or

m

Var(actor.grad) = 42.8631
Var(actor.grad) = 4.0307

qwen2.5-7b - gsm8k
inconsistent
consistent

0 10 20 30 40 50
Training Step

0

2

4

6

8

Gr
ad

 N
or

m

Var(actor.grad) = 1.3135
Var(actor.grad) = 0.0212

qwen2.5-7b - math
inconsistent
consistent

(a) Gradient Norm Dynamics (Inconsistent vs
consistent samples).
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Figure 1: (a) Gradient norm dynamics for inconsistent vs. consistent samples. (b) Correlation
between online and offline uncertainty consistency metrics.

PPO (Schulman et al., 2017), Shao et al. (2024) extends Reinforcement Learning base on Veri-
fiable Reward (RLVR) to improve LLM mathematical reasoning capabilities. GRPO (Shao et al.,
2024) dispenses with reward model and replaces it with rule-based rewards. It also removes the
trainable critic model used to estimate sequence returns and advantages. Instead, it estimates pol-
icy gradients using group-wise normalized advantages, which greatly reduces GPU memory usage
during RL training. RLOO (Ahmadian et al., 2024) estimates the advantage with a leave-one-out
method, improving sample efficiency. REINFORCE++ (Hu, 2025) follows PPO by incorporating
KL regularization into the advantage estimate, mitigating reward hacking issues that can arise with
the GRPO group-wise estimation. DAPO (Yu et al., 2025) improves sample efficiency and reduces
reward noise through empirical techniques such as clip higher, dynamic sampling, and overlong
reward shaping. However, these algorithms typically require tens of thousands of queries to reach
optimal performance, while annotating answers for mathematical reasoning tasks incurs substantial
cost. Moreover, previous RL research has overlooked the influence of query selection on reason-
ing ability. Poor query selection can bias models, induce entropy collapse, gradient instability, and
hinder training (Yu et al., 2025; Cui et al., 2025; Cheng et al., 2025; Wang et al., 2025).

Active Learning (AL). The core idea of Active Learning (AL) is: we can maximize post-training
performance with a small and limited labeling cost by selecting the most informative queries. Clas-
sic AL strategies fall into two categories: uncertainty-based methods and feature-space methods.
Uncertainty-based methods assume that the samples with the highest uncertainty are the most in-
formative. Representative approaches include Least Confidence (LC), Margin Sampling (MS), and
Maximum Entropy (Wang & Shang, 2014; Geifman & El-Yaniv, 2017). However, these methods
ignore the distribution of samples in feature space, so the selected subset may lack diversity. To
address this, Core-Set (Sener & Savarese, 2017) and CDAL (Agarwal et al., 2020) expand the cov-
erage of the selected subset in feature space. This increases diversity while preserving the overall
information content of datasets. Although Kaplan et al. (2020) shows that LLMs are data-hungry
during pretraining and benefit from more data, additional data can hinder optimization and limit
achievable performance in many downstream tasks. In in-context learning (ICL), Activate Prompt-
ing (Diao et al., 2023) highlights inefficiencies in example selection: the most effective examples
are not directly discoverable. CAL (Du et al., 2024) argues that datasets exhibit biased diversity and
over-optimization. In supervised fine-tuning (SFT), ActiveLLM (Bayer, 2025) finds that the cold-
start phase requires large amounts of data, which limits its utility. In preference alignment tasks,
Chen et al. (2024) argues that most current online algorithms still rely on human preference labels
provided as feedback to update the policy model. This reliance leads to substantial expert query
costs. In knowledge distillation (KD), Zhang et al. (2023) shows that LLMs are easily influenced
by erroneous signals, and the high cost of annotation restricts their applicability in domain-specific
tasks. However, the effectiveness of AL strategies in the RL reasoning task is underexplored.
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3 PRELIMINARY

In this section, we first present the unified mathematical formulation of the RLVR loss in Section
3.1. In Section 3.2, we introduce the method for estimating subjective uncertainty.

3.1 REINFORCEMENT LEARNING BASED ON VERIFIABLE REWARDS (RLVR)

RL methods epitomized by PPO (Schulman et al., 2017) already serve in InstructGPT (Ouyang et al.,
2022) to align LLMs with human feedback. To eliminate the memory overhead of training a critic
and a reward model, Shao et al. (2024) introduces RLVR to improve the reasoning capabilities of
LLMs. In the on-policy setting, RLVR can unify into the following form:

LRLVR(θ|x(i)) = − 1

K

K∑
k=1

1

|y(i)k |

|y(i)
k |∑

t=1

Â
(i)
k,t log πθ(y

(i)
k,t|x

(i)), (1)

where K denotes the sample number for each query, πθ represents the policy model, |y(i)k | is
the length of the kth response and Âk,t is the token-level advantage function. Usually, the
response level advantage function is adopted. For GRPO as an example, Âk = Âk,t =
R(yk|x)−mean({R(yk|x)|k∈[K]})

std({R(yk|x)|k∈[K]}) , R is the reward function. In mathematical reasoning tasks, a rule-
based reward function is typically adopted:

R(c, a|x) =
{
1, a = a∗

0, otherwise
. (2)

Here, c, a, and a∗ represent the reasoning content, the predicted answer, and the reference answer,
respectively.

3.2 UNCERTAINTY ESTIMATION

To estimate the subjective uncertainty of LLMs, we first use the reference model πref to sample
each sample x(i) for K times, obtaining K responses, denoted as {y(i)j }Kj=1. For each response, we
compute the PPL as follows:

PPL(i)
k = e

− 1

|y(i)
k

|

∑|y(i)
k

|
t=0 log πref (y

(i)
k,t|x

(i),y
(i)
k,<t)

. (3)

A larger value of PPL(i)
k indicates that the probability of πref sampling y

(i)
k is lower, which corre-

sponds to a higher degree of subjective uncertainty for the sample x. More uncertainty estimation
method (Margin Score, Entropy) can refer to Appendix B. For convenience in subsequent discus-
sions, we use U

(i)
k to uniformly denote one of the above metrics.

4 METHOD

In this section, we introduce the query selection method based on uncertainty consistency under two
scenarios, offline and online. Section 4.1 describes how to characterize uncertainty consistency in
the offline setting; in Section 4.2, we extend the concept of uncertainty consistency to the online
setting, and demonstrate the connection between the offline and online metrics as well as how the
online metric affects the single-step optimization process theoretically.

4.1 UNCERTAINTY CONSISTENCY IN OFFLINE SCENARIOS

In Section 1 , we have shown that, in mathematical reasoning tasks within RL scenarios, simply
applying classic AL strategies, such as selecting samples where the LLM exhibits the highest sub-
jective uncertainty for training, does not lead to better enhancement of reasoning ability compared
to randomly choosing training samples. We argue that the key reason for this ineffectiveness lies in
the neglect of the relationship between objective and subjective uncertainty.
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Offline Query Selection

Input: Query set D = {x(i)}Ni=1, reference
model πref, offline generations K, sample
ratio p, training steps T , mini-batch size
B, online generations G

Output: Policy πθT

1 Initialize θ0;
2 for i = 1 to N do
3 Generate K responses

{y(i)
k }

K
k=1 ∼ πref(·|x(i));

4 Compute r
(i)
pb via Formula 4;

5 Select the p% queries with smallest r(i)pb to form
D̂;

6 for t = 0 to T − 1 do
7 Sample {x(j)}Bj=1 ⊆ D̂;
8 for j = 1 to B do
9 Generate G responses

{y(j)
g }Gg=1 ∼ πθt(·|x(j));

10 Compute∇θL via Formula 1;
11 Update θt+1 ← θt − η∇θL;

12 return πθT ;

Online Query Selection

Input: Query set D = {x(i)}Ni=1, reference
model πref, sample ratio p, training steps
T , mini-batch size B, online generations
G

Output: Policy πθT

1 Initialize θ0 from πref;
2 for t = 1 to T do
3 Sample mini-batch B = {x(j)}Bj=1 ⊆ D;
4 foreach x(j) ∈ B do
5 Generate G responses

{y(j)
g }Gg=1 ∼ πθt−1(·|x

(j));
6 Compute ronline

pb (x(j)) via Formula 5;

7 Select top-p% queries with largest ronline
pb to

form B̂;
8 Compute∇θL via Formula 1 on B̂;
9 Update θt ← θt−1 − η∇θL;

10 return πθT ;

Figure 2: Offline (left) and online (right) query selection procedures.

In Equation 2, this Bernoulli variable reflects the degree of objective uncertainty: a lower accuracy
rate over K samples indicates higher objective uncertainty. Through our experiments, we found
that samples with higher alignment between subjective and objective uncertainty tend to be more
valuable for the RL reasoning task. Since the reward is a binary variable, for a training sample x,
we use the PBC to characterize the relationship between subjective uncertainty U (Equation 3) and
objective uncertainty R (Equation 2):

rpb(x
(i); {y(i)j }Kj=1) =

Ū1 − Ū0

sK

√
K0K1

K2
. (4)

Here, Ū1 denotes the mean subjective uncertainty for correct responses for x(i), Ū0 for incorrect
responses, sK is the standard deviation of {U (i)

k }Kk=1, and K1 and K0 are the numbers of correct
and incorrect responses, respectively. A more negative value of rpb indicates a stronger negative
correlation between the two variables, and vice versa. Therefore, when subjective and objective
uncertainty are aligned, U and R should exhibit a negative correlation, i.e., rpb should be as small
as possible. In the offline setting, we pre-select the top p% of samples with the smallest rpb values
from the training set as the dataset for RL. The detailed procedure is shown in Figure 2 (left).

4.2 UNCERTAINTY CONSISTENCY IN ONLINE SCENARIOS

In the previous section, we propose an offline uncertainty consistency metric (Equation 4). However,
this metric presents the following challenges in online RL settings:

• Estimation accuracy. Because the calculation of rpb relies on a large number of samples
K, it is not feasible to estimate this value accurately in practice;

• Model update. The calculation of subjective uncertainty U depends on probability outputs
of the model, and in online settings, the sampling distribution of the behavioral policy is
changed as the model is updated.
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Therefore, we propose an equivalent online uncertainty consistency metric that can mitigate the
above issues:

ronlinepb (x(i); {y(i)j }Kk=1) =
1

K

∑
Aj>0

Âj

Uθ
j

+ γ
∑
Aj<0

Âj

Uθ
j

 . (5)

Here, Âj is the advantage estimate assigned by the RL algorithm (e.g., GRPO) for the sample
(x(i), y

(i)
j ), Uθ

j is the current model πθ’s estimation of the uncertainty metric (see Equation 3) and
γ > 0 is a hyperparameter to balance the ratio between positive response and negative responses.

Based on our experiments (Figure 1b) and theoretical analysis Theorem 1, we find the negative
correlation between rpb and ronlinepb . Figure 1b shows the relationship between the offline metric rpb
and the online metric ronlinepb (γ=1). There is a noteble negative correlation between ronlinepb and rpb
in six combinations of models and datasets. Theorem 1 shows that the covariance between rpb and
ronlinepb is strictly negative. Therefore, to select the most valuable training sample, we choose the top
p% of samples with the largest ronlinepb from the minibatch at every step during the online training,
which means the highest subjective and objective uncertainty consistency. The detailed procedure
refers to Figure 2 (right).
Theorem 1 (Negative Correlation between rpb and ronline

pb ). For the same model πθ, the covariance
between rpb and ronline

pb is less than zero, i.e., Cov(rpb, ronline
pb ) < 0.

The proof is shown in Appendix A.1. Furthermore, to explain why the largest ronlinepb samples are
effective in the RL reasoning task, we have proven Theorem 2:
Theorem 2 (Equivalent between Maximizing Decrease in Sample Uncertainty and Maximizing
ronlinepb ). Suppose U(x; θ) =

∑K
j=1 U

θ
j denotes the subjective uncertainty for sample x. Under

sample gradient orthogonality assumption (Assumption 1) and bounded gradient norm assumption
(Assumption 2), in one optimization step of an on-policy RL algorithm (e.g., GRPO), selecting sam-
ples in the minibatch with largest ronlinepb can maximize the decrease in sample uncertainty .

Assumption 1 (Sample Gradient Orthogonality). For any i, j ∈ [K] and i ̸= j, the derivatives of the
sample uncertainties with respect to the parameter θ are orthogonal, namely < ∇θU

θ
i ,∇θU

θ
j >= 0.

Assumption 2 (Bounded Gradient Norm). For any i ∈ [K], we have 0 < m < ||∇θU
θ
i ||2 < M .

The explanation of the assumption and the proof is shown in Appendix A.2.

5 EXPERIMENT

5.1 SETUP

Model. We select the following models to evaluate the effectiveness of uncertainty consistency
metric in both offline and online settings. These models cover different sizes, different architectures,
and include both Pretrained and Instruct versions: 1) Qwen2.5-7B (Q-7B) (Qwen et al., 2025) 2)
Qwen2.5-3B (Q-3B) (Qwen et al., 2025) 3) Llama-3.1-8B-Instruct (L-8B-I) (Dubey et al., 2024).

Dataset. We choose two mathematical reasoning tasks, MATH and GSM8K. MATH consists of
7,500 training examples and 5,000 test examples, while GSM8K consists of 7,474 training exam-
ples and 1,319 test examples. All evaluations focus on generalization within each task, without
considering cross-task generalization. In order to utilize the CoT ability, we use CoT prompt shown
in Appendix C.

Baseline & Metric. In the offline setting, we include the following baselines for comparison: 1)
Full: Using the entire training dataset. 2) Random: Randomly selecting p% of the data. 3) PPL &
ENT: For each query, generating K = 64 inferences, then selecting the top p% of examples based on
the highest PPL (Equation 3) or ENT (Equation 7) scores. 4) K-center (Sener & Savarese, 2017):
Utilizing Qwen3-8B-Embedding (Zhang et al., 2025) to extract language features from training
queries, and then applying the K-center algorithm to select p% of the data. 5) AskLLM (Sachdeva
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et al., 2024): The ask prompt we used for LLM is shown in Appendix C. 6) Active Prompt (Diao
et al., 2023) 7) CAL (Du et al., 2024).

In the online setting, Random, PPL, and ENT are performed within each minibatch. All other
baselines remain the same as in the offline setting. All experiments report the greedy decoding
Pass@1 score on the test set.

RL Algorithm Hyperparameter. We mainly use GRPO to validate the effectiveness of our method.
Training is conducted with sampling temperature set to 1.0, maximum response length of 2048, and
K = 8. γ in Equation 5 is selected from the set {0.1, 0.5, 1.0, 1.5, 2}. AdamW (Loshchilov &
Hutter, 2017) is used as the optimizer with a constant learning rate of 1e-6, and k3 KL divergence
regularization with a coefficient of 0.001. The batch size is set to 256, and total training steps
are fixed at 50. In Section 5.3, we further discuss the effects of different RLVR algorithms. The
hyperparameters for RLOO and REINFORCE++ are identical to those of GRPO. As for DAPO, we
set the high clip ratio and low clip ratio to 0.28 and 0.20, respectively, with a long buffer length
of 1024 and a long penalty coefficient of 1.0; Other hyperparameters are the same as GRPO. All
experiments are run on 8 × 96GB NVIDIA H20 GPUs.

5.2 MAIN RESULT

Table 2: Main result in offline and online setting.

Model Method GSM8K MATH

OFF(p=30) ON(p=30) OFF(p=30) ON(p=30)

Q-7B

Full 91.5 91.5 73.2 73.2
Random 88.6 88.1 70.8 68.2

PPL 88.9 90.4 71.0 72.1
ENT 88.4 90.3 70.3 71.8

K-center 88.1 - 70.5 -
AskLLM 87.8 - 69.8 -

Active Prompt 85.2 - 65.1 -
ZS-CAL 84.3 - 64.0 -
rpb(Ours) 90.1(+1.5%) - 72.1(+1.3%) -

ronlinepb (Ours) - 91.7(+2.4%) - 72.9(+4.7%)

Q-3B

Full 85.2 85.2 63.8 63.8
Random 82.4 81.2 62.2 58.8

PPL 81.6 83.4 61.6 62.5
ENT 82.7 83.2 62.9 62.8

K-center 83.0 - 62.5 -
AskLLM 82.8 - 61.9 -

Active Prompt 80.5 - 54.1 -
ZS-CAL 79.2 - 54.5 -
rpb(Ours) 83.6(+1.2%) - 63.3(+1.1%) -

ronlinepb (Ours) - 84.9(+2.5%) - 64.0(+5.2%)

L-8B-I

Full 90.2 90.2 52.0 52.0
Random 87.0 88.0 50.9 50.6

PPL 86.5 90.5 49.8 51.6
ENT 87.0 88.7 50.7 51.3

K-center 87.3 - 51.0 -
AskLLM 86.2 - 50.5 -

Active Prompt 84.1 - 49.5 -
ZS-CAL 84.5 - 48.6 -
rpb(Ours) 88.7(+1.7%) - 51.5 (+0.6%) -

ronlinepb (Ours) - 89.9 (+2.9%) - 52.5 (+1.9%)
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The main experimental results are reported in Table 2. We focus on three types of models and
conduct comparative studies on two mathematical datasets under both online and offline settings. In
all experiments, the sampling ratio is consistently set to 30%.

Offline. In the offline setting, classic uncertainty metrics (PPL, ENT), feature-based methods (K-
center), and the prompt-based uncertainty method (AskLLM) perform similarly to random selection
and are noteblely worse than using the full dataset. These findings are consistent with our pre-
liminary experiments in the warm-up stage. Applying AL strategies in ICL provides only limited
improvements to model reasoning ability. In contrast, directly selecting the 30% of samples with
the lowest rpb yields much better performance than random selection, although it still falls short of
the results obtained with the full dataset. This gap can be attributed to estimation bias caused by the
changes in model output distribution during RL parameter updates.

Online. In the online setting, selecting samples with high PPL and ENT values during RL leads to
better reasoning performance than random selection, but does not reach the performance achieved
with Full. However, dynamically selecting the top 30% samples with the highest ronlinepb in each
minibatch not only noteblely outperforms random selection, but also closely matches the perfor-
mance of Full. In some cases, such as Qwen2.5-7B on GSM8K and Qwen2.5-3B on MATH, it even
surpasses Full by 0.2%. These results indicate that in RL-based reasoning training, using only 30%
of the data is sufficient to achieve nearly the same performance as Full. Samples with consistent
subjective and objective uncertainty are more valuable, supporting both our empirical observations
and theoretical hypotheses.

5.3 ABLATION STUDY

To further evaluate the validity and robustness of our method, we conducted additional experiments
using Qwen2.5-7B.

Choosing Top p% or Bottom p% rpb samples. To investigate whether samples with consistent
subjective and objective uncertainty are more valuable for RL reasoning training, we selected the
bottom 30% (consistency samples, lowest rpb) and top 30% (inconsistency samples, highest rpb)
in the offline setting. We then evaluate model performance on the test set throughout training, as
shown in Figures 3 (1-a) & (1-b). The results indicate that, for both MATH and GSM8K, using
consistency samples consistently outperforms using inconsistency samples. Moreover, training with
inconsistency samples even performs worse than randomly selecting the same number of samples.
This suggests that inconsistency samples may be detrimental to model reasoning in RL.
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Figure 3: Ablation study and discussion on Qwen2.5-7B: (1-a)&(1-b) Choosing Top 30% or Bottom
30% rpb samples. (1-c)&(1-d) Sensitivity of γ in Equation 5. (2-a)&(2-b) Responses length and
entropy during online training. (2-c)&(2-d) Different Sample Ratios.

Sensitivity of γ in Equation 5. We explored the impact of different γ values, ranging from
{0.1, 0.5, 1.0, 1.5, 2.0}, as illustrated in Figures 3 (1-c) & (1-d). The results show that our approach
favors smaller γ values, such as 0.1. With larger γ, performance is lower and does not match that of
Full, although it still surpasses the online random selection baseline.

Different Sample Ratios. While our main experiments used a sampling ratio of 30%, here we
examine how different sampling ratios affect the consistency criterion under both online and offline

8
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Table 3: Online RL results on hard dataset DAPO-MATH-17K. Sample ratio is 30%.

Model Dataset Method GRPO RLOO DAPO REINFORCE++

Qwen2.5-7B

MATH
Random 68.2 72.0 70.6 71.7

Full 73.2 74.8 73.5 73.9
ronlinepb 72.9 74.3 73.2 73.9

GSM8K
Random 88.1 90.1 88.5 89.4

Full 91.5 92.0 91.4 91.7
ronlinepb 91.7 92.1 91.0 91.4

Table 4: Impact on different RLVR algorithms.

Model Dataset Random Full PPL ENT ronlinepb

Qwen2.5-7B DAPO-MATH-17K 27.1 34.0 33.0 32.1 33.8 (+6.7%)

settings, as shown in Figures 3 (2-c) & (2-d). Our results show that with smaller ratios, such as
10%, the reasoning performance of the model decreases noteblely. For example, compared to Full,
performance drops by about 1.8% (MATH) and 1.5% (GSM8K) in the online setting, and by about
3.1% and 2.4% in the offline setting. This indicates that too little training data can seriously impair
RL training. On the other hand, increasing the ratio to 50% does not provide a clear improvement
and approaches the full data result. These findings highlight the importance of selecting a proper
query sampling strategy for RL-based reasoning training.

Different RLVR Algorithms. Our main experiments adopt GRPO as the default RLVR algorithm.
Here, we further assess whether consistency sampling benefits other RLVR algorithms under the
online setting. Results in Table 3 demonstrate that, with a 30% sample ratio, consistency sampling
reliably improves the reasoning performance of all tested algorithms, achieving results comparable
to Full.

Hard Training Data. We also increased the difficulty of the mathematical tasks by validating the
importance of consistency sampling on the DAPO-MATH-17K dataset3, shown in Table 4. Even
with a 30% sampling ratio, we observed similar findings as in the main experiments. This confirms
that uncertainty consistency query selection is equally effective for more challenging mathematical
tasks.

Selected by Highest Objective Uncertainty. In the online setting, if we select the top p% samples
with the highest objective uncertainty within a batch, these samples are very likely to have rewards
of zero under RLVR algorithms. According to the RLVR loss in Equation 1, such samples will
contribute no gradient signal, severely hindering model optimization. So we only consider it in
offline setting. In the offline setting, we compare two selection strategies on MATH dataset: a)
Selecting the top 30% samples with the highest objective uncertainty (Top 30% Hard); b) Selecting
30% samples according to the offline metric rpb. The result is shown in Table 5.

Table 5: Training on highest objective uncertainty dataset (Top Hard) vs uncertainty consistency
dataset (rpb) in the offline setting.

Model rpb Top Hard

Qwen2.5-7B 72.1 68.3
Qwen2.5-3B 63.3 57.8

Llama3.1-8B-Instruct 51.5 50.4

The result demonstrates that filtering samples solely based on objective uncertainty will induce dif-
ficulty imbalance in the training set, which can affect the model’s generalization ability. Therefore,

3http://huggingface.co/datasets/BytedTsinghua-SIA/DAPO-Math-17k
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our framework explicitly considers uncertainty consistency, rather than relying on a single notion of
uncertainty.

5.4 DISCUSSION

We further analyzed how consistency sampling affects response length and policy entropy during
RL training on the Qwen2.5-7B MATH task, as illustrated in Figures 3 (2-a) & (2-b):

Response Length. We find that consistency samples help maintain the model’s response length at
a level comparable to RL with the full dataset. This suggests the difficulty of the selected samples
matches that of the full dataset, while random sampling may pick samples that are too easy and less
beneficial for improving reasoning ability.

Entropy. With full-data RL, the model’s entropy drops rapidly and is noticeably lower than other
methods at the early stage of training. This phenomenon limits the model’s exploration ability and
restricts gains in reasoning ability, even with more data. In contrast, consistency sampling maintains
higher entropy in the early phase, promoting better exploration and improving the sample efficiency
of RL training.

6 CONCLUSION

This work mainly explores what kind of data is more valuable for RLVR training and how to achieve
the reasoning effect of full-data RL with less data. Key findings are: 1) Classic active learning strate-
gies underperform full-data RLVR because they ignore objective uncertainty, i.e., the probability that
the model answers correctly. 2) We introduce an offline uncertainty consistency metric, which is the
point-biserial correlation between correctness and model perplexity; 3) Because of limited sampling
and dynamically shifting output distributions, we estimate the online uncertainty consistency metric
from normalized advantages and current subjective uncertainty 4) We prove that online metric is
strictly negatively correlated with its offline counterpart and maximizing online uncertainty consis-
tency is equivalent to maximizing decrease of sample uncertainty, providing a principled selection
criterion. Experiments show that selecting by low uncertainty consistency metric already surpasses
random and classic AL baselines, while online selection with only 30% of the data matches or ex-
ceeds the accuracy of training on the full dataset. Our consistency-driven query selection thus offers
a scalable path to data-efficient RL for complex reasoning tasks.
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A PROOF

A.1 PROOF FOR THEOREM 1

Theorem 1(Negative Correlation between rpb and ronline
pb ). For the same model πθ, the covariance

between rpb and ronline
pb is less than zero, i.e., Cov(rpb, ronline

pb ) < 0.

Proof. We first define r′pb = (Ū1 − Ū0)
√

K0K1

K2 . Since the variance sK > 0, Cov(rpb, ronline
pb )

and Cov(r′pb, r
online
pb ) have the same sign. We now show that Cov(r′pb, r

online
pb ) < 0. For clarity of

exposition, we abstract the above theorem as follows:

Let U be a random variable such that P (U > 1) = 1, and consider i.i.d K samples {ui}Ki=1.
Let P = r′pb =

∑K
i=1 ciui, Q = ronline

pb =
∑K

i=1 di
1
ui

, where cidi > 0 for any i ∈ [K]. Then,
we have Cov(P,Q) < 0.

First, expand the expectation of the product:

E[PQ] = E

( K∑
i=1

ciui

) K∑
j=1

dj
1

uj


=

K∑
i=1

K∑
j=1

cidjE[ui · 1/uj ].

For i = j, E[ui · 1/ui] = 1. For i ̸= j, if ui and uj are independent samples from U , then
E[ui · 1/uj ] = E[ui] · E[1/uj ].

So,

E[PQ] =

K∑
i=1

cidi · 1 +
∑
i̸=j

cidjE[ui]E[1/uj ]

=

K∑
i=1

cidi +

(
K∑
i=1

ciE[ui]

) K∑
j=1

djE[1/uj ]

−
K∑
i=1

cidiE[ui]E[1/ui]

The expectations of P and Q are

E[P ] =
K∑
i=1

ciE[ui], E[Q] =

K∑
j=1

djE[1/uj ].

So,

E[P ]E[Q] =

(
K∑
i=1

ciE[ui]

) K∑
j=1

djE[1/uj ]


Subtracting, the covariance becomes:

Cov(P,Q) = E[PQ]− E[P ]E[Q]

=

K∑
i=1

cidi −
K∑
i=1

cidiE[ui]E[1/ui]

So,

Cov(P,Q) =

K∑
i=1

cidi (1− E[ui]E[1/ui])
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Now, because ui > 1 almost surely, we know E[ui] > 1 and E[1/ui] < 1. More importantly, by
Jensen’s inequality or the Cauchy-Schwarz inequality,

E[ui]E[1/ui] ≥ 1

with equality only if ui is constant. Therefore,

1− E[ui]E[1/ui] < 0

and, since
∑K

i=1 cidi > 0, it follows that

Cov(P,Q) < 0.

So, Cov(rpb, ronlinepb ) < 0.

A.2 PROOF FOR THEOREM 2

Theorem 2 (Equivalent between Maximizing Decrease in Sample Uncertainty and Maximizing
ronlinepb ). Suppose U(x; θ) =

∑K
j=1 U

θ
j denotes the subjective uncertainty for sample x. Under

sample gradient orthogonality assumption (Assumption 1) and bounded gradient norm assumption
(Assumption 2), in one optimization step of an on-policy RL algorithm (e.g., GRPO), selecting sam-
ples in the minibatch with largest ronlinepb can maximize the decrease in sample uncertainty .

First, assumption 2 is common and mild. Now we explain why assumption 1 is reasonable in
practice. We use Qwen2.5-0.5B to perform eight inference runs on the same question. For each
response, we compute the sample derivative of the uncertainty with respect to the parameters and
the normalized gradient inner products for each pair of derivative. As Figure 4 shown, apart from the
diagonal, the gradient inner products between different responses are close to zero. This indicates
that, although the samples are generated for the same question, the uncertainty gradients in the high-
dimensional parameter space remain approximately orthogonal. Next, we begin to prove Theorem
2.
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Proof. For any query x, we have K responses {yi}Ki=1 and set γ = M2

m2 . And according to on-policy
RL algorithm (e.g., GRPO), the loss is defined as follows:

Lθ = − 1

K

K∑
i=1

Âi
1

|yi|

|yi|∑
t=1

log πθ(yt|x, y<t)

=
1

K

K∑
i=1

Âi ln e
− 1

|yi|
∑|yi|

t=1 log πθ(yt|x,y<t)

=
1

K

K∑
i=1

Âi lnU
θ
i . Equation 3

Taking the derivative of the above equation with respect to θ, we have:

∇θLθ =
1

K

K∑
i=1

Âi

Uθ
i

∇θU
θ
i .

According to Gradient Decent, the parameters in the next step is:

θ′ = θ − η∇θLθ,

where η is learning rate. the decrease in sample uncertainty after this update is:

∆U(x) = U(x; θ′)− U(x; θ)

≈ −η∇θU(x)T∇θLθ First-order Taylor Estimation

= −η

(
K∑
i=1

∇θU
θ
i

)(
1

K

K∑
i=1

Âi

Uθ
i

∇θU
θ
i

)

= − η

K

K∑
i=1

Âi

Uθ
i

K∑
j=1

< ∇θU
θ
i ,∇θU

θ
j >

= − η

K

K∑
i=1

Âi

Uθ
i

||∇θU
θ
i ||22 Assumption 1

= − η

K

∑
Âi>0

Âi

Uθ
i

||∇θU
θ
i ||22 +

∑
Âi<0

Âi

Uθ
i

||∇θU
θ
i ||22


≤ − η

K

m2
∑
Âi>0

Âi

Uθ
i

+M2
∑
Âi<0

Âi

Uθ
i

 Assumption 2

= −ηm2

K

∑
Âi>0

Âi

Uθ
i

+ γ
∑
Âi<0

Âi

Uθ
i


= −ηm2ronlinepb

So, maximize the decrease in sample uncertainty is equivalent to maximize ronlinepb .

B MARGIN SCORE AND ENTROPY ESTIMATION

Similarly, we can use the Margin Score (MS) or Entropy (ENT) (Wang & Shang, 2014) to represent
the subjective uncertainty of LLMs:

MS
(i)
k =

1

|y(i)k |

|y(i)
k |∑

t=0

(
πref (ym,t|x(i), y

(i)
k,<t)− πref (ys,t|x(i), y

(i)
k,<t)

)
, (6)
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ENT
(i)
k =

1

|y(i)k |

|y(i)
k |∑

t=0

H(·|x(i)y
(i)
k,<t). (7)

Here, ym,t and ys,t denote the tokens with the highest and second-highest probabilities at position t
in the current sequence, respectively. H(·|x, y) represents the entropy at each position of the current
sequence. A larger MS or a smaller ENT reflects greater subjective uncertainty of the LLMs.

C TASK PROMPT

MATH Task Prompt

[User]
<Question>
Let’s think step by step and output the final answer within \\boxed{}.

GSM8K Task Prompt

[User]
<Question>
Letś think step by step and output the final answer after ####.

AskLLM (Sachdeva et al., 2024) Prompt

###
Question
###

Does the previous reasoning question demarcated within ### and ### contain infor-
mative signal for reasoning reinforcement learning training ? An informative datapoint
should be well-formatted, contain some usable knowledge of the world, and strictly NOT
have any harmful, racist, sexist, etc. content. This reasoning question should have a clear
answer, and you should consider it solvable for you, while also ensuring that it is not an
overly simple question.

OPTIONS:
- yes
- no

D WARM UP EXPERIMENT SETUP

In Section 1, we assess classic AL strategies in the offline reasoning RL setting. We check Full ,
Random , uncertainty-based methods (PPL, Entropy (Wang & Shang, 2014)), feature-sapce cov-
erage methods (K-means, K-center (Sener & Savarese, 2017)) and LLM prompting base meth-
ods (AskLLM (Sachdeva et al., 2024)) using GRPO on Qwen2.5-0.5B (Qwen et al., 2025) in
MATH (Hendrycks et al., 2021) dataset. The detailed experimental setup is as follows:

• Full: Training is conducted on the entire 7,500 samples from the MATH dataset.

• Random: 10% of the training data are randomly sampled for training.

• PPL: Training samples are selected as the top 10% of the training data with the highest
average perplexity (Equation 3).

• Entropy: Training samples are selected as the top 10% of the training data with the highest
average entropy (Equation 7).
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• K-means: After obtaining vector representations from the Qwen3-8B-Embedding (Zhang
et al., 2025) model for each query, k-means++ (Arthur & Vassilvitskii, 2006) initialization
and k-means clustering are applied, and 10% of the samples are uniformly drawn from each
cluster for training.

• K-center: After obtaining vector representations from the Qwen3-8B-Embedding
model (Zhang et al., 2025), the K-center (Sener & Savarese, 2017) algorithm is applied
to select the top 10% of samples for training.

• AskLLM: Using the AskLLM prompt (See Appendix C), the probability of the token ”yes”
appearing in the model’s response is recorded, and the top 10% of samples with the highest
”yes” probability are selected for training.

All the hyperparameters in the warm up experiment is the same as those in main experiment (See
Section 5.1. Besides, every experiment is conduct 5 times using different random seed and we report
its mean and standard deviation of greedy accuracy on 5000 MATH test dataset.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

The Abstract, Introduction, and Method sections of the paper are polished with the assistance of a
large language model.
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