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Abstract
This paper studies the interplay between learning
algorithms and graph structure for graph neural
networks (GNNs). Existing theoretical studies on
the learning dynamics of GNNs primarily focus
on the convergence rates of learning algorithms
under the interpolation regime (noise-free) and of-
fer only a crude connection between these dynam-
ics and the actual graph structure (e.g., maximum
degree). This paper aims to bridge this gap by in-
vestigating the excessive risk (generalization per-
formance) of learning algorithms in GNNs within
the generalization regime (with noise). Specifi-
cally, we extend the conventional settings from
the learning theory literature to the context of
GNNs and examine how graph structure influ-
ences the performance of learning algorithms such
as stochastic gradient descent (SGD) and Ridge
regression. Our study makes several key contribu-
tions toward understanding the interplay between
graph structure and learning in GNNs. First, we
derive the excess risk profiles of SGD and Ridge
regression in GNNs and connect these profiles
to the graph structure through spectral graph the-
ory. With this established framework, we further
explore how different graph structures (regular
vs. power-law) impact the performance of these
algorithms through comparative analysis. Addi-
tionally, we extend our analysis to multi-layer lin-
ear GNNs, revealing an increasing non-isotropic
effect on the excess risk profile, thereby offer-
ing new insights into the over-smoothing issue in
GNNs from the perspective of learning algorithms.
Our empirical results align with our theoretical
predictions, collectively showcasing a coupling
relation among graph structure, GNNs and learn-
ing algorithms, and providing insights on GNN
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algorithm design and selection in practice.

1. Introduction
Graph structure data is ubiquitous in the real world and
many important learning problems are naturally modelled
as a graph. Graph neural networks (GNNs) have emerged
as a dominant class of machine learning models specifically
designed for learning problems in graph-structured data.
They have demonstrated considerable success in addressing
a wide range of graph-related problems in various domains
such as chemistry (Gilmer et al., 2017; Reiser et al., 2022),
biology (Tsubaki et al., 2019; Réau et al., 2023), social
networking (Chen et al., 2017; Sheng et al., 2024; Li et al.,
2017; Su et al., 2024), and computer vision (Zhu et al., 2022;
Yang et al., 2022; Lu et al., 2016; Xu et al., 2017; Zellers
et al., 2018). A defining characteristic of GNNs is their
use of a spatial approach through message passing on the
graph structure for feature aggregation. This enables GNNs
to preserve structural information and dependencies from
the underlying graph structure, allowing them to be highly
effective in tasks such as node regression.

Because of their central role in numerous important applica-
tions, there is a growing body of literature on theoretical re-
search on GNNs (see Sec. 2 for a more detailed discussion).
Existing theoretical studies on GNNs primarily concentrate
on two aspects: their expressive power (Xu et al., 2018)
and generalization capabilities under different measures.
The expressive power of GNNs refers to their ability to dis-
tinguish between different graph structures and effectively
capture node relationships and graph topology. General-
ization capabilities are often explored through complexity
measures, such as VC-dimension (Scarselli et al., 2018) and
Rademacher complexity (Lv, 2021), or through information-
theoretic measures, like mutual information and entropy.
These results provide interesting insight into how powerful
GNNs are as a neural model.

Existing Gap. Nevertheless, there is a notable gap in
understanding the interplay between learning algorithms
(e.g., stochastic gradient descent (SGD)) and graph struc-
ture, especially when concerning their generalization per-
formance (excessive risk) in the presence of noise (inter-
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polation regime). There are few studies concerning the
behaviour of learning algorithms in GNNs (Awasthi et al.,
2021). These studies are limited in two aspects: 1) they
are only concerned with the convergence rates of the learn-
ing within the interpolation regime (noise-free), and 2) they
provide only a very crude connection to the graph struc-
ture, typically represented by the maximum or minimum
degree, which offers limited insight into the structure of the
graph. Recognizing this gap in the theoretical understand-
ing of GNNs, this paper investigates the interplay between
graph structure and learning algorithms in the generaliza-
tion regime (in the presence of noise). We extend standard
settings (least squares) from learning theory literature to
the case of GNN and aim to answer the following research
questions:

Can graph structure affect the generalization performance
of learning algorithms in GNNs? If so, how does the graph

structure affect the learning algorithms?

Contribution. The primary objective of this paper is to ex-
amine the interplay between learning algorithms and GNNs,
particularly focusing on how graph structure impacts the
generalization performance (excessive risk) of learning al-
gorithms in the interpolation regime. The main challenges
addressed in this research are establishing a connection be-
tween graph structure and learning algorithm performance,
and creating a robust comparison framework. Our analysis
focuses on two central learning algorithms, SGD and Ridge,
aiming to understand the influence of graph structure by
comparing the performance of these algorithms in different
graph types (power-law vs. regular). The contributions and
results of this study are highlighted as follows:

1. We extend the existing excessive risk analysis to the
context of GNNs, broadening the understanding of
these learning algorithms within the learning theory
literature. Specifically, we have derived the excessive
risk (generalization performance) profiles, including
both upper and lower bounds, of learning algorithms
(SGD and Ridge) in GNNs (Theorems 4.1 and 4.2).
These profiles establish a link between the graph ma-
trix and the excessive risk of learning algorithms in
GNNs. They lay the groundwork for our subsequent
investigation into the impact of graph structure on the
performance of learning algorithms.

2. Based on the established connection between the graph
matrix and the excessive risk of different learning algo-
rithms, we further utilize spectral graph theory to link
the graph structure with the graph matrix. Through
this connection and the results derived, we examine
the interplay between graph structure and learning al-
gorithms in GNNs. Specifically, we focus on the two
types of connectivity spectra of the graph (regular vs.

power-law) and demonstrate that 1) the excess risk pro-
file of SGD is more favourable (perform better) than
Ridge when the underlying graph structure is power-
law and 2) the excess risk profile of Ridge is more
favourable than SGD when the underlying graph struc-
ture is regular (Theorem 4.3). These findings offer
practical guidance for learning algorithm selection, sug-
gesting that one should choose a learning algorithm
(SGD-like vs. Ridge-like) based on the graph structure.

3. We extend the analysis to the context of multi-layer lin-
earized GNNs. We demonstrate that when increasing
GNN layers on power-law graphs, the performance of
the learning algorithms exhibits an increasingly non-
isotropic effect on the excess risk profile of learning
algorithms (Proposition 4.5). Specifically, it becomes
easier for the learning algorithms to learn the ground
truth in the head eigenspace, while it becomes more
challenging in the tail eigenspace. These results pro-
vide a new perspective on the well-documented over-
smoothing issue in GNNs and offer a surprising insight.
While it is commonly understood that adding more lay-
ers to GNNs can lead to degraded performance due
to over-smoothing, our analysis suggests that increas-
ing the number of layers can be beneficial for learning
algorithms such as SGD when the ground truth is con-
centrated in the head eigenspace.

The empirical results from our controlled experiments with
synthetic graph models are consistent with our theoretical
predictions, thus validating our analysis and findings. These
results not only deepen the theoretical understanding of
GNNs but also offer practical insights and guidance for
selecting and designing learning algorithms for GNNs based
on graph structure.

2. Related Work
In this section, we provide a brief overview of the following
key aspects of this paper: 1) theoretical studies of GNNs, 2)
excessive risk of learning algorithms and 3) spectral graph
theory. A more comprehensive discussion of related works
is available in the appendix.

Theoretical Understanding of GNNs. Due to the empir-
ical success of GNNs, there is a growing body of theoreti-
cal studies (see (Jegelka, 2022) for a survey) focusing on
the expressive power of GNNs (Sato, 2020; Zhang et al.,
2023a;b;c; Xu et al., 2018) and their generalization capabili-
ties. The expressive power of a GNN denotes its ability to
distinguish between different graph structures and capture
the intricacies of node relationships and graph topology. It
is often evaluated by comparing the GNN’s discriminative
ability against classical graph isomorphism tests, such as
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Figure 1. Illustration of how our framework connects graph structure and the performance of learning algorithms. Spectral graph theory
connects graph structure and the eigenspectrum of graph matrix. The excessive risk profile of the learning algorithms connects the
eigenspectrum of the graph matrix and the performance of the learning algorithms. As such, we establish a framework that can study the
interplay between graph structure and learning algorithms in GNNs.

the Weisfeiler-Lehman test (Leman & Weisfeiler, 1968).
Meanwhile, generalization studies of GNNs explore how
well these models perform on unseen data, utilizing frame-
works such as complexity measures (like VC-dimension
and Rademacher complexity) (Lv, 2021; Ma et al., 2021;
Baranwal et al., 2021; Liao et al., 2021), Neural Tangent
Kernel (NTK) (Du et al., 2019) and information-theoretic ap-
proaches (such as mutual information and entropy) (Verma
& Zhang, 2019; Zhu et al., 2021). These studies seek to
determine how factors such as network architecture and
properties of the input graphs affect the model’s general-
ization from training to testing data. Therefore, they are
orthogonal to the research objectives of this paper.

There is also research on convergence analysis of GNN
learning algorithms (Chen et al., 2017; Huang et al., 2018;
Chen et al., 2018; Awasthi et al., 2021; Li et al., 2018; Oono
& Suzuki, 2020). These studies only examine the conver-
gence rate of the algorithms and are confined to the interpo-
lation regime (noise-free). Their results only provide a crude
connection between graph structure (e.g., the maximum and
minimum degrees in the graph) and (the convergent rate
of) learning algorithms, lacking in-depth understanding of
this relationship. It remains an open question how different
characteristics of graph structure (e.g., power-law vs. regu-
lar) influence the performance of learning algorithms in the
generalization regime (with noise). We aim to fill this gap
by providing a framework for linking graph structure to the
performance of learning algorithms in this setting.

Excessive Risk of Learning Algorithm. The excessive
risk of different learning algorithms is a central research
subject in the learning theory literature (Zou et al., 2021b;
2023; Tsigler & Bartlett, 2020; 2023; Dhillon et al., 2013;
Lakshminarayanan & Szepesvari, 2018; Jain et al., 2017;
Défossez & Bach, 2015). In particular, a key research ques-
tion is how different learning algorithms perform under
various settings (Dhillon et al., 2013). It remains unclear
how the excessive risk of learning algorithms could manifest
under graph learning and how different algorithms would
perform in this setting. We expand the knowledge of the
learning theory by providing an excessive risk analysis of
SGD and Ridge regression in GNNs and comparing their

performance with respect to different graph structures.

Spectral Graph Theory. Spectral graph theory is a field
of mathematics that studies the properties of graphs through
the analysis of eigenvalues and eigenvectors of matrices
associated with the graph, such as the adjacency matrix and
the Laplacian matrix (Pósfai & Barabási, 2016; Spielman,
2012; Van Mieghem, 2023; Gera et al., 2018; Hammond
et al., 2011; Chung, 1997). A foundation principle and result
from the spectral graph theory is that the characteristic of the
graph structure is closely coupled with the eigenspectrum of
the graph matrix. For example, in power-law graphs, which
are characterized by a few nodes with very high degrees
and many nodes with low degrees, the eigenspectrum of
the graph matrix is typically broad and heavy-tailed, reflect-
ing the heterogeneity of the degree distribution (Faloutsos
et al., 1999; Chung et al., 2003; Farkas et al., 2001; Goh
et al., 2001; Easley et al., 2010). In contrast, regular graphs,
where all nodes have the same degree, exhibit a more even
eigenspectrum, reflecting the uniformity in the degree dis-
tribution (Easley et al., 2010). The comparison between
power-law and regular graphs (visualized in Fig. 2 in Sec. 4)
underscores the versatility of spectral graph theory in ana-
lyzing and interpreting the structural properties of different
types of networks. These results serve as an important part
of our toolkit for connecting the performance of the learning
algorithm and graph structure.

3. Preliminaries
We introduce the notation, necessary background, and prob-
lem formulation in this paper.

Notation. We use lowercase letters to denote scalars and
use lower and uppercase boldface letters to denote vectors
and matrices. For a vector x, x[i] denotes the i-th coordinate.
For two functions f(x) ≥ 0 and g(x) ≥ 0 defined on x > 0,
we write f(x) ≲ g(x) if f(x) ≤ c · g(x) for some absolute
constant c > 0; we write f(x) ≳ g(x) if g(x) ≲ f(x); we
write f(x) ≂ g(x) if f(x) ≲ g(x) ≲ f(x). For a vector
θ ∈ Rd and a positive semidefinite matrix H ∈ Rd×d, we
denote ∥θ∥2H := θ⊤Hθ. We denote [k] := {1, . . . , k}.
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Graph. A (standard) graph G with N vertices is given by
a two-tuple (V, E), where V = {v1, . . . , vN} is the set of
vertex and E ⊂ V ×V is a set of edge that defines the graph
structure among V . Each vertex i ∈ [N ] is associated with
a feature vector xi ∈ H in some separable Hilbert space
H. The dimensionality of H is denoted as d, which can
be infinite-dimensional when applicable. Let X ∈ RN×d

denote the feature matrix of all the vertices.

Graph Neural Networks. The computation in GNNs
can be viewed as message-passing along graph struc-
ture (Jegelka, 2022). At each round l, the new embedding
x
(l)
i for vertex i is updated through a series of aggregate and

combine steps as outlined below:

m
(l)
i = AGGREGATE({x(l−1)

j ∈ N (i)}),

x
(l)
i = COMBINE(x

(l−1)
i ,m

(l)
i ),

where x
(0)
i is initialized as the feature vector xi, N (i) rep-

resents the neighbors of vertex i, and mi denotes the aggre-
gated representation at round l. Different GNNs differ in
specific implementation of the AGGREGATE and COM-
BINE functions. Essentially, a GNN serves as an embedding
function that integrates the graph structure and node features
to produce an aggregated representation vector of node v.
This representation is subsequently processed by a read-out
function (e.g., a ReLU layer) to generate predictions.

One-round Graph Neural Network. In this study, we
follow a similar setting to (Awasthi et al., 2021) and focus
our main discussions on a one-round GNN which consists
of an aggregation operation and a readout operation. Here
we interpret the aggregation operation as a graph matrix G
operating on the feature matrix X. Then, we formulate the
one-round GNNs with a two-component formulation. The
first component is to aggregate the feature with the given
aggregation operator and a graph matrix G. We denote the
resulting space as M:

M = G ◦X. (3.1)

M can be viewed as the space where the aggregation repre-
sentation lives. Without loss of generality, we assume M is
a subspace of H. Depending on the choice of graph matrix
G, we can recover different variants of GNNs (we provide a
further discussion in this regard in Appendix G). For exam-
ple, when G = Â (the normalized adjacency matrix of the
graph) and ◦ is the simple matrix multiplication, we recover
GCN (Kipf & Welling, 2017). Furthermore, for a given
feature vector x and aggregation representation m, we use

H := Ex∼X[xx⊤], M := Em∼M[mm⊤],

to denote the second moment of m and x, which is the
covariance matrix characterizing how the components of

m and x vary together. Then, we use y ∈ R to denote a
response and it is generated with a ReLU readout:

y = ReLU(m⊤θ∗) + ϵ, m ∼ M,

where θ∗ ∈ H represents the unknown true model parameter
and ϵ ∈ R is the model noise with zero mean. It should be
noted that there can be correlations among m manifested in
the covariance of ϵ. As a result, our generating model is very
general. In addition, the above formulation is equivalent to
the Markov-blanket formulation commonly used in other
theoretical studies of GNNs (Wu et al., 2022).

Learning Problem. The goal of the learning problem is to
estimate the true parameter θ∗ by minimizing the following:

L(θ∗) = min
θ∈H

L(θ),

L(θ) :=
1

2
E
[
(y − ReLU(m⊤θ)2

]
,

where the expectation is taken over the randomness of y and
m. The generalization performance of an estimated θ found
by a learning algorithm (e.g., SGD) is evaluated based on
the excessive risk:

∆(θ) := L(θ)− L(θ∗).

The excessive risk ∆(θ) can be decomposed into bias and
variance as follows:

∆(θ) = ∥E[θ]− θ∗∥2M︸ ︷︷ ︸
bias

+ ∥θ − E[θ]∥2M︸ ︷︷ ︸
variance

.

The decomposition above shows that the excess risk profile
of ∆ gives a comprehensive characterization of the learning
algorithm, showcasing its convergence (governed by bias)
and its robustness to noise (governed by variance). Fol-
lowing the prior literature (Bartlett et al., 2020; Zou et al.,
2021b; Jain et al., 2017; Bach & Moulines, 2013; Berthier
et al., 2020), we make the following assumptions on the
data feature H and G.

Assumption 3.1. H is positive definite (PD) and its trace
tr(H) is finite.

Assumption 3.2. There exists positive constant α such that
for every x and any positive semidefinite matrix A, it holds
that: E[xx⊤Axx⊤]−HAH ⪯ α tr(AH) ·H.

Assumption 3.3. There exists a positive constant σ such
that: Ex,ϵ[ϵ

2xx⊤] ≤ σ2H.

Assumption 3.4. G is PD with respect to x and has a
bounded norm.

This additional assumption on the graph matrix generally
holds for common choices of graph matrices, such as the
Laplacian and Adjacency matrices. To relate the graph

4



Learning Algorithm on Graph

structure to the excessive risk of the learning algorithm, we
are interested in the connection between θ∗ and M. To
analyze their relation, we introduce the following notation:

M0:k :=
∑k

i=1µiviv
⊤
i , Mk:∞ :=

∑
i>kµiviv

⊤
i ,

where {µi}∞i=1 are the eigenvalues of M sorted in non-
increasing order and vi’s are the corresponding eigenvectors.
Then we define:

∥θ∥2
H−1

0:k

=
∑
i≤k

(v⊤
i θ)

2

µi
, ∥θ∥2Hk:∞

=
∑
i>k

µi(v
⊤
i θ)

2.

4. Main Results
We next present the main results of this paper, focusing on
the description and implication of the results. Detailed proof
of the results can be found in the supplementary material.

Result Overview. We first derive the excessive risk pro-
file (upper bound and lower bound) of learning algorithms
(SGD and Ridge) in GNNs. These excessive profiles pro-
vide a connection between the graph matrix and the exces-
sive risk of learning algorithms in GNNs. Then we use
spectral graph theory to further establish the connection be-
tween the performance of the learning algorithm and graph
structure. In particular, we investigate how the connectiv-
ity structure of the graphs (power-law vs. regular graph)
affects the performance of different learning algorithms in
GNNs. Furthermore, we extend the analysis to multi-layer
linearized GNNs and yield a novel perspective on the over-
smoothing issue of GNNs. This analysis reveals that the
over-smoothing issue may be attributed to increasing ex-
cessive risk in learning algorithms due to a misalignment
between the ground truth and the eigenspectrum of the ag-
gregation space. Interestingly, increasing the number of
GNN layers can be advantageous when the ground truth
aligns with the headspace of the aggregation space. A visu-
alization of the overall analytical framework is provided in
Fig. 1.

4.1. Excessive Risk Profile of Learning Algorithms

We derive the excess risk profile that expands the current
knowledge of learning theory and GNN, and forms a foun-
dation for our further investigations on the effect of graph
structure.

SGD. We consider SGD with a constant step size and tail-
averaging (Bach & Moulines, 2013; Jain et al., 2017; 2018).
At the t-th iteration, a fresh example is sampled from the
aggregation space (mt ∼ G ◦X) to perform the update:

θt+1 = θt − γ · ∇l(θt;mt, yt),

= θt − γ ·
(
ReLU(m⊤

t θt−1)− yt
)
·mt,

where γ > 0 is a constant stepsize (also referred to as the
learning rate). After N iterations, which corresponds to
the number of samples observed, SGD computes the final
estimator as the tail-averaged iterates:

θsgd(N,G; γ) :=
2

N

∑N−1
t=N/2θt.

Here we focus on tail-average SGD 1, as it has been shown
to improve the convergence properties and robustness of
last-iterate SGD, particularly in the presence of noise and
heavy-tailed data distributions (Zou et al., 2021b). The
following theorem gives a description of the excessive risk
profile of SGD under our setting.

Theorem 4.1 (Excessive Risk Profile of SGD). Consider
SGD with tail-averaging with initialization θ0 = 0. Sup-
pose Assumptions 3.1, 3.2, 3.3 and 3.4 hold and stepsize
satisfies γ ≤ 1/ tr(M). Then the excessive risk of SGD can
be upper-bounded as follows:

∆(θsgd(N,G; γ)) ≲ SGDBias + SGDVariance,

SGDBias =

1

γ2N2

∥∥ exp (−NγM
)
θ∗∥∥2

M−1
0:k1

+
∥∥θ∗∥∥2

Mk1:∞
,

SGDVariance =

σ2 + ∥θ∗∥2M
N

·
(
k2 +N2γ2

∑
i>k2

µ2
i

)
,

where k1, k2 ∈ [d] are arbitrary.

Suppose the stepsize satisfies γ ≤ 1/µ1. Then the excess
risk can be lower-bounded as follows:

∆(θsgd(N,G; γ)) ≳ SGDBias + SGDVariance,

SGDBias =

1

γ2N2

∥∥ exp (−NγM
)
θ∗∥∥2

M−1
0:k∗

+
∥∥θ∗∥∥2

Mk∗:∞
,

SGDVariance =

σ2

N
·
(
k∗ +N2γ2

∑
i>k∗

µ2
i

)
+ ∥θ∗∥2M

γ

µ1

∑
i>k†

µ2
i ,

where k∗ = max{k : µk ≥ 1/(Nγ)}, and k† = max{k :
µk ≥ 2/(3Nγ)}.

Theorem 4.1 establishes the excessive risk upper and lower
bounds for SGD in GNNs, offering a detailed characteriza-
tion of each component (bias and variance) that constitutes
the excessive risk profile of SGD. Several observations are

1we provide a more in-depth discussion of tail-average SGD in
the supplementary material.
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pertinent here. First, Theorem 4.1 demonstrates that the
excessive risk of SGD (for both upper and lower bounds)
is intimately linked to the aggregation matrix M, which is
derived from the graph matrix G. This establishes a clear
relationship between the performance of SGD and the graph
matrix. Second, Theorem 4.1 reveals that the headspace
and tail space of the eigenspectrum of M differently affect
both the bias and variance. Specifically, the leading eigen-
spectrum shows an exponential decay in bias, indicating
that SGD can effectively and efficiently approximate the
ground truth associated with these directions. Third, while
the decomposition of the eigenspectrum in the upper bound
of SGD applies for any arbitrary k1, k2 ∈ [d], the decom-
position in the lower bound of SGD is more stringent and
depends on the sample complexity and learning rate.

Ridge Regression. Given graph matrix G and feature ma-
trix X, Ridge regression provides an estimator for the true
parameter by solving the following optimization problem:

θridge(N,G;λ) := argmin
θ∈H

∥(G ◦X)⊤θ − y∥22 + λ∥θ∥2,

where λ ≥ 0 is the regularization parameter. When λ = 0,
the Ridge estimator reduces to the ordinary least square
estimator (Hastie et al., 2009). In the following theorem, we
give a characterization of the excessive risk profile of Ridge
in the proposed setting.

Theorem 4.2 (Excessive Risk Profile for Ridge). Consider
ridge regression with parameter λ > 0. Suppose Assump-
tions 3.1, 3.2, 3.3 and 3.4 hold. For a constant λ̂ depending
on λ and N , Ridge has the following excessive risk upper
bound for an arbitrary k ∈ [d]:

∆(θridge(N,G;λ)) ≲
λ̂2

N2
·
∥∥θ̂∗∥∥2

M−1
0:k

+ ∥θ̂∗∥∥2
Mk:∞︸ ︷︷ ︸

RidgeBias

+ σ2 ·
(

k

N
+

N

λ̂2

∑
i>k

µ2
i

)
︸ ︷︷ ︸

RidgeVariance

.

Suppose k∗ = min{k : Nµk ≲ λ̂}. Then we have the
following excessive risk lower bound for Ridge:

∆(θridge(N,G;λ)) ≳
λ̂2

N2
·
∥∥θ̂∗∥∥2

M−1
0:k∗

+ ∥θ̂∗∥∥2
Mk∗:∞︸ ︷︷ ︸

RidgeBias

+ σ2 ·
(
k∗

N
+

N

λ̂2

∑
i>k∗

µ2
i

)
︸ ︷︷ ︸

RidgeVariance

.

Theorem 4.2 establishes an excessive risk profile (upper
and lower bound) for Ridge regression in GNNs. Mirroring

Theorem 4.1, Theorem 4.2 demonstrates that the excessive
risk of GNNs can be divided into two components, bias and
variance, highlighting a structural similarity that is crucial
for subsequent comparisons between the two learning algo-
rithms. It is noted that the upper bound and lower bound
of the excessive risk for Ridge generally aligns better than
those for SGD, consistent with existing studies (Tsigler &
Bartlett, 2020; 2023). By selecting k equal to k∗, we achieve
a unified bound for the risk associated with Ridge, differing
only by a constant factor.

4.2. Graph Structure and Learning Performance

Next, we deepen our understanding of the connection be-
tween graph structure and the excess risk of learning algo-
rithms using spectral graph theory. Spectral graph theory
facilitates the linkage of graph structure to the eigenspec-
trum of the graph matrix. Specifically, we focus our analysis
on the power-law graph, which is characterized by an expo-
nential decay in the degree sequence, and the regular graph,
where each vertex has a uniform degree.

Power-law vs. Regular Graph. As discussed in Sec. 2,
the graph matrix of a power-law graph typically exhibits
concentrated eigenvalues (i.e., a large eigenvalue associated
with a few eigenvectors), resulting in a fast-decay eigen-
spectrum. In contrast, the graph matrix of regular graphs
typically shows a uniform distribution of eigenvalues (i.e.,
eigenvalues of roughly the same magnitude across all eigen-
vectors), which leads to a slow-decay eigenspectrum. A
visualization of these characteristics is given in Fig. 2.

For precise analysis, we consider graphs with eigenspectrum
from the following model:

µi(G) = 1/iβ , (4.1)

where µi(G) represents the i-th eigenvalue of the graph
matrix G and β > 0 is the constant that controls the rate of
decay in the eigenvalues. A larger β results in a faster de-
cay of the eigenspectrum, similar to that seen in power-law
graphs, while a smaller β leads to a more uniform eigen-
spectrum, akin to that of regular graphs. Additionally, we
assume that the underlying ground truth model parameters
and the feature space align with the eigenspectrum of the
graph matrix, reflecting typical scenarios in graph learn-
ing problems (Fortunato, 2010). Based on this model, we
present results that compare the performance of SGD and
Ridge in power-law and regular graphs, thereby characteriz-
ing how graph structure influences the performance of the
learning algorithm.

Theorem 4.3 (Effect of Graph Structure). Suppose Assump-
tions 3.1, 3.2, 3.3 and 3.4 hold. Consider a power-law
graph Gp with graph matrix Gp whose eigen-spectrum is
characterized by Eq. 4.1 with a large enough β. Then for
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every λ for ridge regression, there exists a choice for γ∗ for
SGD such that for sufficiently large N , we have

∆(θsgd(N,Gp; γ
∗)) ≲ ∆(θridge(N,Gp;λ)).

On the other hand, consider a regular graph Gr with graph
matrix Gr whose eigen-spectrum is characterized by Eq. 4.1
with a small β. Then for every choice of γ for SGD, there
exists a λ∗ such that,

∆(θridge(N,Gr;λ
∗)) ≲ ∆(θsgd(N,Gr; γ)).

Theorem 4.3 suggests that SGD generally performs bet-
ter (exhibits lower excessive risk) than Ridge regression in
power-law graphs, characterized by a faster-decay graph
spectrum. Conversely, Ridge regression tends to outperform
SGD in regular graphs, which are characterized by a slower-
decay graph spectrum. This result affirmatively supports
our research question and establishes a connection between
graph structure and learning algorithms via the graph spec-
trum. It also provides crucial insights for practical learning
algorithm selection: an SGD-like learning algorithm is pre-
ferred for power-law graphs, while a Ridge-like algorithm
is advisable for regular graphs.
Remark 4.4. Our theoretical results are not tightly depen-
dent on the exact form of the power-law decay model. We
adopt this model primarily for analytical clarity, but the
core insights extend to a broader class of spectral decay
behaviors. The essence of our findings (e.g., Theorem 4.3)
lies in the rate at which the eigenvalues of the graph matrix
decay, regardless of whether this follows a strict power-law.
A faster-decaying spectrum—as often observed in graphs
with power-law-like structures—tends to favor SGD. In con-
trast, a slower-decaying spectrum—as seen in more regular
graphs—makes Ridge more favorable.

4.3. Linear GNNs and Over-smoothing

We extend our previous analysis to multi-layer GNNs and
examine the cascading effect of stacking multiple layers. To
make the analysis tractable, we focus on linearized GNNs
(with ReLU readout) such as SGCN (Wu et al., 2019), fol-
lowing the approach in (Awasthi et al., 2021). We analyze
the following L-layer linear GNN model:

M(l) = G ◦M(l−1), 1 ≤ l ≤ L,

y = ReLU

((
m(L)

)⊤
θ∗

)
+ ϵ, m(L) ∼ M(L),

with the same assumptions as previously established.

A New Perspective on Over-smoothing. Over-smoothing
in GNNs describes the phenomenon that the performance of
a GNN degrades as the number of layers increases (Rusch
et al., 2023). Previous studies have explored this issue

through the lens of node representation, attributing over-
smoothing to the homogenization of representations (where
iterative aggregation of neighbor information causes all
nodes to converge to a similar representation), thereby los-
ing the unique structural and feature information that distin-
guishes them. With our established analysis and results, we
present the following novel implications and connections
between learning algorithms and over-smoothing.

By recursively expanding the expression of multi-layer
GNNs as described, we can analyze the L-layer GNNs
through the modified graph matrix

Ĝ(L) =

L∏
i=1

G.

Proposition 4.5 (Effect of Stacking GNN Layers). Ĝ
shares the same eigenbasis with G. Furthermore, for two
eigenvalues µi, µj and a positive integer l, if µi > µj , then
we have

µi(Ĝ(l + 1))

µj(Ĝ(l + 1))
>

µi(Ĝ(l))

µj(Ĝ(l))
.

Proposition 4.5 indicates that stacking additional GNN lay-
ers amplifies the relative difference (ratio) between the
eigenvalues of different eigen-directions, thereby impos-
ing a non-isotropic effect on the eigenspectrum of G. More
specifically, this leads to an eigenspectrum that exhibits
faster decay. Building on this, and using the previous exces-
sive risk analysis, we can further connect the performance
of learning algorithms to the increasing number of GNN
layers.

Most real-life graphs, particularly those used for academic
benchmarks, are power-law graphs. As previously dis-
cussed, power-law graphs exhibit concentrated eigenspectra
and feature a fast-decay spectrum. This creates a significant
relative difference between a few directions and the rest
of the directions on the eigenbasis. Accordingly, stacking
additional layers of GNNs further amplify this relative dif-
ference. Based on our previous excessive risk analysis, if
the ground truth does not align with the eigenspectrum of
the graph matrix, increasing the number of GNN layers ex-
acerbate this misalignment, leading to greater excessive risk
(making learning more difficult for the learning algorithm
and causing over-smoothing). Conversely, if the ground
truth is concentrated in the few large eigen-directions, then
adding more layers to GNNs will improve this alignment
and consequently lead to a better excessive risk.

4.4. Empirical Study

We present an empirical study to validate our theoretical
results and to illustrate the following:
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Figure 2. Illustration of the Graph Structure and Eigenspectrum of Power-law and Regular Graphs. Fig. 2(a) and Fig. 2(b) illustrate regular
and power-law graphs, respectively. Fig. 2(c) plots eigenspectrum of the graph Laplacian associated with the graphs. Fig. 2(d) shows
eigenspectrum of the aggregation covariance space M.
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Figure 3. Illustration of the Performance of Learning algorithm in Different Graph Structures and the Effect of Stacking GNN Layers.
Fig. 3(a) and 3(b) show performance comparison of SGD and Ridge in power-law and regular graph. Fig. 3(c) and 3(d) show the effect
of stacking GNN layers with/without the ground truth concentrating in the head eigenspace.

1. the relation between the eigenspectrum of mixing space
and graph structure (power-law vs. regular).

2. validate our theoretical prediction of SGD & Ridge in
power-law and regular graphs.

3. the cascading effect when stacking multi-layer GNNs.

4.5. Setting

To control variations in graph structures, features, and
model parameters, we focus our empirical study on graph
simulation models, similar to other learning theory stud-
ies (Awasthi et al., 2021). In particular, we utilize the well-
known Barabasi-Albert model (Pósfai & Barabási, 2016) to
generate power-law graphs. For each node in the graph, we
generate a feature vector of dimension 200 from the stan-
dard Gaussian distribution N(0, I). We generate the ground
truth θ∗ that aligns with the eigenspectrum of the graph
matrix. The model noise variance is set as σ2 = 1. Each
experiment is conducted for five independent trials, and the
average results are reported.

4.6. Result

The empirical results are summarized in Fig. 2 and 3.
Fig. 2(d) shows that the eigenspectrum of the aggregation
space M aligns with the eigenspectrum of the graph struc-
ture, indicating that the eigenspectrum of the aggregation

space (induced by power-law vs. regular graphs) mirrors the
eigenspectrum of the corresponding graph matrix (power-
law vs. regular). Fig. 3(a) and 3(b) offer an end-to-end
comparison of the performance of SGD and Ridge regres-
sion in power-law and regular graphs, respectively. These
figures demonstrate that SGD outperforms Ridge regres-
sion in power-law graphs, while Ridge regression excels
over SGD in regular graphs, validating our theoretical pre-
dictions. Fig. 3(c) illustrates that when the ground truth
does not align well with the eigenspectrum (with ground
truth vectors distributed in the tail eigenspace where µi is
small), stacking GNN layers results in increased excessive
risk, thereby causing the over-smoothing issue. Conversely,
Fig. 3(d) indicates that increasing the number of layers can
be beneficial when the ground truth aligns well (with ground
truth concentrated in the head eigenspace where µi is large).

5. Conclusion and Discussion
5.1. Conclusion

In this paper, we conduct a theoretical investigation into the
interplay between graph structure and learning algorithms
in GNNs. Specifically, we extend the excessive risk analysis
to include two core learning algorithms (SGD and Ridge)
within the context of GNNs. We further utilize spectral
graph theory to link the excessive risk of learning algo-
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rithms with graph structure and carry out a comparative
study across different graph structures (power-law and regu-
lar). Our findings indicate that SGD generally outperforms
Ridge in power-law graphs and the reverse holds true in
regular graphs. This positively answers our research ques-
tion regarding whether graph structure can influence the
performance of learning algorithms and demonstrates the
structural relationship between graph structure and learning
algorithms.

5.2. Future Work

This study opens up intriguing directions for future research.
First, our analysis was confined to one-layer GNNs or lin-
earized GNNs to maintain traceability in the theoretical
analysis. This limitation is common in similar studies, even
with I.I.D data, due to the constraints of existing theoretical
tools. Developing more sophisticated analytical tools to
extend the analysis to more complex models, such as those
with multiple non-linear layers, would be beneficial. Second,
given our focus on the interplay between graph structure
and learning algorithms, we isolated the relationship and
impact of graph structure and node features. Exploring how
a structural relationship between graph structure and node
features could further influence learning algorithms, would
also be a worthwhile direction, particularly regarding its
implications on over-squashing (Topping et al., 2021).

Finally, extending our theoretical framework to random
graph models constitutes another promising avenue. While
our current results can directly apply to specific realiza-
tions of random graphs, a comprehensive probabilistic treat-
ment—considering expected or high-probability spectral be-
haviors—would generalize our findings significantly. Lever-
aging concentration inequalities or advanced random matrix
theory to derive probabilistic guarantees on the performance
differences between SGD and Ridge regression across graph
ensembles (e.g., Erdős–Rényi, stochastic block models, and
other popular random graph families) represents a meaning-
ful future research direction.
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This paper presents work whose goal is to advance the under-
standing of graph neural networks. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.
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A. Excessive Risk of SGD
In this appendix, we provide proof of the excessive risk (Theorem 4.1) of SGD in our proposed setting. In this part, we will
mainly follow the proof technique and results in (Zou et al., 2021b) that is developed to sharply characterize the excess
risk bound for SGD (with tail-averaging) when the data distribution has a nice finite fourth-moment bound. However, such
a condition does not directly apply to the case with aggregation and ReLU activation. Therefore, their result can not be
directly applied here.

A.1. Preliminary and Useful Lemmas

We start with stating some commonly used notation and proving a set of lemmas that are going to be useful for the subsequent
analysis. First, let us recall some common notation and definitions that are going to be used in the proof. We denote the
node feature matrix X and d, G to be the graph matrix associated with the GNN, and M to be the aggregation space after
applying the graph matrix G on X. Furthermore, we denote

H = E[xx⊤], M = E[mm⊤],

to be the covariance of data distribution and aggregation distribution. We denote

µ1, ..., µd,

to be the eigenvalues for M in descending orders.

We start with proving the implication of the Assumptions 3.1, 3.3, and 3.2 on the aggregation space.
Lemma A.1. Suppose Assumption 3.2 holds, there exists positive constant α′ such that for every m and any positive
semidefinite matrix A, it holds that: E[mm⊤Amm⊤]−MAM ⪯ α′ tr(AM) ·M.

Proof. By definition, we have that
m ∼ M := G ◦X.

For a given PSD matrix A, we denote
B = GAG.

By Assumption 3.4, we have that G is a PSD matrix. Hence, we can immediately conclude that B is also a PSD matrix.
Then, we have that,

E[mm⊤Amm⊤]−MAM,

= GE[xx⊤Bxx⊤]G−GXX⊤BXX⊤G,

= GE[xx⊤Bxx⊤]G−GHBHG,

= G
(
E[xx⊤Bxx⊤]−HBH

)
G.

Then, by Assumption 3.2, we have that there exists a α such that

E[xx⊤Bxx⊤]−HBH ⪯ α tr(BH) ·H

Substitute this back into the derivation above, we have that,

E[mm⊤Amm⊤]−MAM,

= G
(
E[xx⊤Bxx⊤]−HBH

)
G,

⪯ α tr(BGHG) ·GHG.

Again, by Assumption 3.4, we have that G is a bounded matrix and immediately obtain that there exists a α′ such that,

E[mm⊤Amm⊤]−MAM,

⪯ α tr(GAGGHG) ·GHG,

= α tr(G)2 tr(AGHG) ·GHG,

= α′ tr(AM) ·M
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Lemma A.2. There exists a positive constant σ′ such that: Em,ϵ[ϵ
2mm⊤] ≤ σ2M.

Proof.

E[ϵ2mm⊤] = GE[ϵ2xx⊤]G,

By Assumption 3.3, we have that,

≤ G(σ2H)G,

= σ2GHG,

= σ2M

Lemma A.3. The covariance matrix of aggregation space M is PSD and has a finite trace.

Proof. First recall that

M = G ◦X.

By Assumption 3.1, we have that X is SD. Similarly, by Assumption 3.4, we have that G is SD. We immediately obtain that
M is PSD.

Now, it remains to show that M has a finite trace.

tr(M) ≲ tr(X) tr(G)

Again, by Assumption 3.1 and Assumption 3.4, we have that tr(X) and tr(G) are finite and therefore, tr(M) is finite.

The analysis in (Bartlett et al., 2020; Zou et al., 2021b) established a sharp analysis for SGD and Ridge with bounded
fourth-moment assumption. However, the setting considered in these two studies assumes a linear model without non-linear
activation. In other words, the SGD update is given by,

θt+1 = θt − γ · (m⊤
t θt−1 − yt) ·mt,

In our study, we consider GNN layers with ReLU activation and the update is given by,

θt+1 = θt − γ · (ReLU(m⊤
t θt−1)− yt) ·mt,

We adopt the following result from (Wu et al., 2023) to relate the excessive risk landscape of SGD and SGD with ReLU
activation.

Lemma A.4 (Restatement of Lemma 4.2 in (Wu et al., 2023)). The excessive risk landscape of ReLU updates is given by,

0.25∥θ − θ∗∥2M ≤ ∆(θ) ≤ ∥θ − θ∗∥2M

Lemma A.4 suggest that even though the excess risk induced by ReLU activation could be non-convex locally, the landscape
of the excess risk on a large scale is “approximately” quadratic in the sense of ignoring some multiplicative factors. This
landscape enables us to build sharp upper and lower bounds on the excess risk by bounding a simpler quadratic,

∥θ − θ∗∥2M.
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A.2. SGD Excessive Risk

Next, we present proof for the excessive risk profile, Theorem 4.1, for SGD under GNN. For this, we decompose the proof
and the results of the theorem into two parts: upper bound and lower bound that involve different results.

The overall proof structures are as follows: 1) we first derive the learning dynamic with the aggregation space under the
linear model and 2) we relate the excessive risk landscape of the above learning dynamic with ReLU activation with the
lemma proved above.

Next, we start with considering a simplified linear model where the response is generated by the aggregation space without
the ReLU activation, which amount to the following generation model,

y = m⊤θ∗ + ϵ, m ∼ M, (A.1)

Let θ̂t be the t-iteration of the SGD under the generation model Eq. A.1 which amounts to the following process,

θ̂t+1 = θ̂t − γ · ∇l(θ̂t;mt, yt),

= θ̂t − γ · (m⊤
t θ̂t−1 − yt) ·mt. (A.2)

Then, we denote
ηt := θ̂t − θ∗,

as the centered SGD iterate, and,

η̄N =
1

N

N∑
t=1

ηt

Then, we want to decompose the SGD iterate into bias and variance, denoted as ηbias and ηvar respectively. The
corresponding update rules are given by,

ηbias
t = (I− γmtm

⊤
t )η

bias
t−1 ,

ηbias
0 = ηbias

0 ,

ηvariance
t = (I− γmtm

⊤
t )η

variance
t−1 + γϵmt,

ηvariance
0 = ηvariance

0 ,

Thanks to (Jain et al., 2017), we have the following results for the excessive risk decomposition

Lemma A.5. Consider SGD iterates with a linear model. Then, the excessive risk of the SGD under a linear model can be
decomposed into bias and variance as follows,

∆(θ̂) =
1

2
⟨M,E[η̄N ⊗ η̄N ]⟩ ≤ (

√
bias +

√
variance)2, (A.3)

where
√
bias =

1

2
⟨M,E[η̄bias

N ⊗ η̄bias
N ]⟩,

and
√
variance =

1

2
⟨M,E[η̄var

N ⊗ η̄var
N ]⟩,

Proof. The result can be obtained by simply following the procedure in (Jain et al., 2017) by treating M as the new data
covariance matrix.

Then, thanks to the analysis in (Zou et al., 2021b), we have a comprehensive understanding of the above iterative process of
SGD and have the following results.
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Lemma A.6. Under The bias and variance of the SGD iterates with respect to M is upper bounded by,

bias :=
1

2
⟨M,E[η̄bias

N ⊗ η̄bias
N ]⟩,

≤ 1

N2

N−1∑
t=0

N−1∑
k=t

⟨(I− γM)k−tM,E[η̄bias
t ⊗ η̄bias

t ]⟩,

and

variance :=
1

2
⟨M,E[η̄var

N ⊗ η̄var
N ]⟩,

≤ 1

N2

N−1∑
t=0

N−1∑
k=t

⟨(I− γM)k−tM,E[η̄var
t ⊗ η̄var

t ]⟩.

Proof. The result can be obtained by simply following the proof for Lemma B.3 in (Zou et al., 2021b) by treating M as the
new data covariance matrix.

Next, we present the proof for the upper bound and lower bound for the excessive risk of SGD.

Lemma A.7 (SGD Excessive Risk Upper Bound). Consider SGD with tail-averaging with initialization θ0 = 0. Suppose
Assumptions 3.1, 3.2, 3.3 and 3.4 hold and stepsize satisfies γ ≤ 1/ tr(M). Then the excessive risk of SGD under one-layer
GNN can be upper-bounded as follows:

∆(θsgd(N,G; γ)) ≲ SGDBias + SGDVariance,

SGDBias =
1

γ2N2

∥∥ exp (−NγM
)
θ∗∥∥2

M−1
0:k1

+
∥∥θ∗∥∥2

Mk1:∞
,

SGDVariance =
σ2 + ∥θ∗∥2M

N
·
(
k2 +N2γ2

∑
i>k2

µ2
i

)
,

where k1, k2 ∈ [d] are arbitrary.

Proof. Consider the SGD iterates without ReLU activation that is given by,

θ̂t+1 = θ̂t − γ · (m⊤
t θ̂t−1 − yt) ·mt, mt ∼ M.

The SGD iterates above amounts to linear model with respect to the aggregation space M. Then, by Lemma A.1, Lemma A.3
and Lemma A.2, we get that the above SGD iterates with respect to M also has bounded fourth-moment and model noise.

This means that we can immediately apply the results from By Lemma A.4, we can derive the excessive risk by considering
the simplified iterates without the ReLU activation that is given by Eq. A.2.

By Lemma A.1, and Lemma A.2, we have that the fouth-moment and the modelling noise of the SGD iterate with respect to
the aggregation space is bounded. This means that we can immediately apply the bias variance decomposition and the SGD
iterate bound on process above with respect to M.

Then, we can follow the arguments in (Zou et al., 2021b) and obtain the desired result by involving Theorem 5.1 in (Zou
et al., 2021b).

The ReLU activation does not affect the overall excessive risk landscape as given by Lemma A.4.

Lemma A.8 (SGD Excessive Risk Lower Bound). Suppose the stepsize satisfies γ ≤ 1/µ1. Then the excess risk can be
lower-bounded as follows:

∆(θsgd(N,G; γ)) ≳ SGDBias + SGDVariance,
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SGDBias =
1

γ2N2

∥∥ exp (−NγM
)
θ∗∥∥2

M−1
0:k∗

+
∥∥θ∗∥∥2

Mk∗:∞
,

SGDVariance =

σ2

N
·
(
k∗ +N2γ2

∑
i>k∗

µ2
i

)
+ ∥θ∗∥2M

γ

µ1

∑
i>k†

µ2
i ,

where k∗ = max{k : µk ≥ 1/(Nγ)}, and k† = max{k : µk ≥ 2/(3Nγ)}.

Proof. The results are obtained through a similar argument as the upper but involving Theorem 5.2

Then, combining the two lemmas, upper bound and lower bound above, we immediately obtain the result for Theorem 4.1.

B. Excessive Risk of Ridge
In this appendix, we present proof for characterizing the excessive risk of Ridge in our setting.

We denote D = G ◦X to be the data matrix associated with the aggregation space. Then, recall that the standard ridge
regression is equivalent to the following least square problem,

argmin
θ

∥Dθ − y∥22 + λ∥θ∥22.

We denote θRidge(N ;λ) to be the solution to the optimization problem above. Then, we have the following bias-variance
decomposition of Ridge with respect to the aggregation space.

Lemma B.1. For any λ > 0, we have that

∆(θRidge(N ;λ)) = RidgeBias + RidgeVariance,

where

RidgeBias =

λ

2
· E

[
(θ∗)⊤(D⊤D+ λI)−1M(D⊤D+ λI)−1θ∗] ,

RidgeVariance =

σ2 · E
[
tr
(
(D⊤D+ λI)−1D⊤D(D⊤D+ λI)−1M

)]
,

where the expectations are taken over the randomness of the training data matrix D.

Proof. First, it is known and easy to derive that the solution of ridge regression takes the form

θRidge(N ;λ) = (D⊤D+ λI)−1D⊤y,

where D is the data matrix and y is the response vector. Then, according to the definition of the loss function L(θ), we have

E[L(θRidge(N ;λ))]

= E
[
⟨y − ⟨θRidge(N ;λ),m⟩⟩2

]
,

= E [⟨θ∗,m⟩ − ⟨θRidge(N ;λ),m⟩]2 + E [y − ⟨θ∗,m⟩]2

+ 2E [⟨θ∗,m⟩ − ⟨θRidge(N ;λ),m⟩] · (y − ⟨θ∗,m⟩)
= E[∥θRidge(N ;λ)− θ∗∥2M] + L(θ∗)
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where the last equation follows from the modelling assumption that the expected value of noise is zero. Then, regarding
E[∥θRidge(N ;λ)− θ∗∥2M], let ϵ = y − ⟨θ∗,m⟩ be the model noise vector, we have

E[∥θRidge(N ;λ)− θ∗∥2M]

= E
[∥∥(D⊤D+ λI)−1D⊤y − θ∗∥∥2

M

]
,

= E
[∥∥(D⊤D+ λI)−1D⊤(Dθ∗ + ϵ)− θ∗∥∥2

M

]
,

= E
[∥∥(D⊤D+ λI)−1D⊤Dθ∗ − θ∗∥∥2

M

]
︸ ︷︷ ︸

bias

+ E
[∥∥(D⊤D+ λI)−1D⊤ϵ

∥∥2
M

]
︸ ︷︷ ︸

variance

,

where in the last inequality again follow from the modelling assumption that E[ϵ|D] = 0. More specifically, the bias error
can be reformulated as

RidgeBias = E
[∥∥(D⊤D+ λI)−1D⊤D− I

∥∥2
M

θ∗
]

=
λ

2
E
[∥∥(D⊤D+ λI)−1θ∗∥∥2

M

]
=

λ

2
E
[
(θ∗)⊤(D⊤D+ λI)−1M(D⊤D+ λI)−1θ∗] .

In terms of the variance error, note that by Lemma A.2 we have E[ϵϵ⊤|D] = σ2I, then

RidgeVariance = E
[∥∥(D⊤D+ λI)−1D⊤ϵ

∥∥2
M

]
= E

[
tr
(
(D⊤D+ λI)−1D⊤ϵϵ⊤D(D⊤D+ λI)−1M

)]
= σ2 · E

[
tr
(
(D⊤D+ λI)−1D⊤D(D⊤D+ λI)−1M

)]
.

With the bias-variance decomposition above, we can follow a simple extension of Lemmas 2 & 3 in (Tsigler & Bartlett,
2023) for characterizing the excessive risk of ridge regression. Next, we show how to extend their results into our setting. To
do so, we decompose the result of Theorem 4.2 into upper bound and lower bound in a similar manner.
Lemma B.2. Let λ ≥ 0 be the regularization parameter, n be the training sample size, µ1, ..., µd be the eigenvalues of M
in descending order and θridge(N ;λ) be the output of ridge regression. Then

∆(θridge(N ;λ)) = RidgeBias + RidgeVariance,

and there is some absolute constant b > 1, such that for

k∗ := min

{
k : bµk+1 ≤

λ+
∑

i>k µi

n

}
,

the following holds:

RidgeBias ≳

(λ+
∑

i>k∗
ridge

µi

N

)2

· ∥θ∗∥2
M−1

0:k∗
ridge

+ ∥θ∗∥2Mk∗
ridge

:∞
,

RidgeVariance ≳ σ2 ·
{
k∗ridge
N

+
N

∑
i>k∗

ridge
µ2
i(

λ+
∑

i>k∗
ridge

µi

)2
}
.

Proof. By involving Lemma A.4, we can relate the excessive risk of ReLU Ridge regression with the linear model. Then,
by Lemma B.1 and applying Lemmas 2 & 3 in (Tsigler & Bartlett, 2023) for characterizing the excessive risk of ridge
regression and the extension of Theorem B.2 in (Zou et al., 2021a) on the aggregation space M, we immediately obtain the
result above.
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Lemma B.3. Let λ ≥ 0 be the regularization parameter, n be the training sample size and θridge(N ;λ) be the output of
ridge regression. Then

∆(θridge(N ;λ)) ≤ RidgeBias + RidgeVariance,

where,

RidgeBias ≲

(λ+
∑

i>k∗
ridge

µi

N

)2

· ∥θ∗∥2
M−1

0:k∗
ridge

+ ∥θ∗∥2Mk∗
ridge

:∞
,

RidgeVariance ≲ σ2 ·
{
k∗ridge
N

+
N

∑
i>k∗

ridge
µ2
i(

λ+
∑

i>k∗
ridge

µi

)2
}
,

where k∗ridge := min
{
k : bµk+1 ≤ (λ+

∑
i>k µi)/n

}
.

Proof. The argument is similar to the lower bound above. Since the choice of k∗ridge is to ensure the sharpness of the upper
bound, we can relax this condition to an arbitrary k in [d] and still maintain a valid upper bound.

C. Proof of the Effect of Graph Structure
In this section, we present a proof for the Theorem 4.3. We decompose the proof for Theorem 4.3 into two parts: 1) for the
power-law graph and 2) for the regular graph. We start with restating the results of Theorem 4.3 into two corresponding
lemmas and proof.

Lemma C.1. Consider a power-law graph Gp with graph matrix Gp whose eigen-spectrum is characterized by Eq. 4.1 with
a large enough β. Then for every λ for ridge regression, there exists a choice for γ∗ for SGD such that for sufficiently large
N , we have

∆(θsgd(N,Gp; γ
∗)) ≲ ∆(θridge(N,Gp;λ)).

Proof. By Theorem 4.1, we know the excessive risk of SGD under our setting is given by the following,

SGDRisk ≲
1

η2N2
·
∥∥ exp(−NηM)θ∗∥∥2

M−1
0:k1

+ ∥θ∗∥∥2
Mk1:∞︸ ︷︷ ︸

SGDBias

+
(
σ2 + ∥θ∗∥H̃

)
·
(
k2
N

+Nη2
∑
i>k2

µ2
i

)
︸ ︷︷ ︸

SGDVariance

.
(C.1)

where the parameter k1, k2 ∈ [d] can be arbitrarily chosen.

Then recall the lower of the risk achieved by ridge regression with parameter λ:

RidgeRisk ≳
λ̂2

N2
·
∥∥θ∗∥∥2

M−1
0:k∗

+ ∥θ∗∥∥2
Mk∗:∞︸ ︷︷ ︸

RidgeBias

+

σ2 ·
(
k∗

N
+

N

λ̂2

∑
i>k∗

µ2
i

)
︸ ︷︷ ︸

RidgeVariance

,
(C.2)

where λ̂ = λ+
∑

i>k∗ µi and k∗ = min{k : Nµk ≤ λ̂}.

For the following analysis, we set k1, k2 = k∗ for the excessive risk of SGD and divide the analysis into bias and variance.
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Bias. By (C.1) The bias of SGD is given as follows,

SGDBias ≲
1

η2N2
·
∥∥ exp(−NηM)θ∗∥∥2

M−1
0:k∗

+ ∥θ∗∥∥2
Mk∗:∞

From the equation above, we can observe that the bias of SGD can be decomposed into two intervals: 1) i ≤ k∗ and 2)
i > k∗.

We start with the second interval. For i > k∗, we have that,

SGDBias[k∗ : ∞] = ∥θ∗∥∥2
Mk∗:∞

= RidgeBias[k∗ : ∞].

For i ≤ k∗, the order of the eigenvalue and eigenvectors are preserved and we can decompose each term of bias as follows,

SGDBias[i] = (θ∗[i])2
1

N2η2µi
exp

(
− 2ηNµi

)
Similarly, we can decompose each term of the bias as of Ridge as,

RidgeBias[i] =
λ̂2

N

1

µi
(θ[i]∗)2

Now, we can divide the analysis into two cases: Case I: λ̂ ≥ tr(M) and Case II: λ̂ ≤ tr(M).

For Case I:, we can pick η = 1/λ̂ and obtain that that,

SGDBias[i] = (θ∗[i])2
λ̂2

N2µi
exp

(
− 2λ̂Nµi

)
= RidgeBias[i] exp

(
− 2λ̂Nµi

)
because 2λ̂Nµi > 0, we have that,

≤ RidgeBias[i]

For Case II:, we can pick η = 1/ tr(M) and obtain that that,

SGDBias[i] = (θ∗[i])2
tr(M)2

N2µi
exp

(
− 2Nµi/ tr(M)

)
= (θ∗[i])2

λ̂2 tr(M)2

λ̂2N2µi

exp

(
− 2Nµi/ tr(M)

)
= RidgeBias[i]

tr(M)2

λ̂2
exp

(
− 2Nµi/ tr(M)

)
By definition of λ̂, we have that λ̂ ≲ Nµk∗ and can obtain that

≲ RidgeBias[i]
tr(M)2

(Nµk∗)2
exp

(
− 2Nµi/ tr(M)

)
By the choice of model 1

iβ
, as β increase, we have that tr(M)/µk∗ decrease. Therefore, we can set β large enough so that

tr(M)2

(Nµk∗)2
≤ exp

(
2Nµi/ tr(M)

)
.
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Then, we can arrive that,

SGDBias[i] ≲ RidgeBias[i]
tr(M)2

(Nµk∗)2
exp

(
− 2Nµi/ tr(M)

)
,

≲ RidgeBias[i].

Therefore, combining the results above, we have that

SGDBias ≲ RidgeBiasBoud.

Next, let’s consider variance. Again, by the excessive risk upper bound of SGD, we have that

SGDVariance =

(
1 +

∥θ∥2M
σ2

)
· σ2

(
k∗

N
+Nη2

∑
i>k∗

µ2
i

)

Similar to the bias analysis, we can divide the analysis into two cases: Case I: λ̂ ≥ tr(M) and Case II: λ̂ ≤ tr(M).

For Case I: λ̂ ≥ tr(M), we pick η = 1/λ̂ as for the bias:,

SGDVariance =

(
1 +

∥θ∥2M
σ2

)
· σ2

(
k∗

N
+

N

λ̂2

∑
i>k∗

µ2
i

)

substitute the premise that ∥θ∥2
M

σ2 = Θ(1):

≲ Θ(1) · σ2

(
k∗

N
+

N

λ̂2

∑
i>k∗

µ2
i

)
= Θ(1) · RidgeVariance
≲ RidgeVariance

For Case II: λ̂ ≤ tr(M):, we can pick η = 1/ tr(M) as for the bias and obtain that

SGDVariance = (1 +
∥θ∥2M
σ2

) · σ2

(
k∗

N
+

N

tr(M)2

∑
i>k∗

µ2
i

)
≤ (1 +

∥θ∥2M
σ2

) · σ2

(
k∗

N
+

N

λ̂2

∑
i>k∗

µ2
i

)
Similarly, by the premise :

≲ Θ(1) · σ2

(
k∗

N
+

N

λ̂2

∑
i>k∗

µ2
i

)
= Θ(1) · RidgeVariance
≲ RidgeVariance

Therefore, we have that
SGDVariance ≲ RidgeVariance

Combining all the result above, we have that so long as β is large enough, there always exists an η such that

SGDRisk ≲ RidgeRisk.

This completes the proof.
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Lemma C.2. consider a regular graph Gr with graph matrix Gr whose eigen-spectrum is characterized by Eq. 4.1 with a
small β. Then for every choice of γ for SGD, there exists a λ∗ such that,

∆(θridge(N,Gr;λ
∗)) ≲ ∆(θsgd(N,Gr; γ)).

Proof. Recall that to show that ridge is comparable with SGD in regular graph is enough to show that there exist a β small
enough, so that for every η for SGD we can always find a λ for Ridge to achieve

RidgeRisk ≲ SGDRisk.

Similarly, by Theorem 4.1, we have the excess risk lower bound of SGD given by,

SGDRisk ≳
1

η2N2
·
∥∥ exp (−NηM

)
θ∗∥∥2

M−1
0:k∗

+
∥∥θ∗∥∥2

Mk∗:∞︸ ︷︷ ︸
SGDBias

+
σ2

N
·
(
k∗ +N2η2

∑
i>k∗

µ2
i

)
+ ∥θ∗∥2M

η

µ1

∑
i>k†

µ2
i ,︸ ︷︷ ︸

SGDVariance

where µ1, . . . µd are sorted eigenvalues for M, k∗ = max{k : λ̃k ≥ 1/(Nη)}, and k† = max{k : λ̃k ≥ 2/(3Nη)}.

Similarly, by Theorem 4.2, we have the excess risk upper bound of ridge given by,

RidgeRisk ≲

(
λ̂

N

)2

· ∥θ∗∥2
M−1

0:k∗
ridge

+ ∥θ∗∥2Mk∗
ridge

:∞︸ ︷︷ ︸
RidgeBias

+ σ2 ·
(
k∗ridge
N

+
N

∑
i>k∗

ridge
λ̂2
i

λ̂2

)
︸ ︷︷ ︸

RidgeVariance

,

where µ1, . . . , µd are the sorted eigenvalues for M in descending order, and

k∗ridge := min

{
k : bλk+1 ≤ (λ+

∑
i>k

λi)/n

}
.

Similar to the previous proof, we can decompose the risk profile into bias and variance and then compare them separately.

We start with aligning the risk profiles of SGD and ridge by picking the ridge regression regularization

λ∗ =
b

η
−

∑
i>k∗

µi.

Doing so leads to k∗ridge = k∗.

Variance. Then we start by comparing the variance. We denote,

λ̂∗ = λ∗ +
∑
i>k∗

µi.

By the choice of λ∗, we have that,

λ̂∗ ≂
1

η
.
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Then, we have the variance for Ridge as,

RidgeVariance ≲ σ2 ·
(
k∗

N
+

N

(λ̂∗)2

∑
i>k∗

µ2
i

)
≲

σ2

N
·
(
k∗ +N2η2

∑
i>k∗

µ2
i

)
≤ σ2

N
·
(
k∗ +N2η2

∑
i>k∗

µ2
i

)
+ ∥θ∗∥2M

η

µ1

∑
i>k†

µ2
i ,

= SGDVariance

Therefore, we have that
RidgeVariance ≲ SGDVariance

Next, we focus on the bias. Under same set up as the variance, the Ridge bias is given by,

RidgeBias ≲

(
λ̂∗

N

)2

· ∥θ∗∥2
M−1

0:k∗
+ ∥θ∗∥2Mk∗:∞

Bias. Similar to the previous analysis, we can decompose the bias of Ridge into two intervals: 1) i ≤ k∗ and 2) i > k∗.

We start with the second interval. For i > k∗,, we immediately obtain,

RidgeBias[k∗ : ∞] = ∥θ∗∥∥2
Mk∗:∞

= SGDBias[k∗ : ∞].

For i ≤ k∗, similar to the previous analysis, we decompose each term of bias bound as follows,

RidgeBias[i] = (θ∗[i])2
λ̂2

N2µi
,

= (θ∗[i])2
λ̂2

N2µi

η2

η2

· exp
(
− 2ηNµi

)
exp

(
2ηNµi

)
,

= (θ∗[i])2
1

N2µiη2

· exp
(
− 2ηNµi

)
λ̂2η2 exp

(
2ηNµi

)
,

= SGDBias[i]λ̂2η2 exp

(
2ηNµi

)
Similar to the analysis of variance, we have that,

λ̂∗ ≂
1

η
,

and consequently, we have,
λ̂∗η ≂ Θ(1).

Then, we have that,

RidgeBias[i] = SGDBias[i]λ̂2η2 exp

(
2ηNµi

)
≲ SGDBias[i] exp

(
2ηNµi

)
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By definition of λ̂∗, we have that,

ηNµi ≤ ηλ̂∗

≲ Θ(1).

Then, we arrive

RidgeBias[i] ≲ SGDBias[i]

RidgeBias ≲ SGDBias

Combining all the results above, we have that there exists an λ such that

RidgeRisk ≲ SGDRisk.

Then, combining the result from the two lemmas above, we immediate obtain a proof for Theorem 4.3.

D. Stacking GNN Layers
In this appendix, we present a proof for Proposition 4.5 and a further discussion on the over-smoothing of GNNs.

Proof of Proposition 4.5. First recall that the definition of Ĝ(l) is given by,

Ĝ(l) =

l∏
i=1

G.

Without loss of generality, we may assume that
µi(G) ≥ µj(G).

Then, by the definition above, we have that,

µi(Ĝ(l + 1))

µj(Ĝ(l + 1))
=

µi(
∏l+1

i=1 G)

µj(
∏l+1

i=1 G)

=
µi(

∏l
i=1 G)

µj(
∏l

i=1 G)
· µi(G)

µj(G)

=
µi(Ĝ(l))

µj(Ĝ(l))
· µi(G)

µj(G)

Then, by Assumption 3.4 and the premise that
µi(G) ≥ µj(G),

then we have that,

µi(Ĝ(l + 1))

µj(Ĝ(l + 1))
=

µi(Ĝ(l))

µj(Ĝ(l))
· µi(G)

µj(G)

≥ µi(Ĝ(l))

µj(Ĝ(l))
· 1

=
µi(Ĝ(l))

µj(Ĝ(l))
.
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E. Extended Related Work
In this section, we provide a comprehensive overview of key literature closely related to the theoretical analysis presented in
this paper. Specifically, we discuss three primary areas: (1) theoretical understanding of Graph Neural Networks (GNNs),
(2) excessive risk analysis of learning algorithms, and (3) spectral graph theory.

Theoretical Understanding of GNNs. Due to the empirical success of GNNs, there is a growing body of theoretical
work that investigates their expressive power and generalization capability. The expressive power of GNNs, referring to
their capacity to distinguish different graph structures, is often assessed by comparing GNN models to classical graph
isomorphism tests, such as the Weisfeiler-Lehman (WL) test (Leman & Weisfeiler, 1968; Jegelka, 2022; Sato, 2020; Zhang
et al., 2023a;b; Xu et al., 2018). Generalization analyses explore how GNNs perform on unseen data, under different
architecture (Tang & Liu, 2023) or using complexity measures (e.g., VC-dimension, Rademacher complexity)(Lv, 2021;
Ma et al., 2021; Liao et al., 2021), Neural Tangent Kernel (NTK)(Du et al., 2019), and information-theoretic tools (mutual
information, entropy) (Verma & Zhang, 2019; Zhu et al., 2021). These studies primarily focus on factors like architecture
and input graph characteristics, and remain orthogonal to our analysis. In addition, there is a recent works that tries to
establish a theoretical connection between the topology-awareness (how well a graph structure is captured) of GNN and its
generalization performance (Su & Wu, 2024).

A related line of research examines the convergence behavior of GNN learning algorithms (Chen et al., 2017; Huang
et al., 2018; Chen et al., 2018; Awasthi et al., 2021; Li et al., 2018; Oono & Suzuki, 2020). Such studies typically provide
convergence rates but remain restricted to the interpolation (noise-free) setting and offer limited insights into how graph
structures influence algorithmic performance. It remains largely unexplored how different graph characteristics (e.g.,
power-law vs. regular) systematically affect the generalization performance of algorithms when noise is present. Our
work addresses precisely this gap, providing a novel framework linking graph structure explicitly to the generalization
performance of learning algorithms such as SGD and Ridge regression.

Furthermore, a significant practical challenge in GNN design includes issues of oversmoothing (Rusch et al., 2023) and
oversquashing (Topping et al., 2021). Oversmoothing occurs when deep message-passing leads to indistinguishable node
representations, reducing model performance in tasks that require distinct embeddings. Oversquashing refers to the over-
compression of information from distant nodes, impeding long-range dependency capture in deep networks. Our theoretical
analysis of learning algorithm behavior with respect to graph structure can also provide new perspectives and analytical
tools for investigating such phenomena, particularly oversmoothing.

Excessive Risk of Learning Algorithms. The analysis of excessive risk is central to learning theory literature (Dhillon
et al., 2013; Lakshminarayanan & Szepesvari, 2018; Jain et al., 2017; Zou et al., 2021b; 2023; Tsigler & Bartlett, 2023).
Extensive research investigates the generalization properties of classic learning algorithms, notably Stochastic Gradient
Descent (SGD) and Ridge regression. Non-asymptotic risk bounds have been thoroughly characterized for SGD and Ridge
in both under- and over-parameterized regimes (Hsu et al., 2012; Kobak et al., 2020; Dieuleveut et al., 2017; Bach &
Moulines, 2013; Jain et al., 2018; Défossez & Bach, 2015; Paquette et al., 2022; Tsigler & Bartlett, 2023). For instance,
constant-stepsize SGD with tail-averaging achieves minimax-optimal rates for least-squares tasks (Jain et al., 2017). Recent
works also provided detailed excess-risk characterizations for Ridge regression, depending critically on spectral properties
of data covariance matrices (Dobriban & Wager, 2018; Hastie et al., 2022; Wu & Xu, 2020; Xu & Hsu, 2019). Nevertheless,
how these theoretical insights extend to graph learning scenarios, particularly within GNN frameworks, remains largely
unexplored. We expand this knowledge by explicitly analyzing and comparing the excessive risk of SGD and Ridge
regression in graph-structured settings, thereby shedding new light on the impact of structural characteristics on learning
algorithm performance.

Spectral Graph Theory. Spectral graph theory studies graph properties via eigenvalues and eigenvectors of associated
matrices (e.g., adjacency, Laplacian matrices)(Chung, 1997; Spielman, 2012; Pósfai & Barabási, 2016; Van Mieghem, 2023;
Gera et al., 2018). Foundational results, including the Perron-Frobenius theorem and Cheeger’s inequality, provide insights
into the connectivity, robustness, and spectral characteristics of graphs. For example, power-law graphs (characterized by
heterogeneous degree distributions and heavy-tailed eigenspectra) differ markedly from regular graphs (uniform degree
distributions and evenly spaced eigenspectra)(Faloutsos et al., 1999; Chung et al., 2003; Farkas et al., 2001; Goh et al.,
2001; Easley et al., 2010). These contrasting spectral profiles are essential for interpreting network structure, influencing
information propagation dynamics, robustness, and learning behavior. Our theoretical framework leverages spectral graph
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theory to explicitly relate eigenvalue decay patterns (e.g., power-law versus uniform) to the performance characteristics
of learning algorithms. Thus, spectral graph theory forms a foundational tool in our analysis, directly linking structural
properties of graphs to algorithmic performance differences.

Overall, this paper synthesizes these theoretical domains—GNN expressivity and generalization, excessive risk of algorithms,
and spectral graph theory—to provide new insights into the interplay between graph structures and learning algorithms.
Our work represents a step towards a deeper theoretical understanding of graph-based learning, offering tools and analyses
applicable broadly across various graph learning contexts.

F. Experiment Details
In this appendix, we present additional details on our experimental study. This appendix focuses on additional details on the
testbed, graph generation model and hyper-parameter search.

F.1. Testbed

Our experiments were conducted on a Dell PowerEdge C4140, The key specifications of this server, pertinent to our
research, include:
CPU: Dual Intel Xeon Gold 6230 processors, each offering 20 cores and 40 threads.
GPU: Four NVIDIA Tesla V100 SXM2 units, each equipped with 32GB of memory, tailored for NV Link.
Memory: An aggregate of 256GB RAM, distributed across eight 32GB RDIMM modules.
Storage: Dual 1.92TB SSDs with a 6Gbps SATA interface.
Networking: Features dual 1Gbps NICs and a Mellanox ConnectX-5 EX Dual Port 40/100GbE QSFP28 Adapter with
GPUDirect support.
Operating System: Ubuntu 18.04LTS.

F.2. Graph Generation Model

For our experiment, we rely on the NetworkX python (Hagberg et al., 2008) library. In particular, we use the default
implementation of regular graph generation and Barabasi-Albert model (Pósfai & Barabási, 2016) from the Networkx
library. The Barabási-Albert (BA) model is a widely used generative model for creating scale-free networks, which are
networks characterized by a power-law degree distribution. The core idea behind the BA model is to capture the ”preferential
attachment” mechanism, where new nodes are more likely to connect to existing nodes that already have a high degree of
connections. This reflects many real-world networks, such as social networks, where popular individuals (nodes) tend to
attract more connections.

Rough Procedure of Barabási-Albert model. The Barabási-Albert model generates a network through the following
steps:

1. Initialization: Start with a small connected network of m0 nodes.

2. Growth: Add one new node at a time. Each new node forms m edges that link it to m existing nodes.

3. Preferential Attachment: The probability that a new node will connect to an existing node i is proportional to the
degree of node i. Formally, the probability P (i) that the new node connects to node i is given by:

P (i) =
ki∑
j kj

where ki is the degree of node i and the sum is over all existing nodes.

Hyperparameters The BA model has two key hyperparameters:

• m0 : The initial number of nodes in the network.
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• m : The number of edges that each new node will add when it is introduced to the network. This parameter influences
the density and the structure of the resulting network.

These hyperparameters directly affect the network’s topology and are crucial in determining the characteristics of the
scale-free network generated by the BA model. We adopt the default m0 from the implementation of NetworkX library, and
set m to be 3, which is a commonly used value to model real-life network.

F.3. Hyper Parameter Search for Learning Algorithm

The main hyper-parameter for SGD is the learning rate η. In the statement of the results for the excessive risk of SGD,
there is a requirement for the learning that relates to the eigenspectrum of the data covariance. For our experiment, we have
access to the full information of the data covariance. As such, we simply infer a possible range for the learning rate and do
a grid research for the learning rate in the range. The search process is done through an independent (validation) dataset.
Therefore, there is no interference to the testing process.

Similarly, the main hyper-parameter for Ridge is the regularization parameter λ. For λ, there is no theoretical guidance from
the analysis on its possible values. Therefore, we do a grid research on a large array of λ values ranging from [0.1, 1000].
The research process is similar to the one for the learning rate.

G. Additional Discussion
In this section, we present some additional discussion on the formulation of the problem.

G.1. Problem Formulation and GNNs

Message-Passing Graph Neural Networks. The computation in GNNs can be viewed as message-passing along graph
structure (Jegelka, 2022). At each round l, the new embedding x

(l)
i for vertex i is updated through a series of aggregate and

combine steps as outlined below:

m
(l)
i = AGGREGATE({x(l−1)

j ∈ N (i)}),

x
(l)
i = COMBINE(x

(l−1)
i ,m

(l)
i ),

where x
(0)
i is initialized as the feature vector xi, N (i) represents the neighbors of vertex i, and mi denotes the aggregated

representation at round l. Different GNNs differ in specific implementation of the AGGREGATE and COMBINE functions.
Essentially, a GNN serves as an embedding function that integrates the graph structure and node features to produce an
aggregated representation vector of node v. This representation is subsequently processed by a read-out function (e.g., a
ReLU layer) to generate predictions.

One-round Graph Neural Network. In this study, we follow a similar setting to (Awasthi et al., 2021) and focus our main
discussions on a one-round GNN that consists of an aggregation operation followed by a readout operation. We interpret the
aggregation step as a graph matrix G acting upon the feature matrix X. Formally, we decompose the one-round GNN into
two distinct components. The first component aggregates node features via a specified aggregation operator and the chosen
graph matrix G, producing an intermediate representation space denoted by M:

M = G ◦X. (G.1)

Here, M represents the intermediate aggregated feature space, and we assume without loss of generality that it is a subspace
of a Hilbert space H. Different choices of the aggregation matrix G and the aggregation operation ◦ allow us to recover
various canonical graph neural network architectures. Below, we provide a comprehensive discussion of several prominent
examples:

• Graph Convolutional Networks (GCN). When the graph matrix G is chosen as the symmetrically normalized adjacency
matrix Â = D̃−1/2ÃD̃−1/2, where Ã = A + I and D̃ is the degree matrix of Ã, and the aggregation operator ◦ is
simple matrix multiplication, we recover the standard GCN formulation proposed by (Kipf & Welling, 2017):

MGCN = ÂX. (G.2)
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• GraphSAGE (Mean Aggregation). When the graph matrix G corresponds to a row-normalized adjacency matrix
Ãrw = D̃−1Ã, where Ã again denotes adjacency with self-loops, we recover the mean-aggregation variant of Graph-
SAGE (Hamilton et al., 2018). Specifically:

MSAGE = ÃrwX. (G.3)

Here, each node’s representation is updated using the average of its neighbors’ features, incorporating self-information as
well.

• Graph Attention Networks (GAT). For Graph Attention Networks (Veličković et al., 2017), the aggregation is achieved
by a learned attention mechanism rather than fixed normalization. Here, the aggregation operator ◦ represents element-wise
multiplication weighted by attention scores, resulting in a data-dependent and adaptive G(X):

MGAT = Gatt(X) ◦X, (G.4)

where Gatt(X) encodes attention-based weights, dynamically computed through a neural attention mechanism.

• Simplified Graph Convolution (SGC). By extending the GCN aggregation step to multiple rounds but merging linear
operations into a single step, the simplified graph convolutional network (SGC) (Wu et al., 2019) is recovered. Formally,
if G is the K-th power of Â, we have:

MSGC = ÂKX. (G.5)

This corresponds to applying multiple rounds of smoothing/aggregation in a simplified, efficient manner without interme-
diate nonlinearities.

This comprehensive discussion demonstrates how the choice of graph matrix G and aggregation operation ◦ yields various
canonical GNN variants, each capturing different relational structures and neighborhood aggregation strategies.
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