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Abstract

In combinatorial causal bandits (CCB), the learning agent chooses a subset of variables
in each round to intervene and collects feedback from the observed variables to minimize
expected regret or sample complexity. Previous works study this problem in both general
causal models and binary generalized linear models (BGLMs). However, all of them require
prior knowledge of causal graph structure or unrealistic assumptions. This paper studies
the CCB problem without the graph structure on binary general causal models and BGLMs.
We first provide an exponential lower bound of cumulative regrets for the CCB problem
on general causal models. To overcome the exponentially large space of parameters, we
then consider the CCB problem on BGLMs. We design a regret minimization algorithm for
BGLMs even without the graph skeleton and show that it still achievesO(

√
T lnT ) expected

regret, as long as the causal graph satisfies a weight gap assumption. This asymptotic
regret is the same as the state-of-art algorithms relying on the graph structure. Moreover,
we propose another algorithm with O(T

2
3 lnT ) regret to remove the weight gap assumption.

Keywords: Causal Bandits; Online Learning; Multi-armed Bandits; Causal Inference

1. Introduction

The multi-armed bandits (MAB) problem is a classical model in sequential decision-making
(Robbins, 1952; Auer et al., 2002; Bubeck et al., 2012). In each round, the learning agent
chooses an arm and observes the reward feedback corresponding to that arm, with the goal
of either maximizing the cumulative reward over T rounds (regret minimization), or mini-
mizing the sample complexity to find the arm closest to the optimal one (pure exploration).
MAB can be extended to have more structures among arms and reward functions, which
leads to more advanced learning techniques. Such structured bandit problems include com-
binatorial bandits (Chen et al., 2013, 2016), linear bandits (Abbasi-Yadkori et al., 2011;
Agrawal and Goyal, 2013; Li et al., 2017), and sparse linear bandits (Abbasi-Yadkori et al.,
2012).

In this paper, we study another structured bandit problem called causal bandits, which
is first proposed by Lattimore et al. (2016). It consists of a causal graph G = (X ∪{Y }, E)
indicating the causal relationship among the observed variables. In each round, the learning
agent selects one or a few variables in X to intervene, gains the reward as the output of Y ,
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and observes the values of all variables in X ∪ {Y }. The use of causal bandits is possible
in a variety of contexts that involve causal relationships, including medical drug testing,
performance tuning, policy making, scientific experimental process, etc.

In all previous literature except Lu et al. (2021); Konobeev et al. (2023), the structure
of the causal graph is known, but the underlying probability distributions governing the
causal model are unknown. Lu et al. (2021) further assume that the graph structure is
unknown and the learning agent can only see the graph skeleton. Here, graph skeleton is
also called essential graph (Gámez et al., 2013) and represents all the edges in G without
the directional information. In our paper, we further consider that the graph skeleton is
unknown and remove the unrealistic assumption that Y only has a single parent in Lu
et al. (2021); Konobeev et al. (2023). In many scenarios, the learning agent needs to learn
the causal relationships between variables and thus needs to learn the graph without any
prior information. For example, in policymaking for combating COVID-19, many possible
factors like food supply, medical resources, vaccine research, public security, and public
opinion may consequently impact the mortality rate. However, the causal relationships
among these factors are not readily known and need to be clarified during the sequential
decision-making process. Learning the causal graph from scratch while identifying the
optimal intervention raises a new challenge to the learning problem.

For regret minimization, we study CCB under the BGLMs as in Feng and Chen (2023);
Xiong and Chen (2023). Using a novel initialization phase, we could determine the ancestor
structure of the causal graph for the BGLM when the minimum edge weight in the model
satisfies a weight gap assumption. This is enough to perform a CCB algorithm based on
maximum likelihood estimation on it (Feng and Chen, 2023). The resulting algorithm
BGLM-OFU-Unknown achieves O(

√
T log T ) regret, where T is the time horizon. The big

O notation only holds for T larger than a threshold so the weight gap assumption is hidden
by the asymptotic notation. For binary linear models (BLMs), we can remove the weight
gap assumption with the O(T 2/3) regret. The key idea is to measure the difference in
the reward between the estimated graph (may be inaccurate) and the true graph. The
algorithms we design for BLMs allow hidden variables and use linear regression instead of
MLE to remove an assumption on parameters.

For pure exploration, we give some discussions on general causal models in Appendix H.
If we allow the weight gap, a trivial solution exists. Without the weight gap, we give an
adaptive algorithm for general causal model in the atomic setting.

In summary, our contribution includes: (a) providing an exponential lower bound of
cumulative regret for CCB on general causal model, (b) proposing an O(

√
T lnT ) cumulative

regret CCB algorithm BGLM-OFU-Unknown for BGLMs without graph skeleton (with the

weight gap assumption), (c) proposing an O(T
2
3 lnT ) cumulative regret CCB algorithm

BLM-LR-Unknown for BLMs without graph skeleton and the weight gap assumption, (d)
conducting a numerical experiment in Appendix G for BGLM-OFU-Unknown and BLM-
LR-Unknown and giving intuitions on how to choose between them, (e) giving the first
discussion in Appendix H including algorithms and lower bounds on the pure exploration
of causal bandits on general causal models and atomic intervention without knowing the
graph structure.
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2. Related Works

In this section, we introduce two related lines of research.

2.1. Causal Bandits

The causal bandits problem is first proposed by Lattimore et al. (2016). They discuss the
simple regret for parallel graphs and general graphs with known probability distributions
P (Pa(Y )|a) for any action a. In this context, Pa(Y ) represents the parent nodes of Y . Sen
et al. (2017); Nair et al. (2021); Maiti et al. (2021) generalize the simple regret study for
causal bandits to more general causal graphs and soft interventions. Lu et al. (2020); Nair
et al. (2021); Maiti et al. (2021) consider cumulative regret for causal bandits problem. How-
ever, all of these studies are not designed for combinatorial action set and has exponentially
large regret or sample complexity with respect to the graph size if the actions are combina-
torial. Yabe et al. (2018); Feng and Chen (2023); Xiong and Chen (2023); Varici et al. (2022)
consider combinatorial action set for causal bandits problem. Among them, Feng and Chen
(2023) are the first to remove the requirement of T >

∑
X∈X 2|Pa(X)| and proposes practical

CCB algorithms on BGLMs with O(
√
T lnT ) regret. Xiong and Chen (2023) simultane-

ously propose CCB algorithms on BGLMs as well as general causal models with polynomial
sample complexity with respect to the graph size. Varici et al. (2022) further include soft
interventions in the CCB problem, but their work is on linear structural equation models
(SEM). Lee and Bareinboim (2018, 2019, 2020) propose several CCB algorithms on general
causal bandits problem, but they focus on empirical studies while we provide theoretical re-
gret analysis. All of the above works require the learning agent to know the graph structure
in advance. Lu et al. (2021) are the first to work on causal bandits without graph structure.
However, their algorithm is limited to the case of |Pa(Y )| = 1 for the atomic setting, and
thus the main technical issue degenerates to finding the particular parent of Y so that one
could intervene on this node for the optimal reward. Recently, Konobeev et al. (2023) has
eliminated the need for prior knowledge of the graph skeleton as required in Lu et al. (2021).
However, their approach is still limited to designing bandit algorithms for the atomic setting
with |Pa(Y )| = 1. Furthermore, their algorithm may experience exponentially large regret
when 1/minX∈Anc(Y ),x∈supp(X),y∈supp(Y ) |P (Y = y|X = x) − P (Y = y)| is exponentially
large in relation to the graph size. In this context, Anc(Y ) denotes the ancestors of Y
and supp represents the support of a random variable. Recently, Malek et al. (2023) also
studied the causal bandits problem without a graph; however, their objective is different
from ours. Instead of minimizing regret, they aim to find a near-optimal intervention in the
fewest number of exploration rounds.

2.2. Social Network and Causality

Causal models have intrinsic connections with influence propagation in social networks.
Feng and Chen (2021) study the identifiability in the Independent Cascade (IC) propagation
model as a causal model. The BGLM studied in this paper contains the IC model and linear
threshold (LT) model in a DAG as special cases, and is also related to the general threshold
model proposed by Kempe et al. (2003). Moreover, Feng and Chen (2023); Xiong and Chen
(2023) also study causal bandits on BGLMs to avoid the exponentially large parameter space
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of general causal models. These papers borrow some techniques and ideas from influence
maximization literature, including Li et al. (2020) and Zhang et al. (2022). However, in
our BGLM CCB problem, the graph skeleton is unknown, and we need adaptation and
integration of previous techniques together with some new ingredients.

3. Model

We utilize capital letters (U,X, Y . . .) to represent variables and their corresponding lower-
case letters to indicate their values, as was frequently done in earlier causal inference liter-
ature (see, for example, (Pearl, 2009b,a; Pearl and Mackenzie, 2018)). To express a group
or a vector of variables or values, we use boldface characters like X and x. For a vector
x ∈ Rd, the weighted ℓ2-norm associated with a positive-definite matrix A is defined by
∥x∥A =

√
x⊺Ax.

Causal Models. A causal graph G = (X ∪{Y }, E) is a directed acyclic graph consisting
of intervenable variables X, a special target node Y without outgoing edges, and the set of
directed edges E connecting nodes in X ∪ {Y }. Denote n = |X| as the number of nodes
in X. For simplicity, in this paper we consider all variables in X ∪ {Y } are (0, 1)-binary
random variables. In our main text, all the variables in X ∪ {Y } are known and their
values can be observed but the edges in E are unknown and cannot be directly observed.
We refer to the in-neighbor nodes of a node X in G as the parents of X, denoted by Pa(X),
and the values of these parent random variables as pa(X). According to the definition of
causal Bayesian model (Galles and Pearl, 1995; Pearl, 2009b), the probability distribution
P (X|Pa(X)) is used to represent the causal relationship between X and its parents for
every conceivable value combination of Pa(X). Moreover, we define the ancestors of a
node X ∈X ∪ {Y } by Anc(X).

We mainly study the Markovian causal graph G in this paper, which means that there
are no hidden variables in G and every observed variable X has some randomness that is
not brought on by any other variables.1 In this study, we dedicate random variable X1 to
be a special variable that always takes the value 1 and is a parent of all other observed
random variables in order to model the self-activation effect of the Markovian model. In
essence, this represents the initial probability for each node, ensuring that even when all
parent nodes of a node except X1 are set to 0, the given node still possesses a probability
of being 1.

In this paper, we study a special causal model called binary generalized linear model
(BGLM). Specifically, in BGLM, we have P (X = 1|Pa(X) = pa(X)) = fX(θ∗

X · pa(X)) +
εX , where fX is a monotone increasing function, θ∗

X is an unknown weight vector in
[0, 1]|Pa(X)|, and εX is a zero-mean sub-Gaussian noise that ensures the probability does not
exceed 1 or equivalently, εX ≤ 1 −maxpa(X)∈{0,1}|Pa(X)| fX(pa(X) · θ∗

X). The bounded ep-
silon follows the convention established by GLM (Li et al., 2020) and provides randomness
for linear models in our paper. We use the notation θ∗X′,X to denote the entry in the vector
θ∗
X that corresponds to node X ′ ∈ Pa(X), θ∗ to denote the vector of all the weights, and

Θ to denote the feasible domain for the weights. We also use the notation ε to represent
all noise random variables (εX)X∈X∪Y .

1. In Section 6 we mention that our algorithm for BLM can also work for models with hidden variables.
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We also study binary linear model (BLM) and linear model in this paper. In BLMs,
all fX ’s are identity functions, so P (X = 1|Pa(X) = pa(X)) = θ∗

X · pa(X) + εX . When
we remove the noise variable εX , BLM coincides with the linear threshold (LT) model
for influence cascades (Kempe et al., 2003) in a DAG. In linear models, we remove the
randomness of conditional probabilities, so X = θ∗

X · pa(X) + εX .

For the unknown causal graph, there is an important parameter θ∗min = min(X′,X)∈E θ∗X′,X ,
which represents the minimum weight gap for all edges. Intuitively, this minimum gap mea-
sures the difficulty for the algorithm to discover the edge and its correct direction. When
the gap is relatively large, we can expect to discover the whole graph accurately during the
learning process; When the gap is very small, we cannot guarantee to discover the graph
directly and we must come up with another way to solve the causal bandit problem on an
inaccurate model.

Combinatorial Causal Bandits. The problem of combinatorial causal bandits (CCB)
was first introduced by Feng and Chen (2023) and describes the following online learning
task. The intervention can be performed on all variables except X1 and Y and is denoted
by the do-operator do following earlier causal inference literature (Pearl, 2009b,a; Pearl and
Mackenzie, 2018). The action set is defined by A ⊆ {do(S = s)}S⊆X\{X1},s∈{0,1}|S| . The
expected reward Y under an intervention on S ⊆ X\{X1} is denoted as E[Y |do(S = s)].
A learning agent runs an algorithm π for T rounds, taking parameter initializations and
feedback from causal propagation as inputs, and outputting the selected interventions in
all rounds. In particular, an atomic intervention intervenes on only one node, i.e. |S| = 1.
In this paper, we assume the null intervention do() and atomic interventions do(X = x)
are always included in our action set A, because they are needed to discover the graph
structure.

The performance of the agent could be measured by the regret of the algorithm π.
The regret Rπ(T ) in our context is the difference between the cumulative reward using
algorithm π and the expected cumulative reward of choosing best action do(S∗ = s∗).
Here, do(S∗ = s∗) ∈ argmaxdo(S=s)∈A E[Y |do(S)]. Formally, we have

Rπ(T ) = E

[
T∑
t=1

(E[Y |do(S∗ = s∗)]− E[Y |do(Sπ
t = sπt )])

]
, (1)

where Sπ
t and sπt are the intervention set and intervention values selected by algorithm π

in round t respectively. The expectation is from the randomness of the causal model and
the algorithm π.

In this paper, we mainly focus on the regret minimization problem, and we will discuss
the pure exploration problem and its sample complexity in the Section H. We defer the
definition of sample complexity to that section.

4. Lower Bound on General Binary Causal Model

In this section, we explain why we only consider BGLM and BLM instead of the general
binary causal model in the combinatorial causal bandit setting. In this context, a general
binary causal model refers to a causal Bayesian model, in which all variables are restricted
to either 0 or 1 values. Both BGLM and BLM are special cases of this model. Note that
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in the general case both the number of actions and the number of parameters of the causal
model are exponentially large to the size of the graph. The following theorem shows that
in the general binary causal model, the regret bound must be exponential to the size of the
graph when T is sufficiently large, or simply linear to T when T is not large enough. This
means that we cannot avoid the exponential factor for the general case, and thus justify our
consideration of the BGLM and BLM settings with only a polynomial number of parameters
relative to n.

Theorem 1 (Binary Model Lower Bound) Recall that n = |X|. For any algorithm,

when T ≥ 16(2n−1)
3 , there exists a precise bandit instance of general binary causal model T

such that

ET [R(T )] ≥
√
2nT

8e
.

Moreover, when T ≤ 16(2n−1)
3 , there exists a precise bandit instance of general binary causal

model T that

ET [R(T )] ≥ T

16e
.

The lower bound contains two parts. The first part shows that the asymptotic regret
cannot avoid an exponential term 2n when T is large. The second part states that if T is not
exponentially large, the regret will be linear at the worst case. The proof technique of this
lower bound is similar to but not the same as previous classical bandit, because the existence
of observation do() and atomic intervention do(Xi = 1) may provide more information. To
our best knowledge, this result is the first regret lower bound on the general causal model
considering the potential role of observation and atomic intervention. The result shows that
in the general binary causal model setting, it is impossible to avoid the exponential term
in the cumulative regret even with the observations on null and atomic interventions. The
proof of lower bound is provided in Appendix E.5.

The main idea is to consider the action set A = {do(), do(X = x), do(X = x)} for all
node X, x ∈ {0, 1}, x ∈ {0, 1}n be the null intervention, atomic interventions and actions
that intervene all nodes. The causal graph we use is a parallel graph where all nodes in X
directly points to Y with no other edges in the graph, and each node Xi ∈X has probability
P (Xi = 1) = P (Xi = 0) = 0.5. Intuitively, under this condition the null intervention and
atomic interventions can provide limited information to the agent. This fact shows that
observations and atomic interventions may not be conducive to our learning process in the
worst case on the general binary causal model.

5. BGLM CCB without Graph Skeleton but with Minimum Weight Gap

In this section, we propose an algorithm for causal bandits on Markovian BGLMs based on
maximum likelihood estimation (MLE) without any prior knowledge of the graph skeleton.

Our idea is to try to discover the causal graph structure and then apply the recent
CCB algorithm with known graph structure (Feng and Chen, 2023). We discover the
graph structure by using atomic interventions in individual variables. However, there are



CCB without Graph Skeleton

a few challenges we need to face on graph discovery. First, it could be very difficult to
exactly identify all parent-child relationships, since some grand-parent nodes may also have
strong causal influence to its grand-child nodes. Fortunately, we find that it is enough to
identify ancestor-descendant relationships instead of parent-child relationships, since we can
artificially add an edge with 0 weight between each pair of ancestor and descendant without
impacting the causal propagation results. Another challenge is the minimum weight gap.
When the weight of an edge is very small, we need to perform more atomic interventions
to identify its existence and its direction. Hence, we design an initialization phase with the
number of rounds proportional to the total round number T and promise that the ancestor-
descendant relationship can always be identified correctly with a large probability when T
is sufficiently large.

Following Li et al. (2017); Feng and Chen (2023); Xiong and Chen (2023), we have three
assumptions:

Assumption 1 For every X ∈ X ∪ {Y }, fX is twice differentiable. Its first and second

order derivatives are upper-bounded by L
(1)
fX

> 0 and L
(2)
fX

> 0.

Let κ = infX∈X∪{Y },v∈[0,1]|Pa(X)|,||θ−θ∗
X ||≤1 f

′
X(v · θ).

Assumption 2 We have κ > 0.

Assumption 3 There exists a constant ζ > 0 such that for any X ∈ X ∪ {Y } and
X ′ ∈ Anc(X), for any value vector v ∈ {0, 1}|Anc(X)\{X′,X1}|, the following inequalities
hold:

Pr
ε,X,Y

(
X ′ = 1|Anc(X) \ {X ′, X1} = v

)
≥ ζ, (2)

Pr
ε,X,Y

(
X ′ = 0|Anc(X) \ {X ′, X1} = v

)
≥ ζ. (3)

Assumptions 1 and 2 are the classical assumptions in generalized linear model (Li et al.,
2017). Assumption 3 makes sure that each ancestor node ofX has some freedom to become 0
and 1 with a non-zero probability, even when the values of all other ancestors of X are fixed,
and it is originally given in Feng and Chen (2023) with additional justifications. For BLMs
and continuous linear models, we propose an algorithm based on linear regression without
the need of this assumption in Appendix D. Furthermore, we suppose that Range(fX) = R.
As in Feng et al. (2024), in Appendix A we demonstrate that any function fX can be
transformed into a function with range R without affecting the propagation of BGLM.

To discover the ancestors of all variables, we need to perform an extra initialization phase
(see Algorithm 1). We denote the total number of rounds by T and arbitrary constants c0, c1
to make sure that c0T

1/2 ∈ N+ for simplicity of our writing. In the initialization phase,
from X1 to Xn, we intervene each of them to 1 and 0 for c0T

1/2 times respectively. We
denote the value of X in the tth round by X(t). For every two variables Xi, Xj ∈ X\{X1},
if

1

c0
√
T

c0
√
T∑

k=1

(
X
(2ic0

√
T+k)

j −X
((2i+1)c0

√
T+k)

j

)
> c1T

− 1
5 , (4)
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Algorithm 1: BGLM-OFU-Unknown for BGLM CCB Problem

1: Input: Graph G = (X ∪ {Y }, E), action set A, parameters L
(1)
fX

, L
(2)
fX

, κ, ζ in Assump-
tion 1, 2 and 3, c in Lecué and Mendelson’s inequality (Nie, 2022), positive constants
c0 and c1 for initialization phase such that c0

√
T ∈ N+.

2: /* Initialization Phase: */
3: Initialize T0 ← 2(n− 1)c0T

1/2.
4: Do each intervention among do(X2 = 1), do(X2 = 0), . . . , do(Xn = 1), do(Xn = 0) for

c0T
1/2 times in order and observe the feedback (Xt, Yt), 1 ≤ t ≤ T0.

5: Compute the ancestors Ânc(X), X ∈ X ∪ {Y } by
BGLM-Ancestors((X1, Y1), . . . , (XT0 , YT0), c0, c1) (see Algorithm 2).

6: /* Parameters Initialization: */

7: Initialize δ ← 1
3n

√
T
, R ← ⌈

512n(L
(2)
fX

)2

κ4 (n2 + ln 1
δ )⌉, T1 ← T0 + max

{
c
ζ2

ln 1
δ ,

(8n2−6)R
ζ

}
and ρ← 3

κ

√
log(1/δ).

8: Do no intervention on BGLMG for T1−T0 rounds and observe feedback (Xt, Yt), T0+1 ≤
t ≤ T1.

9: /* Iterative Phase: */
10: for t = T1 + 1, T1 + 2, . . . , T do
11: {θ̂t−1,X ,Mt−1,X}X∈X∪{Y } = BGLM-Estimate((X1, Y1), . . . , (Xt−1, Yt−1)) (see Algo-

rithm 5 in Appendix B).

12: Compute the confidence ellipsoid Ct,X = {θ′
X ∈ [0, 1]|Ânc(X)| :

∥∥∥θ′
X − θ̂t−1,X

∥∥∥
Mt−1,X

≤

ρ} for any node X ∈X ∪ {Y }.
13: Adopt argmaxdo(S=s)∈A,θ′

t,X∈Ct,X E[Y |do(S = s)] as (St, st, θ̃t).

14: Intervene all the nodes in St to st and observe the feedback (Xt, Yt).
15: end for

we set Xi as an ancestor of Xj . Here, X
(2ic0

√
T+k)

j ’s with k ∈ [c0
√
T ] are the values of Xj in

the rounds that do(Xi = 1) is chosen; X
((2i+1)c0

√
T+k)

j , k ∈ [c0
√
T ] are the values of Xj in

the rounds that do(Xi = 0) is chosen. Specifically, if Xi is not an ancestor of Xj , the value
of Xj is not impacted by intervention on Xi. Simultaneously, if Xi ∈ Pa(Xj), the value
of Xj is notably impacted by do(Xi) so the difference of Xj under do(Xi = 1), do(Xi = 0)
can be used as a discriminator for the ancestor-descendant relationship between Xi and Xj .
This is formally shown by Lemma 2.

Lemma 2 Let G be a BGLM with parameter θ∗ that satisfies Assumption 2. Recall that
θ∗min = min(X′,X)∈E θ∗X′,X . If Xi ∈ Pa(Xj), we have E[Xj |do(Xi = 1)]−E[Xj |do(Xi = 0)] ≥
κθ∗Xi,Xj

≥ κθ∗min; if Xi is not an ancestor of Xj, we have E[Xj |do(Xi = 1)] = E[Xj |do(Xi =

0)].

We use the above idea to implement the procedure in Algorithm 2, and then put this
procedure in the initial phase and integrate this step into BGLM-OFU proposed by Feng
and Chen (2023), to obtain our main algorithm, BGLM-OFU-Unknown (Algorithm 1).

Notice that each term in Eq. (4) is a random sample of E[Xj |do(Xi = 1)]−E[Xj |do(Xi =
0)], which means that the left-hand side of Eq. (4) is just an estimation of E[Xj |do(Xi =
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Algorithm 2: BGLM-Ancestors

1: Input: Observations (X1, Y1), . . . , (XT0 , YT0), positive constants c0 and c1.

2: Output: Ânc(X), ancestors of X, X ∈X ∪ {Y }.
3: For all X ∈X, Ânc(X) = ∅, Ânc(Y ) = X.
4: for i ∈ {2, 3, . . . , n} do
5: for j ∈ {2, 3, . . . , n}\{i} do

6: if
∑c0

√
T

k=1

(
X
(2ic0

√
T+k)

j −X
((2i+1)c0

√
T+k)

j

)
> c0c1T

3/10 then

7: Add Xi into Ânc(Xj).
8: end if
9: end for

10: end for
11: Recompute the transitive closure of Ânc(·), i.e., if Xi ∈ Ânc(Xj) and Xj ∈ Ânc(Xℓ),

then add Xi to Ânc(Xℓ).

1)] − E[Xj |do(Xi = 0)]. Such expression can be bounded with high probability by con-
centration inequalities. Hence we can prove that Algorithm 2 identifies Xi ∈ Anc(Xj)

with false positive rate and false negative rate both no more than exp
(
− c0c21T

1/10

2

)
when

θ∗min ≥ 2c1κ
−1T−1/5. Formally, we have the following lemma that shows the probability of

correctness for Algorithm 2. For completeness, the proof of Lemma 3 is put in appendix.

Lemma 3 (Positive Rate of BGLM-Order) Suppose Assumption 2 holds for BGLM
G. In the initialization phase of Algorithm 1, Algorithm 2 finds a consistent ancestor-

descendant relationship for G with probability no less than 1−2
(
n−1
2

)
exp

(
− c0c21T

1/10

2

)
when

θ∗min ≥ 2c1κ
−1T−1/5.

We refer to the condition θ∗min ≥ 2c1κ
−1T−1/5 in this lemma as weight gap assumption.

The number of initialization rounds in Algorithm 1 is O(
√
T ). According to Lemma 3, the

expected regret contributed by incorrectness of the ancestor-descendant relationship does

not exceed O
(
T exp

(
− c0c21T

1/10

2

))
= o(
√
T ). Therefore, after adding the initialization, the

expected regret of BGLM-OFU-Unknown increases by no more than o(
√
T ) over BGLM-

OFU (Algorithm 1 in Feng and Chen (2023)). Similar to BGLM-OFU, during the iterative
phase, MLE is employed to estimate all the parameters. Simultaneously, a pair oracle is
utilized to identify the optimal parameter configuration and intervention set within the
confidence ellipsoid. Thus we have the following theorem to show the regret of Algorithm 2,
which is formally proved in appendix.

Theorem 4 (Regret Bound of BGLM-OFU-Unknown) Under Assumptions 1, 2 and
3, the regret of BGLM-OFU-Unknown (Algorithms 1, 2 and 5) is bounded as

R(T ) = O

(
1

κ
n

3
2L(1)

max

√
T log T

)
, (5)
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where L
(1)
max = maxX∈X∪{Y } L

(1)
fX

and the terms of o(
√
T lnT ) are omitted, and the big O

notation holds for T ≥ 32
(

c1
κθ∗min

)5
.

Compared to Feng and Chen (2023), Theorem 4 has the same asymptotic regret, The
only additional assumption is T ≥ 32 (c1/(κθ

∗
min))

5. Intuitively, this extra assumption guar-
antees that we can discover the ancestor-descendant relationship consistent with the true
graph. Our result indicates that not knowing the causal graph does not provide substantial
difficulty with the weight gap assumption.

Remark 5 Our BGLM-OFU-Unknown regret bound aligns with the regret bound of BGLM-
OFU as presented in Feng and Chen (2023). Furthermore, the leading term O(

√
T lnT ) is

consistent with the regret bounds previously established for combinatorial bandit algorithms
(Li et al., 2020; Zhang et al., 2022) and causal bandit algorithms (Lu et al., 2020).

Because Lemma 3 requires weight gap assumption, in the proof of this regret bound,
we only consider the case of T ≥ 32 (c1/(κθ

∗
min))

5. This limitation does not impact the
asymptotic big O notation in our regret bound. However, when the round number T is not
that large, the regret can be linear with respect to T . We remove this weight gap assumption
in Section 6 for the linear model setting. The c0 and c1 are two adjustable constants in
practice. When T is small, one could try a small c0 to shorten the initialization phase, i.e.,
to make sure that T0 ≪ T , and a small c1 to satisfy the weight gap assumption. When
T is large, one could consider larger c0 and c1 for a more accurate ancestor-descendant
relationship. However, because θ∗min is unknown, one cannot promise that the weight gap
assumption holds by manipulating c1, i.e., θ

∗
min may be too small for any practical T given

c1.

6. BLM CCB without Graph Skeleton and Weight Gap Assumption

In the previous section, we find that if T > O((θ∗min)
−5), we can get a valid upper bound.

However, in reality, we have two challenges: 1) We do not know the real value of θ∗min, and
this makes it hard to know when an edge’s direction is identified. 2) When θ∗min → 0, it
makes it very difficult to estimate the graph accurately. To solve these challenges, we must
both eliminate the dependence of θ∗min in our analysis, and think about how the result will
be influenced by an inaccurate model. In this section, we give a causal bandit algorithm
and show that the algorithm can always give Õ(T 2/3) regret. This sub-linear regret result
shows that the challenge can be solved by some additional techniques.

In this section, we consider a special case of BGLM called Binary Linear Model (BLM),
where fX becomes identity function. The linear structure allows us to release the Assump-
tion 1-3 (Feng and Chen, 2023) and analyze the influence of an inaccurate model.

The main algorithm follows the BLM-LR algorithm in Feng and Chen (2023), which
uses linear regression to estimate the weight θ∗, and the pseudocode is provided in Algo-
rithm 3. We add a graph discovery process (Algorithm 4) in the initialization phase using
O(nT 2/3 log T ) times rather than O(nT 1/2) in the previous section. For any edge X ′ → X
with weight θ∗X′,X ≥ T−1/3, with probability at least 1 − 1/T 2, we expect to identify the

edge’s direction within O(nT 2/3 log(T )) samples for do(X ′ = 1) and do(X ′ = 0) by checking
whether the difference P (X | do(X ′ = 1)) − P (X | do(X ′ = 0)) is large than T−1/3. Since
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Algorithm 3: BLM-LR-Unknown for BLM CCB Problem without Weight Gap

1: Input: Graph G = (X ∪ {Y }, E), action set A, positive constants c0 and c1 for initial-
ization phase.

2: /* Initialization Phase: */
3: Initialize T0 ← 2(n− 1)c0T

2/3 log(T ).
4: Do each intervention among do(X2 = 1), do(X2 = 0), . . . , do(Xn = 1), do(Xn = 0) for

c0T
2/3 times in order and observe the feedback (Xt, Yt) for 1 ≤ t ≤ T0.

5: Compute the ancestors Ânc(X), X ∈ X ∪ {Y } by
Nogap-BLM-Ancestors((X1, Y1), . . . , (XT0 , YT0), c0 , c1) (see Algorithm 4).

6: /* Parameters Initialization: */

7: Initialize δ ← 1
n
√
T
, ρt ←

√
n log(1 + tn) + 2 log 1

δ +
√
n for t = 0, 1, 2, . . . , T , MT0,X ←

I ∈ R|Ânc(X)|×|Ânc(X)|, bT0,X ← 0|Ânc(X)| for all X ∈ X ∪ {Y } and θ̂T0,X ← 0 ∈
R|Ânc(X)| for all X ∈X ∪ {Y }.

8: /* Iterative Phase: */
9: for t = T0 + 1, T0 + 2, . . . , T do

10: Compute the confidence ellipsoid Ct,X = {θ′
X ∈ [0, 1]|Ânc(X)| :

∥∥∥θ′
X − θ̂t−1,X

∥∥∥
Mt−1,X

≤

ρt−1} for any node X ∈X ∪ {Y }.
11: Adopt argmaxdo(S=s)⊆A,θ′

t,X∈Ct,X E[Y |do(S = s)] as (St, st, θ̃t).

12: Intervene all the nodes in St to st and observe the feedback (Xt, Yt).
13: for X ∈X ∪ {Y } do
14: Construct data pair (Vt,X , X(t)) with Vt,X the vector of ancestors of X in round t,

and X(t) the value of X in round t if X ̸∈ St.
15: Mt,X = Mt−1,X + Vt,XV ⊺

t,X , bt,X = bt−1,X +X(t)Vt,X , θ̂t,X = M−1
t,Xbt,X .

16: end for
17: end for

Algorithm 4: Nogap-BLM-Ancestors

1: Input: Observations (X1, Y1), . . . , (XT0 , YT0), positive constants c0 and c1.

2: Output: For all X ∈X ∪ {Y }, Ânc(X).

3: For all X ∈X, Ânc(X) = ∅, Ânc(Y ) = X.
4: for i ∈ {2, 3, . . . , n} do
5: for j ∈ {2, 3, . . . , n}\{i} do

6: if
∑c0T 2/3

k=1

(
X
(c0(2i)T 2/3+k)
j −X

(c0(2i+1)T 2/3+k)
j

)
> c0c1T

1/3 log(T 2) then

7: Add Xi into Ânc(Xj).
8: end if
9: end for

10: end for
11: Recompute the transitive closure of Ânc(·).

the above difference is always larger than θ∗X′,X , after the initialization phase, the edge

X ′ → X will be added to the graph if θ∗X′,X ≥ T−1/3.
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Moreover, if X ′ is not an ancestor of X, we claim that it cannot be a estimated as an
ancestor after the initialization phase. This is because in this case P (X | do(X ′ = 1)) =
P (X) = P (X | do(X ′ = 0)). Denote the estimated graph G′ as the graph with edgeX ′ → X

for all X ′ ∈ Ânc(X). We then have the following lemma.

Lemma 6 In Algorithm 3, if the constants c0 and c1 satisfy that c0 ≥ max{ 1
c21
, 1
(1−c1)2

},
with probability at least 1− (n− 1)(n− 2) 1

T 1/3 , after the initialization phase we have

1). If X ′ is a true parent of X in G with weight θ∗X′,X ≥ T−1/3, the edge X ′ → X will
be identified and added to the estimated graph G′.

2). If X ′ is not an ancestor of X in G, X ′ → X will not be added into G′.

The properties above together provide the analytic basis for the following observation,
which plays a key role in our further analysis. Denote the estimated accuracy r = T−1/3.
We know the linear regression for X will be performed on X and all its possible ancestors

Ânc(X) we estimated. For the true parent node X ′ in G that is not contained in Ânc(X),

we have θ∗X′,X ≤ r. Suppose Ânc(X) = {X1, X2, . . . , Xm}, and true parents which is not

contained in Ânc(X) are Xm+1, . . . , Xm+k. Thus we have θ∗Xm+i,X
≤ r for all 1 ≤ i ≤ k.

Also, assume X1, . . . , Xt(t < m) are true parents of X in G. For Xm+i, by law of total
expectation, the expectation of X can be rewritten as

E[X | X1, . . . , Xt]

= EXm+1,...,Xm+k
[E[X | X1, . . . , Xt, Xm+1, . . . , Xm+k]]

= EXm+1,...,Xm+k

[
t∑

i=1

θ∗Xi,XXi +
m+k∑

i=m+1

θ∗Xi,XXi

]

=

t∑
i=1

θ∗Xi,XXi +

m+k∑
i=m+1

θ∗Xi,XE[Xi] =

t∑
i=1

θ∗
′

Xi,XXi,

where

θ∗
′

Xi,X = θ∗Xi,X , i ≥ 2, (6)

θ∗
′

X1,X = θ∗X1,X +
m+k∑

i=m+1

θ∗Xi,XE[Xi]. (7)

Eq. (7) is because X1 = 1 always holds. Then we have |θ∗′Xi,X
− θ∗Xi,X

| ≤
∑m+k

i=m+1 θ
∗
Xi,X

≤
kr ≤ nr, which shows that the difference between θ′ and θ is small if accuracy r is small.
In Eqs. (6) and (7), we employ the linear property of BLMs, which is the reason that we
are only able to perform transformations from θ∗ to θ∗′ for BLMs. Let model M ′ represent
the model with graph G′ with weights θ∗′ defined above. The following lemma shows the
key observation:

Lemma 7 The linear regression performed on graph G′ in Algorithm 3 (lines 13–16) gives
the estimation θ̂′ such that

∥(θ̂′
t,X − θ∗′

X)∥Mt,X
≤
√

n log(1 + tn) + 2 log(1/δ) +
√
n,

where Mt,X is defined in Algorithm 3.
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This lemma shows that, the linear regression performed on the inaccurate estimated
linear model M ′ is equivalent to the regression for θ∗′ . Note that this regression only
gives us the approximation in some direction with respect to elliptical norm, allowing the
variables to be dependent.

Based on claim above, we only need to measure the difference for E[Y | do(S = 1)] on
model M and M ′. The following lemma shows that the difference between two models can
be bounded by our estimated accuracy r:

Lemma 8 |EM [Y | do(S = 1)] − EM ′ [Y | do(S = 1)]| ≤ n2(n + 1)r, where r is the
estimated accuracy defined in the start of this section.

The Lemma 8 gives us a way to bound our linear regression performance on the estimated
modelM ′. Suppose our linear regression achieves O(

√
T ) regret comparing to maxS EM ′ [Y |

do(S = 1)], based on our estimated accuracy r = O(T−1/3), the regret for optimization error
is O(T 2/3), which is the same order as the initialization phase. Moreover, it implies that
we cannot set r to a larger gap, such as r = O(T−1/2), as doing so would result in the
initialization phase regret becoming linearly proportional to T .

From these two lemmas, we can measure the error for initialization phase. Motivated by
Explore-then-Commit framework, we can achieve sublinear regret without the weight gap
assumption. The detailed proof is provided in Appendix E.2 and Appendix E.3.

Theorem 9 If c0 ≥ max{ 1
c21
, 1
(1−c1)2

}, the regret of Algorithm 3 running on BLM is upper

bounded as

R(T ) = O((n3T 2/3) log T ).

Theorem 9 states the regret of our algorithm without weight gap. The leading term of the
result is O(T 2/3 log T ), which has higher order than O(

√
T log T ), the regret of the previous

Algorithm 2 and the BLM-LR algorithm in Feng and Chen (2023). This degradation in
regret bound can be viewed as the cost of removing the weight gap assumption, which makes
the accurate discovery of the causal graph extremely difficult. For a detailed discussion of
the weight gap assumption, interested readers can refer to Appendix F. How to devise a
O(
√
T log T ) algorithm without weight gap assumption is still an open problem.

Using the transformation in Section 5.1 in Feng and Chen (2023), this algorithm can
also work with hidden variables. The model our algorithm can work on allows hidden
variables but disallows the graph structure where a hidden node has two paths to Xi and
Xi’s descendant Xj and the paths contain only hidden nodes except the end points Xi and
Xj .

Moreover, observe that Algorithms 1 and 3 necessitate prior knowledge of the horizon
T . To circumvent this constraint, the ”Doubling Trick” can be employed, converting our
algorithms into anytime algorithms without compromising the regret bounds.

7. Future Work

This paper is the first theoretical study on causal bandits without the graph skeleton.
There are many future directions to extend this work. We believe that similar initial-
ization methods and proof techniques can be used to design causal bandits algorithms for
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other parametric models without the skeleton, like linear structural equation models (SEM).
Moreover, how to provide an algorithm with Õ(

√
T ) regret without weight gap assumption

is interesting and still open. One possibility is to investigate the utilization of feedback dur-
ing the iterative phase of the BGLM-OFU-Unknown algorithm in order to enhance graph
structure identification, which could potentially lead to an improved regret bound.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and
constructive feedback.

References
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