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Abstract

The quantification of aleatoric and epistemic un-
certainty in terms of conditional entropy and mu-
tual information, respectively, has recently become
quite common in machine learning. While the prop-
erties of these measures, which are rooted in in-
formation theory, seem appealing at first glance,
we identify various incoherencies that call their
appropriateness into question. In addition to the
measures themselves, we critically discuss the idea
of an additive decomposition of total uncertainty
into its aleatoric and epistemic constituents. Ex-
periments across different computer vision tasks
support our theoretical findings and raise concerns
about current practice in uncertainty quantification.

1 INTRODUCTION

Estimating, analyzing, and handling uncertainty has always
been an integral part of classical statistics. More recently, the
broader machine learning community has come to acknowl-
edge its vital role in producing reliable estimates, which is,
e.g., considered paramount in safety-critical applications
[Senge et al., |2014, [Kendall and Gall 2017\ |Psaros et al.,
2022]). In the context of supervised learning, the focus is typi-
cally on predictive uncertainty, i.e., the learner’s uncertainty
about the outcome y € ) given a query instance  from
an input space X. It is often expedient to decompose the
total amount of uncertainty (TU) into its aleatoric (AU) and
epistemic (EU) parts [Hiillermeier and Waegeman, 2021]].
The aleatoric component of TU arises from the stochastic
nature of the mapping from &X' to ), which implies that
the “ground truth” is a (generally non-Dirac) conditional
probability distribution p(- | ) over ). Potential sources of
AU include measurement errors, randomness in physical
quantities, and the simple fact that & may not suffice to
explain y [Malinin, 2019]. Thus, it is not possible to predict

the outcome with certainty even assuming perfect knowl-
edge of the data-generating process. In practice, the learner
only finds an empirical estimate (- | ) from a pre-defined
hypothesis space H. Roughly speaking, EU then refers to
a lack of knowledge about the discrepancy between p and
p that can — in contrast to AU — be alleviated by gathering
more training sample [[Senge et al.,[2014]]. Not least due to
this potential reduction, the quantification of EU is helpful
in many applications of Al, e.g., in order to invoke human
intervention in multi-stage decision processes [|Gal et al.|
2017, Budd et al., 2021} [Kirsch et al., [2022].

A specific set of measures for TU, AU, and EU has found
broad consensus in the uncertainty quantification literature.
Promoted by [Houlsby et al.| [2011]] and |Depeweg] [2019],
among others, the core idea revolves around Shannon en-
tropy [Shannon, |1948]|| as a measure for TU, which can be
shown to (additively) decompose into conditional entropy,
interpreted as a measure of AU, and mutual information,
resulting as a measure of EU [Kendall and Gal, 2017, |Smith
and Gall 2018, |Charpentier et al.} [2022]]. Various applica-
tions have recently used these measures (e.g., Michelmore
et al. [2018]], Shelmanov et al.[[2021]], Winkler et al.| [2022]).

While the underlying ideas are well-established and math-
ematically well-founded, they originate from information
theory and are not necessarily suited to uncertainty quan-
tification in statistical learning. In fact, we find that the
proposed entropy-related measures exhibit questionable be-
havior in a number of settings. We thus argue for a critical
re-assessment of the established practice. Our contributions
are as follows: We (i) point out numerous incoherencies
of uncertainty measures based on decomposing Shannon
entropy, (ii) shed light on why an additive disaggregation of
TU might not be meaningful, and (iii) provide evidence for
the relevance of these observations in practical applications.

! An additional source of EU is model misspecification, mean-
ing that p ¢ H (e.g., Wilson| [2020]); although important, it is
difficult to tackle formally and often omitted from the analysis.
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2 BACKGROUND

2.1 UNCERTAINTY REPRESENTATIONS

In the following, we assume categorical target variables
from a finite label space YV = {y1,...,yx}, K € N
The set P(Y) of (first-order) probability distributions over
Y can be identified with the (K-1)-simplex A :=
{0=(61,...,0K) €[0,1]% | ||0]l, = 1}. For each 6 €
Ak, we can compute an associated degree of AU [Hiiller]
meier and Waegeman, [2021]]. To capture EU, the learner
must be able to express uncertainty about 8, which can be
accomplished by a (second-order) probability distribution
over (first-order) distributions 6.

The canonical approach to such a bi-level representation
is Bayesian inference, where uncertainty about the (Bayes)
predictor is translated into uncertainty about a prediction ex-
pressed in terms of the posterior predictive distribution [Gel{
man et al., 2021]]. Another idea is to estimate EU directly
along with the prediction of the outcome. For instance, it is
possible to learn the parameters of a Dirichlet distribution
with a concentration parameter expressing EU [Malinin and
Gales}, 2018 (Charpentier et al., [2020, |[Huseljic et al., [2020,
Kopetzki et al| [2021]. Either way, we arrive at a second-
order or second-order predictor F' : X — Ag), where

Ag?) = P(P())) denotes the set of second-order distribu-
tions over ). For the sake of simplicity, we subsequently
omit the conditioning on the query instance x.

Each probability vector @ € Ak implies a categorical dis-
tribution on ), such that 8y, = p(yy, | @) is the probability of
outcome ¥, and one of these distributions, 8, corresponds
to the (unknown) ground truth. If F(z) = Q € Ag) is the
prediction for a query @, then () assigns a probability Q(0)
to each distribution 8 € Ag. @) represents the epistemic
state of the learner about x, and a stronger concentration
of @ indicates more certainty about the true distribution 6*.
Note that we immediately regard the output distribution and
omit from our notation any relation to objects that play a role
in estimating 6 (e.g., the Bayes posterior is often expressed
as a distribution over model parameters given data).

As an example, consider the case of binary classification
(K = 2), where Y = {yo, y1} consists of only two classes,
negative and positive (illustrated in Fig.[T). The conditional
distribution p(- | ) is now determined by the probability
vector 8 = (09,601) = (p(yo | ), p(y1|x)). As the indi-
vidual class probabilities sum up to one, prediction in «
effectively comes down to inference about the ground-truth
probability 67 = p(y1 | &) of the positive class, and hence
about the success parameter 6 of a Bernoulli distribution
B(8). The corresponding second-order distribution @ could
be, for example, a Beta distribution (or, more generally, a
Dirichlet distribution for K > 2).

Ad—order distribution
| | level 2 (epistemic)

0 1
0" 8 .
oo | level 1 (aleatoric)
0 1
° e level 0 (outcome)
negative positive

Figure 1: Bi-level uncertainty representation in binary clas-
sification. We pose a second-order distribution () over
Bernoulli distributions corresponding to the probability 6 of
the positive class. In Bayesian inference, ) is given by the
posterior distribution (epistemic level), and a point predic-
tion 6 (aleatoric level) is obtained by model averaging. On
level zero, only binary class labels are observed.

2.2 ENTROPY-BASED INFORMATION
MEASURES

Given a representation of an uncertain prediction in terms
of a second-order distribution (), one is often interested in
quantifying the learner’s uncertainty in terms of a single
number, and decomposing the TU into its aleatoric and epis-
temic contributions. One approach that is now commonly
adopted [Houlsby et al., 2011} |Gal, 2016} Depeweg et al.,
2018, [Smith and Gal, 2018| Mobiny et al.,[2021]] is based
on information-theoretic quantities derived from Shannon
entropy. Let Y signify the random outcome variable with
marginal probability

p(y) =[5, p(y|0) dQ(O). (0

The (discrete) Shannon entropy of Y can be defined as

=2 yey P(y) -logp(y) , 2

where the logarithm is typically set to base 2. For continuous
label spaces, we obtain the differential entropy analogously
by replacing the sum in Eq. with an integral over )
[[Cover and Thomas, [2006]].

H(Y) =

Shannon entropy can be interpreted as the degree of unifor-
mity in the distribution of a random variable, or the amount
of information to be gained from observing its realization
(further analogies exist in physics and source coding). It
enjoys a number of desirable properties: it is non-negative,
maximal for the uniform distribution, and invariant to per-
mutations of classes in ) [Cover and Thomas), [20006]].

Exploiting the fact that Y is the expectation of the condi-
tional outcome (given @) with respect to the second-order
distribution (), the Shannon entropy, as a measure of TU,
can be computed as

H(Y)=H(Eq[Y |6]). 3)



A trivial result from information theory states that Shannon
entropy additively decomposes into conditional entropy and
mutual information (e.g., Ash|[[1965]):

H(Y)=H(Y|0)+I(Y,0). 4

Here, © denotes the random variable of first-order distri-
butions 6 ~ Q. Conditional entropy H (Y | ©) expresses
the uncertainty about Y that would remain if the realiza-
tion of © were known, and is therefore taken to quantify
AU. The motivation for expressing AU this way is as fol-
lows: By fixing a first-order distribution 8 € Ak, all EU
is essentially removed and only AU remains, such that
H(Y|0)=- 21521 0y log 0y, is indeed a natural measure
of AU. However, as 6 is not precisely known, we take the
expectation with respect to the second-order distribution:

H(Y|©)=Eq[H (Y|0)] (5)
= Af Yyey —P(y]8)logp(y|6) dQ(6).

H(Y'|0)

Mutual information I(Y, ©), proposed to embody EU, is
a symmetric measure for the expected information gained
about one variable through observing the other and vanishes
if both variables are independent. Intuitively, it quantifies
the potential reduction in uncertainty about Y through ob-
serving 6] [Ash,[1965]:

1(Y,0) = H(Y) ~ H(Y|©)
= Eq Dk (0(Y10) [ p(Y)].  (6)

2.3 FINITE-ENSEMBLE APPROXIMATION

In practice, it will hardly be possible to compute exact ex-
pectations with respect to () due to the intractability of the
corresponding integrals, so we must permit some kind of
approximation. The standard approach to this problem is
Monte Carlo integration with a finite number M € N of
samples 8 ~ (), whose induced mean, by the law of large
numbers, almost surely converges to the true integral [|An{
drieu et al.| 2003]. In machine learning, this way of combin-
ing the predictions of multiple models is common practice
and known as ensemble learning (e.g., Breiman|[2001],|Lak{
shminarayanan et al.|[2017]]). For TU, the entropy over the
approximate first-order distribution becomes

HY)=H (&Y v (v10™)), O

where ™), m ¢ {1,..., M}, is the prediction of the m-th
ensemble member. Analogously, we obtain the ensemble

1t should be noted that Houlsby et al.|[2011] proposed the
entropy decomposition to inform uncertainty sampling in active
learning, where mutual information has a slightly different purpose,
namely reducing uncertainty about ©, while we use I(Y, ©) to
quantify uncertainty about Y~ (which the symmetric nature of I(-)
enables us to do).

conditional entropy as a measure of AU:

HY[0) =40 H(p(y16™)).  ®

The discrete EU is the Jensen-Shannon divergence
M m o _
5 D (p (s16) || 4 52w (v169)).
€))

Finite-ensemble EU still results as the difference between
Eq. (7) and Eq. (8) under the conditions of Section [2.2]
Obviously, ensemble learning provides a rather coarse ap-
proximation to the expectation E (-), especially if the size
M of the ensemble is small. Consider, for example, deep
ensembles [Lakshminarayanan et al.| 2017], which have
become a de facto gold standard in probabilistic machine
learning [[Ovadia et al., [2019} |Ashukha et al., 2020| [Psaros
et al.} [2022]. The cost of training each of their neural net-
work members is typically so high that M remains in the
realm of five to ten (e.g.,|Abe et al.|[2022], Turkoglu et al.
[2022]). We must then expect certain (low-density) regions
in the space of first-order distributions to be systematically
undersampled, affecting the estimate of EU in particular.

3 RELATED WORK

The decomposition in Eq. (@) is widely applied and often
used in conjunction with Bayesian learning, e.g., to ob-
tain more robust predictions by explicitly modeling both
components of TU [Kendall and Gal, [2017], to design bet-
ter optimization procedures by using the decomposition in
stochastic differential equations [Winkler et al., 2022}, or to
improve the general understanding of neural networks [Woo|
2022]. In natural language processing, Wu et al.| [2020] fil-
ter unreliable predictions in spoken language assessment
caused by high EU, while[Shelmanov et al.| [2021]] perform
active learning with EU-based acquisition for label-efficient
sequence tagging. Further fields of application include au-
tonomous driving, where EU is found to be predictive of
forthcoming accidents [Michelmore et al., 2018]], and medi-
cal diagnostics, with a focus on identifying inherently am-
biguous cases [Mobiny et al., 2021].

We find, however, that the entropy decomposition may lead
to unintended results discussed in the subsequent section.
While we do not dispute the mathematical correctness of
Eq. @)-(6), we argue that the individual quantities and their
additive aggregation are not suitable for evaluating predic-
tive uncertainty. Although previous work uncovered similar
shortcomings of measures in related uncertainty frameworks
(e.g.,[Pal et al.|[1992] on evidential reasoning), the entropy-
based measures — to the best of our knowledge — have drawn
hardly any criticism in the machine learning community. In
the following, we point out numerous inconsistencies that
cast doubt on the usefulness of the individual measures and
address the more general issue of additive decomposition.



4 CRITICAL ASSESSMENT

Let TU, AU, and EU denote, respectively, measures
A(I?) — R of total, aleatoric, and epistemic uncertainty
associated with a (second-order) uncertainty representation
Q < Ag). In the literature, it is common to define the
fundamental properties of uncertainty measures through an
axiomatic approach (see also, for example, [Bronevich and
Klir [2008], |Pal et al.|[1993]]. In the following, we define
some properties these measures should naturally satisfy.

A0 TU, AU, and EU are non-negative.
Al EU vanishes for Dirac measures ) = dg.

A2 EU and TU are maximal for () being the uniform dis-

tribution on A(Ig).

A3 If @' is a mean-preserving spreacﬂ of @, then
EU(Q') > EU(Q) (weak version) or EU(Q') >
EU(Q) (strict version); the same holds for TU.

A4 If Q' is a center—shifﬂ of @, then AU(Q’) > AU(Q)
(weak version) or AU(Q’) > AU(Q) (strict version);
the same holds for TU.

A5 If ' is a spread-preserving location shifﬂ of ), then
EU(Q') = EU(Q).

4.1 TOTAL UNCERTAINTY

Although Shannon entropy is widely established as a mea-
sure of uncertainty associated with a random variable, one
may wonder about its appropriateness for quantifying total
predictive uncertainty in the scenario outlined above. As an
illustration, we pick up our previous example of binary clas-
sification (note that properties A0-AS5 apply to Q, Q' € Ag)
but violations for K = 2 suffice to conclude that they do not
hold in general). Fig. 2]shows some exemplary second-order
distributions () together with the values they induce for TU,
AU, and EU about the prediction of 6.

We first note that property A3 is violated by TU in terms of
entropy, at least in its strict version, because (3) depends on
@ only through its expectation.

Proposition 1. Total uncertainty defined in terms of Shan-
non entropy (3) violates the strict version of A3.

For example, in the special case @) € Aéz), H(Y) is maxi-

mal as soon as () is symmetric around 6§ = 5. Consequently,

et X ~ Q,X' ~ Q' be two random variables, where
Q,Q € Ag). Then, Q' is called a mean-preserving spread of @

iff X' £ X + Z, for some random variable Z with E[Z|X =
z] = 0 Vz in the support of X.

*Q and @' differ only in their respective means, where the
mean of @’ is closer — in terms of L1 distance in Cartesian coordi-
nates — to the barycenter of A;?.

@ and @’ differ only in their respective means.

the uniform distribution on the unit interval, Q = [0, 1]
(Fig.[2h), which is commonly considered a representation of
complete ignorance (justified by the “principle of indiffer-
ence” invoked by Laplace, or by referring to the principle of
maximum entropy), has the same TU as a mixture of Dirac
distributions Q) = %50 + %51 (Fig.|2f) dividing all probabil-
ity mass between the outcomes 6 = 0 and # = 1. While one
may argue that the uncertainty about the target variable Y’
is indeed the same in both cases, it seems counter-intuitive
to obtain identical results when in one scenario, the learner
(supposedly) knows nothing, whereas, in the other, it has
substantial knowledge about the ground-truth distribution
0*. Likewise, it appears strange that any distribution ) not
symmetric around % will have a lower TU, including, for ex-
ample, 1/[0.45,0.85] (Fig.[2k), when it arguably represents
a lower degree of informedness than the Dirac mixture.

TU: 1.00, AU: 0.72, EU: 0.28 TU: 1.00, AU: 0.97, EU: 0.03
(a) (b)

0.0 0.2 0.4 0 0.6 0.8 1.0 0.0 0.2 0.4 0 0.6 0.8 1.0

TU: 0.80, AU: 0.66, EU: 0.14 TU: 1.00, AU: 0.96, EU: 0.04
(c) (d)

0.0 0.2 0.4 0 0.6 0.8 1.0 0.0 0.2 0.4 0 0.6 0.8 1.0

TU: 0.97, AU: 0.89, EU: 0.08 TU: 1.00, AU: 0.00, EU: 1.00
(e) )

0.0 0.2 0.4 906 0.8 1.0 0.0 0.2 04606 0.8 1.0
Figure 2: Different second-order distributions @) over the
parameter 6 of a Bernoulli distribution with associated un-
certainty. (a) U[0, 1]; (b) M(0.5,0.01); (c) Beta(8,2); (d)
U[0.3,0.7]; (&) U[0.45,0.85]; () 130 + L41.

The root cause of these peculiarities is the role of the dis-
tribution @ in the computation of TU — effectively, @ is
marginalized over. In this sense, the reason for having max-
imal TU in the case of [0, 1] is not that it (supposedly)
encodes the greatest lack of knowledge, but only its sym-
metry around 6 = % Information about the second-order
distribution is thus compressed to a single number in the
form of its expectation. On the other hand, the concentration
of @ is hardly reflected in the TU, although it should be an
important indicator of the learner’s state of knowledge.

4.2 ALEATORIC UNCERTAINTY

Noting that, in Eq. (3)), @ represents the learner’s subjective
belief about a supposedly objective ground-truth 8™ asso-
ciated with query @, H(Y | ©) can be seen as the learner’s
(current) best guess of the true AU. Although this might
seem a sensible quantity, the relationship between this es-
timate and the true AU, H(Y | 8™), is by no means clear.



The problem is that AU estimates — even if the additive
nature of the decomposition might suggest otherwise — can-
not be separated from the learner’s epistemic state. In the
finite-sample case, the learner must fall short of perfect
knowledge, meaning that its belief ¢ will not coincide with
the Dirac distribution on 8™ that represents the true second-
order distribution. This, however, directly translates to the
estimate of AU that is derived by taking the expectation over
. Whenever there is EU, we must expect the AU estima-
tion to be compromised, and the absence of a ground-truth
precludes us from knowing how it is affected exactly.

In particular, conditional entropy is neither a true expecta-
tion nor a lower or upper bound on the true AU, and the re-
sulting point estimate suggests a degree of informedness that
is hardly justified. The limited ability of probability distri-
butions to properly distinguish between different subjective
beliefs adds to the problem. For example, if a uniform @ is
meant to represent complete ignorance, then all the learner
can infer is that the true AU is between zero (for § € {0,1})
and one (for 0 = %). This is clearly a different situation than
having perfect knowledge about all first-order distributions
being equally probable. Ultimately, however, both lead to
the same average over the support of ). Therefore, we must
conclude that AU is computed with respect to a belief that
the second-order distribution may fail to express, and that
must be expected to be wrong.

4.3 EPISTEMIC UNCERTAINTY

The definition of mutual information (Eq. (6)) may appear
intuitively plausible at first sight: If the observation of Y
reveals a sizeable amount of information about O, then the
learner’s uncertainty about © must be high (et vice versa).
Likewise, a high divergence in the finite-ensemble version
(Eq. @I)), i.e., in the predictions of different ensemble mem-
bers, can be viewed as indicating a high EU.

That said, the measures do not necessarily behave as one
may expect. Looking at Fig.[2] a first observation is that EU
tends to be relatively low, which is especially noticeable in
the case of the standard uniform distribution (upper left).
As already mentioned, ¢/[0, 1] is usually meant to represent
complete ignorance, suggesting that the learner is as unin-
formed as it could be, so we would expect a measure of EU
to fulfill property A2 (i.e., be maximal) in this case.

Proposition 2. EU in terms of mutual information 1(Y, ©)
violates property A2.

This violation holds in general, and can be seen very eas-
ily for the case K = 2 in Fig. [2] In Bayesian inference,
for example, the uniform distribution is commonly adopted
as a prior, representing knowledge before seeing any data.
In such a state, one would assume all uncertainty to epis-
temic, and hence the measure of EU to be very high. On the
contrary, however, AU (at 0.72) is well above EU (at 0.28).

Actually, the maximal EU (1.00) is reached only for the case
of Fig. [Z]f in which @) is a mixture of two Dirac measures,
one placed at @ = 0 and the other at § = 1. This distribution
suggests a deterministic dependency, where the outcome
is either certainly positive or certainly negative — a case in
which the learner undoubtedly knows more than nothing, so
again, the level of EU does not seem appropriate.

Also, note that EU is not invariant against a location shift
of the distribution ), even though it would be reasonable to
expect that EU remains constant when the spread of ) does
not change.

Proposition 3. There exist location shifts Q' € A(Ig) of
Qe Ag?) such that property A5 is violated.

For example, the distributions in Fig.[2ld and Fig. 2k (case
K = 2) are both uniform on an interval of length 0.4, sug-
gesting the same level of informedness about the ground
truth €. However, the respective degrees of EU (0.04 vs.
0.08) differ. Of course, one may argue that the uncertainty
will depend not only on the shape but also on the location of
the distribution. Then, however, /[0.3,0.7] should arguably
exhibit higher uncertainty, as it puts more probability mass
close to § = 1 than ¢4[0.45, 0.85]. This is indeed the case
for TU and AU but exactly reversed for EU.

Lastly, we would expect EU to increase when ()’s mass
is spread over a larger support (all else being equal), such
that more hypotheses are deemed likely. Such spreading
happens, for example, in moving from 80.45 + 80.95 to
U0, 1], while EU actually gets higher rather than lower.

Proposition 4. EU in terms of mutual information 1(Y,©)
violates property A3.

Mathematically, the numbers are clearly correct and mean-
ingful: In Fig. 2F, for example, the ground-truth distribution
6 is uniquely determined as soon as the outcome Y has been
observed, so mutual information should be maximal. What
must be concluded is rather that mutual information may
not be the right measure of EU. Indeed, mutual information
is arguably more a measure of divergence or conflict than
of ignorance, as the common understanding of EU would
suggest. This is quite obvious from Eq. (6) and even easier
to see in the discrete version (Eq. @)) for finite ensembles.
Mutual information effectively quantifies the expected di-
vergence of single hypotheses from the opinion given by
integrating over all of them. Consequently, it is much higher
for the Dirac mixture in Fig. 2f, with maximal divergence of
both hypotheses from the average 0 = %, than for U[0, 1],
which also assigns probability mass to many alternatives
that diverge only little from the expectation. Thus, mutual
information behaves as expected but does not seem well-
suited to measuring a quantity taken to represent ignorance.



44 ADDITIVE DECOMPOSITION

Let us conclude this section with a few remarks on another
potential problem of uncertainty quantification, which is re-
lated, though not restricted, to the quantification discussed in
this paper. According to Eq. (@), TU (entropy) decomposes
additively into AU (conditional entropy) and EU (mutual in-
formation). When combining distinct sources of uncertainty,
additive representations of this kind appear natural and can
also be found for other measures of uncertainty, such as
variance (see, e.g., Depeweg et al.| [2018]] for a discussion
of entropy and variance decomposition). However, when
considering Eq. @) in a machine learning setting, where the
(total) uncertainty is not fixed but decreases with increasing
sample size, additivity might be less obvious because the
aleatoric part does not correspond to the true AU, but only
to an estimate thereof. Moreover, this estimate depends on
the EU, such that the two measures are tightly interwoven
and certainly not independent of each other. So, what is the
justification for simply adding them up?

total

sample size

Figure 3: In the beginning, the learner is very uncertain
about the true class probability for the (green) query point
x (top-left), but this (epistemic) uncertainty disappears with
increasing sample size (top-right). The bottom plot shows
the expected qualitative behavior of uncertainty components.
The dotted line marks the difference of TU and EU (which
equals AU when stipulating additivity).

The dependence between the measures can be seen most
clearly at the beginning of a learning process, during which
the number of observed samples increases when the learner
has seen very little or even no data. For example, take the
case of binary classification, where the learner is still fully
ignorant about the probability 8 = p(y; | ) of the positive
class in a certain point x: it might be a clear positive case
(60 = 1), a clear negative case (6 = 0), but also everything
in between. In this situation, an ideal measure of TU should
arguably assume its maximum value. Likewise, an ideal
measure of EU should be maximal because the learner is
as uninformed about 6 as it can be (note this is not the case

for mutual information when starting with a uniform prior).
Then, however, additivity implies that AU must be zero, at
least if the measures share a common scale with the same
maximum value (which holds for entropy and mutual infor-
mation). In a sense, the aleatoric part is already comprised
in the epistemic part, suggesting that the difference between
TU and EU can, at best, be interpreted as a lower bound to
the true AU. This is depicted graphically in Fig.[3} With a
growing sample size, we expect EU to decrease and even-
tually vanish because the learner will gain full knowledge
about the data-generating process, while both TU and TU
minus EU should converge to the true AU (the former from
above and the latter from below).

The above can be summarized as follows:

Proposition 5. If EU and TU attain their respective maxima
at the beginning of learning, and they are constructed to be
on the same scale, then TU cannot decompose additively
into EU and AU if AU is positive.

What these considerations suggest is that, in the finite-
sample (machine learning) regime, additivity might in-
evitably be violated by “ideal” measures of TU, EU, and
(ground-truth) AU (again, note that entropy and mutual in-
formation with a uniform prior are not ideal in this sense,
which is what we criticized them for). Instead, additivity
may only hold for the decomposition of TU into EU and a
lower bound to AU, or might be relaxed to sub-additivity
along the lines of Dubois et al.| [1996]. Alternatively, ad-
ditivity must be preserved by giving up other assumptions,
e.g., that all measures share the same scale. Recently, for
example, |Hiillermeier et al.| [2022] proposed a decomposi-
tion for the uncertainty of sets of probability distributions
(credal sets), in which EU can become twice as high as AU.

S EXPERIMENTS
5.1 EXPERIMENTAL SETUP

We conduct a number of experiments that provide practical
evidence about the incoherent behavior of entropy-based
uncertainty measures. For further details on training con-
figurations, see supplementary material. The experimental
code is available in full via a public repositoryﬂ

Datasets We consider image classification tasks for two
real-world datasets, CIFAR10 [Krizhevsky, [2009] and
MNIST [LeCun et al.,[1998]], containing ten classes of color
and gray-scale images, respectively. For a setting over which
we can exert full control, we further synthesize black-and-
white images of rectangles, where one class is characterized
by vertical extension (i.e., height > width) and the other
vice versa, and simulate a bivariate classification problem
with tabular features and four classes.

®https://github.com/lisa-wm/entropybaseduq
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Probabilistic Learners For the computer vision tasks, we
employ deep ensembles of M neural networks with varying
random initialization [Lakshminarayanan et al.l2017], as
well as a Laplace approximation [Daxberger et al.| [2021]]
that fits a Gaussian approximate posterior to the location of
the maximum-a-posteriori estimator and draws M samples
from this distribution. Furthermore, we train a random forest
[Breiman, |2001] and an ensemble of single-hidden-layer
feedforward neural networks (MLPs) for the tabular clas-
sification problem. Ensemble predictions are computed by
averaging over the outputs of individual members. We set
M = 10. While this may seem small, note that this is in
accordance with common practice (e.g., Beluch et al.|[2018]],
Lee et al. [2021]], /Abe et al.|[2022]], Kristiadi et al.| [2022]],
Turkoglu et al.|[2022]) because larger ensembles are rarely
affordable in the deep learning with architectures typically
numbering in the millions. Our ablations suggest that the
observed qualitative behavior is fairly robust with respect to
ensemble size (see supplementary material).

Evaluation The figures in the following paragraphs visu-
alize estimates for AU, EU, and TU (normalized to values
in [0, 1]) alongside predictive performance in terms of ac-
curacy (ACC) and expected calibration error (ECE;|Naeini
et al.| [2015[]). The uncertainty estimates are depicted as
lines (averaged over all test samples, left y-axis), while the
bars represent performance (right y-axis). All results are
aggregrated over three independent runs, with error bars on
the uncertainty curves indicating one standard deviation.

5.2 RESULTS AND DISCUSSION
5.2.1 Increasing Sample Size

We first study how the components of total Shannon entropy
evolve with sample size, where we admit increasingly larger
training datasets from 1% to 100% of available samples
(randomly selected; the classes are balanced).

Expected Behavior TU and EU start from their highest
level and decrease gradually, while AU approaches its true
constant value from below (due to the additivity assumption).
The reported uncertainty is higher when accuracy is low.

Observed Behavior We observe the expected downward
slope of TU and EU as a general pattern, but the evidence
is otherwise not quite consistent. Most strikingly, the AU
estimates also assume high initial values and decrease for
larger sample size in three out of four cases. For CIFAR10,
this behavior is clearly visible (Fig. [5), underlining our con-
cern that AU estimates are unreliable in the light of limited
knowledge. In the case of MNIST and the deep ensemble,
uncertainty is ultra-low from the beginning, but a close-up
in the small overlaying plot of Fig. [ (top) reveals the same
trend. Reported EU for small sample sizes seems quite low

overall, despite limited information and consequently poor
performance. A notable exception is the Laplace approxi-
mation for MNIST (Fig.[d] bottom), which resembles most
closely what we would have expected, though it appears
more susceptible to random changes (see close-up).
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Figure 4: Entropy-based uncertainty for increasing sample
size (MNIST). Overlaying plot (top): re-scaled left y-axis.
Overlaying plot (bottom): empirical densities of observed
instance-wise EU values (each curve represents one run of
the experiment) with 10% sample size.
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Figure 5: Entropy-based uncertainty for increasing sample
size (CIFAR10).

5.2.2 Increasing Data Noise

Next, we modify the level of noise in the data, for which
we use different proxies. First, we vary image resolution in
the computer vision tasks by downscaling (original sizes:
28x28/32x 32forMNIST/CIFARI1O0); second, we shrink
the relative class distance for the tabular data and thus en-
force stronger overlap (Fig. [6); and lastly, we randomly
change class labels for a varying share of observations in
the same dataset (see supplementary material).



Data for varying relative class distance
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Figure 6: Tabular data with two features and four classes for
increasing class overlap.

Expected Behavior AU picks up with increasing noise
level. Since learner capacity remains fixed, it is reasonable to
assume that EU also rises to some extent when the decision
boundaries become more complex with mounting degree of
dataset contamination.
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Figure 7: Entropy-based uncertainty for decreasing image
resolution (MNIST). Overlaying plot: empirical densities of
observed instance-wise EU values (each curve represents
one run of the experiment) with 10% resolution.
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Figure 8: Entropy-based uncertainty for decreasing image
resolution (CIFAR10).
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Figure 9: Entropy-based uncertainty for for increasing class
overlap (tabular data).

Observed Behavior More noise indeed prompts a rise in
AU in all cases (Fig. . However, EU remains basically
constant and very low, even when the data are so noisy that
performance plummets. Note that, for instance, 10% resolu-
tion corresponds to a compression into 3x 3 pixels for both
MNIST and CIFAR10, and how the decision boundaries
become quite blurred in the tabular dataset when classes
overlap more strongly (Fig. [6)). Again, the Laplace approxi-
mation for MNIST is something of an exception: here, EU
increases for the lowest resolution values, but leaves AU re-
markably small and even falling from 10% to 5% resolution.
We find thus that the uncertainty measures behave, if not
entirely implausible, again somewhat inconsistently.

5.2.3 Test Distribution Shift

Following a slightly different idea than in the
previous experiment, we now train the learner
on a well-separated dataset of synthetic rectan-
gles and seek predictions for instances which in-
terpolate between the classes. This is achieved
by decreasing the rectangles’ side-length ratio,
effectively pushing them towards a square.

5

{

We further present the learner with samples that are from
an entirely different class, namely random non-convex poly-
gons with 3-5 vertices, and thus out-of-distribution (OOD)
relative to the training data. Both settings create a form
of distribution shift between training and test data that is
associated with the presence of predictive uncertainty.

Expected Behavior Class interpolation mainly affects
AU through instances located close to the learned decision
boundaries. In OOD detection, demanding predictions for
samples from a previously unseen class should spike an
increase in EU.

Observed Behavior The deep ensemble and Laplace ap-
proximation act quite differently in the presence of class
interpolation (Fig. [I0). While the former behaves roughly
in line with our expectation, the Laplace learner attributes
most of the uncertainty to the epistemic component when
samples become increasingly quadratic, leaving AU almost



unchanged. In OOD detection, both classifiers react appro-
priately in principle by reporting higher uncertainty for the
polygon images. However, they allocate the majority of the
uncertainty premium differently: Laplace almost exclusively
raises the epistemic component, the deep ensemble signals
both higher AU and EU. In both ablations, a vast gap in
overall levels of uncertainty is evident (e.g., for the OOD
case, Laplace reports roughly five times higher TU).
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Figure 10: Entropy-based uncertainty for synthetic data with
increasing class interpolation (left) and OOD detection (ran-
dom polygons; right).

5.2.4 Discussion

Our experiments confirm empirically that the entropy-based
uncertainty measures exhibit some — sometimes subtle — in-
consistencies in different learning situations. While TU as a
whole behaves fairly sensibly, the attribution to its aleatoric
and epistemic components often appears implausible. We
further identify very low levels of EU as a global pattern.
That said, we also find that the design of the probabilistic
learner used can affect the results considerably, even when
predictive performance remains similar. In particular, deep
ensembles draw from the opinions of various base learners
when they estimate predictive uncertainty, as opposed to
Laplace approximation, where a single base network deter-
mines uncertainty quantification. Consequently, the behav-
ior of explicit ensembles also depends on the complexity of
their base learners in that AU estimates decrease consider-
ably when each ensemble member is granted more capacity
(see supplementary material). This relates to another insight
relevant for this kind of empirical studies: reasoning about
uncertainty estimates must always occur in conjunction with
predictive accuracy and calibration, since we can hardly ex-
pect sensible uncertainty behavior when the learner fails on
the basic underlying task. Numerous practical aspects thus
interact to elicit or mitigate shortcomings of the discussed
measures and warrant caution in interpreting any predictive
uncertainty estimate one may obtain in practice. Worryingly,
this becomes all the more important with limited data, a
situation often encountered in, e.g., medical applications.

6 CONCLUDING REMARKS

Despite the common use of Shannon entropy, conditional
entropy, and mutual information for the quantification of
predictive uncertainty, we observed and empirically con-
firmed that these measures behave neither coherently nor
always as expected. First, each of the measures itself can be
criticized for (the lack of) certain properties. For example,
we argued that mutual information is rather a measure of
divergence than a measure of ignorance. Second, the discrep-
ancy between (i) the ground-truth scenario concerning the
true data-generating process with an objective ground-truth
AU and zero EU, and (ii) the finite-sample setting in which
AU is derived from (and hence depends on) subjective EU,
leads to incoherencies and calls additivity of the decomposi-
tion into question. With this in mind, we encourage a critical
assessment of the existing framework and cautious use of
these measures.

When remaining committed to the basic (Bayesian) repre-
sentational framework with second-order distributions for
the epistemic part of uncertainty, an obvious alternative is to
look for measures with better properties, and indeed, some
proposals can be found in the recent literature (e.g.,[Sicking
et al.[[2020]]). Another option is to change not only the mea-
sures for quantification, but also the underlying representa-
tion, for example by moving beyond classical probability.
In fact, the suitability of probability distributions to repre-
sent ignorance in the sense of a lack of knowledge has been
questioned by various scholars [Dubois et al., |1996], who
advocate the use of generalized, more expressive uncertainty
formalisms. In particular, it has been argued that the uni-
form distribution is not a suitable representation of complete
ignorance, as it fails to distinguish the epistemic state of
zero knowledge and the state of perfect information, where
the learner knows that all outcomes are equiprobable. In-
deed, the averaging over conditional entropies, which is part
of the problems with the aleatoric component, is arguably
meaningful in the latter case but much less so in the former.
Seen from this perspective, one may indeed wonder whether
classical probability is the right paradigm for modeling the
epistemic part. On the other side, measuring uncertainty and
disaggregating total predictive uncertainty into its aleatoric
and epistemic components do not necessarily become sim-
pler for generalized formalisms [Hiillermeier et al.,|2022].
Clearly, we are not yet at the end of the path toward a truly
meaningful uncertainty representation and quantification.
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