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Abstract
Simulation-based inference (SBI) has emerged as
a family of methods for performing inference on
complex simulation models with intractable like-
lihood functions. A common bottleneck in SBI
is the construction of low-dimensional summary
statistics of the data. In this respect, time-series
data, often being high-dimensional, multivariate,
and complex in structure, present a particular
challenge. To address this we introduce deep
signature statistics, a principled and automated
method for combining summary statistic selec-
tion for time-series data with neural SBI methods.
Our approach leverages deep signature transforms,
trained concurrently with a neural density estima-
tor, to produce informative statistics for multivari-
ate sequential data that encode important geomet-
ric properties of the underlying path. We obtain
competitive results across benchmark models.

1. Introduction
In recent decades, scientific modelers have increasingly
adopted simulation-based models: computer programs de-
scribing stochastic generative processes. Such models are
widely employed in a variety of disciplines, e.g. economics
(Baptista et al., 2016) and ecology (Wood, 2010). Their
popularity lies in the greater flexibility afforded to the mod-
eler over conventional equation-based modeling, enabling a
higher degree of fidelity to the true data-generating process.

A drawback of this greater flexibility is that the likelihood
functions of simulation models are typically intractable, be-
ing defined only implicitly (Diggle & Gratton, 1984). Con-
sequently, traditional frequentist and Bayesian approaches
relying on likelihood evaluations are infeasible. This limi-
tation has motivated a plethora of methods for performing
likelihood-free or simulation-based inference (SBI) (for a
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recent overview, see Cranmer et al., 2020). Early examples
of such methods include approximate Bayesian computation
(ABC) (Pritchard et al., 1999; Beaumont et al., 2002) and
synthetic likelihood (Wood, 2010), while more recent ap-
proaches exploit the flexibility of modern machine learning
techniques, e.g. (sequential) neural likelihood estimation
(Papamakarios et al., 2019; Lueckmann et al., 2019) and
(sequential) neural ratio estimation (Hermans et al., 2020).

In traditional approaches, the selection of an appropriate,
low-dimensional set of summary statistics is key to the qual-
ity of inference. A popular approach in ABC is to select a
large set of candidate statistics from which lower dimen-
sional summaries are obtained through ‘best subset selec-
tion’, ‘projection’ or ‘regularization’ (Blum et al., 2013). A
major disadvantage of these approaches is that they require
the user to know in advance a powerful set of summary
statistics, which can be time-consuming and arbitrary and
often requires domain knowledge and experimentation.

Some more recent approaches, such as sequential posterior
and ratio estimation, are able to automate the learning of
summary statistics by leveraging the expressiveness of neu-
ral networks. Yet, it is not guaranteed that the summary
statistics implicitly generated through the use of such neural
networks provide representations of sufficient quality for
posterior inference. Fully connected networks and deep
multilayer perceptrons (see e.g. Wong et al., 2018) still lack
the inductive biases to easily extract meaningful represen-
tations from time-series, which poses the question of how
automated techniques can fill the knowledge gap of domain
expertise. One such possibility is partially exchangeable
networks (PENs) (Wiqvist et al., 2019), in which a neural
network architecture that exploits certain model symmetries
is proposed in the context of ABC.

Here, we argue for the use of the so-called “signature
method” (Morrill et al., 2020; Bonnier et al., 2019) for
extracting features from multimodal, multivariate sequential
data. The central object of study—the path signature—is,
in a sense, a canonical feature transformation in that the sig-
nature of path-valued random variable captures all possible
nonlinearities (Arribas, 2018). Applications of the signa-
ture method have produced promising results in a number
of tasks, including character recognition (Xie et al., 2018),
gesture recognition (Li et al., 2017), and early identifica-
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tion of Alzheimer’s from clinical data (Moore et al., 2019).
More recently, the signature has been proposed as a natural
means for constructing distances between time series data
in approximate Bayesian computation (Dyer et al., 2021).

We term our method deep signature statistics (DSS). The
main idea is to embed a deep signature model (Bonnier et al.,
2019)—in which the signature appears as a pooling opera-
tion in a neural network—into an existing neural method for
posterior density estimation. Doing so combines the useful
inductive biases provided by the signature transform with
the power of neural networks to efficiently learn summary
statistics and posterior estimates concurrently. Our results
suggest that DSS offers a robust, automatic, and theoretically
principled pipeline for posterior inference which performs
competitively across benchmark models.

2. Background: Path signatures
The signature of a path X = (X1, X2, . . . , Xd) : [0, T ]→
Rd is an infinite collection of statistics that characterizes the
path up to a negligible equivalence class (Lyons, 2014). It
is defined by the infinite collection of statistics

Sig(X) = (1, S(X)10,T , S(X)20,T , . . . , S(X)d0,T ,

S(X)1,10,T , S(X)1,20,T , . . . )

consisting of the k-fold iterated integral of X with multi-
index i1, . . . , ik defined as

S(X)i1,...,ik0,T =

∫
· · ·
∫

0≤t1<···<tk≤T

dXi1
t1 . . . dX

ik
tk
. (1)

We provide a geometric interpretation of the depth 1 terms,
S(X)i0,T , and depth 2 terms, S(X)i,j0,T , of the signature
in Figure 1. When the underlying path X is of bounded
variation, the integral (1) can be understood as the Riemann-
Stieltjes integral with respect to X . In particular, for differ-
entiable paths, this leads to a more commonly understood
Riemann integral by substituting dXt = dXt

dt dt.

Sig(X) can be understood as the equivalent of statistical
moments for path-valued random variables, the terms of
which constitute a set of “canonical features that can be intu-
itively described as an ordered version of sample moments”
(Kiraly & Oberhauser, 2019). It is standard to truncate the
infinitely long signature to depth N ∈ N, which consists of
all terms in the signature that have index sets {i1, i2, . . . , ik}
for k ≤ N . We denote this with SigN (X). We further de-
note the set of all streams on a set V by

S(V ) = {x = (x1, . . . , xn) : xi ∈ V, n ∈ N}.

Here, to obtain a signature from a stream of data x ∈ S(Rd),
the data points xi are first interpolated into a path before

Figure 1. A geometric interpretation of signature terms. Orange
circles indicate (possibly irregular) observations, and the black
curve illustrates the underlying continuous path. Depth-1 terms
are the increments ∆X1 and ∆X2, while the depth-2 terms S(1,2)

and S(2,1) correspond to the green and blue areas, respectively.

the integrals of Equation 1 are computed. For example,
one may use the interpolation via a continuous function
f = (f1, . . . , fd) : [0, T ] → Rd with f

(
i−1
n−1 · T

)
= xi

leaving us with the signature terms

S(X)i1,...,ik0,T =

 ∫
· · ·
∫

0≤t1<···<tk≤T

k∏
j=1

dfij
dt

(tj)dt1 · · · dtk

 .

3. Method: Deep Signature Statistics
A deep signature transform (Bonnier et al., 2019), shown
in Figure 2, entails repeated application of blocks of three
key elements: an augmentation of the stream with a stream-
preserving feature map Φϕ with learnable parameters ϕ; a
lift operation `, which transforms the augmented stream into
a stream of streams; and the depth N signature transform
applied to each substream, giving a stream of signatures.
Blocks are by design able to concatenate, and after as many
blocks as desired have been concatenated, the output is ob-
tained by passing the output of the final block through an
optional additional neural network. The ultimate effect is
to capture higher order signature information using fewer
terms (Chevyrev & Oberhauser, 2018; Kiŕaly & Oberhauser,
2019). We provide further details on deep signature trans-
forms in Appendix A.

Combining path signatures—with their strong mathematical
basis—with the expressivity of neural networks has been
seen to produce competitive results in a number of learn-
ing tasks (Morrill et al., 2020). In this way, the use of a
deep signature transform may yield approximately sufficient
statistics, despite truncation. This makes it an ideal candi-
date for use in likelihood-free inference settings as a means
for generating data-dependent summary statistics for both
univariate and multivariate data of any length. We term
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Figure 2. Deep signature transform with parameters ϕ1, . . . , ϕk+1.

deep signature transforms used in this way deep signature
statistics (DSS).

We train DSS in tandem with a neural density estimator
and using the same loss function. The SBI algorithm then
targets the posterior p(θ | σϕ(x)) with a conditional density
estimator qφ(θ | σϕ(x)), or a classifier f(θ, σϕ(x)), while
the extended parameter set (φ, ϕ) is learned jointly using the
loss function of the posterior density estimator. Throughout,
we make use of neural ratio estimation (NRE) (Hermans
et al., 2020) or its sequential version, written SNRE, using a
ResNet classifier with batch size 50 and learning rate 0.005.

4. Experiments
4.1. Evaluation metrics

To assess the quality of the estimated posteriors, we com-
pute the sliced Wasserstein distance (SWD) (Peyre & Cuturi,
2019) between samples from approximate ground truth pos-
teriors and samples from the estimated posterior densities.
In all cases, SWDs were computed using the Python Optimal
Transport package (Flamary & Courty, 2017) and 1000 pos-
terior samples from the posterior density estimated in each
training round. To train the ratio estimator, we generate
1000 training examples during each round for 20 rounds.

4.2. Ornstein-Uhlenbeck process

The Ornstein–Uhlenbeck (OU) process (Uhlenbeck & Orn-
stein, 1930) is a proto-typical Gauss–Markov stochastic dif-
ferential equation (SDE) model. We discretize the SDE such
that the data x = (x0, x1, . . . , xT ) , xi ∈ R is generated
according to

xi = θ1 exp (θ2)∆t+ (1− θ1∆t)xi−1 +
εi
2
,

with x0 = 10, ∆t = 0.2, and εi ∼ N (0,∆t). The parame-
ters θ = (θ1, θ2) are to be inferred. We set uniform priors
θ1 ∼ U(0, 1) and θ2 ∼ U(−2, 2), and generate ground
truth observation xo ∼ p(x|θ∗) at true parameter values
θ∗ = (θ∗1 , θ

∗
2) = (0.5, 1).

We plot the marginal posteriors obtained for the OU process
using Metropolis-Hastings and DSS in Figure 3 We see from
this that DSS + sequential neural ratio estimation (SNRE)
is able to accurately recover the posterior density for this

Figure 3. (Ornstein-Uhlenbeck) Example of the marginal posteri-
ors obtained from DSS after round 10 (orange), and the approxi-
mate ground truth marginals from Metropolis-Hastings (blue).

model. A more quantitative evaluation of the quality of
the estimated posteriors is shown in Figure 4,in which we
compare the SWD between samples from the approximate
ground truth posterior and estimated posteriors using each
summary method at each training round. The hand-crafted
summaries we used were the mean, standard deviation, and
autocorrelations at lags 1 and 2 of the observed time series,
giving four hand-crafted summary statistics.

Of the learned summaries, DSS tends to perform as well as
or better than recurrent neural network (RNN) in 11 training
rounds, while it outperforms PEN in almost all rounds. We
also see for this simulator that the hand-crafted summary
statistics outperform all learned summaries at almost every
training round. This demonstrates the importance of well-
chosen summary statistics and inductive biases, and the non-
trivial nature of learning appropriate summary statistics for
time series data: even with state-of-the-art neural network
models such as RNN and PEN for summarizing time series
data, it is difficult to meet, let alone surpass, the performance
of sensible hand-crafted summaries.

4.3. Ricker model

The Ricker model (Ricker, 1954) is a simple ecological
model of population dynamics with an intractable likelihood
function. A population size Nt evolves as

logNt+1 = log r + logNt −Nt + et,

where r is a parameter determining the growth rate of
the population and et ∼ N (0, σ). The model assumes
that the observations x = (x0, x1, . . . , xT ) , xi ∈ R are
measurements of the population size, which in turn are
Poisson random deviates xt ∼ Po (φNt) , for scale param-
eter φ. We assume the task of estimating the posterior
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Figure 4. (Ornstein–Uhlenbeck) The sliced Wasserstein distances
between approximate ground truth and estimated posterior densi-
ties for each summary method at each training round. Crosses and
shaded regions indicate mean and standard error over 20 seeds.

Figure 5. (Ricker model) An example of the marginal posteriors
obtained from DSS after 10 rounds of 1000 (orange) and the ap-
proximate ground truth marginals from particle MCMC (blue).

density p(θ|x) for θ = (log r, φ, σ) given an observation
xo ∼ p(x|θ∗), where θ∗ = (4, 10, 0.3) is the true parame-
ter set. We assume uniform priors for each parameter, with
log r ∼ U(3, 8), φ ∼ U(0, 20), and σ ∼ U(0, 0.6).

In Figure 5, we plot samples from the approximate ground
truth posterior p(θ|xo)—obtained using particle MCMC
(Andrieu et al., 2010) following the guidelines of Schmon
et al. (2020)—and the posteriors obtained using DSS for the
Ricker model. From this, we see that DSS + SNRE has been
reasonably successful in recovering the approximate ground
truth density for σ, while it has accurately recovered the
location and shape of the densities for log r and φ.

In Figure 6, we show the SWD between the samples from
the approximate ground truth posterior and estimated poste-
riors for each summary statistic method. The hand-crafted
summary statistics used in this instance are those proposed
in Wood (2010), and consist of: the autocovariances to lag
5; the mean; the number of zeros in the sequence; the coef-
ficients of the regression x0.3t+1 = β1x

0.3
t + β2x

0.6
t + εt for

error term εt; and the coefficients of the cubic regression of
the ordered differences xt − xt−1 on their observed values.

From Figure 6, we see that DSS matches or exceeds PEN’s
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Figure 6. (Ricker model) The sliced Wasserstein distances between
the true and estimated posterior densities for each summary statistic
method at each training round. Crosses and shaded regions indicate
mean and standard error over 20 different seeds.

(resp. RNN’s) performance in 16 (resp. 18) out of 20 rounds.
In particular, DSS appears to achieve greater asymptotic
accuracy of the recovered posteriors at a high number of
training examples. This example also highlights the possi-
bility that learned summary statistics can outperform expert
hand-crafted summaries, in particular, when model com-
plexity doesn’t allow for straightforward selection.

5. Discussion
In this paper, we address the problem of learning summary
statistics for implicit time-series models with intractable
likelihood functions. We propose the use of path signatures
as a means for automatically generating approximately suf-
ficient statistics for general multivariate time-series data.
We demonstrate how the truncated signature can be com-
bined with neural networks via deep signature transforms to
generate informative summaries, and observe competitive
performance in comparisons against existing state-of-the-art
methods. Our method is general and non-specific to the
models we consider. In particular, the size of the learned
statistic can be taken to be model-dependent, while in our
experiments the summary statistics learned with DSS are
always of size 3. Furthermore, while we use the signature
truncated to degree 3 in each neural-lift-signature block; this
can be replaced with the log-signature truncated to a higher
degree if more signature terms are required, while keeping
the dimensionality low.
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Supplementary Material

A. Deep Signature Transforms
We now describe the components of deep signature models
in detail.

STREAM-PRESERVING FEATURE MAP

The learnable, stream-preserving neural network Φϕ :
Rd×m → Re for some m ∈ N operates on the original
stream x as

Φ(x) = (Φ1, . . . ,Φn−m+1),

where Φk = Φϕ(xk, . . . , xk+m; Φk−1) and Φ0 = 0. This
general structure can take the form of a one-dimensional
convolutional layer, a feedforward network, or recurrent
network.

LIFT OPERATION

The learnable feature map obtained from the stream-
preserving neural network augments the existing stream
with additional channels. Its operation is described as
“stream-preserving” since it does not destroy the stream-
like nature of the data. The signature transform, on the
other hand, operates on streams to produce an infinite set
of features with no inherent stream-like properties. Direct
application of the signature transform will thus prohibit its
further application.

In general, however, we may wish to apply the signature
transform repeatedly. This motivates the inclusion of a
lift operation between the learnable, stream-preserving net-
work and the signature transformation. A lift operation
` : S(Rd) → S(S(Re)) for some e ∈ N maps a stream
into the space of streams of streams. Applying the signature
transform element-wise to the lifted stream therefore yields
a stream of signatures,

SigN (`(x)) := (SigN (`1(x)), . . . ,SigN (`v(x)))

∈ S(R(eN+1−1)/(e−1)),

which is amenable to further signature-based analysis (be-
cause the output is a stream). Examples of a lift operation
include expanding windows `(x) = (x2,x3, . . . ,xn) where
xi = (x1, . . . , xi), or sliding windows with window length
p, in which case xi = (xi, . . . , xi+p).

NEURAL-LIFT-SIGNATURE BLOCK

A stream-preserving neural network can be combined with
a lift-signature operation to create a neural-lift-signature
block

BϕN (x) = (SigN ◦ ` ◦ Φϕ) (x) .

This composite operation may or may not be stream-
preserving. In particular, a neural-lift-signature block is
not stream-preserving if we take `(x) := x for that block.

DEEP SIGNATURE TRANSFORMS

Let X be some set and fϕ : S (Rc) → X be a neural net-
work with trainable parameters ϕ. A deep signature trans-
form σ(x), illustrated in Figure 2, is a mapping from S(Rd)
to X defined as any sequence of k neural-lift-signature
blocks followed by an optional final neural network fϕk+1 ,
i.e.

σϕ(x) =
(
fϕk+1 ◦Bϕk

Nk
◦ · · · ◦Bϕ2

N2
◦Bϕ1

N1

)
(x) (2)

where ϕ = (ϕ1, . . . , ϕk+1). Note that the lift operation
can be different in each of the k neural-lift-signature blocks
Bϕk

Nk
.

B. Implementation details
B.1. Software

For evaluating signatures and deep signature transforms,
we used iisignature (Reizenstein & Graham, 2020)
and https://github.com/patrick-kidger/
Deep-Signature-Transforms (Bonnier
et al., 2019). SBI algorithms were implemented
using sbi (Tejero-Cantero et al., 2020). The
python implementation of PEN is found at https:
//github.com/LoryPack/SM-ExpFam-LFI
(Pacchiardi & Dutta, 2020).

B.2. Neural network specifications

B.2.1. DEEP SIGNATURE STATISTICS

The deep signature model we use involved three neural-lift-
signature blocks followed by a final recurrent network. The
neural component of the first block consisted of a feedfor-
ward network with kernel size 3 and 2 hidden layers of size
16 swept across the input stream. The output size of this net-
work was 3, so that initial layer augmented the input stream
with an additional 3 channels. The neural components of
the remaining two blocks were recurrent networks with 2
hidden layers of size 16. For each block, we use expanding
windows with initial size 2 that grew by 1 time step in each
iteration, followed by the signature transform truncated at
degree 3. For all simulators, we apply basepoint and time
augmentations to the input stream before passing it through
the deep signature model, and take an output of size 3. This
yields a model with 9,735 trainable parameters.

B.2.2. PARTIALLY EXCHANGEABLE NETWORKS

Let x = (x1, . . . , xn), xi ∈ X be sequential data generated
by a stochastic process of Markov order r, andA be a metric
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space. Partially exchangeable network models F : Xn → A
consist of two networks φ : X r+1 → R and ρ : X r × R→
A combined as

F (x) = ρ

(
x1:r

n−r∑
i=1

φ
(
xi:(i+r)

))
.

For our experiments, we follow Wiqvist et al. (2019) and
take the φ network to be a fully connected network with
three layers of sizes 11, 100, and 50 and output size 10, and
the ρ network to be a fully connected network with four
layers of sizes (10 + r), 50, 50, and 20. ReLU activations
were used for all hidden layers. For PEN1, this yields a
model with 10,093 trainable parameters.

B.2.3. RECURRENT NEURAL NETWORK

The recurrent network model consists of two recurrent neu-
ral networks. The first network has layers of size 64, 64,
and 32, with an output of size 6, while the second layer has
layers of size 32, 32, and 32 with output size 7. Windows of
size 4 were swept across the input for both networks, with
strides of 4 and 2 in the first and second, respectively. Alto-
gether, this yields a model with 10,157 trainable parameters.


