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ABSTRACT

Semi-Discrete Optimal Transport (SDOT) transforms a continuous distribution to
a discrete distribution. However, existing SDOT algorithms for high dimensional
distributions have two limitations. 1) It is difficult to evaluate the quality of
the transport maps produced by SDOT algorithms, because computing a high-
dimensional Wasserstein distance for SDOT is intractable and 2) The transport map
cannot guarantee that all target points have the corresponding source points that
map to them. To address these limitations, we introduce the Maximum Relative
Error (MRE) and the L1 distance between the target distribution and the transported
distribution computed by an SDOT map. If the MRE is smaller than 1, then every
target point is guaranteed to have an area in the source distribution that maps to it.
We propose a statistical method to compute the lower and upper bounds of the MRE
and the L1 distance. We present an efficient Epoch Gradient Descent algorithm
for SDOT (SDOT-EGD) that computes the learning rate, number of iterations, and
number of epochs in order to guarantee an arbitrarily small expected value of the
MRE. Experiments on both low and high-dimensional data show that SDOT-EGD
is much faster and converges much better than state-of-the-art SDOT algorithms.
We also show our method’s potential to improve GAN training by avoiding the
oscillation caused by randomly changing the association between noise and the
real images.

1 INTRODUCTION

Optimal Transport (OT) is a principled way of measuring the discrepancy of two distributions by
transforming the source distribution to the target distribution. In recent years, OT has been widely
used in machine learning (Frogner et al., 2015; Arjovsky et al., 2017; Gulrajani et al., 2017; Liu et al.,
2018), computer vision (Salimans et al., 2018; Liu et al., 2019; An et al., 2020a), computer graphics
(Solomon & Vaxman, 2019; Lavenant et al., 2018), etc.

In Semi-Discrete Optimal Transport (SDOT) (Peyré et al., 2019), the source distribution is continuous
while the target distribution is discrete. Recently, a number of methods have applied SDOT to
generative models, an important topic in machine learning. An et al. (2020a) proposed an Auto-
Encoder OT model applying SDOT in the latent space to tackle mode collapse in generative models.
Further, An et al. (2020b) used SDOT to stabilize GAN training and produced highly realistic images.
Leclaire & Rabin (2019; 2020) used SDOT on image patches for texture synthesis and style transfer.

While being a promising approach, compared to its discrete OT counterpart, the optimization of
SDOT is underexplored, especially in high dimensional spaces. One may think of sampling from the
source distribution and turn the SDOT into a discrete OT problem. However, it has been shown that if
the discrete OT has an ε-suboptimal estimate of the SDOT in a d-dimensional space (Genevay et al.,
2019), then the sample complexity is O( 1

εd
), which is prohibitively expensive when d is large.

From the optimization point of view, existing SDOT algorithms can be broadly classified into two
categories: deterministic methods and stochastic methods. Deterministic methods (Kitagawa, 2014;
Kitagawa et al., 2016; Lévy, 2015; Mérigot, 2011; Gu et al., 2013) have faster convergence rates, but
require computing the measure of a polytope. This is intractable for high dimensional distributions,
and thus limits their applicability. Stochastic methods use Stochastic Gradient Descent (SGD) to
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optimize the SDOT objective and can be applied to any high dimensional distributions. SGD sets
the step size to Θ(1/t), where t is the iteration number, to ensure convergence (Peyré et al., 2019).
Averaging SGD (ASGD) (Aude et al., 2016; Peyré et al., 2019) uses a step size of Θ(1/

√
t) and

averages the past iterates. ASGD is proven to be faster than SGD (Peyré et al., 2019). Based on
ASGD, Leclaire & Rabin (2019; 2020) proposed a multi-layer approach which has been shown to be
much faster than single layer plain ASGD for SDOT. An et al. (2020a) used Monte-Carlo sampling
to estimate the gradient and then the Adam optimizer (Kingma & Ba, 2015) to optimize SDOT.

SDOT algorithms decompose the source space into Laguerre cells (Gu et al., 2013). Each cell is
mapped to a target point by the transport map outputted by an SDOT algorithm. For an optimal SDOT
algorithm, the total probability value of each cell is equal to the probability value of the corresponding
target point. However, all existing stochastic methods (Peyré et al., 2019; Leclaire & Rabin, 2019;
2020; An et al., 2020a) for SDOT in high dimensional space have two limitations. 1) They do not
have a mechanism to evaluate the quality of their computed transport maps, because computing a
high-dimensional Wasserstein distance for SDOT is intractable and 2) These SDOT algorithms (Peyré
et al., 2019; Leclaire & Rabin, 2019; 2020; An et al., 2020a) cannot guarantee that each target point
has an area in the source domain that maps to it. When training a GAN using SDOT, as shown in
Fig. 1, each cell in the noise space is mapped to a real image (e.g. a to A, b to B). If an image does
not have a corresponding area in the noise space that maps to it, we cannot sample a noise point that
can be trained to resemble this image. This potential mode collapse is a consequence of the second
limitation. One additional limitation for MC-Adam (An et al., 2020a) is that the sample complexity
of Monte-Carlo sampling to estimate the gradient of the SDOT dual objective is not established.

To address the above limitations, we make the following contributions:

1) An SDOT map transforms a continuous source distribution to a discrete target distribution. If
there is at least one probability value equal to 0 in the transported target distribution, this means that
there is at least one target point that does not have an area in the source domain that maps to it. It
further means that the relative error of the probability values for this target point is 1. Thus, if we
force the Maximum value of the Relative Error (MRE) to be less than 1, then all probability values
in the transported distribution will be greater than 0 and each target point is guaranteed to have a
corresponding area in the source domain that maps to it.

2) We use the MRE and the L1 distance between the target distribution and the transported distribution
obtained by an OT map to measure the quality of an SDOT map. The L1 distance is the L1 norm
of the gradient of the dual SDOT objective. We propose statistical methods to compute the lower
bounds and upper bounds of the MRE and the L1 distance. We establish the number of Monte-Carlo
samples to compute the bounds of the MRE and the L1 distance.
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Figure 1: SDOT matched GAN training mechanism. a,
b in the noise space are mapped toA andB in the image
space, respectively.

3) We present an efficient Epoch Gradient
Descent algorithm for SDOT (SDOT-EGD)
that computes the learning rate, number of
iterations and number of epochs in order
to guarantee an arbitrarily small expected
value of the MRE.

4) Experiments on 1D toy data show that
our computed MRE lower and upper bounds
are very close to each other and the real
MRE and L1 distance always lie in-between
the lower and upper bounds. Experiments
on 1D, 2D, 256D toy data and 256D real-
world data show that SDOT-EGD con-
verges significantly better and faster than
state-of-the-art SDOT algorithms.

5) We propose a GAN training mechanism
that uses SDOT-EGD to match the noise
points and the real image during GAN train-
ing shown in Fig. 1, where each cell in the
noise space is mapped to an real image. Experiments on the CelebA-HQ dataset (Karras et al.,
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2018) and a COVID-19 X-ray image dataset (Konwer et al., 2021) show that our training mechanism
improves GAN training performance by 20%-30% in most cases.

2 SEMI-DISCRETE OPTIMAL TRANSPORT

The Monge-Kantorovich dual Optimal Transport (OT) formulation (Villani, 2008) is given as:
Problem 1. Given two bounded domains X and Y and their probability measures µ ∈ P(X), and
ν ∈ P(Y ), respectively, find a function v to solve

max
v

w(v) =

{∫
vc(x)dµ(x) +

∫
v(y)dν(y)

}
(1)

where c : X × Y 7→ [0,+∞] is the transport cost function, and vc(x) is the c-transform of v defined
as: vc(x) = miny∈Y {c(x, y)− v(y)}.

Consider µ and ν as the source and target distributions, respectively. Problem 1 is the continuous OT
case. In this work, we focus on the semi-discrete OT case, i.e., the source distribution µ is continuous,
but the target distribution ν is discrete. Let Ŷ = {yi ∈ Rd}ni=1 denote a finite set that contains n data
points. Denote v(i) = v(yi), i = 1, ..., n. ν is a discrete target distribution with probability values in
ν being νi, i = 1, ..., n. Let νmin be the minimum probability value in ν, i.e., νmin = min{νi}ni=1,
Let I denote the set {1, 2, ..., n}. The Semi-Discrete OT (SDOT) can be formulated as maximizing

w(v) =

{∫
min
i∈I

(
c(x, yi)− v(i)

)
dµ(x) +

∑
i∈I

v(i)νi

}
(2)

Let h(x, v) = −mini∈I
(
c(x, yi)− v(i)

)
−
∑
i∈I v(i)νi and f(v) = Ex∼µh(x, v). Then we have

w(v) = −f(v). Maximizing Eq. (2) is equivalent to minimizing f(v). Since f(v) has the form of
the expectation of the function h(x, v), it allows us to solve SDOT using Stochastic Gradient Descent
(SGD) methods. The gradient of f(v) w.r.t. each element of v is (Kitagawa et al., 2019):

∂v(i)f(v) =

∫
Li(v)

dµ(x)− νi (3)

where Li(v) is defined as Li(v) = {x ∈ X : ∀j 6= i, c(x, yi)− v(i) ≤ c(x, yj)− v(j)}. Each Li(v)
is called a Laguerre cell. The Laguerre cells form a partition of the space X , i.e. X = ∪iLi(v). In
SDOT, all points in Li(v) are transported to yi. The gradient of h(x, v) w.r.t. each element of v given
x is:

∂v(i)h(x, v) = 1Li(v)(x)− νi (4)

where 1Li(v) is an indicator function of Li(v).

Stochastic Gradient Descent (SGD) is commonly used to optimize SDOT. To ensure the convergence,
the learning rate is typically Θ(1/t), where t is the iteration number. SGD becomes slow when t
becomes large. Instead, almost all SDOT algorithms are based on Averaging Stochastic Gradient
Descent (ASGD) (Peyré et al., 2019; Aude et al., 2016). ASGD uses a Θ(1/

√
t) learning rate and

guarantees that the SDOT objective converges in O(1/
√
T ), where T is the total number of iterations.

3 SEMI-DISCRETE OPTIMAL TRANSPORT USING EPOCH GRADIENT DESCENT

In this section, we introduce the Maximum Relative Error (MRE) and propose probabilistic bounds
to evaluate the quality of an SDOT map outputted by an SDOT algorithm. Then, we will propose
ASGD with a fixed step size and an efficient epoch gradient descent algorithm for solving SDOT. We
start with an assumption.
Assumption 1. We assume that all target points have probability values greater than 0, i.e., ∀i ∈
I, νi > 0.

Assumption 1 is easily satisfied since we can remove the points that have zero probability value out
of the target point set Ŷ .
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3.1 THE MAXIMUM RELATIVE ERROR (MRE)

A Semi-Discrete Optimal Transport (SDOT) algorithm divides the space of the source distribution
into non-overlapping Laguerre cells. All the current stochastic optimization methods aim to achieve
an ε-suboptimal SDOT objective. However, for SDOT, an ε-suboptimal objective value cannot truly
reflect how well the source space is divided. For example, there might not exist regions in X that
map to certain target points, even though the SDOT objective is ε-suboptimal, especially when the
number of target points, n, is large.

In this subsection, we introduce the Maximum Relative Error (MRE) to evaluate how well the source
space is divided using an SDOT map. Let p denote the transported distribution from the source
distribution µ using the SDOT output v, i.e. pi =

∫
Li(v)

dµ(x) denoting the total probability value of
the Laguerre cell Li(v). If there is a probability value in p that equals 0, e.g. pj = 0, meaning that
there is no area in the source domain that is mapped to yj , then the relative error between pj and νj
is |pj − νj |/νj = 1. Having the relative errors for all pis and νis be less than 1 guarantees that all
target points have preimages.

Therefore, we propose to use the Maximum Relative Error (MRE) between two probability distribu-
tions to measure the quality of an SDOT map produced by an SDOT algorithm:

MRE(ν, p) = max
i∈I

|pi − νi|
νi

. (5)

MRE < 1 indicates all target points have preimages. This is important when applying SDOT to
generative models such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) where
mode collapse will happen when not all target points have preimages.

3.2 SDOT MAP EVALUATION

In SDOT, the evaluation of how good an SDOT map is in high dimensional space remains an open
problem. This problem boils down to computing the gradient of an SDOT objective, and further
to computing the volume of each Laguerre cell in high dimensional space, which is intractable in
practice (Leclaire & Rabin, 2020). Instead in this paper we propose a probabilistic approximation for
SDOT quality evaluation. In the following theorem, we present the main results that give probabilistic
bounds for evaluating an SDOT map, the L1 distance between the empirical transported distribution
and the target distribution, and the L1 distance between the estimated gradient and the true gradient
of an SDOT objective.
Theorem 1. Suppose Assumption 1 is satisfied, given a continuous source distribution µ, a discrete
target distribution ν, target data points Ŷ = {yi ∈ Rd}ni=1, SDOT output v, a precision ε∗ and a

confidence 1− δ, 0 < δ < 1, let ξ =
ε2∗

4(
√
1+ε∗+1)2

, and let p be the discrete transported distribution
using v. Draw d1/(4δξνmin)e i.i.d. samples from µ and compute the empirical discrete transported
distribution p̂ using v. Let g = p − ν be the gradient and ĝ = p̂ − ν be the empirical gradient of
the SDOT objective at v. Let d̂

def
= MRE(ν, p̂) = maxni=1{|p̂i − νi|/νi} be the empirical MRE, d1 =

‖p̂−ν‖1 be the empirical L1 distance between p̂ and ν. Let ∆ = 4
√
δξnνmin +

√
8δ log(1/δ)ξνmin,

and ω =

√
ξ2 + d̂ξ + ξ. Then, with probability of at least 1− δ, each of the following holds: 1

1) the lower bound of MRE(ν, p) is εlb = max(d̂− 2ω + 2ξ, 0).
2) the upper bound of MRE(ν, p) is εub = min(d̂+ 2ω + 2ξ, (1− νmin)/νmin).
3) the L1 distance between p̂ and p is bounded as ‖p̂− p‖1 ≤ ∆.
4) the L1 distance between ĝ and g is bounded as ‖ĝ − g‖1 ≤ ∆.
5) the L1 distance between p and ν is bounded as max(d1 −∆, 0) ≤ ‖p− ν‖1 ≤ min(d1 + ∆, 2).

The above theorem shows the lower and upper bounds of MRE and the L1 distance using Monte-Carlo
sampling with d1/(4δξνmin)e samples. We use MRE and the L1 distance between p and ν to estimate
the quality of an SDOT map with lower and upper bounds given by Theorem 1 1), 2) and 5). We
set a precision ε∗ and compute ξ using ε∗. The MRE lower bound εlb is computed in 1) and the MRE
upper bound εub in 2). 3) gives us the bound of the L1 distance between the empirical transported

1All theorem proofs can be found in the appendix.
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distribution p̂ and the real transported distribution p. 4) gives the bound of the L1 distance between
the estimated gradient and the true gradient of the SDOT objective evaluated at v. Interestingly, 3)
and 4) do not depend on the data dimension d. This is very appealing because computing the exact
volume of the Laguerre cells in high dimensional space is intractable. In practice, we can set a desired
confidence 1− δ and precision ε∗, and use p̂ to approximate p. To estimate the L1 distance between
the target distribution ν and the transported distribution p, we need to compute the empirical L1

distance d1 and use 5) to compute the lower bound and upper bound of the true L1 distance. The
smaller the ε∗, the smaller the gap between the upper bound and the lower bound.

The algorithm for computing the MRE bounds is presented in Algorithm 1. In this algorithm, we
simply use the average of the theoretical MRE lower bound and upper bound to estimate the real MRE.
The time complexity of this algorithm is O(dn/(ε2∗νmin)).

3.3 AVERAGING STOCHASTIC GRADIENT DESCENT WITH A FIXED STEP SIZE

Algorithm 1 Estimate the Maximum Relative Er-
ror (Estimate-MRE)

1: Input: data Y = {yi}ni=1, source distribution
µ, target discrete distribution {νi}ni=1, SDOT
output v, confidence 1− δ, precision ε∗.

2: Output: εlb, εub, εest
3: Let νmin = minni=1{νi}, ξ =

ε2∗
4(
√
1+ε∗+1)2

4: Let T = d1/(4δξνmin)e, initialize ḡ = 0
5: for j = 1 to T do
6: Sample x ∼ µ
7: Compute the gradient g ← ∇vh(x, v)

8: Update average ḡ = j−1
j ḡ + 1

j g

9: end for
10: Compute p̂← ḡ + ν

11: Compute d̂ = maxni=1{|p̂i − νi|/νi}

12: Let εlb = d̂− 2(

√
ξ2 + d̂ξ + ξ − ξ)

13: MRE lower bound εlb = max(εlb, 0)

14: Let εub = d̂+ 2(

√
ξ2 + d̂ξ + ξ + ξ)

15: MRE upper bound εub = min(εub, (1 −
νmin)/νmin)

16: Estimated MRE εest = (εlb + εub)/2

In this subsection, we analyze the convergence
of Averaging SGD with a Fixed step size (AS-
GDF) for SDOT, since our SDOT-EGD is built
upon ASGDF.

Suppose X is bounded. Denote the maximum
transport cost between X and Ŷ by C∞ =
supx,y c(x, y). In the t-th iteration of ASGDF,
t ≥ 1, by randomly drawing a sample xt from
µ, we obtain a function ft(vt−1) = h(xt, vt−1)
according to f(v). The SGD recursion of v is
expressed as: vt = vt−1 − γf ′t(vt−1), where f ′t
is the gradient of ft.

As MRE is an effective indicator of how well the
source space is divided, we propose an algorithm
that minimizes the MRE. From the definition of
MRE in Eq. (5), we observe that MRE is closely
related to the gradient norm of the objective
function f(v). Let v̄ = 1

T

∑T
t=1 vt−1. In the

following theorem, we give the optimal step
size γ and the bound of the expectation of the
gradient norm of f at v̄ for a fixed number of
total iterations T .

Theorem 2. With constant step size γ =√
nC∞+1

12
√
T

, the expectation of the gradient norm

of function f at v̄ is bounded by E ‖f ′(v̄)‖2 ≤ 4
T

(
4√
T

+ 10 + 6
√
nC∞

)2
.

The step size in Theorem 2 is O(1/
√
T ), with detailed parameters computed for SDOT, and the

convergence rate of the expectation of the gradient norm of the SDOT objective is O(1/T ). These
convergence results match the state-of-the-art convergence results in Bach (2014).

We want to design an ASGDF algorithm that outputs an SDOT map using v̄ such that MRE(ν, p) ≤ ε
for any given ε > 0. Based on Theorem 2, we show how to set the step size and the number of
iterations in ASGDF in order to achieve a desired expected value of the MRE in the following theorem.

Theorem 3. Suppose Assumption 1 is satisfied, ∀ε > 0, with constant step size γ = ενmin

24 ·
(1+
√
nC∞)

(14+6
√
nC∞)

and number of iterations T = 4(14+6
√
nC∞)2

ε2ν2
min

, we have E[MRE (ν, p)] ≤ ε.

In Theorem 3, the transport cost does not play an important role in choosing γ. For any transport cost
function, and any maximum transport cost C∞, (1 +

√
nC∞)/(14 + 6

√
nC∞) ranges in [1/14, 1/6].

If the target distribution ν is uniform, then γ is proportional to 1/n.
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Algorithm 2 Averaging Stochastic Gradient De-
scent with Fixed Step Size for SDOT (ASGDF)

1: Input: data Y = {yi}ni=1, source distribution
µ, target discrete distribution {νi}ni=1, initial
v, confidence 1− δ, precision ε∗, current pre-
cision εk, maximum transport cost C∞

2: Output: v̄, v, εlb, εub, εest
3: Let νmin = minni=1{νi}, ξ =

ε2∗
4(
√
1+ε∗+1)2

4: Let γk = εk · νmin/24 · (1 +
√
nC∞)/(14 +

6
√
nC∞)

5: Let Tk = d4(14 + 6
√
nC∞)/(ε2kν

2
min)e

6: Let Te = dn/ξe
7: for j = 1 to Tk do
8: if j mod Te equals 0 then
9: εlb, εub, εest← Estimate-MRE(Y , µ, ν, v̄,

1− δ, ε∗)
10: if εest < εk then
11: return
12: end if
13: else
14: Sample x ∼ µ
15: Compute the gradient g ← ∇vh(x, v)

(Eq. (4))
16: Update v ← v − γkg
17: Update average v̄ ← j−1

j v̄ + 1
j v

18: end if
19: end for

The ASGDF for SDOT is shown in Algorithm 2.
In line 4 and 5, we compute the optimal step size
and the maximum number of iterations. Line 14-
17 are standard ASGD operations. Line 6, 9-12
are implemented to check if we can stop early.
We evaluate the MRE for the current v̄. We use
the εest to approximate the real MRE. εest < εk
means that the current v̄ is good enough and
we return the v̄ . The time complexity of this
algorithm is O

(
dn2C2

∞/(ε
2ν2min)

)
.

3.4 EPOCH GRADIENT
DESCENT FOR SDOT (SDOT-EGD)

Although the ASGDF algorithm ensures the con-
vergence for any given ε, the objective decreases
slowly in early iterations. To make ASGDF
converge quickly in early iterations, motivated
by the epoch gradient descent approach (Hazan
& Kale, 2014), we design an Epoch Gradient
Descent (EGD) algorithm for solving SDOT
(SDOT-EGD). 2

We list the steps of the SDOT-EGD algorithm
in Algorithm 3. The algorithm initializes εk =
2n, k = 1. At the end of each epoch, we de-
crease εk by half. In each epoch, we run the
ASGDF (Algorithm 2) to update the v obtained
from the last epoch. The algorithm terminates
and returns v̄ when the current εk < ε∗/2 or the
estimated MRE is less than or equal to ε∗. The maximum number of epochs is dlog2(8n/ε∗)e.

Algorithm 3 Epoch Gradient Descent for SDOT
(SDOT-EGD)

1: Input: data Y = {yi}ni=1, source distribution
µ, target discrete distribution {νi}ni=1, confi-
dence 1− δ, precision ε∗, maximum transport
cost C∞.

2: Output: v̄.
3: Initialize ε1 = 2n, k = 1, εest ← ε1, and
v = 0.

4: while εk ≥ ε∗/2 and εest > ε∗ do
5: v̄, v, εlb, εub, εest← ASGDF(Y, µ, ν, v, 1−

δ, ε∗, εk, C∞)
6: k = k + 1, εk = εk−1/2
7: end while

In this manner, the algorithm uses a larger step
size at the start of the optimization. Thus, the
objective decreases fast in the beginning. As the
εk becomes smaller, the step size also decreases
to ensure convergence. The time complexity of
Algorithm 3 is the same as that of Algorithm 2.

4 APPLICATIONS TO GANS

In traditional GAN training methods, a batch of
randomly sampled noise points and a batch of
randomly sampled real data are used to train a
GAN in each iteration. However, this can cause
oscillations in GAN training. For example, a1
and a2 are noise points that are very close to
each other in a local neighbourhood. A and B
are real images that are very far from each other. In a GAN training iteration, a1 and image A are
sampled to train the GAN. Hence, the generator is trained to generate an image that is similar to A
using a1. But in the next iteration, a2 and image B could be sampled to train a GAN. The generator
is trained to generate an image that is similar to B using a2. Therefore, the generator could be trained
to generate very different images using noise points from the same local area in different training
iterations. This leads to unstable GAN training.

We propose the SDOT matched GAN training mechanism shown in Fig. 1, where G is a Generator, a,
b are noise points, and A, B are real images. The leftmost box is the noise space and the rightmost
image is the data manifold. The data manifold has a low-dimensional embedding in the feature space.

2Despite its name, SDOT-EGD is in fact a stochastic method.
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The feature space and the noise space have the same dimensionality. We use a feature extractor (See
Sec. 5.3) to extract image features. To train a GAN, the feature extractor is fixed and an SDOT map
is computed in advance from the noise space to the feature space. As each region in the noise
space is mapped to an image feature using the SDOT map and the image feature corresponds to a real
image, we have a mapping from the noise points to the real images. For example, in Fig. 1, noise in
the orange cell is mapped to image A and noise in the blue cell is mapped to image B, consistently
throughout the whole GAN training process. A generator is trained to generate images similar to
image A using noise points in the orange cell and images similar to image B using noise points in
the blue cell. This stabilizes GAN training. The detailed training process is in the appendix.

5 EXPERIMENTS

In the experiments, we compare the proposed SDOT-EGD against the ASGD (Peyré et al., 2019;
Aude et al., 2016) because it is widely used in optimizing SDOT. We compare against the recently
proposed MC-Adam (An et al., 2020a) and the 2-layer ASGD (Leclaire & Rabin, 2020). We also
compare with the original Vanilla-EGD (Hazan & Kale, 2014) because SDOT-EGD is an EGD-type
method. We experiment on 1D, 2D and high dimensional toy data, and high dimensional real data.

5.1 1D EXPERIMENTS

The SDOT has a closed form solution for 1D data (Leclaire & Rabin, 2020). We use the exact solution
to compute MRE and the L1 distance between p nad ν. In this experiment, the source distribution µ is
a uniform distribution in [0, 1]. We sample 1000 target points in [−1, 1] with equal intervals between
every two adjacent points. The target probability for each point is 1/1000.

In Fig. 2 a) and d), the shaded area depicts the computed lower and upper bounds given by our
theoretical analysis. The solid curves in a) and d) are exact values. The exact values always lie inside
the computed bounds. This verifies the correctness of our theoretical analysis of the bounds. Note
that the shaded area in Fig. 2 (a) is too thin to be easily visible because the average upper bound and
lower bound gap is smaller than 0.2. In both figures, SDOT-EGD converges rapidly to 0, while other
curves converge at high values. This demonstrates the effectiveness of SDOT-EGD.

5.2 2D EXPERIMENTS

In 2D experiments, the source distribution µ is uniformly distributed in [0, 1]× [0, 1]. We randomly
sample 10000 points in [0, 1] × [0, 1] as target points, with each point having probability value of
1e-4. See Fig. 3 f) for the distribution of these target points. Therefore, an optimal SDOT algorithm
should divide [0, 1]× [0, 1] into 10000 Laguerre cells, with the area of each cell equal to 1e-4.

Fig. 3 visualizes the partition of the space by various methods. Each cell is colored according to
its area from small (blue) to large (red). We observe that SDOT-EGD divides the space into more
uniformly distributed cells.

Since we do not compute the exact MRE and L1 distance between p and ν for 2D data, we compute
the estimated MRE and L1 distance which are the average values of their lower and upper bounds,
respectively. We plot the estimated MRE and L1 curves in Fig. 2 b) and e) as well as their bounds.
Fig. 2 b) shows that SDOT-EGD can achieve much smaller MRE than other methods close to the
1.3× 108 iteration point. Fig. 2 c) shows that SDOT-EGD converges faster than other methods.

5.3 HIGH DIMENSION EXPERIMENTS

To see whether these methods scale to high dimensional data, we evaluate the performance of different
methods in the 256D space. We evaluate various methods on both real-world data and toy data.

The CelebA-HQ dataset contains 29970 unique images. We downsize each image to 16× 16 size and
transform the RGB images to gray images. The pixel values are re-scaled in [−1, 1]. The 16× 16
gray images become 256D vectors. These 256D vectors are regarded as features and used as the
target distribution. The source distribution is a uniform distribution in [−1, 1]256. Fig. 2 (c) and (f)
show the performance of the various methods. In Fig. 2 (c), SDOT-EGD always has the lowest MRE.
After 70M iterations, SDOT-EGD’s MRE is close to 0.2. This guarantees that each image has an area

7



Under review as a conference paper at ICLR 2022

0 500 1000 1500 2000 2500 3000

Iterations (x10000)

0

5

10

15

20

25

M
ax

im
um

 R
el

at
iv

e 
E

rr
or

 (
M

R
E

)

MC-Adam
Vanilla EGD
ASGD
2-layer ASGD
SDOT-EGD

0 0.5 1 1.5 2

Iterations (x10000) 104

0

10

20

M
ax

im
um

 R
el

at
iv

e 
E

rr
or

 (
M

R
E

)

MC-Adam
Vanilla EGD
ASGD
2-layer ASGD
SDOT-EGD

2 4 6 8 10 12 14 16 18

Iterations (x1e7)

0

2

4

6

8

10

12

14

16

M
ax

im
um

 R
el

at
iv

e 
E

rr
or

 (
M

R
E

)

MC-Adam
Vanilla EGD
ASGD
2-layer ASGD
SDOT-EGD

a) MRE for 1D toy data. b) MRE for 2D toy data. c) MRE for 256D real face data.
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d) L1 distance for 1D toy data. e) L1 distance for 2D toy data. f) L1 distance for 256D real face data.

Figure 2: Comparison of MRE and L1 distance in 1D and 2D toy data, and 256D real face data.
In each figure, the shaded area depicts the computed lower bound and upper bound given by our
theoretical analysis. The solid curves in a) and d) are real MRE values. The computed bounds coincide
very well with the real MRE values. This verifies the correctness of our theoretical analysis of the
bounds for SDOT Map evaluation. Solid curves in b) c) e) and f) are estimated curves using the mean
of the lower bound and upper bound. The MRE shaded bands are much thinner than the L1 distance
ones. This means that MRE evaluates SDOT maps more accurately. In all experiments, the proposed
SDOT-EGD converges much better and faster than other methods.

a) MC-Adam. b) Vanilla-EGD. c) ASGD.

d) 2-layer ASGD. e) SDOT-EGD. f) Target distribution.

Figure 3: Laguerre cell partition. Cells are colored per their area from small (blue) to large (red).
Cell partition from our method SDOT-EGD is more uniform. MC-Adam has high cell area variance.
ASGD and 2-layer ASGD have some cells that are large. The vanilla-EGD has large cells in the
center, and has small cells in the lower-right and upper-left corners.
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Figure 4: Images generated by GAN-0GP (SDOT-EGD). Fist row shows images generated on the
CelebA-HQ dataset, and the second row show images generated on the COVOC dataset.

in the source domain that maps to it. All the other methods in Fig. 2 (c) have MRE values greater
than 1. Fig. 2 (f) shows the results using L1 distance. SDOT-EGD surpasses the 2-layer ASGD after
70M iterations and is the best method among all the methods. This shows that SDOT-EGD not only
works well with MRE but also achieves lower L1 distance compared to state-of-the-art methods. The
experiments of 256D toy data can be found in the appendix.

5.4 GAN EXPERIMENTS

We evaluate the SDOT matched training mechanism in training GANs. We apply the SDOT-EGD
on matching noise points and real images in GAN training. We denote the SDOT-EGD matched
training mechanism using WGAN-GP (Gulrajani et al., 2017) by WGAN-GP (SDOT-EGD) and using
GAN-0GP by GAN-0GP (SDOT-EGD). We perform experiments on two datasets: The CelebA-HQ
dataset (Karras et al., 2018) and a COVID-19 Outcome dataset (COVOC) (Konwer et al., 2021; Zhou
et al., 2021) containing 248 X-ray images. More details of this dataset could be found in the appendix.
The image size used in our experiments is 256× 256.

Method CelebA-HQ COVOC
AE-OT-GAN 7.20 -
WGAN-GP 12.94 96.49

WGAN-GP (SDOT-EGD) 9.18 94.91
GAN-0GP 9.82 98.76

GAN-0GP (SDOT-EGD) 6.99 76.30

Table 1: FID of the various methods. Image size on both
datasets are 256× 256.

Table 1 lists the Fréchet Inception Dis-
tances (FIDs) (Heusel et al., 2017; Se-
gal et al., 2021) of different methods.
On the CelebA-HQ dataset, GAN-0GP
(SDOT-EGD) supasses AE-OT-GAN and
achieves the state-of-the-art FID of 6.99
in 256× 256 image size. On the CelebA-
HQ datset, WGAN-GP (SDOT-EGD) re-
duces the FID of WGAN-GP from 12.94
to 9.18 and GAN-0GP (SDOT-EGD) re-
duces the FID of GAN-0GP from 9.82 to
6.99. On the COVOC dataset, GAN-0GP
(SDOT-EGD) reduces the FID of GAN-0GP from 98.76 to 76.30. The performance improvements
are bewteen 20% - 30%. This shows the effectiveness of the SDOT matching mechanism in GAN
training. Fig. 4 shows the face images and X-ray images generated by GAN-0GP (SDOT-EGD).
These images look realistic. Please see the appendix to see more generated images.

6 CONCLUSION

In this paper, we proposed to use the MRE and the L1 distance to measure the performance of an
SDOT map. We proposed to compute the lower and upper bounds of the MRE and the L1 distance.
The number of samples of Monte-Carlo sampling to compute the bounds for SDOT is established.
Furthermore, we proposed the SDOT-EGD algorithm that can achieve an arbitrarily small expected
value of the MRE. Experiments show that SDOT-EGD performs much better than state-of-the-art
SDOT algorithms. We proposed to apply SDOT-EGD in GAN training. Experiments show that a
GAN that uses SDOT-EGD to match the noise points and real data can significantly improve the
performance of its counterpart that does not use SDOT-EGD.
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ETHICS STATEMENT

The GAN application of this paper generates realistic synthetic images, that can be used for fraudulent
or misinformation purposes which would be a potential negative social impact shared with most GAN
methods. Any methods that try to mitigate potential biases in CelebA-HQ would also address bias
concerns for our paper. The COVOC dataset used in our paper is a de-identified dataset (via DICOM
deidentification process) and does not contain personally identifiable information. The COVOC
dataset is obtained after Institutional Review Board (IRB) approval as non-human subjects research.

REPRODUCIBILITY STATEMENT

The assumption of using SDOT-EGD is given in Section 3. The proofs of all the theorems in the
paper are provided in Section A.2. In Section A.3.2 and A.3.3, we run SDOT-EGD multiple times
and plot the error bars in Fig. 7. The standard deviations are very small when SDOT-EGD terminates,
indicating SDOT-EGD is reproducible.
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A APPENDIX

A.1 THE MAXIMUM RELATIVE ERROR

The Maximum Relative Error (MRE) between the transported discrete distribution p, and the target
distribution ν is defined as:

MRE(ν, p) = max
i∈I

|pi − νi|
νi

. (6)

Fig. 5 shows the relationship between different MRE values and the quality of their respective SDOT
maps. The source distribution is a continuous uniform distribution in [0, 1] × [0, 1], shown in a)
and b), and the discrete target distribution has 5 points , shown in c), with each point having the
probability of 0.2. Fig. 5 a) and b) show the source space is divided by two SDOT maps. An optimal
SDOT algorithm should divide the source space into 5 regions with equal area. In a), the source space

12
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a) MRE = 1.8 b) MRE = 0.05 c) Target distribution.

Figure 5: An illustration of the relationship between the MREs and the quality of SDOT maps. The
source distribution is a continuous uniform distribution in [0, 1]× [0, 1], shown in a) and b), and the
discrete target distribution has 5 points , shown in c), with each point having the probability of 0.2.
Fig. 5 a) and b) show the source space is divided by two SDOT maps. An optimal SDOT algorithm
should divide the source space into 5 regions with equal area. In a), the source space is only divided
in 3 regions, and thus 2 target points do not have regions in the source space that are mapped to them.
The MRE in a) is 1.8 > 1. In b), the source space is divided into 5 regions, with each region having
approximately the same area. The MRE is 0.05 < 1. b) is much better than a). This shows an example
of using MRE to measure the qualities of SDOT maps.

is only divided in 3 regions, and thus 2 target points do not have regions in the source space that are
mapped to them. The MRE in a) is 1.8 > 1. In b), the source space is divided into 5 regions, with each
region having approximately the same area. The MRE is 0.05 < 1. b) is much better than a). This
shows an example of using MRE to measure the quality of SDOT maps.

A.2 PROOFS OF THEOREMS

Next we introduce Theorem 4 in Chan et al. (2014); Diakonikolas (2014) and propose Lemma 1 that
is important to prove Theorem 1.
Theorem 4. (Chan et al., 2014; Diakonikolas, 2014) Let p be a distribution over [n]. Let p̂ be an
empirical distribution over n obtained by drawing K samples from p, then
1)

E[‖p̂− p‖1] ≤ 2
√
n/K (7)

and
2) for each i ∈ [n], we have

E[|p̂i − pi|] ≤
√
pi(1− pi)/K (8)

Lemma 1. Let p be a distribution over [n]. Let p̂ be an empirical distribution over n obtained by
drawing K samples from p. Then with probability of at least 1− δ, 0 < δ < 1, each of the following
holds
1)

‖p̂− p‖1 ≤ 2
√
n/K +

√
2 log(1/δ)/K (9)

2) for each i ∈ [n],
|p̂i − pi| ≤ κ

√
pi(1− pi)/K (10)

where κ = 1/
√
δ.

Proof. 1) The proof is motivated by the proof in Lemma 3.1 Acharya et al. (2015). Let Y = ‖p̂− p‖1.
We can write Y = g(s1, ..., sK), where g is a function, sj ∼ p and samples sj , j ∈ [K], are mutually
independent. As the L1 distance between any two probability measures are upper bounded by 2, the
function g satisfies the following Lipschitz property:

|g(s1, ..., sj , ..., sK)− g(s1, .., s
′
j , ..., sK)| ≤ 2

K

for any j ∈ [K]. Using McDiarmid’s inequality (McDiarmid, 1989), we have P(Y > E[Y ] + η) ≤
exp(−η2K/2),∀η > 0. Therefore, P(Y > 2

√
n/K + η) ≤ P(Y > E[Y ] + η) ≤ exp(−η2K/2).

Let δ = exp(−η2K/2), we have Eq. (9).
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2) Each i in Eq. (10) can be proved independently. For a specific i, let us consider Poisson trials
Xj , j = 1, ...,K, where each Xj is a Bernoulli random variable with success probability being pi,
i.e., P(Xj = 1) = pi and P(Xj = 0) = 1 − pi, ∀j = 1, ...,K. Therefore, the expectation of each
Xj is E(Xj) = pi, and the variance is V ar(Xj) = pi(1 − pi). P(Xj = 1) = pi means that, in
the j-th Poisson trial, the probability of drawing the j-th sample falls in the i-th histogram bin is
pi. Let X = 1

K

∑K
j=1Xj , and thus, X follows a Poisson binomial distribution. For the Poission

binomial distribution, E(X) = pi and V ar(X) = pi(1− pi)/K. So, the standard deviation of X is
σ =

√
pi(1− pi)/K. Eq. (10) is to bound P(|X − pi| ≤ κσ). Using the Chebyshev bound we have

P(|X − pi| ≤ κσ) ≥ 1− 1
κ2 . Let δ = 1

κ2 we obtain Eq. (10).

A.2.1 PROOF OF THEOREM 1

We restate Theorem 1 below:
Theorem 1. Suppose Assumption 1 is satisfied, given a continuous source distribution µ, a discrete
target distribution ν, target data points Ŷ = {yi ∈ Rd}ni=1, SDOT output v, a precision ε∗ and a

confidence 1− δ, 0 < δ < 1, let ξ =
ε2∗

4(
√
1+ε∗+1)2

, and let p be the discrete transported distribution
using v. Draw d1/(4δξνmin)e i.i.d. samples from µ and compute the empirical discrete transported
distribution p̂ using v. Let g = p − ν be the gradient and ĝ = p̂ − ν be the empirical gradient of
the SDOT objective at v. Let d̂

def
= MRE(ν, p̂) = maxni=1{|p̂i − νi|/νi} be the empirical MRE, d1 =

‖p̂−ν‖1 be the empirical L1 distance between p̂ and ν. Let ∆ = 4
√
δξnνmin +

√
8δ log(1/δ)ξνmin,

and ω =

√
ξ2 + d̂ξ + ξ. Then, with probability of at least 1− δ, each of the following holds:

1) the lower bound of MRE(ν, p) is εlb = max(d̂− 2ω + 2ξ, 0).
2) the upper bound of MRE(ν, p) is εub = min(d̂+ 2ω + 2ξ, (1− νmin)/νmin).
3) the L1 distance between p̂ and p is bounded as ‖p̂− p‖1 ≤ ∆.
4) the L1 distance between ĝ and g is bounded as ‖ĝ − g‖1 ≤ ∆.
5) the L1 distance between p and ν is bounded as max(d1 −∆, 0) ≤ ‖p− ν‖1 ≤ min(d1 + ∆, 2).

Proof. We prove 1) and 2) together. The trivial lower bound in 1) is 0 and the trivial upper bound in
2) is (1− νmin)/νmin. Let κ = 1/

√
δ. Suppose we draw dn/εe samples from the source distribution

µ, and use v to compute the empirical transported distribution p̂. Without loss of generality, suppose
d̂ is achieved at dimension j, i.e.,

d̂ = |p̂j − νj |/νj ≥ |p̂k − νk|/νk, ∀k ∈ [n], k 6= j (11)

Let d∗ def
= MRE(ν, p) = maxni=1{|pi − νi|/νi}. Without loss of generality, suppose d∗ is achieved at

dimension i, i.e.,
d∗ = |pi − νi|/νi ≥ |pk − νk|/νk, ∀k ∈ [n], k 6= i (12)

Let νmin denote the minimum value in ν. Hence,
d∗ = |pi − νi|/νi

=

∣∣∣∣(piνi − 1

)
−
(
p̂i
νi
− 1

)
+

(
p̂i
νi
− 1

)∣∣∣∣
≤ |pi − p̂i|

νi
+

∣∣∣∣ p̂iνi − 1

∣∣∣∣
≤
κ
√
εpi/n

νi
+ d̂ with probability of at least 1− δ, by applying Lemma 1 and Eq. (11)

= κ

√
ε

nνi
·
√
pi
νi

+ d̂

≤ κ
√

ε

nνmin
·
√
pi
νi

+ d̂

(13)

Therefore, with probability of at least 1− δ, we have

d∗ =

∣∣∣∣piνi − 1

∣∣∣∣ ≤ κ√ ε

nνmin
·
√
pi
νi

+ d̂ (14)
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To find the upper bound d∗, we can find the upper bound of
√

pi
νi

. Let a = κ
√

ε
nνmin

and x =
√

pi
νi

.

According to Eq. (14), we have |x2 − 1| ≤ ax+ d̂. If x ≥ 1, the right hand side gets larger values
than the case x < 1. Since we are computing the upper bound, we just need to consider the case
x ≥ 1. We need to consider the maximum x that satisfies

x2 − 1 ≤ ax+ d̂ (15)

The maximum x that satisfies the above inequality is

a+
√
a2 + 4d̂+ 4

2
(16)

Therefore, d∗ has an upper bound of

d̂+

√
a4 + 4d̂a2 + 4a2 + a2

2
(17)

for any a > 0. If d̂ < ε∗, to ensure the precision ε∗ can be achieved, we want to choose an ε such that
the upper bound is less than or equal to ε∗, i.e.,

d̂+

√
a4 + 4d̂a2 + 4a2 + a2

2
≤ ε∗ (18)

To satisfy Eq. (18), let d̂ = βε∗, 0 < β < 1. Substituting d̂ by βε∗ and a by κ
√

ε
nνmin

in Eq. (18) ,

we have
ε

nνmin
≤
(

1− β
κ

)2
ε2∗

1 + ε∗
(19)

To get the lower bound,

d∗ = |pi − νi|/νi
≥ |pj − νj |/νj

=

∣∣∣∣(pjνj − 1

)
−
(
p̂j
νj
− 1

)
+

(
p̂j
νj
− 1

)∣∣∣∣
≥
∣∣∣∣( p̂jνj − 1

)∣∣∣∣− ∣∣∣∣(pjνj − 1

)
−
(
p̂j
νj
− 1

)∣∣∣∣
≥ d̂−

κ
√
εpj/n

νj
with probability of at least 1− δ, by applying Lemma 1

= d̂− κ
√

ε

nνj
·
√
pj
νj

≥ d̂− κ
√

ε

nνmin
·
√
pj
νj

(20)

Therefore, with probability of at least 1− δ, we have

d∗ ≥
∣∣∣∣pjνj − 1

∣∣∣∣ ≥ d̂− κ√ ε

nνmin
·
√
pj
νj

(21)

To find the lower bound of d∗, we can find the minimum |pi/νi − 1| that satisfies Eq. (21). Let
y =

√
pj
νj

. According to Eq. (21), we have |y2 − 1| ≥ d̂ − ay. To analyze the minimum value of

|y2 − 1|, we need to analyze two cases: i) d̂ < a, ii) d̂ ≥ a.

i) d̂ < a.

There exists an y0 = 1 and |y20 − 1| ≥ d̂− ay0 holds. Therefore, the minimum value of |y2 − 1| is 0
in the case d̂ < a. Thus, the lower bound of d∗ is 0 in this case.

ii) d̂ ≥ a.
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In this case, we consider y ≥ 1 and y < 1.

For y ≥ 1, we consider the following inequality:

y2 − 1 ≥ d̂− ay (22)

Let

y≥1 =
−a+

√
a2 + 4d̂+ 4

2
(23)

Since d̂ ≥ a, we can derive from Eq. (23) and obtain y≥1 greater than or equal to 1. It can be verfied
that y2≥1 − 1 = d̂− ay≥1, and y≥1 is the minimum y that is ≥ 1 and satisfies Eq. (22). Therefore,
y2≥1 − 1 is the lower bound of d∗ for y ≥ 1 in the case d̂ ≥ a.

For y < 1, we consider the following inequality:

1− y2 ≥ d̂− ay (24)

If there is no y that satisfies Eq. (24), we just need to consider y ≥ 1 for the case d̂ ≥ a. Otherwise,
denote the maximum y that is less than 1 and satisfies Eq. (24) by y<1. So, we have 1 − y2<1 =

d̂− ay<1. Since d̂− ay<1 > d̂− ay≥1, the lower bound of d∗ is always achieved when y ≥ 1 for the
case d̂ ≥ a. Therefore, the lower bound of d∗ in the case d̂ ≥ a is d̂− ay≥1 which is equivalent to:

d̂−

√
a4 + 4d̂a2 + 4a2 − a2

2
(25)

It is easy to verify that if d̂ < a then Eq. (25) is less than 0, and vice versa. Therefore, we can
combine case i) d̂ < a, and case ii) d̂ ≥ a as:

max

(
d̂−

√
a4 + 4d̂a2 + 4a2 − a2

2
, 0

)
(26)

Eq. (26) is the lower bound of d∗. To make the lower bound non-trivial, i.e. Eq. (25) ≥ 0, we want to
choose an ε that achieves d̂ ≥ a. Substituting a by κ

√
ε

nνmin
and d̂ by βε∗, we obtain

ε

nνmin
≤
(
βε∗
κ

)2

(27)

We should choose an ε that is large enough for efficiency consideration and at the same time satisfies
both Eq. (19) and Eq. (27). This leads to optimizing the following problem

max
β

min

((
1− β
κ

)2
ε2∗

1 + ε∗
,
β2ε2∗
κ2

)
(28)

The solution to the above problem is

β =
1√

1 + ε∗ + 1
(29)

Therefore, the optimal ε is

ε =
ε2∗

κ2(
√

1 + ε∗ + 1)2
· nνmin (30)

and the optimal a is
a =

ε∗√
1 + ε∗ + 1

(31)

Let ξ =
ε2∗

4(
√
1+ε∗+1)2

. Thus, ξ = a2/4 and ε = 4δξnνmin. Substituting a2 in Eq. (25) by 4ξ and
considering the trivial lower bound 0, we obtain the lower bound in 1). Substituting a2 in Eq. (17) by
4ξ and considering the trivial upper bound (1− νmin)/νmin, we obtain the upper bound in 2)..
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3) As we draw the samples from µ, we are essentially drawing samples from the real target distribution
p achieved by v. The number of samples is dn/εe. Applying Lemma 1 1), we obtain the desired
bound of ‖p̂− p‖1.

4) ‖ĝ − g‖1 = ‖(p̂− ν)− (p− ν)‖1 = ‖p̂− p‖1 ≤ ∆ by applying 3).

5) ‖p− ν‖1 = ‖p− p̂+ p̂− ν‖1. Using the triangle inequality on the upper bound we have
‖p− ν‖1 ≤ ‖p− p̂‖1 + ‖p̂− ν‖1 ≤ d1 + ∆. As p and ν are two probability measures,
‖p− ν‖1 is upper bounded by 2. Using the triangle inequality on the lower bound we have
‖p− ν‖1 ≥ ‖p̂− ν‖1 − ‖p− p̂‖1 ≥ d1 − ∆. As any norm is greater than or equal to 0, we
have the desired lower bound.

A.2.2 PROOF OF THEOREM 2

Before proving Theorem 2, it is necessary to give the bound of the distance between the initial
SDOT output v0, and the optimal SDOT solution v∗. The bound of the distance will be used in the
convergence analysis in Theorem 2 and 3. The following theorem shows the range of an optimal
SDOT solution v∗.
Theorem 5. There exists at least one optimal solution, denoted by v∗, in [−C∞/2, C∞/2]n, that
maximizes Eq. (2).

Proof. Maximizing Eq. (2) is equivalent to solving the following problem:

Problem 2. Given two bounded domains X and Ŷ = {yi}ni=1 and their probability measures
µ ∈ P(X), ν ∈ P(Ŷ ), respectively, find a function u and a vector v to solve

max
u,v

W (u, v) = −
∫
u(x)dµ(x) +

∑
i∈I

v(i)νi

s. t. − u(x) + v(i) ≤ c(x, yi)
∀x ∈ X, ∀yi ∈ Ŷ

(32)

If (u∗, v∗) is the optimal solution to Problem 2, then ∀r ∈ R, (u∗ − r, v∗ − r) is also an optimal
solution to Problem 2, because (u∗ − r, v∗ − r) does not change the Laguerre cell decomposition
computed by (u∗, v∗). Let r be the minimum value in (u∗, v∗), and let u∗ ← u∗−r and v∗ ← v∗−r.
So, the minimum value in (u∗, v∗) is 0.

Next, we show that

inf
i∈I

v∗,i ≥ inf
x∈X

u∗(x) and sup
i∈I

v∗,i ≥ sup
x∈X

u∗(x) (33)

We prove Eq. (33) by contradiction. If infi∈I v∗,i < infx∈X u∗(x). Without loss of generality,
let v∗,k < infx∈X u∗(x). We can construct a new v∗∗, in which v∗∗,i = v∗,i, i 6= k and v∗∗,k =
infx∈X u∗(x). The new solution (u∗, v∗∗) does not violate the constraints in Eq. (32), and increases
the objective. Therefore, (u∗, v∗) is not the optimal solution to Problem 2 which is a contradiction.
Thus, infi∈I v∗,i ≥ infx∈X u∗(x). supi∈I v∗,i ≥ supx∈X u∗(x) can be proved in a similar way (by
decreasing the maximum value in u∗(x) to the maximum value in v∗). Recall the minimum value in
(u∗, v∗) equals 0, we have infx∈X u∗(x) = 0. Recall the constraint −u(x) + v(i) ≤ c(x, yi), ∀x ∈
X, ∀yi ∈ Ŷ , we have supi∈I v∗,i ≤ C∞, where C∞ is the maximum transport cost. Therefore,
every element in (u∗, v∗) lies between 0 and C∞. Let u∗∗∗ = u∗ − C∞/2 and v∗∗∗ = v∗ − C∞/2.
Thus, v∗∗∗ is an optimal solution that maximizes Eq. (2) and v∗∗∗ is in [−C∞/2, C∞/2]n.

Let v0 be 0, and v∗ be the optimal solution that maximizes Eq. (2) and lies in [−C∞/2, C∞/2]n.
Then,

‖v0 − v∗‖ ≤
√
nC∞
2

(34)

Theorem 2 is to establish the optimal step size γ given a fixed number of iterations T . Before proving
Theorem 2, we introduce the following Proposition in Bach (2014).
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Proposition 1. (Bach, 2014) Assume 1) f is convex and three-times differentiable, 2) f has a global
minimum attained at v∗ ∈ V , 3) all gradients of f and ft, are bounded by R, i.e., ‖f ′(v)‖ ≤ R, and
‖f ′t(vt−1)‖ ≤ R almost surely. 4) ∀t ≥ 1, ft is F -measurable, 5) E[f ′t(vt−1)|Ft−1] = f ′(vt−1) and
6) vt = vt−1 − γtf ′t(vt−1), where (γt)t≥1 is a deterministic sequence. Let v̄ = 1

T

∑T
t=1 vt−1. With

constant step size equal to γ, for any T ≥ 0, we have

E
[
2γT (f(v̄)− f(v∗)) + ‖vT − v∗‖2

]
≤ ‖v0 − v∗‖2 + Tγ2R2 (35)

and
E
[
2γT (f(v̄)− f(v∗)) + ‖vT − v∗‖2

]2 ≤ (‖v0 − v∗‖2 + 9Tγ2R2
)2

(36)

We restate Theorem 2 below:
Theorem 2. With the constant step size

γ =

√
nC∞ + 1

12
√
T

(37)

the expectation of the gradient norm of function f at v̄ is bounded by:

E ‖f ′(v̄)‖2 ≤ 4

T

(
4√
T

+ 10 + 6
√
nC∞

)2

(38)

The proof of Theorem 3 is similar to the proof proposed in Bach (2014), but uses a tighter bound
introduced in the Proposition 1.

Proof. First, we bound 1
T

∑T
t=1 f

′(vt−1).

For fixed step size update vt = vt−1 − γf ′t(vt−1), we have

f ′t(vt−1) =
1

γ
(vt−1 − vt) (39)

Summing from 1 to the total number of iterations T , we get

1

T

T∑
t=1

f ′(vt−1) =
1

T

T∑
t=1

[f ′(vt−1)− f ′t(vt−1)] +
1

γT
(v0 − v∗) +

1

γT
(v∗ − vT ) (40)

Similar to Bach (2014), we apply the Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994) [Theo-
rem 4.1] to bound E∥∥∥∥∥ 1

T

T∑
t=1

[f ′(vt−1)− f ′t(vt−1)]

∥∥∥∥∥
2
1/2

≤ 4R

T
+

2
√

2R√
T

(41)

Using Proposition 1 and Minkowski’s inequality:E∥∥∥∥∥ 1

T

T∑
t=1

f ′(vt−1)

∥∥∥∥∥
2
1/2

≤

E∥∥∥∥∥ 1

T

T∑
t=1

[f ′(vt−1)− f ′t(vt−1)]

∥∥∥∥∥
2
1/2

+
1

γT
‖v0 − v∗‖+

1

γT

[
E‖vT − v∗‖2

]1/2
≤ 4R

T
+

2
√

2R√
T

+
1

γT
‖v0 − v∗‖+

1

γT

√
‖v0 − v∗‖2 + Tγ2R2

≤ 4R

T
+

2
√

2R√
T

+
1

γT
‖v0 − v∗‖+

‖v0 − v∗‖
γT

+

√
TγR

γT

≤ 4R

T
+

4R√
T

+
2‖v0 − v∗‖

γT
(42)
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Next, we bound 1
T

∑T
t=1 f

′(vt−1)− f ′( 1
T

∑T
t=1 vt−1)

By using the self-concordance property in Bach (2014) [D.2], we have ‖ 1
T

∑T
t=1 f

′(vt−1) −
f ′( 1

T

∑T
t=1 vt−1)‖ ≤ 2R( 1

T

∑T
t=1 f(vt−1)− f(v∗)).

Using Proposition 1, we have

E ∥∥∥∥∥ 1

T

T∑
t=1

f ′(vt−1)− f ′
(

1

T

T∑
t=1

vt−1

)∥∥∥∥∥
2
1/2

≤ 2R

E

[
1

T

T∑
t=1

f(vt−1)− f(v∗)

]21/2

≤ R

γT

(
‖v0 − v∗‖2 + 9Tγ2R2

)
(43)

Summing Eq. (42) and Eq. (43), we get

E ∥∥∥∥∥f ′
(

1

T

T∑
t=1

vt−1

)∥∥∥∥∥
2
1/2

≤ 4R

T
+

4R√
T

+
2‖v0 − v∗‖

γT
+
R‖v0 − v∗‖2

γT
+ 9γR3

≤ R√
T

[
4√
T

+ 4 + 9R2γ
√
T +

(‖v0 − v∗‖+ 1/R)
2

γ
√
T

] (44)

If

γ =
‖v0 − v∗‖+ 1/R

3R
√
T

(45)

the upper bound of
[
E
∥∥∥f ′ ( 1

T

∑T
t=1 vt−1

)∥∥∥2]1/2 is minimized. For optimal transport, the gradient

is the difference between two distributions. Thus, the gradient norm is upper bounded by 2. Therefore,
we choose R = 2. Substituting ‖v0 − v∗‖ in Eq. (45) by its upper bound in Eq. (34), we get

γ =

√
nC∞ + 1

12
√
T

(46)

Take γ, R and the upper bound of ‖v0 − v∗‖ into Eq. (44), we obtain Eq. (38).

A.2.3 PROOF OF THEOREM 3

Theorem 3 establishes an optimal total number of iterations T and the corresponding optimal step
size γ, such that we can achieve an expected value of the MRE for any given ε > 0.

Theorem 3. Suppose Assumption 1 is satisfied, ∀ε > 0, with constant step size

γ =
ενmin

24
· (1 +

√
nC∞)

(14 + 6
√
nC∞)

(47)

and number of iterations

T =
4(14 + 6

√
nC∞)2

ε2ν2min

(48)

we have

E [MRE (ν, p)] ≤ ε (49)
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1D toy data 2D toy data 256D toy data 256D real face data
MC-Adam 1e-5 1e-4 1e-2 1e-4

Vanilla-EGD 1e-2 1e0 1e+2 1e+3

Table 2: Parameter settings of MC-Adam and Vanilla-EGD for different data.

Proof. Let p be the probability density function achieved by v̄.

E[MRE(ν, p)] = E
[
max
i∈I

|pi − νi|
νi

]
≤ E

[
max
i∈I

|pi − νi|
νmin

]
= E

[
‖f ′(v̄)‖∞
νmin

]
≤ E

[
‖f ′(v̄)‖
νmin

]
≤ 1

νmin

√
E‖f ′(v̄)‖2 Jensen’s inequality

(50)

Therefore, if E‖f ′(v̄)‖2 ≤ ε2ν2min, then we have E[MRE(ν, p)] ≤ ε. According to Eq. (38), we have

E ‖f ′(v̄)‖2 ≤ 4

T

(
4√
T

+ 10 + 6
√
nC∞

)2

≤ 4

T

(
14 + 6

√
nC∞

)2 (51)

Let
4

T

(
14 + 6

√
nC∞

)2
= ε2ν2min (52)

We obtain Eq. (48). Combining Eq. (37) and Eq. (48), we obtain Eq. (47). With γ in Eq. (47) and
T in Eq. (48), we have E[MRE(ν, p)] ≤ ε. Hence, we ensure the convergence of MRE for any given
ε.

A.3 EXPERIMENTS

In the experiments, we compare SDOT-EGD against ASGD (Peyré et al., 2019; Aude et al., 2016),
2-layer ASGD (Leclaire & Rabin, 2020), MC-Adam (An et al., 2020a) and Vanilla-EGD (Hazan &
Kale, 2014). MC-Adam uses the Monte-Carlo sampling to estimate the gradient, and uses the Adam
optimizer to optimize the SDOT dual objective. The Vanilla-EGD uses an epoch gradient descent
strategy with a fixed number of iterations in each epoch, and decreases the learning rate by half in
each epoch.

A.3.1 EXPERIMENTAL SETTINGS

In all the experiments, we set ε∗ = 0.2 and the confidence 1− δ to 0.9 in SDOT-EGD, except in the
ablation study part. In all the experiments, we use the quadratic transport cost for all the methods, i.e.,
c(x, y) = ‖x− y‖2. For ASGD, 2-layer ASGD, we use the default parameter settings, because the
initial learning rate 1.0 is widely used in the literature (Leclaire & Rabin, 2019; 2020). we tuned the
learning rate for the Adam optimizer in MC-Adam and the initial learning rate for Vanilla-EGD. The
learning rate for Adam in MC-Adam is tuned in {1e-5, 1e-4, 1e-3, 1e-2, 5e-2, 1e-1} and the initial
learning rate for Vanilla-EGD is tuned in {1e-3, 1e-2, 1e-1, 1e0, 1e+1, 1e+2, 1e+3}. We list the best
learning rates for both methods in Table 2.

In the GAN experiments, we use the same network architecture as in Mescheder et al. (2018) for
256×256 size images with the maximum number of filters in each layer set to 512 for all the methods.
We train all the models for 400K iterations with a batch size of 16 on the CelebA-HQ and the COVOC
datasets. We use the RMSProp optimizer (Tieleman & Hinton, 2012) with a learning rate of 1e-4 for
all models. We use the uniform distribution in [−1, 1]256 as the simple distribution to train all the
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Figure 6: The Kolmogorov distance for different methods.

GANs. For WGAN-GP (SDOT-EGD) and GAN-0GP (SDOT-EGD), we use the method described in
Sec. 5.3 in the main paper to obtain the 256D feature for each image. We compute the SDOT map
using SDOT-EGD to map each noise point in [−1, 1]256 to a 256D image feature. As each 256D
image feature is extracted from each image, we have the matching between each noise point and
each real image. This matching is fixed and is used throughout the WGAN-GP (SDOT-EGD) and
GAN-0GP (SDOT-EGD) training process. The procedure of how we train a GAN with SDOT-EGD
is listed below:

1 Given a dataset of images, we compute the features of these images.

2 We compute the SDOT map using SDOT-EGD between a uniform distribution and the
features in the latent space.

3 Suppose batch size is m in GAN training. We randomly sample m noise points from the
uniform distribution. Using the SDOT map, we find the corresponding m image features.
Using these m image features, we find the corresponding m images. These m noise points
and the m corresponding images form a batch.

4 We use the batch of m noise points and the m images to compute the discriminator and
generator losses in a GAN, and then update the discriminator and generator weights.

5 Go to Step 3 if the training is not converged.

All the experiments are executed on a cluster of machines. Each machine has 4 Intel Xeon CPUs and
128GB RAM. All the GAN experiments are executed on Quadro RTX 8000 GPUs.

A.3.2 1D EXPERIMENTS

In the 1D experiments, we use the same data as used in the main paper. Similar to Leclaire & Rabin
(2020), we adopt the Kolmogorov distance3 between target and the transported distribution to evaluate
the performance of different methods. Fig. 6 plots the Kolmogorov distances of the various methods.
Compared to other methods, SDOT-EGD converges much faster. It also converges to a much lower
value, almost 0. The 2-layer ASGD decreases faster than MC-Adam, ASGD and Vanilla-EGD, but
remains constant at around 0.01.

To investigate the reproducibility of SDOT-EGD, we rerun SDOT-EGD 10 times and plot the mean
MREs and the standard deviations in Fig. 7 a). As the MRE decreases, the standard deviation decreases,
meaning SDOT-EGD becomes more and more stable. When SDOT-EGD terminates, the standard
deviation is very small.

3The Kolmogorov distance is the L∞ distance between two cumulative distribution functions.
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Number of iterations/million 5 10 14
ASGD 0.333026 0.333480 0.333549

MC-Adam 0.004680 0.008253 0.011736
Vanilla-EGD 0.333501 0.333580 0.333591
SDOT-EGD 0.333659 0.333667 0.333667

Table 3: The SDOT dual objectives of different methods w.r.t number of iterations. Ground truth is
0.333667.

Time/seconds 250 500 700
ASGD 0.333314 0.333563 0.333610

MC-Adam 0.023410 0.051604 0.066314
Vanilla-EGD 0.333444 0.333551 0.333580
SDOT-EGD 0.333659 0.333667 0.333667

Table 4: The SDOT dual objectives of different methods w.r.t time. Ground truth is 0.333667.

We provide a benchmark in the 1D case. In the 1D case, the Ground Truth (GT) SDOT dual objective
value is 0.333667. In the Tables 3 and 4, we report the SDOT dual objective values of different
methods w.r.t. number of iterations and time, respectively. The 2-layer ASGD is not included because
its objective is neither an SDOT primal nor dual objective. In both tables, SDOT-EGD achieves the
ground truth of 0.333667 faster than all the other methods.

A.3.3 2D EXPERIMENTS

To investigate the reproducibility of SDOT-EGD, we plot the error bars of SDOT-EGD using 2D
data. The source distribution µ is uniformly distributed in [0, 1]× [0, 1]. We randomly sample 1000
points in [0, 1]× [0, 1] as target points, with each point having probability value of 1e-3. We rerun
SDOT-EGD 10 times and plot the mean estimated MREs and the standard deviations in Fig. 7 b). As
we can see in this figure, SDOT-EGD has very small standard deviations across multiple runs. Fig. 7
a) and b) together show that SDOT-EGD is a stable approach.

To make it easier to assess the quality of the cell decomposition results, we use a 40 × 40 grid of
1600 points within [0, 1]× [0, 1] as target points shown in Fig. 8 f). We call it 2D grid data. They
are equally spaced horizontally and vertically. Each data point has a probability of 1/1600. So, an
optimal SDOT algorithm should divide the [0, 1]× [0, 1] space into a grid of 40× 40 square cells.

Fig. 8 shows the cell decomposition results. Cells are colored per their area from small (blue) to large
(red). Cell decomposition from our method SDOT-EGD look more similar to a regular grid and is
more uniform compared to other methods. MC-Adam and ASGD have some cells that are obviously
large. The vanilla-EGD has small cells in the center and large cells in the corners. The 2-layer ASGD
has a high cell area variance and many cells are not square. The Vanilla-EGD and the ASGD have
the number of cells that are smaller than 1600, indicating that some target points do not have area
in the noise space that are mapped to them. MRE est and L1 est are estimated MRE and L1 distance
computed according to our theoretical bounds. The MRE est corresponds very well with the quality
of the Laguerre cell decomposition. SDOT-EGD has much lower MRE est and L1 est, suggesting it
is better than other methods.

A.3.4 256D EXPERIMENTS

We show the performance of different methods for 256D toy data. The source distribution µ is
uniformly distributed in [0, 1]256. We randomly sample 1000 points in [0, 1]256, and assign the
probability value of 1/1000 to each point. Fig. 9 a) shows that SDOT-EGD terminated at around 2M
iterations achieving an MRE near 0, which is considerably faster than all the other methods. Fig. 9 b)
shows that SDOT-EGD converges to a much lower L1 distance efficiently compared to all the other
methods.
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Figure 7: The error bar plot for a) 1D data and b) 2D data. The caps mark the standard deviations.

A.3.5 COMPARISON IN TERMS OF RUNNING TIME

We also compare the performance of different methods in terms of running time in Fig. 10 and 11.
From these figures we can observe that the proposed SDOT-EGD can reach lowest MREs or the L1

distances in shorter time compared to other methods. Note that the shaded area in Fig. 10 (a) is too
thin to be seen because the average upper bound and lower bound gap is smaller than 0.2.

It is worth mentioning that estimating the MRE is not expensive. It only involves sampling and matrix
computations, which can be sped up on GPUs. In our 256D real face data experiments, νmin =
3.3e− 5 and ε∗ = 0.2. The MRE estimation process in SDOT-EGD only takes up approximately 5%
of the total time.

A.3.6 ABLATION STUDY

In this experiment, we investigate how different ε∗ and confidence (1− δ) affect the performance of
SDOT-EGD. We perform experiments using 2D data with 1000 target points.

Fig. 12 a) and b) show the performance of SDOT-EGD with ε∗ fixed to 0.2 and various confidence
values. SDOT-EGD can always converge to 0.2 under different confidence values. When the
confidence is higher, SDOT-EGD requires a higher number of iterations. Fig. 12 c) and d) show
the performances of SDOT-EGD with the confidence fixed to 0.9 and various ε∗. SDOT-EGD can
always achieve a preset precision ε∗ ranging from 0.1 to 0.9. The smaller ε∗, the higher the number
of iterations required. As SDOT-EGD can always converge under different parameter settings, SDOT-
EGD is not sensitive to parameter selection. In all the other experiments, we simply set ε∗ to 0.2 and
the confidence 1− δ to 0.9.

A.3.7 GAN EXPERIMENTS

In this section, we show more generated images by different methods. We conduct experiments on
the CelebA-HQ dataset (Karras et al., 2018) and the COVID-19 Outcome (COVOC) dataset (Konwer
et al., 2021). The CelebA-HQ dataset (CC BY-NC 4.0 License) contains 29970 unique images. The
original image size is 1024× 1024. In our experiments, similar to Liu et al. (2019), we resize the
images to 256 × 256 to train GANs. The COVOC dataset contains 248 COVID-19 X-ray images
acquired upon disease presentation. We also use 256 × 256 image size on the COVOC dataset to
train GANs. We use the code as used in Mescheder et al. (2018) (MIT License).

Even though the number of images of the COVOC dataset is small, it is still okay to test on this dataset.
We want to test how much SDOT can benefit GAN training when only a small number of training
images are available. Generating images on the X-ray image dataset could benefit downstream tasks
such as COVID-19 diagnosis (Rasheed et al., 2021), pneumonia diagnosis (Srivastav et al., 2021),
chest pathology classification (Salehinejad et al., 2018), and so on. Training a good GAN on this
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a) MC-Adam b) Vanilla-EGD c) ASGD
Number of cells: 1600 Number of cells: 1476 Number of cells: 1596
MRE est = 0.362 MRE est = 1.005 MRE est = 1.002
L1 est = 0.072 L1 est = 0.157 L1 est = 0.055

d) 2-layer ASGD e) SDOT-EGD f) Target distribution.
Number of cells: 1600 Number of cells: 1600 A 40×40 grid of 1600 points.
MRE est = 0.863 MRE est = 0.183
L1 est = 0.131 L1 est = 0.050

Figure 8: Laguerre cell decomposition for a 40×40 grid of 1600 data points. Each data point
has probability of 1/1600. Cells are colored per their area from small (blue) to large (red). Cell
decomposition from our method SDOT-EGD look more similar to a regular grid and is more uniform
compared to other methods. MC-Adam and ASGD have some cells that are obviously large. The
vanilla-EGD has small cells in the center and large cells in the corners. The 2-layer ASGD high cell
area variance and many cells are not square. The Vanilla-EGD and the ASGD have the number of
cells that are smaller than 1600, indicating that some target points do not have area in the noise space
that are mapped to them. MRE est and L1 est are estimated MRE and L1 distance computed according
to our theoretical bounds. The MRE est corresponds very well with the quality of the Laguerre cell
decomposition. SDOT-EGD has much lower MRE est and L1 est, suggesting it is better than other
methods.

24



Under review as a conference paper at ICLR 2022

0 500 1000 1500 2000 2500 3000

Iterations (x10000)

0

0.5

1

1.5

2

2.5

3

M
ax

im
um

 R
el

at
iv

e 
E

rr
or

 (
M

R
E

)

MC-Adam
Vanilla EGD
ASGD
2-layer ASGD
SDOT-EGD

0 500 1000 1500 2000 2500 3000

Iterations (x10000)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L1
 d

is
ta

nc
e 

be
tw

ee
n 

ta
rg

et
 a

nd
 s

ou
rc

e 
af

te
r 

tr
an

sp
or

t

MC-Adam
Vanilla EGD
ASGD
2-layer ASGD
SDOT-EGD

a) MRE b) L1 distance

Figure 9: Comparison of MRE and the L1 distance for 256D toy data.
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a) MRE for 1D toy data. b) MRE for 2D toy data. c) MRE for 2D grid data.
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d) L1 distance for 1D toy data. e) L1 distance for 2D toy data. f) L1 distance for 2D grid data.

Figure 10: Comparison of MRE and L1 distance in 1D and 2D toy data, and 256D real face data in
terms of running time.

dataset is not easy because a lot of X-ray images look similar, and thus it is a fine-grained image
generation problem. FID is used because it is a commonly used measure to evaluate the quality of
the images generated by GANs (Heusel et al., 2017; Brock et al., 2019). Also, a thorough study was
done by Segal et al. (2021) showing the evidence that the FID could be used to measure the quality of
the chest X-ray images.

The only difference between WGAN-GP and WGAN-GP (SDOT-EGD) is that in WGAN-GP the
noise and real images are randomly matched in a GAN training iteration, but in WGAN-GP (SDOT-
EGD) the noise and the real images are matched using the SDOT matched GAN training mechanism
described in the main paper. The only difference between GAN-0GP and GAN-0GP (SDOT-EGD) is
the similar to the difference between WGAN-GP and WGAN-GP (SDOT-EGD).
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a) MRE for 256D random data. b) MRE for 256D real face data.
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c) L1 distance for 256D random data. d) L1 distance for 256D real face data.

Figure 11: Comparison of MRE and L1 distance in 256D toy data, and 256D real face data in terms of
running time.

Fig. 13 a) and b) show the randomly generated images by WGAN-GP, and WGAN-GP (SDOT-EGD),
respectively. WGAN-GP generates several faces with bad quality, whereas WGAN-GP (SDOT-EGD)
generates better faces compared to WGAN-GP. Fig. 14 a) and b) show the randomly generated faces
by GAN-0GP and GAN-0GP (SDOT-EGD), respectively. GAN-0GP (SDOT-EGD) generates much
better faces than GAN-0GP, with every face having good quality. Fig. 15 shows the interpolation
results between faces. Transitions between faces look realistic and smooth.

To show that ignoring samples in SDOT does lead to mode collapse in practice, we design a simple
experiment. We use eight real face images, shown in Fig. 16 a), as training images and compute an
SDOT map between the noise distribution and the eight 16× 16 downsampled gray images using
SDOT-EGD. To mimic the situation that one target image does not have a source area that maps to it,
we took the dual variable v(0) for image 0 (The first image in Fig. 16 a)) to be −∞ such that image 0
does not have an area in the source domain that maps to it. We train GAN-0GP using this new SDOT
map. After the model is trained, we randomly generate 64 images, shown in Fig. 16 b). We checked
these 64 images and found that, for all other 7 images in the training set, we can find that there are
generated images that resemble them, and there is no generated image that resembles image 0. This
indicates that mode collapse happens. Note that due to a small number of training samples, 8 samples
in Fig. 16 a), a GAN is expected to be overfitting.

Fig. 17 shows the Covid-19 X-ray images randomly generated by WGAN-GP and WGAN-GP
(SDOT-EGD). The images generated by both methods appear comparable. Fig. 18 shows the
Covid-19 X-ray images randomly generated by GAN-0GP and GAN-0GP (SDOT-EGD). In Fig. 18
a), GAN-0GP generates several images with bad quality (row 2 column 3, and row 3 column 3).
GAN-0GP (SDOT-EGD) generates much better images compared to GAN-0GP.

Qualitative results on both face images and Covid-19 X-ray images show the effectiveness of using
SDOT to boost GAN training performance.
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a) MRE with a fixed ε∗ = 0.2 b) L1 distance with a fixed ε∗ = 0.2
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c) MRE with a fixed confidence = 0.9 d) L1 distance with a fixed confidence = 0.9

Figure 12: a) and b) show the performance of SDOT-EGD with ε∗ fixed to 0.2, and various confidence
values. SDOT-EGD can always converge to 0.2 under different confidence values. When the confi-
dence is higher, SDOT-EGD requires a higher number of iterations. c) and d) show the performance
of SDOT-EGD with the confidence fixed to 0.9, and various ε∗. SDOT-EGD can always achieve
a preset precision ε∗ ranging from 0.1 to 0.9. The smaller ε∗, the higher the number of iterations
required. As SDOT-EGD can always converge under different parameter settings, SDOT-EGD is
not sensitive to parameter selection. In all the other experiments, we simply set ε∗ to 0.2 and the
confidence 1− δ to 0.9.
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a) WGAN-GP

b) WGAN-GP (SDOT-EGD)

Figure 13: Images randomly generated by a) WGAN-GP and b) WGAN-GP (SDOT-EGD). WGAN-
GP generates several faces with bad quality, whereas WGAN-GP (SDOT-EGD) generates better faces
compared to WGAN-GP.
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a) GAN-0GP

b) GAN-0GP (SDOT-EGD)

Figure 14: Images randomly generated by a) GAN-0GP and b) GAN-0GP (SDOT-EGD). GAN-0GP
(SDOT-EGD) generates much better faces than GAN-0GP, with every face having good quality.
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Figure 15: Face interpolation by GAN-0GP (SDOT-EGD). Transitions between faces appear good.
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a) 8 training images.

b) Randomly sampled images.

Figure 16: A simple experiment showing mode collapse happens in a GAN with SDOT if there is an
image, the first image in a), that does not have any area in the noise space that maps to it in SDOT. In
b), there is no generated image that resembles the first image in a). Note that due to a small number
of training samples, 8 samples in a), a GAN is expected to be overfitting.
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a) WGAN-GP

b) WGAN-GP (SDOT-EGD)

Figure 17: Images randomly generated by a) WGAN-GP and b) WGAN-GP (SDOT-EGD). The
images generated by both methods appear comparable.
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a) GAN-0GP

b) GAN-0GP (SDOT-EGD)

Figure 18: Images randomly generated by a) GAN-0GP and b) GAN-0GP (SDOT-EGD). GAN-0GP
generates several images with bad quality (row 2 column 3, and row 3 column 3 in a)). GAN-0GP
(SDOT-EGD) generates much better images compared to GAN-0GP.
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A.4 DISCUSSION

In the SDOT GAN application part, we use the downsized images as features in the latent space.
This kind of features may not be optimal to represent the data manifold. Interestingly, even with
such a simple mapping, “downsampling + RGB to gray”, we achieved significantly better results
compared to GANs without using the SDOT matching mechanism. An alternative approach could
be to use an Auto-Encoder to compute the image features. How to find a better mapping for GAN
with SDOT-EGD to further improve the GAN training performance is very interesting future work. It
is worth noting that such a mapping is only used to find image features. It is well-accepted that the
images lie in a low-dimensional space, a.k.a. the latent space. Given a dataset of images, there exists
a mapping that maps the images to the latent space. Once the mapping is computed on the dataset, it
should be fixed and thus it is deterministic.

When using SDOT-EGD, the source domain X should be bounded such that C∞ is well-defined. In
practice, using a Gaussian as a continuous distribution as the source distribution for SDOT-EGD is
possible. We can truncate the Gaussian at 3 or 6 standard deviations from the mean according to the
precision we need. Using the truncated is a reasonable approximation to train GANs. For example, it
has been shown in BigGAN (Brock et al., 2019), that using a truncated Gaussian can generate high
fidelity images compared to using the original un-truncated Gaussian.
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