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Abstract

In decentralized machine learning, different de-
vices communicate in a peer-to-peer manner to
collaboratively learn from each other’s data. Such
approaches are vulnerable to misbehaving (or
Byzantine) devices. We introduce F–RG, a gen-
eral framework for building robust decentralized
algorithms with guarantees arising from robust-
sum-like aggregation rules F. We then investigate
the notion of breakdown point, and show an upper
bound on the number of adversaries that decen-
tralized algorithms can tolerate. We introduce
a practical robust aggregation rule, coined CS+,
such that CS+–RG has a near-optimal breakdown.
Other choices of aggregation rules lead to existing
algorithms such as ClippedGossip or NNA. We
give experimental evidence to validate the effec-
tiveness of CS+–RG and highlight the gap with
NNA, in particular against a novel attack tailored
to decentralized communications.

1. Introduction
Distributed machine learning, in which the training pro-
cess is performed on multiple computing units (or nodes),
responds to the increasingly distributed nature of data, its
sensitivity, and the rising computational cost of optimiz-
ing models. We investigate the decentralized paradigm
of distributed learning, in which nodes communicate in a
peer-to-peer manner within a communication network, in
opposition to distributed architectures relying on a central
server that coordinates all units.

Distributing the training over a large number of devices
introduces new security issues: software may be faulty, lo-
cal data may be corrupted, and nodes can be hacked or
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even controlled by a hostile party. Such issues are modeled
as Byzantine node failures (Lamport et al., 1982), defined
as omniscient adversaries able to collude with each other.
Standard distributed learning methods are known to be vul-
nerable to these Byzantine attacks (Blanchard et al., 2017).
This has led to significant efforts in the development of ro-
bust distributed learning algorithms. From the first works
on Byzantine-robust SGD (Blanchard et al., 2017; Yin et al.,
2018; Alistarh et al., 2018; El-Mhamdi et al., 2020), meth-
ods have been developed to tackle stochastic noise using
Polyak momentum (Karimireddy et al., 2021; Farhadkhani
et al., 2022) and mixing strategies to handle heterogeneous
loss functions (Karimireddy et al., 2023; Allouah et al.,
2023). In parallel to these robust algorithms, efficient at-
tacks have been developed to challenge Byzantine-robust
algorithms (Baruch et al., 2019; Xie et al., 2020). Recently,
(Allouah et al., 2025) have used pre-aggregation adaptive
clipping to improve the robustness. To bridge the gap be-
tween algorithm performance and achievable accuracy in
the Byzantine setting, tight lower bounds have been con-
structed for the heterogeneous setting (Karimireddy et al.,
2023; Allouah et al., 2024). Yet, all these works rely on a
trusted central server to coordinate the training.

In contrast, the decentralized case has been less explored.
Especially when the communication network, abstracted
as a graph where vertices represent computing units that
communicate through edges, is not fully connected (a.k.a.
sparse). For instance, understanding how many Byzantine
nodes can be tolerated over an arbitrary network before
a communication protocol fails is an open question (that
we address in this paper). Indeed, the network is often
assumed to be fully connected (El-Mhamdi et al., 2021;
Farhadkhani et al., 2023). If the work of (Fang et al., 2022)
addresses the case of sparse networks, they only consider
homogeneous losses. Closer to our setting, He et al. (2023);
Wu et al. (2023) tackle Byzantine optimization on sparse
networks with heterogeneous losses, however, they only
achieve suboptimal robustness, as their guarantees vanish
with either the number of nodes or the connectivity of the
network. Moreover, the communication scheme proposed in
He et al. (2023) relies on inaccessible information. Similarly,
there is a lack of attacks designed to challenge decentralized
optimization. Up to our knowledge, only He et al. (2023)
propose one, named Dissensus. Still, a few previous works
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(Wu et al., 2023; Farhadkhani et al., 2023) have investigated
generic criteria to go from communication schemes to robust
distributed SGD frameworks.

Our work proposes a generic method to design algorithms
that solve the aforementioned shortcomings. To do so, we
carefully study the decentralized mean estimation problem.
This seemingly simple problem retains most of the difficulty
of handling Byzantine nodes while allowing us to derive
strong convergence and robustness guarantees. Our solution
relies on robust adaptations of the gossip communication, a
popular scheme for decentralized communication. We then
tackle general (smooth non-convex) optimization problems
through a reduction. Our contributions are the following:

1 - Unifying algorithmic framework. We develop a generic
method (the RG method) to construct and analyze robust
communication algorithms. It is based on the decentralized
application of robust aggregation rules. This RG method re-
covers NNA (Farhadkhani et al., 2022) and ClippedGossip
(He et al., 2023) in specific cases. We use the RG method
to build CS+–RG, a novel communication algorithm that
is both practical and adapted to a sparse communication
network.

2 - Tight theoretical guarantees. We show that RG pro-
vides robust convergence guarantees as soon as the underly-
ing aggregation rule verifies (b, ρ)–robustness, a new robust-
ness criterion that we introduce, and the weight of Byzantine
nodes is not too large (with respect to the algebraic con-
nectivity, a spectral property of the communication graph).
We also show the converse result, that is, no robustness
guarantees can be obtained if the weight of Byzantine nodes
exceeds this threshold. Our bounds match each other for
specific aggregation rules. These results generalize the stan-
dard fully-connected breakdown point of 1/3 of Byzantines
nodes to arbitrary sparse networks.

Besides these core contributions, we introduce a theoreti-
cally grounded attack, called Spectral Heterogeneity, specif-
ically designed to challenge decentralized algorithms by
leveraging spectral properties of the communication graph.

The remainder of the paper is organized as follows. Sec-
tion 2 formalizes the problem of Byzantine-robust decen-
tralized optimization. Section 3 presents the robust gossip
framework as well as the main convergence guarantees.
Then, Section 4 instanciates the general framework with
several rules (and the associated robustness guarantees), and
provides guarantees for a D-SGD algorithm based on F–RG.
Finally, Section 5 presents the Spectral Heterogeneity at-
tack, which is then used with other attacks to experimentally
challenge several aggregation schemes in Section 6.

2. Background
2.1. Decentralized optimization.

We consider a system composed of m computing units that
communicate synchronously through a communication net-
work, which is represented as an undirected graph G. We
denote by H the set of honest nodes, and B the (unknown)
set of Byzantine nodes. Each unit i holds a local parame-
ter xi ∈ Rd, a local loss function fi : Rd → R, and can
communicate with its neighbors in the graph G. We denote
the set of neighbors of node i by n(i) and by nH(i) (resp.
nB(i)) the set of honest (resp. Byzantine) ones. We study
decentralized algorithms for solving

argmin
x∈Rd

{
fH(x) :=

1

|H|
∑
i∈H

fi(x)

}
. (1)

Due to the averaging nature of Equation (1), centralized
algorithms for solving this problem rely on global averaging
of the gradients computed at each node. In the decentralized
setting, we rely on performing local (node-wise) inexact
averaging steps instead.

Gossip Communication. Standard decentralized opti-
mization algorithms typically rely on the so-called gos-
sip communication protocol (Boyd et al., 2006; Nedic
& Ozdaglar, 2009; Scaman et al., 2017; Kovalev et al.,
2020). The gossip protocol consists of updating the pa-
rameter of a node i through a linear combination of the
parameters of its neighbors, with updates of the form
xt+1
i = xt

i − η
∑m

j=1 wij(x
t
i − xt

j), where wij is a weight
associated with the edge (ij) of the graph and η ≥ 0 will
denote a communication step-size. By denoting W the
Laplacian matrix associated with the weighted graph G, i.e
Wij = −wij if i ̸= j and Wii =

∑
j∈n(i) wij , and denot-

ing the matrix of parameters as X = (x1, . . . ,xm)T , then
the gossip update conveniently writes:

Xt+1 = Xt − ηWXt. (2)

The Laplacian matrix (a.k.a. gossip matrix), is symmet-
ric non-negative. When the graph is connected, its
kernel is restricted to the line of the constant vectors,
i.e. span(1, . . . , 1)T . In the following, we will always con-
sider that the graph G is weighted, so that a unique Lapla-
cian matrix is associated with each graph G. Moreover, we
denote by µmax(GH) and µ2(GH) the largest and smallest
non-zero eigenvalues of the Laplacian matrix WH of the
honest subgraph GH, and by γ = µ2(GH)/µmax(GH) its
spectral gap. Spectral properties of the Laplacian matrix
are known to characterize the convergence of gossip opti-
mization methods. For instance, in the absence of Byzantine
nodes, Equation (2) with step-size η ≤ µmax(G)−1 leads
to a linear convergence of the nodes parameter values to-
wards the average of the initial parameters: ∥Xt−X

0∥2 ≤
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(1−ηµ2(G))t∥X0−X
0∥2, for X

0
the matrix with columns

m−1
∑m

j=1 x
0
j .

Robustness Issue. Gossip communication relies on updat-
ing the nodes’ parameters by performing non-robust local
averaging. As such, similarly to the centralized case, any
Byzantine neighbor of node i can drive the update to any
desired value (Blanchard et al., 2017). Then, the poisoned
information spreads through gossip communications.

2.2. Byzantine-robust decentralized optimization.

In this section, we describe the threat model and the robust-
ness criterion that we consider.

Threat model. We consider Byzantine nodes to be unknown
omniscient adversaries, able to collude and send distinct val-
ues to each of their neighbors. We measure their influence
by considering the weight of Byzantine nodes in the neigh-
borhood of each honest node, (b(i) :=

∑
j∈nB(i) wij)i∈H

(as in LeBlanc et al. (2013); He et al. (2023)), instead of
the total number of Byzantine nodes |B| as done for the
centralized or fully-connected setting. Similarly, we denote
by h(i) =

∑
j∈nH(i) wij the weights of the honest nodes

adjacent to the node i.

In the case of an arbitrary communication network, the num-
ber of honest nodes does not provide enough information
by itself, as the results depend on how the nodes are linked,
i.e., the topology of the honest subgraph. Therefore, in the
case of sparse topologies, it is necessary to consider a prop-
erty of the graph related to its structure rather than relying
solely on the number of honest nodes. We will show that
spectral properties of the Laplacian of honest subgraph are
relevant quantities for robustness analyses and introduce the
following class of graphs.

Definition 2.1. For any µmin ≥ 0 and b ≥ 0, we define the
class of weighted graphs

Γµmin,b =

{
G s.t. µ2(GH) ≥ µmin and max

i∈H
b(i) ≤ b

}
.

In other words, we introduce a subset of all possible graphs,
partitioning in terms of (i) the second smallest eigenvalue
of the honest subgraph, (a.k.a. the algebraic connectivity),
that is restricted to be larger than a minimal value µmin, and
(ii) the maximal weight of Byzantines in the neighborhood
of an honest node, which is restricted to be smaller than b.

Note that if all edges are equally weighted (wij = ω), then
b(i) = |nB(i)| ·ω, and (ii) boils down to upper bounding the
number of Byzantines in the neighborhood of honest nodes
by f := b·ω−1. Hence, Definition 2.1 is an extension of the
standard “there are at most f byzantine nodes among the
|B|+|H| nodes” to the setting of arbitrary connected graphs.
We point out that this class of graphs depends on the spectral

properties of the honest subgraph, meaning that for a given
communication network, these properties change depending
on the location of Byzantine failures, and the associated
graph can either fall within Γµmin,b if Byzantines are “well
spread”, or not, e.g. if they are adversarially chosen.

Approximate Average Consensus. The average consensus
problem consists in finding the average of vectors locally
held by honest nodes (xi)i∈H. It is a specific case of Equa-
tion (1) obtained by considering fi(x) = ∥x− xi∥2. Due
to adversarial attacks only an approximate estimate of the
average of honest nodes vector xH := |H|−1

∑
i∈H xi can

be reached (Karimireddy et al., 2023). We therefore intro-
duce the following criterion to assess the robustness of a
communication algorithm.
Definition 2.2 (r-robustness on G.). Let r < 1. A com-
munication algorithm Alg is r-robust on a graph G if from
any initial local parameters (xi)i∈H ∈ (Rd)H, it allows any
honest node i to compute a vector x+

i such that

1

|H|
∑
i∈H

∥x+
i − xH∥2 ≤ r

1

|H|
∑
i∈H

∥xi − xH∥2.

Imposing r < 1 means the honest nodes’ parameters have
to be strictly closer (on average) to the initial mean after
the communication than before. It thus requires that the
reduction of the variance of nodes parameters VarH(x)−
VarH(x+) is larger than the bias ∥x+

H − xH∥2 introduced
by the Byzantines, with VarH(x) := |H|−1

∑
i∈H ∥xi −

xH∥2. Remark that the r-robustness of an algorithm on a
graph G states that a single use of the algorithm strictly re-
duces the average quadratic error. However, it does not mean
that multiple uses would result in a geometric decrease; in-
deed, we cannot simply use induction as x+

H ̸= xH.

3. The Robust Gossip Framework
We now introduce a generic framework, which relies on two
key building blocks: (i) a generic update form, depending
on an aggregation function F : (R+ × Rd)n → Rd, and (ii)
a set of those aggregation functions F, referred to as robust
summation functions. We then show that the combination
of these two blocks, i.e., the generic update used with a
robust summation function F, leads to a robust decentralized
algorithm, hence the name: Robust Gossip.

We finally show that this framework leads to (near-)optimal
robustness guarantees for well-chosen F.

3.1. The Robust Gossip Method: adding robust
differences instead of averaging robustly.

We call aggregation rule a function F : (R+ ×Rd)n → Rd,
meant to aggregate a set of vectors (zi)i∈[n] ∈ (Rd)n with
weights (wi)i∈[n] ∈ Rn

+. For η > 0 a communication step-
size, the associated robust gossip algorithm (coined F–RG)
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consists, for any honest node i ∈ H of the communication
network G, in updating its parameter xi using:

x+
i := xi − ηF

(
(wij ,xi − xj)j∈n(i)

)
. (F–RG)

Crucially, each node applies the (robust) aggregation rule F
to (ωj , zj)j∈n(i) := (wij ,xi − xj)j∈n(i), i.e. to the dif-
ferences of its parameter with those of its neighbors, and
uses this estimate to update its parameter. Thus, Equa-
tion (F–RG) recovers the standard gossip update from Equa-
tion (2) if F is the weighted sum operator (which is unfor-
tunately not robust). Hence, we will look for aggregation
functions that are robust versions of the weighted sum.

In contrast, directly averaging the parameters of the neigh-
bors, even with a robust aggregation rule, would highly
suffer from heterogeneity. Indeed, this leads to a biased
estimate of the mean of initial parameters for sparse commu-
nication graphs. Extra assumptions, such as homogeneity of
the local objectives, are thus needed to alleviate this prob-
lem (Fang et al., 2022).

Meanwhile, the RG method uses intrinsically decentralized
updates, allowing for tight convergence guarantees in sparse
communication graphs with heterogeneous local objectives.
The strength of the RG framework is to turn any robust
summation into a robust gossip algorithm. As such, one can
focus on the design of robust aggregation functions without
worrying about the decentralized aspect.

3.2. Robust Summation Functions.

Our analysis of F–RG relies on aggregation rules that meet
the following robustness conditions.

Definition 3.1 ((b, ρ)–robust summation). Let b, ρ ≥ 0.
An aggregation rule F : (R+ × Rd)n → Rd is a (b, ρ)–
robust summation if, for any vectors (zi)i∈[n] ∈ (Rd)n,
any weights (ωi)i∈[n] ∈ Rn

+ and any S ⊂ [n] such that∑
i∈S ωi ≤ b (where S := [n]\S),∥∥∥∥F ((ωi, zi)i∈[n]

)
−
∑
i∈S

ωizi

∥∥∥∥2 ≤ ρb
∑
i∈S

ωi∥zi∥2.

In (F–RG), S is the set of honest neighbors nH(i), while
S is the set of Byzantine neighbors nB(i). We will exhibit
several (b, ρ)–robust summation rules, including a practical
rule for ρ = 2, in Section 4.
Remark 3.2. The latter definition differs from (f, κ)–
robustness (Allouah et al., 2023) we upper bound the error
using the second moment of vectors within S instead of their
variance. Note also that (f, κ)–robustness is stated with con-
stant weights only. Therefore, if F is (f, κ)–robust, then
F is a (b, ρ)-robust summation with e.g. uniform weights
ωi = 1/(n− f) with b = f/(n− f) and ρ = κ/b.

3.3. Convergence of RG under (b, ρ)-robustness.

As briefly discussed in the introduction, the goal of commu-
nicating is to reduce the variance, which comes at the price
of bias. This is unavoidable since communicating allows
nodes to inject wrong information which biases the system.

In the following core result, we show how (b, ρ)–robustness
enables us to tightly quantify how much a single step of
F–RG reduces the variance, and how much bias is injected.
Recall that VarH(x) = 1

|H|
∑

i∈H ∥xi − xH∥2 is the vari-
ance of honest nodes.

Theorem 3.3. Let F be a (b, ρ)–robust summation, b and
µmin be s.t. 2ρb ≤ µmin, and G ∈ Γµmin,b. Then, assuming
η ≤ µmax(GH)−1, the output (x+

i )i∈H of F–RG verifies: 1
|H|
∑

i∈H∥x+
i −xH∥2≤(1−η (µmin−2ρb))VarH(x),

∥x+
H − xH∥2 ≤ 2ρb ηVarH(x).

Thus, F–RG is (1−η (µmin − 2ρb))–robust for G ∈ Γµmin,b.

While the bound on η depends on the honest subgraph,
as µmax(GH) ≤ µmax(G), η can be set conservatively by
evaluating µmax on the whole graph. Note that while r–
robustness is guaranteed for the whole class Γµmin,b, the
value of r will depend on the actual graph within the class.

Chaining aggregation steps. When low variance levels are
required, it is necessary to perform several robust gossip
steps one after the other. This contrasts with the centralized
setting, in which the variance can be brought to zero in one
step. While the variance reduces at a linear rate, the bias
accumulates as multiple aggregation steps are performed.
We provide bounds for t steps of F–RG in the following
Corollary.

Corollary 3.4. Let F be a (b, ρ)–robust summation, let
b and µmin be such that 2ρb ≤ µmin, and let G ∈
Γµmin,b. We denote δ = 2ρb

µmin
and γ = µmin/µmax(GH).

Then, for (xt
i)i∈G, t≥0 obtained from any (x0

i )i∈G through
(xt+1

i )i∈G = F–RG
(
(xt)i∈G

)
, with η = µmax(GH)−1, VarH(xt) ≤ (1− γ(1− δ))

t
VarH(x0),

∥xt
H − x0

H∥ ≤
√
γδ(1−[1−γ(1−δ)]t/2)

1−
√

1−γ(1−δ)

√
VarH(x0).

Consensus is thus reached, as VarH(xt) →t→∞ 0 , and

∥xt
H − x0

H∥2 ≤ 4δ

γ(1− δ)2
VarH(x0). (3)

While the total L2 error (bias plus variance) is guaranteed
to decrease after a single step by Theorem 3.3, it may in-
crease if several F–RG steps are performed because of bias
accumulation. This happens when the factor multiplying the
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variance in Equation (3) is larger than 1, which essentially
means γ ≤ δ. Despite this bias, the output of the result-
ing robust aggregation procedure is (arbitrarily) close to
consensus, which can be desirable. Proofs of Theorem 3.3
and Corollary 3.4 are respectively given in Appendices D.1
and D.2.

Dependence on the parameters. As expected, the bias
increases with the amount of Byzantine corruption (through
δ) and decreases as the graph becomes more connected (i.e,
γ → 1). One can then use parameter η (up to its maximum
value) to control the bias-variance trade-off.

3.4. Spectral limit of r-robust decentralized algorithms.

We now provide an upper bound on the weight of Byzantine
neighbors that can be tolerated by any algorithm running on
a communication network in which the honest subgraph has
a given algebraic connectivity.

Theorem 3.5. Let µmin ≥ 0, b ≥ 0 be such that µmin ≤ 2b.
Then for any h ≥ 0 and any algorithm Alg, there exists a
graph G ∈ Γµmin,b in which all honest nodes have a weight
of honest neighbors h(i) larger than h, and such that for
any r < 1, Alg is not r–robust on G.

We refer the reader to Appendix E for the proof details. It
follows from Theorem 3.5 that when a theoretical guarantee
quantifies the robustness of an algorithm on a graph through
µmin, we must have 2b < µmin. Importantly, this upper
bound on the breakdown point is independent of the total
weight of honest neighbors.

For a fully-connected graph with uniform weights ω, we
have µ2(GH) = ω|H| and b(i) = ω|B|. Then, the previous
condition boils down to |H| > 2|B|, i.e. there is less than
1/3 of Byzantine nodes, which recovers known necessary
robustness conditions of distributed system (Lamport et al.,
1982; Vaidya et al., 2012; El-Mhamdi et al., 2021).

Near-optimal breakdown point. Theorem 3.5 states that
uniformly ensuring r–robustness on Γµmin,b is impossible
as soon as 2b ≥ µmin, and we know that update (F–RG)
is r-robust as soon as 2ρb < µmin. Therefore, no (ρ, b)-
robust summand exists with ρ < 1, and (F–RG) achieves
the optimal breakdown if a (b, 1)-robust aggregation rule
is used. Such rules exist, as shown in Section 4, but are
unfortunately not practical, as they require prior knowledge
on the Byzantine nodes. It is an open question whether
ρ = 1 can be achieved using a practical rule.

Nevertheless, we propose a practical robust summation rule
that achieves ρ = 2, thus robust if 4b < µmin. This is a
significant improvement over existing works. For example,
in He et al. (2023), the 4b < µmin condition is essentially
replaced by cb ≤ γµmin (e.g., for regular graphs), where
c > 0 is a large constant, and γ = µ2(GH)/µmax(GH) the

graph’s spectral gap. This gap rapidly shrinks with the
size and the lack of connectivity of the graph, making the
condition orders of magnitude worse for large sparse graph.
In Wu et al. (2023), the breakdown condition is 8b

√
|H| ≤

µmin, which means that the robustness guarantee decreases
when the number of honest nodes increases. For instance,
only a 1/(9|H|1/2) fraction of Byzantine nodes is tolerated for
a fully-connected network, whereas we tolerate up to 1/5.

We conclude this section by two remarks on potential alter-
native characterizations of the breakdown point.

Remark 3.6 (On algebraic connectivity). Theorem 3.5 does
not imply that a given communication algorithm system-
atically fails as soon as 2b ≥ µ2(G), but rather that since
there exists a graph for which it is the case, one can not
have an r–robust algorithm with an assumption based on
µ2(G) and b looser than µ2(G) ≥ 2b. Yet, one can still
prove breakdown points using other graph-related quanti-
ties, which might lead to tolerating b > µmin/2 Byzantine
nodes for specific graph architectures. This gap is standard
in the decentralized optimization literature, where optimal
algorithms depend on the (square root of the) spectral gap
of the gossip matrix (Scaman et al., 2017; Kovalev et al.,
2020), whereas iteration lower bounds are proven in terms
of diameter of the communication graph.

Remark 3.7 (Dimension-dependent breakdown points). The
Approximate Average Consensus problem (Section 2.2)
is related to the Approximate Consensus Problem (ACP)
(Dolev et al., 1986), in which the nodes must converge to
the same value while remaining within the convex hull of
the initial parameters. This is a harder problem, since the
ACP cannot be solved using iterative communication on a
system of m nodes with f Byzantine failures in dimension
d if m ≤ (d + 2)f + 1 (Vaidya, 2014). This dependence
on the dimension d is prohibitive for ML applications. On
the contrary, our definition of r–robustness only requires
the algorithm to improve the average squared distance to
the target value, which is enough for D-SGD to converge,
and enables us to prove dimension-independent breakdown.
Yet, it would be interesting to link their notion of r-robust
networks (LeBlanc et al., 2013) with algebraic connectivity.

4. From the general framework to practical
decentralized algorithms

In this section, we first define robust summation rules and
link our general framework with existing decentralized ro-
bust algorithms in Section 4.1. Then we prove convergence
for Decentralized-SGD based on F–RG, in Section 4.2.

4.1. Examples of (b, ρ)-robust rules

Several methods have been proved to be (f, κ)-robust, in-
cluding the Coordinate-Wise Trimmed Mean (CWTM) (Yin
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et al., 2018), the Coordinate-wise Median (CWM) (Yin
et al., 2018), the Geometric Median (GM) (Yin et al., 2018;
Pillutla et al., 2022) and Krum (Blanchard et al., 2017). It
follows from Remark 3.2 that they are also (b, ρ)–robust
summation.

However, since (b, ρ)–robust summation is weaker than
(f, κ)–robustness, we can introduce robust aggregation
methods using this new perspective with tighter robustness
guarantees. The following introduced aggregator either
recover existing algorithm, or are tighter than previous ap-
proach. In their definition, (ωi, zi)i∈[n] ∈ (R+ × Rd)n and
S ⊂ [n] such that

∑
S ωi ≤ b.

Geometric Trimmed Sum (GTS). Assume w.l.o.g. that
(∥zi∥)i∈[n] are sorted, i.e. ∥z1∥ ≤ . . . ≤ ∥zn∥, and we
denote as k∗(b) := max{k ∈ [n];

∑
i≥k ωi ≥ b} the index

of the largest vector which has at least a weight b of vectors
larger than it1. (GTS) computes ω̃k∗(b) :=

∑
i≥k∗(b) ωi − b,

and outputs

GTS
(
(ωi, zi)i∈[n]

)
= ω̃k∗(b)zk∗ +

∑
i<k∗(b)

ωizi.

In the simpler case where the weights are 1 and b ∈ [n], GTS
consists in discarding the b largest vectors within (zi)i∈[n]

and summing the rest.

Clipped Sum (CS). Given a threshold function τ : (R+ ×
Rd)n 7→ R+, output the mean of clipped vectors:

CS
(
(ωi, zi)i∈[n]; τ

)
:=

1

n

n∑
i=1

ωi Clip
(
zi; τ

(
(ωi, zi)i∈[n]

))
,

where ∀z ∈ Rd, τ̃ ∈ R+,Clip(z; τ̃) :=
z

∥z∥ min(∥z∥, τ̃).

We propose the following threshold function2, which leads
to a practical and nearly optimal aggregator.

Practical Clipping (CS+). Let CS+ := CS
(
· ; τ+

)
, where

τ+
(
(ωi, zi)i∈[n]

)
:= max

{
τ ≥ 0 :

n∑
i=1

ωi1∥zi∥≥τ ≥ 2b
}
.

This rule corresponds, in the specific case of unitary weights
ωi = 1 and b ∈ [n], to defining the clipping threshold as the
2bth largest value within ∥z1∥, . . . , ∥zn∥ (i.e., ∥zk∗(2b)∥).
We now provide a robustness guarantee for these two aggre-
gation rules in the following theorem.

Theorem 4.1. Let b ≥ 0, then GTS is (b, ρ)–robust with
ρ = 4, and CS+ is (b, ρ)–robust with ρ = 2.

1When weights sum to 1, k∗ is a quantile function.
2Note that Clipped Sum cannot be a (b, ρ)–robust summation

when the threshold function is a fixed constant τ ≥ 0: the clipping
threshold must be adaptive to the input vectors.

Remark 4.2 (Concurrent work). Allouah et al. (2025) study
the influence of an adaptive clipping scheme, named Adap-
tive Robust Clipping (ARC), with the same adaptive clip-
ping threshold as CS+. However, they use it before any
aggregation function (f, κ)–robust F , and only analyze the
robustness of F ◦ARC, making their approach orthogonal
to ours. Moreover, their focus is on the federated case.

Next, we define oracle (or.) threshold functions. Those
require the knowledge of the set S to be computed, which
eventually corresponds to being able to identify which node
is honest and which node is Byzantine. This is obviously not
a reasonable assumption in practice. Even though, it shows
that the optimality gap is not inherent to clipping, since
an oracle choice of threshold is optimal. Furthermore, the
guarantees from He et al. (2023) rely on such assumptions3.

Oracle Clipping. Let CSor.
+ := CS

(
· ; τ or.

+

)
, where

τ or.
+

(
(ωi, zi)i∈[n];S

)
=max

{
τ≥0 :

∑
i∈S ωi1∥zi∥≥τ ≥b

}
.

Oracle clipping (He et al., 2023). CSor.
He := CS

(
· ; τ or.

He

)
,

where τ or.
He

(
(ωi, zi)i∈[n];S

)
=
√

1
b

∑
i∈S ωi∥zi∥2.

As shown below, CSor.
+ leads to an optimal breakdown point.

On the contrary, CSor.
He only achieves ρ = 4, despite its

oracle aspect. Proofs of Theorems 4.1 and 4.3 are given in
Appendix F.

Theorem 4.3. Let b ≥ 0, then CSor.
+ is (b, ρ)–robust with

ρ = 1, and CSor.
He is (b, ρ)–robust with ρ = 4.

When instantiated in specific settings, our framework gives
tight convergence guarantees (improving on the existing
ones) for existing algorithms.

Proposition 4.4. (F–RG) recovers existing algorithms.

1. GTS–RG, on a fully connected communication network
G with constant weight, corresponds to Nearest Neigh-
bors Averaging (Farhadkhani et al., 2022, NNA).

2. CSor.
He–RG recovers ClippedGossip (He et al., 2023).

4.2. Byzantine robust Distributed SGD on graphs

We now give convergence results for a D-SGD-type algo-
rithm that uses (F–RG) for robust decentralized aggrega-
tion. Several works on Byzantine-robust SGD abstract away
the aggregation procedure by relying on contraction proper-
ties (Karimireddy et al., 2021; Wu et al., 2023; Farhadkhani
et al., 2023), so that global D-SGD convergence follows
from the robustness of the averaging procedure. Our Corol-
lary 4.8 builds on the (α, λ)-reduction from Farhadkhani
et al. (2023):

Definition 4.5 ((α, λ)-reduction). A coordinating phase Ψ
verifies an (α, λ)-reduction if, from any initial local param-

3In their experiments, they propose a practical (i.e. non-oracle)
threshold function that is not supported by theory.
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eters (xi)i∈H ∈ (Rd)H, each honest nodes i ∈ H obtain a
parameter vector x+

i upon the completion of Ψ such that

1

|H|
∑
i∈H

∥x+
i − x+

H∥2 ≤ α
1

|H|
∑
i∈H

∥xi − xH∥2,

∥x+
H − xH∥2 ≤ λ

1

|H|
∑
i∈H

∥xi − xH∥2.

Remark 4.6. (α, λ)-reduction and r-robustness are closely
related quantities since (α, λ) reductions implies r-
robustness with r ≤ α + λ, and r-robustness implies
α, λ ≤ r. Yet, r-robustness explicitly requires that r < 1,
unlike (α, λ)-reduction. In essence, r-robustness expresses
more precisely that nodes benefit from the communication.

The (α, λ) requirements on the aggregation procedure ex-
actly match the guarantees of Theorem 3.3: using one
single step of F–RG as a coordination phase leads to
α = 1−γ(1−δ) and λ = γδ, and using multiple communi-
cation steps leads to α ≈ 0 and λ = 4δ/γ(1−δ)2. We build on
this abstraction to propose a Byzantine robust decentralized
stochastic gradient descent framework.

We consider Problem 1, where we assume that each local
function fi is a risk computed using a loss ℓ on a data
distribution Di, i.e fi(x) = Eξ∼Di [∇ℓ(x, ξ)]. We solve
Problem 1 using D-SGD over a communication network G.
Robustness to Byzantine nodes is obtained using (F–RG)
as the aggregation rule, coupled with Polyak momentum
used as a moving average to reduce the stochastic noise.

Algorithm 1 Byzantine-Resilient D-SGD with F–RG
Input: Initial model x0

i ∈ Rd, local loss functions fi,
initial momentum m0

i = 0, momentum coefficient β = 0,
learning rate ηop, communication step size η, communi-
cation graph G, upper bound on Byzantine weight b.
for t = 0 to T do

for i ∈ H in parallel do
Sample a noisy gradient: gt

i = ∇fi(x
t
i) + ξti .

Update the momentum: mt
i = βmt−1

i + (1− β)gt
i .

Optimization step: xt+1/2
i = xt

i − ηopm
t
i.

Send x
t+1/2
i to the neighbors n(i).

Update the model with F–RG
xt+1
i = F–RG

(
x
t+1/2
i ; {xt+1/2

j ; j ∈ n(i)}
)
.

end for
end for

The convergence results of this algorithm rely on the follow-
ing standard assumptions.

Assumption 4.7. Objective functions regularity.

1. (Smoothness) There exists L ≥ 0, s.t. ∀x,y ∈ Rd,
∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.

2. (Bounded noise) There exists σ ≥ 0 s.t. ∀x ∈ Rd,
E[∥∇ℓ(x, ξi)−∇fi(x)∥2] ≤ σ2, for all i ∈ [H].

3. (Heterogeneity) There exist ζ ≥ 0 s.t. ∀x ∈ Rd,
1
H
∑

i∈H ∥∇fi(x)−∇fH(x)∥2 ≤ ζ2.

We can now state the guarantees of Algorithm 1.

Corollary 4.8. Let F a (b, ρ)–robust summation, let b≥0
and let G a weighted graph such that δ = 2ρ/µ2(GH) < 1
and of spectral gap γ = µ2(GH)/µmax(GH). Under As-
sumption 4.7, for all i ∈ H, the iterates produced by Al-
gorithm 1 on G with η = 1/µmax(G) and learning rate
ηop = O(1/

√
T ) (depending also on problem parameters

such as L, γ or δ), verify as T increases:

1

T

T∑
t=1

E
[∥∥∇fH(xt

i)
∥∥2]=O

(
Lσ

γ(1− δ)
√
T

+
ζ2

γ2(1− δ)2

)
VarH(xT ) = O

(
1

T

(
1 +

ζ2

σ2

))
.

Performing Õ(γ−1(1− δ)−1) steps of F–RG between each
gradient computation leads to:

1

T

T∑
t=1

E
[∥∥∇fH(xt

i)
∥∥2] = O

(
Lσ√
T

√
δ

γ(1− δ)2
+

δζ2

γ(1− δ)

)
.

It follows that those guarantees state that performing more
aggregation steps between gradient computations improves
the asymptotic error but under an additional communication
cost.

This corollary is the consequence of the combination of our
Theorem 3.3 with Theorem 1 of Farhadkhani et al. (2023).
The result is simplified using δ ≥ |H|−1, and γ ≪ 1. We
refer the reader to Appendix G for a more precise result and
a detailed proof.

5. Attacking robust gossip algorithms
In this section, we design an attack that aims to disrupt
robust gossip algorithms. To do this, we model communica-
tions as perturbations of a gossip scheme, and analyze their
impact on the variance among nodes, which allows us to
deduce what perturbation Byzantines nodes should enforce
for effective attacks. Recall that Xt

H = (xt
1, . . . ,x

t
|H|)

T ∈
R|H|×d denotes the matrix of honest parameters at commu-
nication round t. Each step of F–RG can be decomposed
as a perturbed gossip update (cf. Lemma D.1),

Xt+1
H = (IH − ηWH)Xt

H + ηEt. (4)

Where Et is the perturbation term due to Byzantine nodes.
In the following, we assume that [Et]i = ζtia

t
i for any

honest node i, where at
i is the direction of attack on node

7
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Figure 1. Training loss achieved by GTS–RG, CS+–RG, ClippedGossip and IOS on MNIST (α = 1) after 300 optimization and
communication steps. The honest subgraph graph is GH := [Gm=13,k=8,c=1]H, as defined in Appendix E. Thus, µ2(GH) = 16.

i, and ζti is a scaling factor, which is chosen to bypass the
defenses. Typically, if ζti is small, a Byzantine node j ∈
nB(i) can declare to node i the parameter xt

j = xt
i + ζtia

t
i.

Dissensus Attack. Byzantine nodes can disrupt decentral-
ized communication by maximizing the variance of the
honest parameters. A natural decentralized notion of vari-
ance is the Laplacian heterogeneity

∑
i,j∈H wij∥xi−xj∥2,

which corresponds to ∥XH∥2WH
. Finding at

i such that this
heterogeneity is maximized at t+ 1 writes

argmax
[Et]i=ζt

ia
t
i

∥(IH − ηWH)Xt
H + ηEt∥2WH

= argmax
[Et]i=ζt

ia
t
i

2η⟨WHXt
H,Et⟩+ o(η2).

For small η, this suggests to take at
i = [W t

HXt
H]i =∑

j∈nH(i) wij(x
t
i − xt

j). This choice of at
i corresponds to

the Dissensus attack proposed in He et al. (2023). However,
as gossip communication is usually operated with multi-
ple communication rounds, maximizing only the pairwise
differences at the next step is a short-sighted approach.

Spectral Heterogeneity Attack. Byzantine nodes can take
into account the fact that several rounds of communication
will occur, and focus on increasing the heterogeneity over
the long term. This leads, at any time t, to maximizing for
any s ≥ 0 the pairwise differences at time t+ s, i.e, finding

argmax
[Et]i=ζt

ia
t
i

2η⟨WH(IH − ηWH)2s+1Xt
H,Et⟩+ o(η2).

Taking s → +∞ leads to approximating WH(IH −
ηWH)2s as a projection on its eigenspace associated
with the largest eigenvalue of WH(IH − ηWH)2s. This
eigenspace corresponds to the space spanned by the eigen-
vector of WH associated with the smallest non-zero eigen-
value of WH, i.e µ2(GH). This eigenvector (denoted efied)
is commonly referred to as the Fiedler vector of the graph.
Its coordinates essentially sort the nodes of the graph with
the two farthest nodes associated with the largest and small-
est value. Hence, the signs of the values in the Fiedler
vector are typically used to partition the graph into two

(least-connected) components. Our Spectral Heterogene-
ity attack consists in taking at

i = [efiede
T
fiedX

t
H]i, which

leads Byzantine nodes to cut the graph into two by pushing
honest nodes in either plus or minus eTfiedX

t
H.

6. Experimental evaluation.
We follow Farhadkhani et al. (2023) (on which the core
of our code is based), and present results for classification
tasks on MNIST and CIFAR-10 datasets, as well as plain
averaging tasks. We refer to Appendix C for most of the
experiments. Similarly to Farhadkhani et al. (2023), het-
erogeneity is simulated by sampling data from each class
using a Dirichlet distribution of parameter α. We test the
attacks Spectral Heterogeneity (SpH), Dissensus, A Little
Is Enough (ALIE) (Baruch et al., 2019), and Fall of Em-
pire (FOE) (Xie et al., 2020). The main differences with
Farhadkhani et al. (2023) are the following

(i) We consider sparse communication networks.
(ii) We implement GTS–RG instead of NNA, and

ClippedGossip (aka CSHe–RG) is implemented the
adaptive rule of clipping of (He et al., 2023) instead
of a fixed threshold. We additionally implement IOS
(Wu et al., 2023).

(iii) We add Dissensus and Spectral Heterogeneity attacks.
(iv) We modify the generic design of attacks to adapt it

really to the decentralized setting.

See Appendix B for a detailed experimental setup and our
implementation available at https://github.com/
renaudgaucher/Byzantine-Robust-Gossip.

In Figure 1, it appears that the SpH attack is more efficient
in disrupting ClippedGossip, GTS–RG and IOS than Dis-
sensus and ALIE, and that CS+–RG is highly resilient in the
setup considered. In this setting with a rather simple learn-
ing task, the connectivity of the graphs appears as the major
limiting factor to the robustness of distributed algorithms,
hence why Spectral Heterogeneity is very efficient.
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7. Conclusion
This paper revisits robust averaging over sparse communi-
cation graphs. We introduce a general framework for robust
decentralized averaging, which allows us to derive tight con-
vergence guarantees for many robust summation rules. In
particular, we introduce one that nearly matches an upper
bound on the breakdown point, i.e., the maximum number
of Byzantine nodes an algorithm can tolerate. Our experi-
ments confirm that our theory correctly sorts the breakdown
points of the existing methods, and that some (such as NNA)
fail before the optimal breakdown point. We introduce a
new Spectral Heterogeneity attack that exploits the graph
topology for sparse graphs to obtain this result. An inter-
esting future direction is the characterization of robustness
when the constraint on the number of neighbors cannot be
met globally, but convergence can be obtained within lo-
cal neighborhoods. Conversely, this opens up questions on
which nodes an attacker should corrupt to maximize their
influence for a specific graph, in light of our results.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
The work of Aymeric Dieuleveut and Renaud Gaucher was
supported by French State aid managed by the Agence Na-
tionale de la Recherche (ANR) under France 2030 program
with the reference ANR-23-PEIA-005 (REDEEM project).
The work of Aymeric Dieuleveut was also supported by
Hi!Paris - FLAG chair.

References
Alistarh, D., Allen-Zhu, Z., and Li, J. Byzantine stochas-

tic gradient descent. Advances in neural information
processing systems, 31, 2018.

Allouah, Y., Farhadkhani, S., Guerraoui, R., Gupta, N.,
Pinot, R., and Stephan, J. Fixing by mixing: A recipe
for optimal byzantine ml under heterogeneity. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 1232–1300. PMLR, 2023.

Allouah, Y., Guerraoui, R., Gupta, N., Pinot, R., and Rizk,
G. Robust distributed learning: tight error bounds and
breakdown point under data heterogeneity. Advances in
Neural Information Processing Systems, 36, 2024.

Allouah, Y., Guerraoui, R., Gupta, N., Jellouli, A., Rizk,
G., and Stephan, J. Adaptive gradient clipping for ro-

bust federated learning. In The Thirteenth International
Conference on Learning Representations, 2025.

Baruch, G., Baruch, M., and Goldberg, Y. A little is enough:
Circumventing defenses for distributed learning. Ad-
vances in Neural Information Processing Systems, 32,
2019.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer,
J. Machine learning with adversaries: Byzantine toler-
ant gradient descent. Advances in neural information
processing systems, 30, 2017.

Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. Random-
ized gossip algorithms. IEEE transactions on information
theory, 52(6):2508–2530, 2006.

Dolev, D., Lynch, N. A., Pinter, S. S., Stark, E. W., and
Weihl, W. E. Reaching approximate agreement in the
presence of faults. Journal of the ACM (JACM), 33(3):
499–516, 1986.

El-Mhamdi, E.-M., Guerraoui, R., Guirguis, A., Hoang,
L. N., and Rouault, S. Genuinely distributed byzantine
machine learning. In Proceedings of the 39th Symposium
on Principles of Distributed Computing, pp. 355–364,
2020.

El-Mhamdi, E. M., Farhadkhani, S., Guerraoui, R., Guirguis,
A., Hoang, L.-N., and Rouault, S. Collaborative learning
in the jungle (decentralized, byzantine, heterogeneous,
asynchronous and nonconvex learning). Advances in Neu-
ral Information Processing Systems, 34:25044–25057,
2021.

Fang, C., Yang, Z., and Bajwa, W. U. Bridge: Byzantine-
resilient decentralized gradient descent. IEEE Transac-
tions on Signal and Information Processing over Net-
works, 8:610–626, 2022.

Farhadkhani, S., Guerraoui, R., Gupta, N., Pinot, R., and
Stephan, J. Byzantine machine learning made easy by
resilient averaging of momentums. In International Con-
ference on Machine Learning, pp. 6246–6283. PMLR,
2022.

Farhadkhani, S., Guerraoui, R., Gupta, N., Hoang, L.-N.,
Pinot, R., and Stephan, J. Robust collaborative learning
with linear gradient overhead. In International Confer-
ence on Machine Learning, pp. 9761–9813. PMLR, 2023.

Hastings, W. K. Monte carlo sampling methods using
markov chains and their applications. 1970.

He, L., Karimireddy, S. P., and Jaggi, M. Byzantine-robust
decentralized learning via clippedgossip, 2023. URL
https://arxiv.org/abs/2202.01545.

9

https://arxiv.org/abs/2202.01545


Unified Breakdown Analysis for Byzantine Robust Gossip

Karimireddy, S. P., He, L., and Jaggi, M. Learning from
history for byzantine robust optimization. In Interna-
tional Conference on Machine Learning, pp. 5311–5319.
PMLR, 2021.

Karimireddy, S. P., He, L., and Jaggi, M. Byzantine-robust
learning on heterogeneous datasets via bucketing, 2023.
URL https://arxiv.org/abs/2006.09365.

Kovalev, D., Salim, A., and Richtárik, P. Optimal and
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A. Additional Discussion
A.1. Asynchronous communications

In the core of this paper, we assumed that all communications were synchronous. However, our F–RG framework can be
readily adapted to operate in less synchronous settings.

Suppose that communication still occurs in rounds, but messages take a variable amount of time to be delivered. If each
honest node waits to receive messages from all its neighbors before performing an aggregation step, then Byzantine nodes
can prevent the honest nodes from updating simply by withholding their messages. To be robust against such behavior, the
nodes should not wait for all messages before updating their parameters.

The F–RG framework adapts naturally to this setting. Specifically, consider a (ρ, b)-robust summand F , and assume that
each honest node i performs the F–RG update as soon as it has received all messages except those corresponding to a
total weight of at most b. Then, this asynchronous version of F–RG remains (1− η(µmin − 4ρb))-robust, as the following
proposition demonstrates.

Proposition A.1. Let F : (R+ ×Rd)n → Rd be a (b, ρ)–robust summation. Let Fasyn. denote the rule that applies F to all
inputs (wi,xi)i∈[n] excluding an arbitrary subset Sdelayed ⊂ [n] of smaller than b, i.e.

∑
i∈Sdelayed

wi ≤ b. Then Fasyn. is
a (b, 2ρ)–robust summation rule.

Proof. Using the triangle inequality, (a+ b)2 ≤ 2(a2 + b2) and Jensen inequality and the definition of robust summation
yields∥∥∥∥Fasyn.

(
(ωi, zi)i∈[n]

)
−
∑
i∈S

ωizi

∥∥∥∥2 =

∥∥∥∥F ((ωi, zi)i∈[n]\Sdelayed

)
−

∑
i∈[n]\Sdelayed

ωizi −
∑

i∈S∩Sdelayed

ωizi

∥∥∥∥2

≤

∥∥∥∥F ((ωi, zi)i∈[n]\Sdelayed

)
−

∑
i∈[n]\Sdelayed

ωizi

∥∥∥∥+ ∥∥∥∥ ∑
i∈S∩Sdelayed

ωizi

∥∥∥∥
2

≤ 2

∥∥∥∥F ((ωi, zi)i∈[n]\Sdelayed

)
−

∑
i∈[n]\Sdelayed

ωizi

∥∥∥∥2 + ∥∥∥∥b ∑
i∈S∩Sdelayed

ωi

b
zi

∥∥∥∥2


≤ 2

ρb
∑

i∈S\Sdelayed

ωi∥zi∥2 + b
∑

i∈S∩Sdelayed

ωi∥zi∥2
 .

Now, since necessarily ρ ≥ 1, it finally yields∥∥∥∥Fasyn.

(
(ωi, zi)i∈[n]

)
−
∑
i∈S

ωizi

∥∥∥∥2 ≤ 2ρb
∑
i∈S

ωi∥zi∥2.

Remark A.2. In the above result, we used the fact that there exists no (b, ρ)-robust summand with ρ < 1, as shown in
Theorem 3.5.
Remark A.3. The latter proof can be refined using (a+ b)2 ≤ (1+ ϵ)a2 +(1+ ϵ−1)b2 with an optimal choice of ϵ, showing
that Fasyn. is at least (b, ρ+

√
ρ))-robust.

A.2. Choosing the graph’s weights

Our analysis requires that each edge of the graph be associated with a nonnegative weight and that the communication step
size satisfies η ≤ 1/µmax(GH). Although unitary weights wij = 1 are convenient for identifying b as an upper bound on
the number of Byzantine neighbors, they require adjusting the step size η using global information from the graph, such as
µmax(G)−1. A practical way to circumvent this is to use bistochastic weights.
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• Generic Bistochastic Matrix. Any bistochastic matrix B ∈ [0, 1]m×m can be used to define the weights of the
graph using wij = Bij . In this case, the Laplacian matrix is defined as W = I − B, and its largest eigenvalue is
upper-bounded by 2. The communication step size can thus be chosen as η = 1/2. Note that, in such a case, the
condition µ2(GH) ≥ 2ρb is implied by γ̃ ≥ 2ρb, where γ̃ is generally named the spectral gap of the bistochastic matrix
B, and is defined as γ̃ = 1−maxµ∈sp(B),µ̸=1 |µ|, where sp(B) denotes the eigenvalues of the matrix B.

• Metropolis-Hasting Weights (Hastings, 1970). The Metropolis-Hasting algorithm constructs a bistochastic matrix
by making each node i declare to their neighbors their degree di. Then, any pair of neighbors (i, j) ∈ E defines the
weight on their edge as wij = 1/max (di,dj)+1. As pointed out in He et al. (2023) this algorithm is robust to corrupted
nodes, since for i ∈ H and j ∈ B the influence of j on i is bounded by wij ≤ 1

di+1 . Interestingly, since the size of the
communication step can be chosen as η = 1/2 without further knowledge of the global network properties, this choice
of weights requires only local information to carry out the communication.

B. Experiments
B.1. Detailed Experimental Setup

B.1.1. ATTACK DESIGN

Our experimental setting is built on top of the code provided by Farhadkhani et al. (2023), with the following differences:

1. Each honest node receives different messages from Byzantine nodes: for an honest node i ∈ H, the Byzantine node
j ∈ nB(i) declares to node i at time t the vector xt

j = xt
i + ζtia

t
i. The reference point taken is the parameter of node i,

instead of the average of all parameters xt
H, as performed in (Farhadkhani et al., 2022). Indeed, xt

H can be very far
from the vectors in the honest neighborhood of node i since the network is not fully connected. Note that in opposition
to (Farhadkhani et al., 2022), Byzantines declare different parameters to each of the honest nodes. Not only does it
allow the use of attacks such as Dissensus and spectral heterogeneity (though the choice of at

i), but it also allows to
tune ζti differently for each node.

2. Each scaling parameter ζti is designed separately through a linear search, such as to maximize for each honest node i∥∥∥∥∥∥F ((wij ,xi − xj)j∈n(i)

)
−

∑
j∈nH(j)

wij(xi − xj)

∥∥∥∥∥∥
2

.

3. The vector at
i is defined differently depending on the attack implemented: Dissensus, Spectral Heterogeneity (SpH),

Fall of Empire (FOE) from Xie et al. (2020) or A little is enough (ALIE) from Baruch et al. (2019).

• Dissensus. The Byzantines j ∈ nH(i) take as attack vector at
i = [W t

HXt
H]i =

∑
j∈nH(i) wij(x

t
i − xt

j).

• Spectral Heterogeneity. The Byzantines j ∈ nH(i) take as attack vector at
i = [efiede

T
fiedX

t
H]i, where efied

denotes an eigenvector of WH associated with µ2(WH).
• ALIE. The Byzantine nodes compute the mean of the honest parameters xt

H and the coordinate-wise standard
deviation σt. Then they use the attack vector at

i = σt.
• FOE. The Byzantine nodes uses at

i = −xt
H.

Remark B.1. In the case of trimming base rules, a badly designed attack leads Byzantine messages to be removed during
aggregations, which induces the resulting algorithm to behave as a plain non-corrupted D-SGD algorithm. Thus, proposing
non-over-confident experimental proofs of trimming-based aggregation requires a fine design of the attacks.

B.1.2. ALGORITHMS TESTED

Networks. Two topologies of the honest subgraph are investigated: 1) A ”Two Worlds” graph, i.e. GH := [Gm=13,k=8,c=1]H.
2) Randomly sampled Erdos-Renyi graphs, with a varying probability of edge presence p. All graphs are equipped with
unitary weights on the edges, for simplicity.

Communications. We compare

12
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• GTS-RG;
• CS+-RG;
• The version of ClippedGossip proposed in He et al. (2023) with an adaptive clipping rule which is not supported by any

theory. Precisely, ClippedGossip is equivalent to CSHe-RG, with CSHe := CS
(
· ; τHe

)
, where, for ∥z1∥ ≤ . . . ≤ ∥zn∥,

τHe

(
(ωi, zi)i∈[n]

)
=
√

1
b

∑
i≤|nH(i)| ωi∥zi∥2,

• Iterative Outlier scissors (IOS), from (Wu et al., 2023).

F-RG based methods uses η = µmax(GH)−1.

Optimization. All learning experiments implement Algorithm 1, and only the communication part changes among
experiments. It follows that, even though IOS is not explicitly combined with momentum in (Wu et al., 2023), we still
implement it with momentum. We do this to have a fairer comparison between communication routines since (Farhadkhani
et al., 2023) showed that momentum is key for robustness.

B.1.3. DATASET PRE-PROCESSING

MNIST images receive an input image normalization of mean 0.1307 and standard deviation 0.3081. The images of
CIFAR-10 are horizontally flipped, and a per-channel normalization is applied with means (0.4914, 0.4822, 0.4465), and
standard deviation (0.2023, 0.1994, 0.2010).

B.1.4. DATA HETEROGENEITY

We simulate data heterogeneity in the correct nodes’ datasets following the method of (Farhadkhani et al., 2023) by making
nodes sample from each class of the considered dataset (MNIST or CIFAR-19) using a Dirichlet distribution of parameter
α > 0: the smallest α, the more probable it is to sample from one class only.

B.1.5. MODEL ARCHITECTURE AND HYPER PARAMETERS

To present the detailed architecture of the models used, we adopt the following compact notation:

L(#outputs) represents a fully-connected linear layer, C(output channels) represents a 2D-convolutional layer of kernel
size 3 and padding 1, R stands for ReLU activation, B stands for batch-normalization, and D represents dropout with
probability 0.25, S stands for log-softmax and NLL for negative log-likelihood loss.

The architecture of the model used and the experimental setup are proposed in Table 1.

Table 1. Detailed experimental setting

Dataset MNIST CIFAR-10
Model type CNN CNN
Model architecture C(16)-R-M-L(10)-S C(32)-B-R-M-C(64)-B-R-

M-C(128)-B-R-D-L(128)-
R-D-L(10)-S

Loss NLL NLL
Batch size 64 64
Learning rate ηop = 0.1 ηop = 0.5
Momentum β = 0.9 β = 0.99
Number of Iterations T = 300 T = 5000

Number of honest nodes |H| = 26 |H| = 20 |H| = 16
Graph Two Worlds Erdös Renyi Two Worlds
Graph parameter k = 8 p ∈ [0.26, 1] k = 6
Data Heterogeneity α = 1 α = 1 α = 5
Byzantine weight b ∈ {1, . . . , 11} b = 3 b = 3
Number of seeds 1 1 1

13



Unified Breakdown Analysis for Byzantine Robust Gossip

C. Experiments
In Appendix C.1 we provide experiments with two world graphs taken as a communication network, both on learning tasks
with MNIST and CIFAR-10 datasets, and on an averaging problem. Both on the MNIST and averaging task, we a varying
amount of Byzantine weight to investigate the empirical robustness of each algorithm.

In Appendix C.2 we provide experiments on Erdos Renyi networks on MNIST and an averaging task. We study here the
influence of the connectivity of the network on the robustness by varying the probability of each pair of honest nodes being
connected.

C.1. Experiments with Two World graphs

For both the Averaging experiments and the MNIST experiments, we fixed the subgraph of honest nodes to be GH :=
[Gm=13,k=8,c=1]H, and the weight of Byzantine b varies. Note that Theorem 3.5 predict that, on this graph, no algorithm
can be r-robust when b > 8.

Averaging experiments (Figure 2). Recall that GH := [Gm=13,k=8,c=1]H, is built on two fully connected cliques of 13
honest nodes, which are then connected. Here we initialize the parameters of honest nodes with a N (u, Id/d) distribution
(d = 5), where u is equal to +(5, 0, . . . , 0)T for one of the two clique, and equal to −(5, 0, . . . , 0)T for the other one.
For each setting (b, Communication Algorithm, Attack), we perform experiments with 6 random seeds. The error plotted
correspond to the mean square error

∑
i∈H ∥xt

i −x0
H∥2/∑i∈H ∥x0

i −x0
H∥2 achieved after 100 communication steps. The

line corresponds to the average value among seeds, while the confidence interval corresponds to the maximum and minimal
values encountered.
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Figure 2. Relative MSE on an averaging task after 100 communication steps on a Two-Wold graph, with a varying weight of Byzantines b.
Here µ2(GH) = 16.

MNIST experiments (Figure 3). Experiments are conducted with a heterogeneity parameter α = 1. The error and
accuracy displayed are after 300 iterations. Further experimental details are in Table 1.
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Figure 3. Accuracy and training loss on MNIST 300 optimization and communication steps, a Two Wold graphs, with a varying weight of
Byzantines neighbors. Here µ2(GH) = 16, and α = 1.

CIFAR-10 experiments (Figures 4 and 5). Experiments are conducted on CIFAR-10 Dataset with an heterogeneity
parameters α = 5, on a Two Wold graph GH := [Gm=8,k=6,c=1]H with b = 1. Further experimental details are in Table 1.
We provide both test accuracy and train loss since the dynamic of the train loss does not always impact the test accuracy,
specifically in the case of Spectral Heterogeneity and Dissensus attacks.
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Figure 4. Train loss on CIFAR-10 (α = 5) on a Two Wold graph with µ2(GH) = 12 and b = 1. Attacks tested are FOE (upper left),
ALIE (upper right), SpH (lower left), and Dissensus (lower right).
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Figure 5. Accuracy on CIFAR-10 (α = 5) on a Two Wold graph with µ2(GH) = 12 and b = 1. Attacks tested are FOE (upper left),
ALIE (upper right), SpH (lower left), and Dissensus (lower right).

C.2. Experiments with Erdos-Renyi graphs

Experiments are conducted by using, as a subgraph of honest nodes, a random Erdos Renyi graph with 20 honest nodes.
Each honest node is always adjacent to 4 Byzantine nodes. On each seed, we test 12 different values of p ∈ [0.25, 1], where
p denotes the probability of an edge to exist. We plot the links between the algebraic connectivity of the graph (denoted µ2,
the second smallest eigenvalue of the unitary weighted Laplacian) and the losses.

Averaging task (Figure 6). Nodes’ parameters are initialized using a N(0, I5) distribution. Nodes perform 100 (robust)
gossip communication iterations, and the gain in terms of mean square error is plotted. Experiments are conducted on 6
different seeds, and curves are smoothed using a moving average of size 4.
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Figure 6. Averaging task. Relative MSE after 100 communication steps on randomly sampled Erdos-Renyi graphs with a fixed b = 4.

MNIST (Figure 7). The heterogeneity among nodes is set to α = 1. All experiments run on the same seed.
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Figure 7. Accuracy and training loss on MNIST(α = 1) after 200 optimization and communication steps on randomly sampled Erdos-
Renyi graphs with a fixed b = 4.

D. Analysis of RG
D.1. Proof of Theorem 3.3

We now prove Theorem 3.3, and then use it to derive convergence for the Byzantine-robust decentralized stochastic gradient
descent framework. Recall that nodes follow the update scheme below.{

xt+1
i = xt

i − ηF
(
(wij ;x

t
j − xt

i)j∈n(i)

)
if i ∈ H

xt+1
i = ∗ if i ∈ B, (5)

We recall the following notations

Before proving Theorem 3.3, we recall the following notations:

• wij = −Wij ≥ 0 denote the weight associated with the edge i ∼ j on the graph.

• The matrix of honest parameters Xt
H :=

 (xt
1)

T

...
(xt

|H|)
T

 ∈ R|H|×d.

• The error due to robust aggregation and Byzantine corruption:

∀i ∈ H, [Et]i :=
∑

j∈nH(i)

wij(x
t
i − xt

j)− F
(
(wij ;x

t
j − xt

i)j∈n(i)

)
Lemma D.1. Equation (5) writes

Xt+1
H = (IH − ηWH)Xt

H + ηEt.

Proof. Let i ∈ H. We decompose the update due to the gossip scheme and consider the error term coming from both robust
aggregation and the influence of Byzantine nodes.
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xt+1
i = xt

i − ηF
(
(wij ;x

t
j − xt

i)j∈n(i)

)
= xt

i − η
∑

j∈nH(i)

wij(x
t
i − xt

j) + η

 ∑
j∈nH(i)

wij(x
t
i − xt

j)− F
(
(wij ;x

t
j − xt

i)j∈n(i)

) .

Finally, the proof is concluded by remarking that [WHXt
H]i =

∑
j∈nH(i) wij(x

t
i − xt

j).

We begin by controlling the norm of the error term ∥Et∥22 in the case of CS+–RG.

Lemma D.2 (Control of the error). Assume F is a (b, ρ) robust summation. Then the error is controlled by the heterogeneity
as measured by the Laplacian matrix:

∥Et∥22 ≤ 2ρb∥Xt
H∥2WH

= ρb
∑

i∈H,j∈nH(i)

wij∥xt
i − xt

j∥2.

Proof. We recall that in this case,

∀i ∈ H, [Et]i :=
∑

j∈nH(i)

wij(x
t
i − xt

j)− F
(
(wij ;x

t
j − xt

i)j∈n(i)

)
.

By assumption, for all honest node i ∈ H, the weight of Byzantine in his neighborhood is smaller than b, i.e
∑

j∈nB(i) wij ≤
b. Thus, applying the (b, ρ) robustness of F yields

∥Et∥2 =
∑
i∈H

∥∥∥∥∥∥
∑

j∈nH(i)

wij(x
t
i − xt

j)− F
(
(wij ;x

t
j − xt

i)j∈n(i)

)∥∥∥∥∥∥
2

2

≤
∑
i∈H

ρb
∑

j∈nH(i)

wij∥xt
i − xt

j∥2

= 2ρb∥Xt
H∥2WH

,

Where the last equality follows by noting that 2∥Xt
H∥2WH

=
∑

i∈H,j∈nH(i) wij∥xt
i − xt

j∥2. Indeed, considering that GH is
an undirected graph, i ∈ nH(j) ⇐⇒ j ∈ nH(i) and we have:

∥Xt
H∥2WH

= ⟨XH,WHXH⟩

=
∑
i∈H

〈
xt
i,
∑

j∈nH(i)

wij(x
t
i − xt

j)

〉

=
∑
i∈H

∑
j∈nH(i)

wij

〈
xt
i,x

t
i − xt

j

〉
=

1

2

∑
i∈H

∑
j∈nH(i)

wij

〈
xt
i − xt

j ,x
t
i − xt

j

〉
∥Xt

H∥2WH
=

1

2

∑
i∈H, j∈nH(i)

wij

∥∥xt
i − xt

j

∥∥2
2
.

Now that we control the error term, we can conclude the proof of Theorem 3.3 using standard optimization arguments.
Before proving this theorem, we prove the following one, from which Corollary 3.4 is direct.
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Theorem D.3. Assume F is a (b, ρ) robust summation, and RG is the associated robust gossip algorithm. Let b and µmin

be such that 2ρb ≤ µmin, and let G ∈ Γµmin,b. Then, for any η ≤ µmax(GH)−1, the output y = RG(x) (obtained by one
step of RG on G from x) verifies:

1

|H|
∑
i∈H

∥xt+1
i − xt+1

H ∥2 ≤ (1− η (µmin − 2ρb))
1

|H|
∑
i∈H

∥xt
i − xt

H∥2 (6)

∥xt+1
H − xt

H∥2 ≤ η
2ρb

|H|
∑
i∈H

∥xt
i − xt

H∥2. (7)

Proof. Part I: Equation (7).

Equation (7) is a direct consequence of Lemma D.2. Indeed applying P1H := 1
|H|1H1T

H - the orthogonal projection on the
kernel of WH - on Lemma D.1 results in

P1HXt+1
H = P1H(IH − ηWH)Xt

H + ηP1HEt = P1HXt
H + ηP1HEt.

Taking the norm yields

∥P1HXt+1
H − P1HXt

H∥2 = η2∥P1HEt∥2 ≤ η2∥Et∥2. (8)

We now apply Lemma D.2, and use that µmax(GH) is the largest eigenvalue of WH. It gives

∥P1HXt+1
H − P1HXt

H∥2 ≤ η22ρb∥Xt
H∥2WH

≤ µmax(GH)η22ρb∥(IH − P1H)Xt
H∥2

Finally, Equation (7) derives from [P1HXt
H]i∈H = [

∑
j∈H xt

j ]i∈H = [xt
H]i∈H and ηµmax(GH) ≤ 1.

Part II: Equation (6).

To prove Equation (6), we consider the objective function ∥(IH − P1H)Xt∥2. We denote by W †
H the Moore-Penrose

pseudo inverse of WH. We begin by applying Lemma D.1.

∥(IH − P1H)Xt+1
H ∥2 = ∥Xt

H − ηWHXt
H + ηEt∥2(IH−P1H )

= ∥Xt
H∥2(IH−P1H ) − 2η

〈
Xt

H,WHXt
H −Et

〉
(IH−P1H )

+ η2
∥∥WHXt

H −Et
∥∥
(IH−P1H )

= ∥Xt
H∥2(IH−P1H ) − 2η

〈
Xt

H,Xt
H −W †

HEt
〉
WH

+ η2
∥∥∥Xt

H −W †
HEt

∥∥∥
W 2

H

.

Applying 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 leads to

∥Xt+1
H ∥2(IH−P1H ) − ∥Xt

H∥2(IH−P1H ) = −η
∥∥Xt

H
∥∥2
WH

− η
∥∥∥Xt

H −W †
HEt

∥∥∥2
WH

+ η
∥∥∥W †

HEt
∥∥∥2
WH

(9)

+ η2
∥∥∥Xt

H −W †
HEt

∥∥∥
W 2

H

= −η
∥∥Xt

H
∥∥2
WH

+ η
∥∥Et

∥∥2
W †

H
− η

∥∥∥Xt
H −W †

HEt
∥∥∥2
WH

+ η2
∥∥∥Xt

H −W †
HEt

∥∥∥
W 2

H

.

We now apply that µmax(GH) (resp. µ2(GH)) is the largest (resp. smallest) non-zero eigenvalue of WH.

∥Xt+1
H ∥2(IH−P1H )−∥Xt

H∥2(IH−P1H ) ≤ −η
∥∥Xt

H
∥∥2
WH

+ η
1

µ2(GH)

∥∥Et
∥∥2 − η(1− µmax(GH)η)

∥∥∥Xt
H −W †

HEt
∥∥∥2
WH

.

Eventually Lemma D.2 with the assumption η ≤ 1/µmax(GH) yields the result

∥Xt+1
H ∥2(IH−P1H ) ≤ ∥Xt

H∥2(IH−P1H ) − η

(
1− 2ρb

µ2(GH)

)∥∥Xt
H
∥∥2
WH
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∥Xt+1
H ∥2(IH−P1H ) ≤

(
1− ηµ2(GH)

(
1− 2ρb

µ2(GH)

))∥∥Xt
H
∥∥2
(IH−P1H )

.

To obtain Theorem D.3, we note that we can actually control the one-step variation of the MSE using (1− η(µmin − 2ρb))
only, thus strengthening the first inequality. We rewrite the first part of Theorem 3.3 below for completeness.

Corollary D.4. Assume F is a (b, ρ) robust summation, and RG is the associated robust gossip algorithm. Let b and µmin

be such that 2ρb ≤ µmin, and let G ∈ Γµmin,b. Then, for any η ≤ µmax(GH)−1, the output y = RG(x) (obtained by one
step of RG on G from x) verifies:

1

|H|
∑
i∈H

∥xt+1
i − xt

H∥2 ≤ (1− η (µmin − 2ρb))
1

|H|
∑
i∈H

∥xt
i − xt

H∥2

Proof. We consider Equation (8) and Equation (9), which write

∥P1HXt+1
H − P1HXt

H∥2 = η2∥P1HEt∥2.

∥Xt+1
H ∥2(IH−P1H ) − ∥Xt

H∥2(IH−P1H ) ≤ −η
∥∥Xt

H
∥∥2
WH

+ η
∥∥Et

∥∥2
W †

H
.

It follows from the bias - variance decomposition of the MSE

∥Xt+1
H − P1HXt

H∥2 = ∥(IH − P1H)Xt+1
H ∥2 + ∥P1HXt+1

H − P1HXt
H∥2

that

∥Xt+1
H − P1HXt

H∥2 − ∥Xt
H∥2(IH−P1H ) ≤ −η

∥∥Xt
H
∥∥2
WH

+ η
∥∥Et

∥∥2
W †

H
+ η2∥P1HEt∥2

≤ −η
∥∥Xt

H
∥∥2
WH

+ η
1

µ2(GH)

∥∥Et
∥∥2
(IH−P1H )

+ η2∥P1HEt∥2

As η ≤ 1
µmax(GH) ≤ 1

µ2(GH) , we eventually get

∥Xt+1
H − P1HXt

H∥2 ≤ ∥Xt
H∥2(IH−P1H ) − η

∥∥Xt
H
∥∥2
WH

+ η
1

µ2(GH)

∥∥Et
∥∥2

≤ ∥Xt
H∥2(IH−P1H ) − η

(
1− 2ρb

µ2(GH)

)∥∥Xt
H
∥∥2
WH

≤
(
1− ηµ2(GH)

(
1− 2ρb

µ2(GH)

))
∥Xt

H∥2(IH−P1H ).

Which concludes the proof.

D.2. Proof of Corollary 3.4

A direct consequence of the above results is Corollary 3.4, as we show below.

Proof. Using the (α, λ) reduction notations, we have:{
α = 1− γ (1− δ))

λ = γδ.

We denote here the drift increment dt+1 = ∥P1HXt+1
H − P1HXt

H∥ and the variance at time t as σ2
t = ∥Xt+1

H ∥2(IH−P1H ).

Corollary D.4 ensures that
σ2
t+1 + d2t ≤ ασ2

t .
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Hence,we have σ2
t+1 + d2t+1 ≤ ασ2

t , and so σ2
t+1 ≤ ασ2

t , which implies that σt ≤ αt/2σ0. This proves the first part of the
result. Using this, we write that Theorem D.3 ensures that

dt+1 ≤
√
λσt ≤

√
λβtσ0,

leading to:
T∑

t=1

dt ≤
√
λ

T−1∑
t=0

σt ≤
√
λ

T−1∑
t=0

αt/2σ0 ≤
√
λ(1− αT/2)

1− α1/2
σ0,

which proves the second part. The last inequality is obtained by writing.

∥P1HXT
H − P1HX0

H∥ ≤
T∑

t=1

dt ≤
√
λ

1−√
α
σ0.

Then, we use that 0 ≤ 1
1−

√
1−x

≤ 2
x for x ≥ 0, with x = γ(1− δ).

E. Proof of Theorem 3.5 - Upper bound on the breakdown point
We recall Theorem 3.5:

Theorem E.1. Let µmin ≥ 0, b ≥ 0 be such that µmin ≤ 2b. Then for any h ≥ 0 and any algorithm Alg, there exists a
graph G ∈ Γµmin,b in which all honest nodes have a weight of honest neighbors h(i) larger than h, and such that for any
r < 1, Alg is not r–robust on G.

We recall that, since the Byzantine nodes are unknown, given a communication network and an algorithm Alg, the honest
nodes follow Alg independently of the position of Byzantine nodes in the network. Thus, it is only when the position of the
Byzantine nodes satisfies some hypothesis that Alg can be r-robust.

Here we consider the hypothesis H = {µ2(GH) = 2b} ∩ {maxi∈H b(i) ≤ b}. We show that for any algorithm and any
h ≥ 0, there exists a communication network N on which any algorithm Alg is not r-robust for (at least) one configuration
of the Byzantines that verifies the hypothesis H .

The structure of the proof is thus the following:

1. We introduce a family of unweighted communication networks {Nm,k}m∈N,k∈[m], such that Nm,k admits three
symmetric configurations of Byzantines nodes with 2m honest nodes and m Byzantines nodes, and each honest node is
neighbor to k Byzantine nodes and m+ k honest nodes. Then we show that an algorithm can not be r-robust in these
three configurations with r < 1.

2. Now, for c ≥ 0, let’s denote Gm,k,c the weighted graph with a uniform weight c on the edges and such that Gm,k,c is a
weighted version of one of the three above-mentioned configurations of Nm,k. We show that:

(a) The weight of Byzantines in the neighborhood of any honest node is equal to b = ck.

(b) The algebraic connectivity of the honest subgraph [Gm,k,c]H verifies:

µ2([Gm,k,c]H) = 2ck = 2b.

(c) For any h ≥ b, there exists a graph within {Gm,k,c}m∈N,k∈[m],c∈R+
such that all honest nodes have a weight

associated to honest neighbors h(i) larger than h.

This concludes the proof.
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Figure 8. Topology of Nm=4,k=2.

E.1. Definition of the family of graphs

Let m ∈ N∗ r and k ∈ [m].

We define the communication network Nm,k as composed of three cliques of m nodes: C1, C2, and C3. Each node in Ci

is additionally connected to exactly k nodes in Ci+1 mod 3 and to k nodes in Ci−1 mod 3. Moreover, those connections
are assumed to be in circular order, i.e., for any j ∈ [m], node j in Ci is connected to nodes j, . . . , j + k mod m in
Ci+1 mod 3.

We assume that one of the cliques is composed of Byzantine nodes, each honest node having k Byzantine neighbors, and
there are m Byzantine nodes among the 3m nodes.

E.2. No algorithm can be α-robust on Nm,k.

We now show that no algorithm can be robust on the communication network Nm,k.

Lemma E.2. Let one unknown clique within C1, C2, and C3 be composed of Byzantine nodes, then no communication
algorithm is α-robust on Nm,k.

Assume an r–robust algorithm exists on the communication network GH,k. Informally:

1. We first show that if all nodes within one clique hold a unique parameter x, and receive this parameter from nodes of
either of the two other cliques, then they cannot change their parameter.

2. We then consider a setting where the two honest cliques hold different parameters, and we conclude that Byzantine
nodes can force all honest nodes to keep their initial parameter at all times. This shows that in the considered setting,
r < 1 is impossible.

Proof.
Part I. Let Alg be an algorithm r–robust on Nm,k with r < 1. We denote x+

i the output from node i after running Alg.

We know that one of the cliques say C1, is composed of honest nodes. Let the honest nodes within C1 hold the parameter x.
Nodes in another clique, say C2, declare the parameter x as well, while nodes in C3 declare another parameter, say y ̸= x.
We show that all nodes i ∈ C1 must output the parameter x̂i = x.

From the point of view of nodes in C1 considering that the Byzantine clique is unknown, it is impossible to distinguish
between these situations:

1. Situation I: C2 is honest, and C3 is Byzantine,
2. Situation II: C2 is Byzantine, and C3 is honest.
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Thus the outputs of nodes in C1 after running Alg, denoted (x+
i )i∈C1

, are the same in both situations.

In Situation I, nodes of C2 are honest, and nodes in C1 and C2 have the same initial parameter; hence, the initial quadratic
error is 0. The r criterion writes ∑

i∈H
∥x+

i − xH∥2 ≤ r
∑
i∈H

∥xi − xH∥2 = 0.

It follows that for any node i in C1, x+
i = x, i.e., nodes in C1 do not change their parameters (in both Situation I and

Situation II).

Part II. Consider the setting where C1 and C2 are honest, while C3 is Byzantine, and that nodes C1 hold the parameter x,
while nodes in C2 hold the parameter y ̸= x.

As Byzantine nodes can declare different values to their different neighbors, nodes in C3 can declare to nodes in C1 that
they hold the value x, and to nodes in C2 that they hold the value y. Following Part I, nodes in C1 and in C2 cannot update
their parameter, (i.e. ∀i ∈ H, x+

i = xi). Applying the r–robustness property brings:∑
i∈H

∥x+
i − xH∥2 ≤ r

∑
i∈H

∥xi − xH∥2 = r
∑
i∈H

∥x+
i − xH∥2,

which implies that r ≥ 1 since
∑

i∈H ∥x+
i − xH∥2 > 0. It follows that the Algorithm Alg is not r–robust on Nm,k for an

r < 1.

E.3. Spectral properties of the graph.

We define as Gm,k,c the graph associated with the network Nm,k where all edges have weight c and the nodes in one of the
three cliques are Byzantine.

We show here that µ2([Gm,k,c]H) = 2kc. This concludes the proof as we have:

1. The weight of Byzantines in the neighborhood of any honest node is equal to b = ck;

2. Which is linked to the algebraic connectivity of the honest subgraph µ2([Gm,k,c]H) = c2k;

3. While the weight of honest nodes in the neighborhood of honest nodes is equal to h = c(m + k), thus growths to
infinity with m;

Analysis. We denote LH the Laplacian of [Gm,k,c=1]H, the honest subgraph of the network Nm,k in which we provided
unitary weights to edges. We show that µ2([Gm,k,c=1]H) = 2k, which brings that µ2([Gm,k,c]H) = 2kc.

Lemma E.3. The second smallest eigenvalue of the (unitary weighted) Laplacian matrix LH of [Gm,k,1]H is equal to
µ2(LH) = 2k.

Proof. Recall that m ∆
= m. Let M ∈ Rm×m be a circulant matrix defined as M =

∑k−1
q=0 J

q, where J denotes the
permutation

J :=


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 1
1 0 0 . . . 0

 .

The Laplacian matrix of the honest subgraph of GH,k can be written as:

LH =

(
mIm − 1m1T

m 0
0 mIm − 1m1T

m

)
+

(
kIm −M
−MT kIm

)
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Hence

LH = (k +m)I2m −
(
1m1T

m 0
0 1m1T

m

)
−
(

0 M
MT 0

)
. (10)

This matrix decomposition allows to have the eigenvalues of the the matrix WG .

Lemma E.4. The eigenvalues of LH are {0, 2k} ∪ {k +m± |∑k−1
q=0 ω

pq|; p ∈ {1, . . . ,m− 1}} where ω := exp( 2iπm ).

To prove the Lemma E.4, we first need to following result.

Lemma E.5. If A is a symmetric matrix in R2m×2m, which can be decomposed as A =

(
0 M

MT 0

)
, where M ∈ Rm×m

is a matrix with complex eigenvalues µ0, . . . , µm−1.

Then the eigenvalues of A are {±|µp|; p = 0, . . . ,m− 1} .

Proof of Lemma E.5. Let M = U∗DU be the diagonalization of M where D = Diag(µ0, . . . , µm−1), and U is a unitary
matrix, i.e. UU∗ = I where we denote as U∗ = U

T
the conjugate transpose of U , where the (simple) conjugate matrix is

denoted U .

Lemma E.5 follows from (
0 M

MT 0

)
=

(
0 U∗DU

UTDU 0

)
=

A=A

(
0 U∗DU

U∗DU 0

)
.

Hence

A =

(
U∗ 0
0 U∗

)(
0 D
D 0

)(
U 0
0 U

)
.

A simple calculus (using that D is diagonal) yields that all eigenvalues of
(
0 D
D 0

)
are {±|Dp|; p = 0, . . . ,m− 1}.

Proof of Lemma E.4. We start from the decomposition of Equation (10) :

LH = (k +m)I2m −
(
1m1T

m 0
0 1m1T

m

)
−
(

0 M
MT 0

)
.

We first notice that the subspace spanned by (1T
m,+1T

m)T and (1T
m,−1T

m)T is an eigenspace of
(
1m1T

m 0
0 1m1T

m

)
associated the eigenvalue m, and the orthogonal subspace is associated with 0. Furthermore these are eigenvectors of(

0 M
MT 0

)
associated with k and −k. It follows that they are eigenvectors of LH with eigenvalues 0 and 2k. We notice

as well that the three matrices of Equation (10) can be diagonalized in the same orthogonal basis.

The matrix M is a circulant matrix, so it can be diagonalized in C. The eigenvalues are {µp =
∑k−1

q=0 ω
pq; p ∈ {0, . . . ,m−

1}}, where ω := exp( 2iπm ). The eigenvector associated with µp is xp = (1, ωp, . . . , ω(m−1)p)T . As such, with U =
(x0, . . . , xm−1) and D = Diag(µ0, . . . , µm−1), M writes:

M = U∗DU .

Considering Lemma E.5, the eigenvalue of
(

0 M
MT 0

)
are {±|µp|; p = 0, . . . ,m−1}, considering that p = 0 corresponds

to the eigenvalues +k and −k, hence the eigenvectors (1T
m,1T

m)T and (1T
m,−1T

m)T , we deduce that the eigenvalues of LH
are {±|µp|; p = 0 . . .m− 1}.
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End of the proof of Lemma E.3.

To prove Lemma E.3, considering the decomposition of Equation (10), we only have to show that m − k is always the
second largest eigenvalue of the matrix

B :=

(
1m1T

m 0
0 1m1T

m

)
+

(
0 M

MT 0

)
.

First, considering Lemma E.4, the eigenvalues of B are {m+k,m−k}∪{±|µp|; p ∈ {1, . . . ,m−1}} with µp =
∑k−1

q=0 ω
pq .

As such showing that |µp| ≤ m− k if p ∈ {1, . . . ,m− 1} yields the result.

As ωmp = ω0p = 1, we have that
∑m−1

q=0 ωpq(1− ωp) = 0. Hence, for p ∈ {1, . . . ,m− 1}, as ωp ̸= 1,

m−1∑
q=0

ωpq = 0 =⇒ µp =

k−1∑
q=0

ωpq = −
m−1∑
q=k

ωpq.

It follows from |ω| = 1 that for p ∈ {1, . . . ,m− 1}, |µp| ≤ m− k.

F. (b, ρ)-robust summation rules
We recall the definition of summation rules.
Definition F.1 ((b, ρ)–robust summation). Let b, ρ ≥ 0. An aggregation rule F : (R+ × Rd)n → Rd is a (b, ρ)–robust
summation, when, for any vectors (zi)i∈[n] ∈ (Rd)n, any weights (ωi)i∈[n] ∈ Rn

+ and any set S ⊂ [n] such that∑
i∈S ωi ≤ b, there is ∥∥∥∥∥F ((ωi, zi)i∈[n]

)
−
∑
i∈S

ωizi

∥∥∥∥∥
2

≤ ρb
∑
i∈S

ωi∥zi∥2.

where S := [n]\S.

F.1. Clipping

We first prove the robustness of the clipping-based summation.
Proposition F.2. Let b ≥ 0, then

1. (Practical) CS+ is (b, ρ)–robust with ρ = 2.
2. (Oracle) CSor.

+ is (b, ρ)–robust with ρ = 1.
3. (Oracle) CSor.

He is (b, ρ)–robust with ρ = 4.

Proof. Let (ωi, zi)i∈[n] ∈ (R+ × Rd)n, and S ⊂ [n] such that
∑

i∈S ωi ≤ b,

We consider for τ ≥ 0

F
(
(ωi, zi)i=1,...,n

)
:=

n∑
i=1

ωi Clip(zi; τ).

Then, by applying the triangle inequality we have∥∥∥∥∥F ((ωi, zi)i=1,...,n

)
−
∑
i∈S

ωizi

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
i∈S

ωi (Clip(zi; τ)− zi) +
∑
i∈S

ωi Clip(zi; τ)

∥∥∥∥∥∥
2

≤

∑
i∈S

ωi∥zi − Clip(zi; τ)∥+
∑
i∈S

ωi∥Clip(zi; τ)∥

2

≤
(∑

i∈S

ωi(∥zi∥ − τ)+ + bτ

)2

. (11)

Where we used
∑

i∈S ωi ≤ b.
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1. Case of our clipping threshold. We choose τ as

τ = max

{
τ ≥ 0 :

n∑
i=1

ωi1∥zi∥≥τ ≥ 2b

}
∆
= τours

(
(ωi, zi)i∈[n]

)
.

This corresponds to lowering the clipping threshold until the sum of the weights of clipped vectors is essentially equal to 2b.
This ensures that the total weight of the honest vectors that are clipped falls between b and 2b. If there are ties at the clipping
threshold, honest vectors can be arbitrarily denoted as clipped or non-clipped. Indeed, there is no clipping error incurred
since the clipping threshold is the same as the actual value of the difference. Therefore, we do not have to accumulate error
for the weight over 2b, so the following equation always holds:

2b ≥
∑
i∈S

ωi1i clipped ≥ b.

Which allows us to write: ∑
i∈S

ωi (∥zi∥ − τ)+ + bτ ≤
∑
i∈S

ωi(∥zi∥ − τ)1i clipped + bτ

≤
∑
i∈S

ωi∥zi∥1i clipped.

We conclude the proof using the Cauchy-Schwarz inequality:∥∥∥∥∥F ((ωi, zi)i=1,...,n

)
−
∑
i∈S

ωizi

∥∥∥∥∥
2

≤
(∑

i∈S

√
ωi∥zi∥ ·

√
ωi1i clipped

)2

≤
(∑

i∈S

ωi1i clipped

)(∑
i∈S

ωi∥zi∥2
)

≤ 2b
∑
i∈S

ωi∥zi∥2.

Where we used
∑

j∈nH(i) ωij1j clipped ≤ 2b. Note that, if somehow it is possible to choose the clipping threshold such that
the weight of clipped vectors within S is equal exactly to b then this factor 2 disappears. Which correspond to our oracle
clipping threshold τ or.

ours. The same result can be achieved when it is possible to identify a subset of {1, . . . , n} of weight 2b
which includes the set S, and if the weight with S sums exactly to b. This is for instance the case of the communication
graph used in Appendix E: nodes in (for instance) C1 know that Byzantines nodes are among the nodes within C2 and C3,
thus selecting all their neighbors that belong to these two other cliques leads to a subset of neighbors of weight 2b with
exactly a weight b corresponding to Byzantine neighbors.

2. Clipping threshold of He et al. (2023) We plug in Equation (11) the following upper bound:

(∥zi∥ − τ)+ = τ

(∥zi∥
τ

− 1

)
+

≤ τ

(∥zi∥2
τ2

− 1

)
+

≤ ∥zi∥2
τ

.

This yields ∥∥∥∥∥F ((ωi, zi)i=1,...,n

)
−
∑
i∈S

ωizi

∥∥∥∥∥
2

≤
(∑

i∈S

ωi
∥zi∥2
τ

+ bτ

)2

.

Then taking as clipping threshold the minimizer of the RHS, τ∗ =
√

1
b

∑
i∈S ωi∥zi∥2 ∆

= τ or.
He

(
(ωi, zi)i∈[n]

)
leads to:∥∥∥∥∥F ((ωi, zi)i=1,...,n

)
−
∑
i∈S

ωizi

∥∥∥∥∥
2

≤ 4b
∑
i∈S

ωi∥zi∥2.
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However, the clipping threshold here requires an exact knowledge of the set S. Furthermore, it is unclear to what extend
making an approximate estimate of this clipping threshold allows us to derive robustness guarantees.

Remark F.3. A key point here is that this oracle clipping threshold corresponds to the unique minimizer within each
squared term of the sum. Hence, considering for instance the adaptive practical clipping rule of (He et al., 2023) leads to a
larger upper bound on the error.

F.2. Geometric trimming a.k.a. NNA

Let (ωi, zi)i∈[n] ∈ (R+ × Rd)n, and S ⊂ [n] such that
∑

i∈S ωi ≤ b,

We recall the definition of GTS: Assume w.l.o.g. that (∥zi∥)i∈[n] are sorted, i.e. ∥z1∥ ≤ . . . ≤ ∥zn∥, and denote
k∗(b) := max{k ∈ [n];

∑
i≥k ωi ≥ b} the index of the largest vector which has at least a weight b of vector largest than

him. (GTS) computes ω̃k∗(b) :=
∑

i≥k∗(b) ωi − b, and outputs

GTS
(
(ωi, zi)i∈[n]

)
= ω̃k∗(b)zk∗ +

∑
i<k∗(b)

ωizi.

Lemma F.4. Geometric trimming is (b, ρ) -robust with ρ = 4.

Proof. Let (ωi, zi)i∈[n] ∈ (R+ × Rd)n, and S ⊂ [n] such that
∑

i∈S ωi ≤ b, Without loss of generality we assume that
ω̃k∗(b) = 04.

Thus the aggregation rules write

F
(
(ωi, zi)i=1,...,n

)
:=

∑
i<k∗(b)

ωizi. =

n∑
i=1

ωizi1i not removed

Then, by applying the triangle inequality we have

∥∥∥∥∥F ((ωi, zi)i=1,...,n

)
−
∑
i∈S

ωizi

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
i∈S

ωizi1i removed +
∑
i∈S

ωizi1i not removed

∥∥∥∥∥∥
2

≤

∑
i∈S

ωi∥zi∥1i removed +
∑
i∈S

ωi∥zi∥1i not removed

2

.

As
∑n

i=1 ωi1i removed = b, it holds that

∑
i∈S

ωi ≤ b =

n∑
i=1

ωi1i removed =
∑
i∈S

ωi1i removed +
∑
i∈S

ωi1i removed

=⇒
∑
i∈S

ωi1i not removed ≤
∑
i∈S

ωi1i removed.

Furthermore, if i is removed and j is not, then ∥zi∥ ≥ ∥zj∥. It follows that∑
i∈S

ωi∥zi∥1i removed ≥
∑
i∈S

ωi∥zi∥1i not removed.

4Which can be ensured by adding artificially the entry (ω̃k∗(b),zk∗(b)).
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Consequently:∥∥∥∥∥F ((ωi, zi)i=1,...,n

)
−
∑
i∈S

ωizi

∥∥∥∥∥
2

≤
(
2
∑
i∈S

ωi∥zi∥1i removed

)2

= 4

(∑
i∈S

√
ωi∥zi∥

√
ωi1i removed

)2

≤ 4
∑
i∈S

ωi1i removed

∑
i∈S

ωi∥zi∥2 using Cauchy-Schwarz.

Thus: ∥∥∥∥∥F ((ωi, zi)i=1,...,n

)
−
∑
i∈S

ωizi

∥∥∥∥∥
2

≤ 4b
∑
i∈S

ωi∥zi∥2.

G. Proofs for D-SGD
Proof of Corollary 4.8. This proof hinges on the fact that the proof of Farhadkhani et al. (2023, Theorem 1) does not actually
require that communication is performed using NNA, but simply that the aggregation procedure respects (α, λ)-reduction,
which they prove in their Lemma 2. Then, all subsequent results invoke this Lemma instead of the specific aggregation
procedure. CS+-RG also satisfies (α, λ)-reduction, as we prove in Theorem 3.3. We can then use their bounds on the errors
out of the box.

Then, as T grows, and ignoring constant factors, only the first and last terms in their Theorem 3 remain, leading to, for
i ∈ H:

1

T

T∑
t=1

E
[∥∥∇fH(xt

i)
∥∥2] = O

(
Lσ

√
f(x0

H)− f(x∗)

T
(|H|−1 + C) + Cζ2

)
, (12)

where C = c1 + λ+ λc1, with c1 = α(1 + α)/(1− α)2. Note that we give O() versions of the Theorems for simplicity,
but Farhadkhani et al. (2023, Theorem 1) allows to derive precise upper bounds for any T ≥ 1.

One-step derivation. The one-step result is obtained by taking the values of α = 1− γ(1− δ) and λ = γδ. On the one
hand

c1 =
(1− γ(1− δ))(2− γ(1− δ))

γ2(1− δ)2
= O

(
1− γ(1− δ)

γ2(1− δ)2

)
.

On the other hand, λ = γδ ≤ 1 implies that C = O(c1). Both lead to

1

T

T∑
t=1

E
[∥∥∇fH(xt

i)
∥∥2] = O

Lσ

√
f(x0

H)− f(x∗)

T

(
|H|−1 +

1− γ(1− δ)

γ2(1− δ)2

)
+

1− γ(1− δ)

γ2(1− δ)2
ζ2

 , (13)

The result of Corollary 4.8 derives from the case γ ≪ 1 (otherwise, the guarantees are essentially the same as in Farhadkhani
et al. (2023)), and δ ≥ 1

H (otherwise there is essentially no Byzantine).

Multi-step derivation. In the previous case, we see that C is dominated by the c1 term since c1 >> λ. In particular,
the guarantees would increase if we were able to trade-off some α for some λ, which is possible by using multiple
communications steps. This is what we do, and take enough steps that c1 = o(λ) (i.e., α ≈ 0), so that C ≈ λ.
Following Corollary 3.4, it can be achieved by performing Õ(γ−1(1− δ)−1) steps of F-RG, where logarithmic factors are
hidden in the Õ notation. We then plug the multi-step λ value from Corollary 3.4 to obtain the result: as λ = O

(
δ

γ(1−δ)

)
,

the multi-communication steps convergence bound writes

1

T

T∑
t=1

E
[∥∥∇fH(xt

i)
∥∥2] = O

Lσ

√
f(x0

H)− f(x∗)

T

(
|H|−1 +

δ

γ(1− δ)2

)
+

δ

γ(1− δ)2
ζ2

 . (14)
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