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Abstract
Federated Graph Learning (FGL) has emerged as a key paradigm
for distributed graph machine learning, enabling cross-domain
graph collaborative modeling while preserving data privacy. How-
ever, existing methods face two major bottlenecks: the structural
heterogeneity discrepancy of graph data among clients weakens
the generalization ability of the global model; and model hetero-
geneity leads to inefficient knowledge sharing and complex global
aggregation. To address these issues, we propose FedGVD, an ef-
ficient framework that constructs a global perspective through
data condensation and server-side virtual node generation, which
not only preserves the semantic equivalence of the original data
but also avoids privacy leakage. Subsequently, by distributing low-
dimensional generalizable knowledge for unidirectional distillation,
FedGVD enables local models to absorb global knowledge without
transmitting local parameters, thus breaking through the challenges
of data and structural heterogeneity as well as model heterogeneity.
This innovative approach ensures privacy-preserving and efficient
federated graph collaboration. Experiments show that FedGVD
maintains excellent performance in heterogeneous model scenarios
while significantly improving communication efficiency, offering
a new approach for privacy-preserving collaborative modeling in
FGL. The code is available at https://github.com/Jasonxx4/FedGVD.

CCS Concepts
• Computing methodologies→ Artificial intelligence; • Secu-
rity and privacy;
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1 Introduction
With the rapid advancement of data-driven artificial intelligence
technologies, data privacy protection [10, 14] has emerged as a
critical issue that demands urgent resolution. Federated learning
(FL) [13, 19, 46], as a privacy-preserving distributed training para-
digm, enables collaborative modeling among multiple parties with-
out exchanging raw data, thereby achieving knowledge sharing
while ensuring privacy. However, in information-sensitive fields
such as finance [2] and healthcare [25], data often exists in graph-
structured formats, such as account association graphs in financial
transaction networks and multimodal disease-drug relationship
networks in medical knowledge graphs, where complex interaction
patterns are revealed through node attributes and topological con-
nections. The complex graph topologies and node dependencies
pose challenges to traditional FL approaches-architectures origi-
nally designed for Euclidean data like images and text [13, 23, 29]
cannot be directly applied to non-Euclidean graph data. This has
given rise to the research field of federated graph learning.

Federated Graph Learning (FGL) [6, 9], as an extension of FL in
the realm of graph data, enables collaborative modeling of cross-
domain graph data while protecting data privacy. The core objective
of FGL is to uncover relational patterns and knowledge embedded
in graph data distributed across different institutions or devices
through a distributed learning framework [11, 42], thereby support-
ing tasks such as node classification [12, 22], link prediction [4],
and community discovery [1].
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However, FGL must not only address data heterogeneity issues
inherent in traditional FL [20, 39, 41, 43], such as skewed data distri-
butions and non-IID data, but also confront two major challenges:
graph structural heterogeneity [15] and model heterogeneity [32].
Specifically, graph structural heterogeneity manifests in two dimen-
sions: variations in homophily levels across client subgraphs [21]
and missing cross-subgraph connections [45]. As illustrated on
the top-right in Figure 1, subgraphs from different clients exhibit
distinct homophily levels that deviate from the global homophily
level, leading to degraded model performance after global train-
ing. Additionally, edges that should exist between nodes across
clients are lost during data partitioning, compromising the topolog-
ical integrity of the graph. This dual heterogeneity distorts feature
propagation paths. For instance, in regions with missing edges, if
only FedAvg [23] is used to aggregate a single type of graph neural
network model, the attention mechanism in GATs [27] may erro-
neously focus on local noisy features, while GCNs [17] with fixed-
weight propagation tend to accumulate structural biases. Existing
methods like FedSage+ [45] and FGSSL [12] attempt to address miss-
ing edges through neighborhood generation but fail to effectively
resolve the semantic shift caused by structural heterogeneity.

Model heterogeneity [18, 32, 44] constitutes the second major
challenge in FGL. As shown on the lower-right in Figure 1, when
different clients adopt heterogeneous GNN architectures (e.g., GCN,
GAT, GraphSAGE) due to variations in computational resources or
business requirements, fundamental differences in feature propaga-
tion paradigms and parameter spaces trigger gradient misalignment.
For example, GAT [27] models propagate features through dynamic
attention weights, while GraphSAGE [8] employs fixed sampling
strategies. Their parameter update directions create conflicts in the
vector space during global aggregation. Averaging model parame-
ters—common in traditional FL—leads to performance degradation
or catastrophic performance collapse due to mismatches in param-
eter counts or model scales. Furthermore, conventional parameter-
sharing methods incur excessive communication overhead as model
sizes grow, rendering them impractical for real-world deployment.

To address the issues of graph structure and model heterogeneity,
we propose FedGVD, a communication-efficient and lightweight
knowledge distillation framework. In the first round of local com-
munication, we employ data condensation techniques to lighten the
knowledge representation while alleviating the problem of different
levels of subgraph homogeneity in graph structure heterogeneity.
Subsequently, we innovatively design a subgraph integration node
on the server side. This virtual node constructs a global-view graph
using the locally condensed subgraph data. This mechanism effec-
tively addresses the challenges posed by the lack of cross-client
connections in distributed subgraph data by coordinating structural
differences among different clients. To tackle the problem of model
heterogeneity, we propose a unidirectional distillation framework
guided by global knowledge, which can efficiently transfer knowl-
edge from the global model to the local models in a unidirectional
manner. The main contributions of this paper are as follows:

• We propose FedGVD, a framework to address graph structural
heterogeneity and model heterogeneity in FGL. It achieves cross-
domain collaborative modeling of graph data with low commu-
nication overhead without requiring model parameter sharing.

h3 = 0.8h2 = 0.5h1 = 0.9

Edge Information Injection

Structural Heterogeneity

Model Heterogeneity

 Degraded 

Generalizability 

h(global) 

= 0.7

①

②

Server

Global 

Model

Client 2 Client 3

Aggregation 

Difficulty

h3 = 0.8h3 = 0.8h2 = 0.5h2 = 0.5h1 = 0.9h1 = 0.9

Heterophilic Edge : E(het)

Client 1 Client 2 Client 3

Homophilic Edge : E(hom)

Homophily level : h = E(hom) / E(total) 

Homophily Bias : d = | h - h(global) | Client 1

Figure 1: The left side of the figure illustrates the workflow
of standard FGL, where each client possesses its own indepen-
dent subgraph data and model. This setup introduces the two
key challenges in FGL shown on the right: graph structural
heterogeneity and model heterogeneity.

• We design a virtual node-basedmechanism to reconstruct a global
topological structure on the server side. This alleviates intra-
subgraph homophily level discrepancies and cross-subgraph edge
missing issues by dynamically integrating distributed subgraphs.
• We propose a global knowledge-guided unidirectional distilla-
tion mechanism that transfers only low-dimensional generalized
knowledge, enabling efficient knowledge migration from the
global model to heterogeneous local models. This resolves the
gradient mismatch problem inherent in model heterogeneity.
• FedGVD demonstrates superior performance across eight widely
used graph datasets.

2 Preliminaries
2.1 Problem Definition
FGL is a distributed learning paradigm that enables collaborative
training of a global graph model across multiple clients while pre-
serving data privacy. Its core scenario can be formally defined as
follows: there exists an implicit global graph 𝐺𝑔 = (V𝑔, E𝑔), where
nodes and edges are distributed across different clients. The 𝑘-th
client holds a subgraph 𝐺𝑘 = (V𝑘 , E𝑘 ), satisfying 𝜈𝑘 ⊆ 𝜈𝑔 and
E𝑘 ⊆ E𝑔 . Without sharing raw data, clients collaborate with a
server to train a GNN model 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 while optimizing local models.

A typical approach combines GNNs with the FedAvg framework.
In each communication round, the server aggregates model param-
eters. The global model is then broadcast to participating clients
for the next round. The global model aggregation formula is:

𝑤𝑡+1 =
∑︁
𝑘∈𝑆𝑡

|V𝑘 |
𝑁

𝑤𝑡
𝑘
, 𝑁 =

∑︁
𝑘∈𝑆𝑡
|V𝑘 |, (1)

where 𝑆𝑡 denotes the set of clients participating in round 𝑡 , 𝑤𝑡
𝑘

represents the parameters of the 𝑘-th client’s local model, and |V𝑘 |
is the number of nodes in the 𝑘-th client’s subgraph.

Each client 𝑘 ∈ 𝑆𝑡 downloads the global model parameters𝑤𝑡+1
and optimizes its local loss function on its subgraph 𝐺𝑘 :

𝑤𝑡+1
𝑘

= argmin
𝑤
L(𝐺𝑘 ;𝑤). (2)

This iterative process aims to balance privacy preservation with
collaborative learning across distributed graph data.
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2.2 Graph Homophily Level
The homophily level ℎ is defined as the proportion of edges in a
graph that connect nodes with the same label. It is defined as:

ℎ =

∑
(𝑢,𝑣) ∈𝐸 𝐼 (𝑦𝑢 = 𝑦𝑣)

|𝐸 | , (3)

where 𝐸 is the set of edges, 𝑦𝑢 and 𝑦𝑣 are the labels of nodes 𝑢 and
𝑣 , and 𝐼 (·) is an indicator function that returns 1 if 𝑦𝑢 = 𝑦𝑣 and
0 otherwise. In FGL, clients’ local graph data exhibit inconsistent
homophily levels (ℎ). According to FedSPA [33], this issue can be
divided into two aspects: (1) Homophily Conflict: This arises when
the homophily levels of different clients are inconsistent, leading to
discrepancies in feature propagation schemes. These discrepancies
create conflicts during collaborative training, degrading the gener-
alizability of the global model. (2) Homophily Bias: This is defined
as the difference between the homophily level of a client and the
global target homophily level. It can be defined as 𝑑𝑘 = |ℎ𝑘 − ℎ𝑔 |,
where ℎ𝑘 is the homophily level of client k, and ℎ𝑔 is the homophily
level of the global target. Clients with smaller homophily biases
are more aligned with the global optimization direction and thus
contribute more significantly to the global model.

2.3 Graph Data Condensation
Data condensation is a technique that generates high-fidelity syn-
thetic datasets to replace raw data. It aims to address issues such
as data privacy, storage, and computational efficiency. Its core ob-
jective can be formalized as follows: Given a raw dataset Draw =

{(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1, where 𝑥𝑖 are data samples and 𝑦𝑖 are their correspond-
ing labels, the goal of data condensation is to generate a condensed
dataset Dcond = {(𝑥 ′

𝑗
, 𝑦′
𝑗
)}𝑀
𝑗=1 (with𝑀 ≪ 𝑁 ). Models trained on

𝐷𝑐𝑜𝑛𝑑 achieve performance comparable to or better than those
trained on 𝐷𝑟𝑎𝑤 .

Data condensation achieves this by optimizing the generation
process to ensure that the synthetic data is equivalent to the raw
data for model training purposes. Below are two common tech-
niques used in data condensation:

(1) Gradient Matching: Gradient matching minimizes the dis-
tance between the gradient spaces of the synthetic data and the
raw data. The objective can be formulated as:

min
Dcond

E𝜃∼𝑝 (𝜃 )
[
∥∇𝜃Ltask (𝜃,Draw) − ∇𝜃Ltask (𝜃,Dcond)∥2

]
, (4)

where 𝑝 (𝜃 ) is the distribution of model parameters, and 𝐿𝑡𝑎𝑠𝑘 is
the task-specific loss function.

(2) Meta-Learning: Meta-learning employs a bilevel optimiza-
tion framework, The inner loop optimizes the model parameters 𝜃
based on the condensed dataset 𝐷𝑐𝑜𝑛𝑑 . The outer loop optimizes
the condensed dataset 𝐷𝑐𝑜𝑛𝑑 to ensure that the model trained on
𝐷𝑐𝑜𝑛𝑑 performs well on the raw dataset 𝐷𝑟𝑎𝑤 . The objective can
be formulated as: minLtask (𝜃cond,Draw) .

3 Method
Figure 2 provides an overview of the proposed FedGVD framework.
First, each client performs parameter-agnostic graph condensation
to generate lightweight subgraphs via feature distribution align-
ment and knowledge distillation (Section 3.1). The server then
integrates these heterogeneous subgraphs using a virtual node

mechanism, dynamically connecting and harmonizing features to
construct a global perspective and mitigate cross-subgraph edge
missing issues (Section 3.2). Finally, a globally guided unidirec-
tional distillation framework enables the server to transfer low-
dimensional, generalizable knowledge back to clients, supporting
efficient knowledge transfer across heterogeneous models and re-
ducing communication and privacy risks (Section 3.3).

3.1 Local Data Condensation
To address the issue of fluctuations in homophily within subgraphs
caused by heterogeneous graph structures across clients, we employ
the graph condensationmethod, we use a semantic alignment-based
graph condensation method inspired by SimGC [36]. This method
compresses raw graph data 𝐺𝑘 into a lightweight condensed graph
𝐺 ′
𝑘
while retaining key task-related semantic information. The core

steps are as follows:
We first randomly initialize a learnable condensed node feature

matrix 𝑋 ′. The size of the matrix 𝑋 ′ can be selected by the conden-
sation ratio. We define the adjacency matrix 𝐴′, parameterizing it
as a function of 𝑋 ′, with the formula given as follows:

𝑎′𝑖 𝑗 = Sigmoid
(
1
2
·
(
𝑀𝐿𝑃 ( [X′𝑖 ;X

′
𝑗 ]) +𝑀𝐿𝑃 ( [X

′
𝑗 ;X
′
𝑖 ])

))
,

A′𝑖 𝑗 =
{
𝑎′
𝑖 𝑗
, if𝑎′

𝑖 𝑗
≥ 𝛿

0, otherwise,

where [X′
𝑖
;X′

𝑗
] denotes the concatenation of the 𝑖-th and 𝑗-th nodes

features, 𝛿 is a hyperparameter that controls sparsity.
To ensure performance while minimizing computational over-

head, we use a pre-trained M-layer Simple Graph Convolutional
(SGC) network [35] as a teacher model. Its propagation process
is H(𝑘 ) = Â′H(𝑚−1)W(𝑚) , where 𝐴′ is the normalized adjacency
matrix. By optimizing cross-entropy loss on local data, the teacher
model extracts multi-hop neighbor semantic features. After train-
ing, the model is frozen, and its layer-wise output features H(𝑚)
serve as semantic alignment targets for the condensed graph.

Semantic equivalence is achieved by jointly optimizing the fol-
lowing objectives: (1) Representation Alignment Loss: Minimizes
mean and variance differences of feature distributions across layers.

Lra =
𝑀∑︁
𝑚=1

𝜆𝑚 (∥ 𝜇𝑚 − 𝜇′𝑚 ∥22 + ∥ 𝜎𝑚 − 𝜎
′
𝑚 ∥22), (5)

where 𝜇𝑚 ,𝜎𝑚 is the mean and standard deviation of the node fea-
tures of the𝑚-th layer of the original graph, 𝜇′𝑚 ,𝜎′𝑚 is the statistic
of the condensed graph, and 𝜆𝑚 is the inter-layer weight coefficient.

(2) Categorization loss: CE loss for labeled condensed nodes.

Lc =
∑︁
𝑖∈𝑁 ′
−𝑌 ′𝑖 log𝑌

′
𝑖 , (6)

where 𝑁 ′ denotes the set of nodes in the condensed graph, 𝑌 ′
𝑖

denotes the true label of the 𝑖-th node in the condensed graph and
𝑌
′ denotes the predicted probability distribution of the 𝑖-th node

in the condensed graph.
(3) Feature Smoothness Loss: Ensure that neighboring nodes in

the condensed graph have similar characteristics, thus maintaining
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Figure 2: The overview of our FedGVD framework.

the homogeneity property of the graph.

Lfs =
𝑁 ′∑︁
𝑖, 𝑗=1

A′𝑖 𝑗 ⟨𝜑 (X
′
𝑖 ), 𝜑 (X

′
𝑗 )⟩, (7)

where 𝜑 denotes the mapping to a higher-dimensional space via
the function. The final optimization objective is a weighted sum of
these three loss functions, forming a multi-loss optimization target.

Ltotal = 𝛼Lra + 𝛽Lc + 𝛾Lfs . (8)

By alternately optimizing the parameters of the condensed graph
and the teacher model, efficient data compression is achieved while
preserving the key semantic information of the original graph.

3.2 Global graph reconstruction
To address the issue of missing edges across subgraphs, we perform
global graph reconstruction on the server side. We introduce the
Subgraph integrator, a virtual node that establishes connections and
enables alignment between different subgraphs. While preserving
the unique structure of each subgraph, it facilitates information flow
and knowledge sharing across subgraphs. This allows the global
model on the server side to capture a holistic perspective and train
using condensed subgraph data.

Server-side assigns a subgraph integrator 𝑉𝑘 to each client’s
condensed subgraph𝐺 ′. This node establishes connections with all
nodes within the subgraph, and its initial features are aggregated
from the features of the corresponding subgraph. The formula is as
follows: x𝑘 = MLP

(∑
𝑣∈𝑉𝑘 𝛼𝑣𝑘x𝑣

)
, where 𝑉𝑘 is the set of nodes of

the 𝑘-th client, 𝛼𝑣𝑘 is the importance weight of node 𝑣 for subgraph
integrator 𝑘 , calculated by cosine similarity:

𝛼𝑣𝑘 =
exp(sin(q, x𝑣))∑

𝑢∈𝑉𝑘 exp(sin(q, x𝑢 ))
, (9)

where q is the learnable query vector. This design ensures that the
subgraph integrator can represent most of the features within the

subgraph and enables efficient communication and information
exchange with its corresponding subgraph.

Furthermore, we dynamically connect the subgraph integrators,
allowing isolated subgraphs to exchange information. This not only
connects more nodes with high similarity but also alleviates the
problem of homogeneity and heterogeneity. Additionally, it enables
the server to reconstruct a graph, providing a global perspective.

Specifically, the subgraph integrators are connected using coeffi-
cient similarity, dynamically establishing global associations. The
cosine similarity matrix between all virtual nodes is computed:

𝑆𝑘1,𝑘2 =
𝑥𝑘1 · 𝑥𝑘2

∥ 𝑥𝑘1 ∥∥ 𝑥𝑘2 ∥
, 𝑆𝑘1,𝑘2 ∈ R

𝐾×𝐾 . (10)

Here, 𝑥𝑘1 ,𝑥𝑘1 denotes the feature vector of the 𝑘1 and the 𝑘2
subgraph integrator, and𝐾 is the number of clients. For each client𝑘 ,
only the𝑇 most relevant connections are retained. This ensures that
each client is connected to only a few of the most relevant clients,
accelerating global model training and inference. The feature matrix
of the global graph is formulated as follows:

X̃′ =
[
X′𝑑𝑖𝑎𝑔 X𝑐𝑟𝑜𝑠𝑠
X𝑐𝑟𝑜𝑠𝑠 X𝑖𝑛𝑡𝑒𝑔𝑒𝑟

]
, (11)

where X′𝑑𝑖𝑎𝑔 is a diagonal matrix containing the adjacency matri-
ces of individual graph datasets, X𝑐𝑟𝑜𝑠𝑠 is the matrix for cross-graph
connections, and X𝑖𝑛𝑡𝑒𝑔𝑒𝑟 is the matrix for connections between
integrators. The subgraph integrators dynamically update with the
global model, so the similarity matrix between integrators also
updates dynamically. This ensures that the global graph in FL con-
tinuously adapts to the evolution of client data.

The global model is trained with a multi-task loss function, in-
cluding contrast loss, reconstruction loss, and classification loss:

Lglobal = Lcontrastive + Lclassification (12)

491



FedGVD: Efficient Federated Graph Learning via Unidirectional Distillation with Dynamic Virtual Nodes CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea.

Contrastive loss L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 is used to maximize the feature
similarity of the relevant integrator nodes:

Lcontrastive = − log
exp(sin(x𝑘1 , xglobal)/𝜏)∑
𝑘1≠𝑘2 exp(sin(x𝑘1 , x𝑘2 )/𝜏)

, (13)

where xglobal is the server-generated global feature representation,
for capturing patterns and features common to all client subgraph
integrator nodes, sin(x𝑘1 , x𝑘2 ) denotes the pair of subgraph inte-
grator nodes from different clients, and 𝜏 denotes the temperature
parameter. The classification loss aims to drive the global model
to correctly predict the classes of the subgraph integrator nodes.
Formally, it is defined as:

Lclassification = CE(y, softmax(𝑊 x𝑘 )), (14)

where𝑊 denotes the weight matrix for mapping the features of the
subgraph integrator nodes to the category space. The features of the
subgraph integrator are dynamically updated through end-to-end
gradient descent: x𝑘 ← x𝑘 − 𝜂∇x𝑘Lglobal, 𝜂 denotes learning rate.
Overall, global graph reconstruction achieves cross-client knowl-
edge sharing and efficient collaboration through dynamic updates
of subgraph integrators and multi-loss optimization. This approach
not only effectively addresses the issues of data isolation and miss-
ing edges across subgraphs among clients but also significantly
enhances the performance and communication efficiency of FGL.

3.3 Unidirectional distillation framework
To address the challenges of model heterogeneity-where clients em-
ploy diverse GNN architectures, resulting in issues such as gradient
misalignment, parameter incompatibility, increased communication
overhead, and heightened privacy risks-we propose a unidirectional
distillation framework guided by global knowledge. Instead of shar-
ing model parameters, the server distills low-dimensional, general-
izable knowledge from the integrated global model and transmits
it to clients. This enables efficient knowledge transfer across het-
erogeneous local models, reducing communication overhead and
preserving privacy.

In the first round of federated information exchange, we send con-
densed data from clients and low-dimensional universal knowledge
logits computed by the global model as a data pair to each client.
In subsequent communication processes, only the corresponding
logits need to be transmitted to guide the learning of heteroge-
neous client models for global topological semantics, achieving
communication-efficient knowledge distillation. Client 𝑘 receives
the content as follows:

T𝑘 = {𝑧𝑛 | 𝑧𝑛 = 𝑓global (𝑋̃𝑛)}𝐾𝑛=1 ∪ {𝑋̃𝑛}𝑛≠𝑘 ,

where 𝑧𝑛 denotes logits generated by the global model 𝑓𝑔𝑙𝑜𝑏𝑎𝑙
for client 𝑘’s condensed data 𝑋̃𝑛 . Afterward, clients perform lo-
cal training optimization, leveraging global logits and cross-client
condensed to data enhance model performance. We define the local
classification loss as:

Ltask = CE (𝑓local (𝑋𝑘 ), 𝑦𝑘 ) + CE
(
𝑓local (𝑋̃𝑘 ), 𝑦

syn
𝑘

)
. (15)

Subsequently, we perform spatial normalization on the local
logits and the global logits to eliminate scale differences in the out-
puts of heterogeneous models, ensuring fair knowledge transfer.We

soften the probability distribution to enhance the model’s ability to
learn inter-class associations. The formulas are as follows:

𝑧
global
𝑘

=
𝑧𝑘 − 𝜇global
𝜎global

, 𝑧local
𝑘

=
𝑓local (𝑋̃𝑘 ) − 𝜇local

𝜎local
,

where 𝜇 denotes the mean of global or local Logits, 𝜎 denotes the
standard deviation of global or local Logits. In this way all Logits
are mapped to the space of zero mean and unit variance. We define
the local knowledge distillation loss function as:

Ldistill =
∑︁
𝑘

KL
(
softmax(𝑧global

𝑘
/𝜏) ∥ softmax(𝑧local

𝑘
/𝜏)

)
, (16)

where 𝜏 denotes the temperature coefficient. The KL divergence
term encourages the local model to learn class correlations from
the global view. The overall local loss function is defined as:

Ltotal = Ltask + 𝜔Ldistill, (17)

where 𝜔 is a balancing parameter that controls the contributions
of the distill loss function. The entire process only requires knowl-
edge transmission from the server to clients, eliminating the need
for clients to feedback parameters or prototypes. By transmitting
low-dimensional universal knowledge, the impact of model het-
erogeneity is mitigated, while ensuring a lightweight design and
privacy protection for the framework. The pseudo-code for the
training process of our method is in Algorithm 1.

4 Experiments
4.1 Experimental settings

Datasets. In this paper, we conducted experiments on eight com-
monly used graph datasets: five datasets with high homophily (Cora,
CiteSeer, PubMed, Amazon-Photo, and Amazon-Computers) [30,
40] and three datasets with low homophily (Chameleon, Actor, and
Amazon-Ratings) [26, 28]. Further details are provided in Table 1.
To simulate the client subgraph distributions in FGL, we employed
the Louvain algorithm to achieve subgraph division for each client.
This algorithm is widely adopted for subgraph partitioning in FGL
due to its efficient community detection capabilities.

Baselines. We compared FedGVD with several state-of-the-art
approaches: two conventional FL methods: FedAvg [23], FedDC [7];
two prototype-based learning methods: FedProto [32], FedTGP [44];
seven graph structure-aware FGL methods: FedSage+ [45], Fed-
PUB [1], FedGTA [22], FGSSL [12], FedGL [3], AdaFGL [21] and
FedTAD [47]; one personalized method: FGGP [34].

Implement details. The experiments were conducted within
the OpenFGL [38] framework. In the main study under model homo-
geneous conditions, we adopted 2-layers GCN [17] as the backbone
network for both clients and the central server. The hidden layer
dimension was set to 128. The number of local training epochs and
total communication rounds were configured as 3 and 100, respec-
tively. The Adam optimizer [16] was employed with a local model
learning rate of 0.01 (adjusted to 0.001 in some experiments), weight
decay of 5𝑒−4, and dropout rate of 0.5. The data condensation ratio
is set to 0.2 by default, and the hyperparameter for data distilla-
tion is set to 1𝑒−4. Under model-heterogeneous conditions (HeFE5)
with 10 clients, we utilized five distinct 2-layers model architec-
tures: GCN [17], GAT [27], SGC [35], MLP, and GraphSAGE [8],
while maintaining the same hidden layer dimension. The evaluation
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Algorithm 1: FedGVD algorithm
Input: 𝐾 clients with local subgraphs 𝐺𝑘 , Communication

rounds 𝑇 , Temperature 𝜏
Output: Global model 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 , Client models 𝑓𝑘

1 ServerExecutes:
2 Initialize virtual node Subgraph Integrator set 𝑉 = ∅
// Phase 1: Global graph construction

3 for 𝑡 = 1 to 𝑇 do
4 if 𝑡 == 1 then
5 for each client 𝑘 ∈ [𝐾] do
6 𝐺 ′

𝑘
, 𝜃𝑘 ← Condensation(𝐺𝑘 , 𝛾) // Phase 3

7 end
8 Server aggregates 𝐺 ′

𝑘
and constructs

9 Subgraph integrator 𝑉 = 𝑣𝑘 via Eq.(9)
10 Global graph 𝐺𝑔𝑙𝑜𝑏𝑎𝑙 via Eq.(11)
11 end
12 Train 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 on 𝐺𝑔𝑙𝑜𝑏𝑎𝑙 and 𝑉 via Eq.(12-14)

// Phase 2: Knowledge distillation
13 Generate global logits {𝑧𝑘 } = 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 (𝐺𝑔𝑙𝑜𝑏𝑎𝑙 )
14 for each client 𝑘 ∈ [𝐾] do
15 ClientUpdate(𝑘, 𝑧 𝑗 ,𝐺 ′𝑗 ) // Phase 4
16 end
17 end
18 ClientLocalTraining:
19 for 𝑡 = 1 to 𝑇 do
20 if 𝑡 == 1 then

// Phase 3: Local data condensation
21 Pre-train SGC on 𝐺𝑘
22 while not converged do
23 Calculate loss via Eq.(5-8)
24 Update 𝑋 ′, 𝐴′ via gradient descent
25 end
26 return 𝐺 ′

𝑘
= (𝑋 ′, 𝐴′), 𝜃𝑘

27 Upload 𝐺 ′
𝑘
to Server

28 Receive 𝑋̃𝑛 from Server
29 end

// Phase 4: Unidirectional distillation
30 Receive 𝑧𝑛 from Server
31 𝑧𝑔𝑙𝑜𝑏𝑎𝑙 = normalize(𝑧𝑛)
32 𝑧𝑙𝑜𝑐𝑎𝑙 = normalize(𝑓𝑘 (𝑋̃𝑛))
33 Calculate loss via Eq.(15-17)
34 end

Table 1: Dataset statistics

Dataset #Nodes #Edges #Classes #E.Homo
Cora 2,708 5,429 7 0.81

CiteSeer 3,327 4,732 6 0.74
PubMed 19,717 44,338 3 0.80

Amazon-Photo 7,487 119,043 8 0.83
Amazon-Computers 13,381 245,778 10 0.78

Chameleon 2,277 36,101 5 0.23
Actor 7,600 29,926 5 0.22

Amazon-ratings 24,492 93,050 5 0.38

metric was accuracy of the node classification task. To evaluate
the robustness of our results under different initial conditions, we
conducted three independent replicate trials for all experimental
configurations. By calculating the mean and standard deviation of
the prediction performance metrics, we effectively eliminated the
random bias in the model training process, ensuring the statistical
significance of the evaluation results.

Experiment Environment. The experimental machine with
Intel(R) Xeon(R) Gold 6226R CPU@ 2.90GHz, and NVIDIA GeForce
RTX 3090 with 24GB memory and CUDA 12.4.

4.2 Performance analysis
4.2.1 Performance comparison. We present the test accuracy of all
methods across eight datasets in Table 2. Specifically, we evaluate
the model accuracy of each algorithm under a 10-client setup. The
results demonstrate that FedGVD achieves superior performance
in the HtFE5 heterogeneous scenario, consistently outperforming
all baseline methods with an average test accuracy that exceeds the
baseline by 3.26%. Additionally, in the homogeneousmodel scenario,
FedGVD achieves the best performance, significantly surpassing
the baseline methods with an average test accuracy improvement
of 3.69% over the baseline. Notably, FedGVD shows even more pro-
nounced performance improvements in datasets with stronger data
heterogeneity, with an average enhancement of 4.64%. This result
highlights the effectiveness of our proposed subgraph integrator
and unidirectional knowledge distillation approach in addressing
both homogeneity and heterogeneity challenges.

4.2.2 Impact of client numbers. To verify the scalability of FedGVD
in settings with more clients, we conducted experiments on the
Cora, Amazon-Computers, and Actor datasets using Louvain parti-
tioning, under both model homogeneous and HtFE5 heterogeneous
scenarios with 10, 20, and 30 clients. As shown in Table 3, model
accuracy decreases as the number of clients increases due to less
local data and increased data heterogeneity. However, FedGVD
maintains significant superiority, outperforming baselines by an av-
erage of 4.30%. Notably, even in heterogeneous scenarios, FedGVD
surpasses baseline methods under homogeneous conditions.

4.2.3 Impact of model heterogeneity. We further evaluate the per-
formance of FedGVD across five scenarios with increasing levels of
model heterogeneity, including homogeneous, HtFE2, HtFE4, and
HtFE5 scenarios. Specifically, HtFE2 includes GCN and GAT; HtFE4
includes GCN, GAT, SGC, and GraphSAGE; HtFE5 includes GCN,
GAT, SGC, GraphSAGE, and MLP. Experiments were conducted
on the Cora, Computers, and Chameleon datasets with 20 clients,
and the results are detailed in Table 4. Specifically, as model het-
erogeneity increases, the performance of both FedTGP [44] and
FedGVD decreases. FedTGP’s accuracy drops by at least 4.11% from
the homogeneous to the HtFE5 scenario. In contrast, FedGVD only
declines by 0.75% and remains 8.30% ahead of the baseline.

4.2.4 Communication cost. To verify that our proposed method,
FedGVD, has lower communication overhead, We conducted exper-
iments on the Chameleon dataset under the homogeneous model
scenario to calculate the total communication consumption per
round for ten clients, which is divided into upload and download
data, as shown in Table 5. Specifically, although the communication
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Table 2: Performance comparison between FedGVD and baseline models across eight datasets with 10 clients each. The best
results are highlighted in bold, while the second-best results are underlined, and ± indicating standard deviations.

Method Cora CiteSeer PubMed Photo Computers Chameleon Actor Ratings
GCN-Local 78.31±0.25 67.25±0.64 84.48±0.46 90.59±0.48 87.39±0.34 59.47±0.63 27.28±1.24 46.71±0.92
GAT-Local 78.92±0.63 64.63±0.82 82.77±0.63 90.36±0.57 87.19±0.36 58.57±0.52 27.75±0.83 46.35±0.65
FedAvg 82.41±0.61 69.59±0.56 85.49±0.32 90.68±0.82 87.56±0.51 56.78±1.08 28.38±0.69 44.87±0.33
FedDC 82.41±0.47 70.57±0.47 83.08±0.56 89.18±0.35 77.74±0.21 54.68±0.92 30.77±1.32 37.80±0.47
FedProto 81.12±0.54 64.77±0.33 84.29±0.68 87.97±0.53 84.14±0.49 57.99±0.62 28.38±0.64 39.56±0.31
FedTGP 81.31±0.69 65.73±0.42 84.43±0.21 87.34±0.45 78.38±0.45 60.52±0.57 27.49±0.75 46.31±0.54
FedSage+ 83.34±0.74 70.11±0.97 86.30±0.76 91.68±1.18 84.29±0.83 59.95±0.85 30.48±1.14 46.62±0.67
FedGTA 82.70±0.43 69.65±0.62 85.38±0.48 91.29±0.31 86.54±0.65 50.37±0.40 29.11±0.58 44.78±0.27
Fed-PUB 83.77±0.62 71.16±0.83 86.47±0.53 90.33±0.67 88.98±0.27 60.08±0.64 29.42±0.97 43.26±0.83
FGSSL 83.62±0.58 69.47±0.71 85.51±0.32 88.22±0.73 88.21±0.63 59.83±0.82 28.01±0.83 44.74±0.66
FedGL 78.43±0.75 70.82±0.96 82.42±0.79 89.24±0.47 88.73±0.76 60.11±0.93 27.23±1.23 45.10±0.61
AdaFGL 84.53±0.81 69.58±0.69 84.44±0.72 91.93±0.92 85.89±0.68 57.07±1.14 30.78±1.39 45.81±0.58
FGGP 80.49±0.39 69.18±0.51 86.46±0.49 87.38±0.65 87.62±0.36 57.67±0.76 28.49±0.82 39.45±0.52
FedTAD 84.26±0.61 69.81±0.96 85.50±0.61 91.21±0.51 86.17±0.52 56.26±1.22 28.43±1.05 44.91±0.90

FedGVD (ours) 85.56±0.29 71.18±0.61 86.71±0.37 93.15±0.43 90.18±0.39 62.07±0.60 32.04±0.83 49.98±0.54
FedGVD (HtFE5) 84.47±0.35 69.51±0.56 86.28±0.42 93.43±0.47 89.36±0.34 62.35±0.61 32.43±0.77 49.67±0.59

Table 3: Performance comparison with methods under varying client numbers. The best and second-best results are highlighted
in bold and underlined, respectively, with ± indicating standard deviations.

Method Cora Computers Chameleon
10 20 30 10 20 30 10 20 30

GCN-Local 78.31±0.25 76.89±0.30 75.24±0.36 87.39±0.34 86.44±0.40 84.81±0.42 59.47±0.63 52.26±0.58 43.13±0.51
GAT-Local 78.92±0.63 75.72±0.54 74.22±0.58 87.19±0.36 84.14±0.33 83.47±0.28 58.57±0.52 49.00±0.61 44.59±0.59
FedAvg 82.41±0.61 77.58±0.73 75.92±0.69 87.56±0.51 85.77±0.46 85.40±0.35 56.78±1.08 50.07±1.18 45.89±0.92
FedDC 82.41±0.47 81.53±0.41 77.84±0.52 77.74±0.21 84.51±0.27 83.65±0.39 54.68±0.92 52.25±0.88 47.19±0.81
FedProto 81.12±0.54 78.24±0.70 74.69±0.66 84.14±0.49 83.53±0.53 81.24±0.50 57.99±0.62 50.92±0.69 43.79±0.73
FedTGP 81.31±0.69 78.52±0.59 74.23±0.56 78.38±0.45 79.27±0.37 77.97±0.53 60.52±0.57 50.09±0.63 45.11±0.69
FedSage+ 83.34±0.74 77.22±0.80 74.78±0.62 84.29±0.83 84.62±0.88 86.64±0.93 59.95±0.85 50.47±0.89 45.73±0.73
FedGTA 82.70±0.43 79.25±0.41 75.91±0.47 86.54±0.65 85.81±0.60 85.73±0.73 50.37±0.40 50.62±0.49 45.12±0.52
Fed-PUB 83.77±0.62 79.81±0.66 75.65±0.71 88.98±0.27 87.01±0.33 86.37±0.38 60.08±0.64 51.74±0.56 46.50±0.52
FGSSL 83.62±0.58 79.32±0.51 74.54±0.66 88.21±0.63 86.33±0.69 84.73±0.76 59.83±0.82 50.16±0.80 45.37±0.71
FedGL 78.43±0.75 79.63±0.79 75.83±0.83 88.73±0.76 86.50±0.69 85.21±0.80 60.11±0.93 51.83±0.89 46.42±0.72
AdaFGL 84.53±0.81 79.07±0.88 75.80±0.84 85.89±0.68 86.82±0.77 85.08±0.72 57.07±1.14 52.25±0.99 48.46±1.06
FGGP 80.49±0.39 78.97±0.44 75.58±0.36 87.62±0.36 85.18±0.33 84.88±0.29 57.67±0.76 50.49±0.92 47.28±0.87
FedTAD 84.26±0.61 79.17±0.79 76.21±0.64 86.17±0.52 85.29±0.60 85.99±0.55 56.26±1.22 51.33±1.16 47.07±1.08

FedGVD (ours) 85.56±0.29 83.54±0.33 80.24±0.35 90.18±0.39 89.03±0.43 87.74±0.48 62.07±0.60 55.30±0.52 51.27±0.58
FedGVD (HtFE5) 84.47±0.35 82.63±0.30 79.33±0.39 89.36±0.34 88.33±0.31 87.21±0.40 62.35±0.61 54.66±0.55 51.18±0.50

Table 4: Performance under different degrees of model het-
erogeneity

Dataset Method Different Model Heterogeneity
Isomorphic HtFE2 HtFE4 HtFE5

FedProto 78.52 77.03 76.34 76.23
Cora FedTGP 78.52 77.03 76.34 76.23

FedGVD 83.54 83.32 83.48 82.63
FedProto 50.92 50.37 48.83 47.54

Chameleon FedTGP 50.09 48.32 47.89 47.26
FedGVD 55.30 55.04 54.96 54.66

consumption of FedGVD is relatively high in the first round, it is still
significantly lower than methods that use model parameter sharing,
such as FedAvg and FedSage+. In subsequent rounds, FedGVD does
not require uploading data, and its download consumption is the
lowest among all methods. After averaging, our method achieves
a communication consumption of only 0.01MB per round, which

is the lowest among all methods, while still maintaining the best
performance. This highlights the effectiveness of our approach in
knowledge transfer for FGL.

4.2.5 Impact of local training rounds. We experimented on the
Computers dataset with 20 clients, setting E to 3, 5, 7, and 10. As
shown in Table 6, most methods saw improved accuracy with in-
creasing E. Notably, FedGVD maintained excellent performance
across different E values. In the case ofmodel homogeneity, FedGVD
achieved high accuracy even at E=3, indicating its ability to effec-
tively leverage local updates to enhance model performance while
reducing communication rounds.

4.2.6 Convergence performance. As visualized in the convergence
curves of Figure 3 on four datasets, FedGVD outperforms other
baseline methods by maintaining higher initial performance and
achieving faster and more stable convergence in both homogeneous
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Table 5: Communication Cost (MB) and Accuracy (%) on
Chameleon

Method Upload Download Accuracy
FedAvg 11.43 11.43 56.78
FedDC 11.86 11.86 54.68
FedTGP 0.32 0.32 60.52
FedSage+ 20.82 11.43 59.95
FedGTA 11.68 11.52 50.37
Fed-PUB 11.85 11.60 60.08
FedGL 12.06 11.82 60.11
FGGP 11.86 11.43 57.67
FedTAD 23.48 11.43 56.26

FedGVD (first round) 8.78 1.84 62.07
FedGVD (each round) 0 0.02 62.35

Table 6: Performance comparison under different local up-
date epochs.

Method local update epochs
E = 3 E = 5 E = 7 E = 10

FedAvg 85.77 86.13 86.34 86.51
FedDC 84.51 84.37 84.55 85.11
FedProto 83.53 84.16 83.94 84.36
FedTGP 79.27 80.23 80.67 80.34
FedSage+ 84.62 85.22 85.91 86.27
FedGTA 85.81 86.37 86.98 87.78
Fed-PUB 87.01 87.67 87.88 88.11
FGSSL 86.33 86.84 87.45 87.85
FedGL 86.50 86.67 86.94 87.39
AdaFGL 86.82 85.96 86.78 86.72
FGGP 85.18 85.94 86.27 86.35
FedTAD 85.29 86.20 86.47 85.72
FedGVD 89.03 88.75 88.92 89.04

FedGVD (HtFE5) 88.33 88.35 88.47 88.63

and heterogeneous model settings. This demonstrates that FedGVD
is suited for FGL scenarios with limited communication overhead.

4.3 Ablation study.
To systematically evaluate the specific impact of each module on
the performance of FedGVD, we progressively removed or replaced
key components within the framework. The experiments were con-
ducted under the same default settings as previous experiments
to ensure comparability and consistency of the results. Through
this approach, we were able to clearly reveal the contributions of
these modules to the overall performance of FedGVD. The abla-
tion results are shown in Table 7, and experiments were on the
Computers and Cora datasets: (1) Subgraph Integrator: Remov-
ing the subgraph integrator prevents the global model from ef-
fectively utilizing cross-client topological information, leading to
reduced knowledge transfer efficiency. (2) Condensed Data from
Other Clients: Without the condensed data from other clients, the
local model can only rely on its own data for training and cannot
leverage generalized information from the global model, resulting
in reduced generalization capability. (3) Unidirectional Knowledge
Distillation: Eliminating unidirectional knowledge distillation pre-
vents the local model from effectively absorbing global patterns
across clients, leading to reduced generalization capability.

Table 7: Ablation study of key components of FedGVD on
Cora and Computers.

SI CDOC UKD Cora Computers
10 20 30 10 20 30

% % % 79.25 75.98 71.71 85.56 85.82 84.05
% % " 80.13 76.42 72.68 86.87 86.06 84.31
% " " 83.70 80.91 77.79 88.06 86.36 85.62
" % " 81.39 77.83 74.28 87.78 86.17 84.59
" " % 80.24 78.64 74.57 87.67 86.34 85.29

FedGVD 84.47 82.63 79.33 89.36 88.33 87.21

4.4 Sensitivity analysis
4.4.1 Graph condensation rate. To further investigate the impact
of the compression ratio on the performance of FedGVD, we con-
ducted experiments to evaluate how varying compression ratios
affect model performance. The experiments were carried out in a
setup with 10 clients using the rating dataset, and the results are
presented in Figure 4(a). The results demonstrate that a higher con-
densation rate generally correlates with improved model accuracy.
However, we observed that increasing the compression ratio from
0.1 to 0.2 leads to a significant performance gain, while further in-
creases in the compression ratio yield only marginal improvements.
It is important to note that communication costs increase linearly
with the compression ratio. Additionally, a lower compression ratio
reduces both transmission costs and enhances local data privacy.
Considering the trade-offs between communication costs, perfor-
mance, and privacy protection, we conclude that a compression
ratio of 0.2 strikes the optimal balance among these factors and is
therefore the most recommended choice.

4.4.2 Impact of loss function coefficient. The distillation loss func-
tion optimizes the student model by imitating the teacher model’s
output, with its hyperparameter determining the weight of the dis-
tillation loss in the total loss. We conducted a sensitivity analysis of
the coefficient w of the distillation loss function in distributed learn-
ing scenarios with ten clients on the Computers and Photo datasets.
The experimental results in Figure 4(b) show that when the hyper-
parameter value is between 10−2 and 10−4, the model maintains
good performance, and the optimal performance is achieved when
the hyperparameter value is 10−4. Further observations reveal that
changes in the hyperparameter have a more pronounced impact on
the heterogeneous scenario (HtFE5). This indicates that the guid-
ance of the global model is critical for performance improvement in
model-heterogeneous distributed learning scenarios. This phenom-
enon validates the effectiveness of the unidirectional distillation
module in heterogeneous scenarios and provides strong support
for knowledge transfer in distributed learning.

5 Related Work
Federated graph learning. In recent years, FL has gained in-
creasing attention in graph machine learning due to its unique
advantages in distributed data privacy protection and efficient col-
laboration. Current research in this field is primarily divided into
two directions: graph-level federated learning and subgraph-level
federated learning. In graph-level federated learning, each client
holds multiple independent graphs, and downstream tasks typi-
cally focus on graph-level classification. For example, GCFL [37]
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Figure 3: Comparison of convergence performance between our proposed FedGVD and baseline methods across four graph
datasets with 10 participating clients.
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Figure 4: Impact of graph structure condensation rate and
the weight coefficient 𝜔 under 10 clients FGL scenario.

introduces a dynamic clustering method based on GNN gradients,
while FedStar [31] leverages structural knowledge sharing by com-
bining structural embeddings with feature-structure decoupling,
enabling clients to learn domain-agnostic structural knowledge
while preserving domain-specific feature knowledge. Subgraph-
level federated learning assumes that multiple clients collectively
hold subgraphs of a global graph, primarily addressing node or
edge-level classification and prediction tasks. FedGTA [22] im-
proves model performance and scalability through local confidence
smoothing and personalized aggregation of mixed neighborhood
features. FedTAD [47] proposes a topology-aware data-agnostic
knowledge distillation method that transfers knowledge reliably
through pseudo-graph generation.
Structural heterogeneity in FGL. Under the data heterogeneity
challenges of traditional FL, FGL faces additional critical challenges:
graph structural heterogeneity, including homophily differences
in node connection patterns within subgraphs and missing cross-
subgraph edges. FedSPA [33] identifies dynamic heterogeneous
characteristics in subgraph data homophily, termed homophily het-
erogeneity. FGSSL [12] calibrates local model bias via graph-level
structural distillation. FED-PUB [1] evaluates subgraph similarity
using functional embeddings for weighted aggregation and selec-
tively updates parameters with weight masks. To address missing
cross-subgraph edges, FedSage+ [45] introduces a missing neigh-
bor generator to complete missing cross-subgraph links, while
FedGL [3] supplements local models by generating a global pseudo-
graph from node embeddings to augment training labels and graph

structures. Currently, there is a lack of FGL methods that can effec-
tively address both major types of structural heterogeneity.
Model heterogeneity in FGL Model heterogeneity is another
challenge in FGL, arising from hardware variations, computational
constraints, or personalized requirements. Clients may adopt het-
erogeneous neural architectures (e.g., GCN, GAT), making direct
parameter aggregation infeasible. Current solutions focus on three
mainstream approaches: knowledge distillation, prototype learning,
and meta-learning. FedDistill [48] utilize knowledge distillation
to align local models with the global model without sharing pa-
rameters. FedProto [32] and FedProc [24] share low-dimensional
generic prototype knowledge to regularize local model training
using prototype data. Building on this, FedTGP [44] and FGGP [34]
further optimize prototype generation tomitigate prototype domain
shift across clients. Per-FedAvg [5] employs a model-agnostic meta-
learning (MAML) framework to identify a globally shared initial-
ization. It trains personalized local models derived from the global
initialization. Existing knowledge distillation and meta-learning
methods incur high communication overhead from frequent pa-
rameter transmission, while prototype learning sacrifices structural
granularity for class-level statistics.

6 Conclusion
This paper introduces FedGVD, a lightweight FGL algorithm that
addresses graph structural heterogeneity and model heterogeneity
through a dynamic subgraph integrator and a unidirectional dis-
tillation framework. The method reconstructs a graph with global
structural awareness on the server side using locally condensed
data and performs low-communication knowledge distillation by
unidirectionally transmitting condensed data-logits pairs from the
server to clients. Experiments demonstrate that FedGVD outper-
forms state-of-the-art FGL methods in terms of model accuracy,
convergence speed, and communication overhead.
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