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Abstract
Urban villages, defined as informal residential areas in or
around urban centers, are characterized by inadequate infras-
tructures and poor living conditions, closely related to the
Sustainable Development Goals (SDGs) on poverty, adequate
housing, and sustainable cities. Traditionally, governments
heavily depend on field survey methods to monitor the urban
villages, which however are time-consuming, labor-intensive,
and possibly delayed. Thanks to widely available and timely
updated satellite images, recent studies develop computer vi-
sion techniques to detect urban villages efficiently. However,
existing studies either focus on simple urban village image
classification or fail to provide accurate boundary informa-
tion. To accurately identify urban village boundaries from
satellite images, we harness the power of the vision founda-
tion model and adapt the Segment Anything Model (SAM)
to urban village segmentation, named UV-SAM. Specifically,
UV-SAM first leverages a small-sized semantic segmenta-
tion model to produce mixed prompts for urban villages,
including mask, bounding box, and image representations,
which are then fed into SAM for fine-grained boundary iden-
tification. Extensive experimental results on two datasets in
China demonstrate that UV-SAM outperforms existing base-
lines, and identification results over multiple years show that
both the number and area of urban villages are decreasing
over time, providing deeper insights into the development
trends of urban villages and sheds light on the vision foun-
dation models for sustainable cities. The dataset and codes
of this study are available at https://github.com/tsinghua-fib-
lab/UV-SAM.

Introduction
As a representative type of informal settlement, urban vil-
lages are densely populated neighborhoods in both the out-
skirts and the downtown segments of major Chinese cities,
typically consisting of older low-rise buildings and narrow
alleyways (Wikipedia contributors 2023), as shown in Fig-
ure 1. On the one hand, urban villages provide affordable
housing options for migrant workers and low-income citi-
zens, contributing to the socioeconomic fabric of cities. On
the other hand, urban villages often face challenges related
to inadequate infrastructure, limited access to public ser-
vices, and poor living conditions (Chen et al. 2021). Hence,
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(a) Narrow alleyways (b) Older low-rise buildings

Figure 1: Examples of urban villages identified from satellite
images, with appearance characteristics provided. The red
part represents the urban village areas.

aligning well with United Nations’ 11th Sustainable Devel-
opment Goal (SDG 11)“Making cities and human settle-
ments inclusive, safe, resilient and sustainable” (Nath 2016),
accurately identifying urban villages is essential for both ur-
ban planning and governance in future sustainable cities.

Traditionally, urban village identification heavily depends
on field surveys and manual mapping (Zheng et al. 2009),
where urban planners would visit different areas, collect so-
cioeconomic data, and visually identify urban village bound-
aries. While such methods provide valuable insights, they
are time-consuming, labor-intensive, and limited in spa-
tiotemporal coverage. In recent years, exploring computer
vision techniques with satellite images for urban villages
has gained significant attention. Most studies build image
classification models to classify whether a given satellite
image contains an urban village (Chen et al. 2022; Fan
et al. 2022a,b; Xiao et al. 2023) without boundaries identi-
fied, while others explore semantic segmentation models to
identify urban village boundaries in satellite images (Mast,
Wei, and Wurm 2020; Pan et al. 2020; Chen et al. 2019).
However, due to the complex background interference in
satellite images and the lack of well-defined boundaries be-
tween urban villages and surrounding neighborhoods, exist-
ing studies perform poorly in providing accurate urban vil-
lage boundaries, which further hinders the estimation of the
areas and expansions of urban villages (Kirillov et al. 2023).
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Moreover, limited labeled data in urban villages also make
segmentation models prone to overfit and fail to generalize
to noisy satellite images, e.g., occlusion and seasons.

Meanwhile, owing to training on over one billion images,
the recent vision foundation model of the Segment Any-
thing Model (SAM) exhibits remarkable generalization ca-
pabilities as well as high mask quality for category-agnostic
segmentation, which is quite sensible to segment bound-
aries (Kirillov et al. 2023) and has been investigated into
various domains. Specifically, SAM operates in a manner
that requires a preexisting prompt such as a reference point,
bounding box, or mask, to accompany the input image. Ob-
viously, category-agnostic segmentation provided by SAM
cannot be directly applied to semantic segmentation. Hence,
several studies explore refined manual prompts for category-
specific segmentation in domain-specific applications, such
as manually-labeled bounding boxes for medical image seg-
mentation (Wu et al. 2023), showcasing promising results.
Therefore, considering the limitation of blurry boundary
recognition in existing urban village identification studies as
well as the strength of generalization and boundary sensitiv-
ity in SAM, an interesting research question is whether SAM
can help urban village identification from satellite images.

Regarding the research question above, in this paper,
we propose a generalist-specialist-like framework called
UV-SAM, to adapt SAM for urban village identification.
Specifically, the critical point of adaption lies in generat-
ing category-specific prompts that can encourage SAM to
focus on urban villages in satellite images. Therefore, we
regard SAM with large frozen parameters as a generalist in
category-agnostic segmentation and develop a semantic seg-
mentation model with limited learnable parameters as a spe-
cialist for urban village identification, where the specialist
automatically generates prompts for the generalist while the
outputs by the generalist in turn update model parameters of
the specialist. Following the proposed framework, UV-SAM
employs four distinct categories of prompts specifically for
urban villages in satellite images. Firstly, UV-SAM devel-
ops a small-sized semantic segmentation model like Seg-
Former (Xie et al. 2021) to produce coarse segmentation
masks for urban villages, based on which mask prompts and
box prompts of urban villages are generated. Secondly, the
feature maps from image encoders in both SAM and Seg-
Former are extracted as semantic prompts. Furthermore, a
prompt mixer module is designed to fuse such four types
of prompts together, and the resulting urban village prompt
vector is fed into SAM for urban village specific segmenta-
tion. In summary, our contributions lie in three aspects:

• We are the first to introduce the vision foundation model
SAM for urban village identification, which enlightens
the application of foundation models in artificial intelli-
gence for sustainable cities and SDG.

• We establish a novel generalist-specialist framework,
UV-SAM, which automatically generates four distinct
types of prompts, and seamlessly integrates SAM into
urban village identification applications.

• We conduct extensive experiments on two cities Bei-
jing and Xi’an in China, and the results demonstrate

that our proposed framework achieves significant perfor-
mance improvement compared with state-of-the-art mod-
els. Further case studies reveal the evolving trends of ur-
ban villages in both amount and area, as well as their
spatial distribution, which provides valuable insights for
urban planning and governance.

Related Works
Satellite Image-based Urban Village Identification. Ur-
ban village identification refers to the process of identifying
areas or regions within a city that exhibit characteristics of
urban villages, which are crucial for understanding the spa-
tial distribution and evolution of urban villages.

Several studies investigate the satellite image classifica-
tion problem to identify whether urban villages exist in cor-
responding images. Earlier studies (Huang, Liu, and Zhang
2015; Liu et al. 2017) apply traditional machine learning al-
gorithms, such as support vector machines, to classify urban
and non-urban areas based on handcrafted features. Recent
studies employ deep learning techniques, particularly con-
volutional neural networks (CNN), to automatically learn
discriminative features from satellite images. For example,
some studies (Chen et al. 2022; Fan et al. 2022a) classify
urban villages by constructing various deep learning mod-
els over satellite images and street images. Another study
(Fan et al. 2022b) classifies urban informal settlements us-
ing very high-resolution remote sensing images and time-
series population density data. Also a recent work (Xiao
et al. 2023) uses an urban region graph and designs a contex-
tual master-slave framework to effectively detect the urban
village. However, these studies focus on image classification
and fail to identify urban village boundaries, providing lim-
ited information for sustainable cities.

On the other hand, some studies formulate urban village
identification as a segmentation problem. For example, the
Mask R-CNN model is used to detect urban villages and
segment the boundaries of urban villages from satellite im-
ages (Chen et al. 2019). Another two studies (Mast, Wei,
and Wurm 2020; Pan et al. 2020) respectively utilize the
well-established semantic segmentation models, including
Fully Convolutional Neural Networks (FCN) and U-Net, to
map urban village areas in Shenzhen and Guangzhou. More-
over, UVLens (Chen et al. 2021) employs taxi trajectories
to divide the city-wide satellite image into smaller patches
and then incorporates bike-sharing drop-off data into these
image patches and utilizes the Mask R-CNN model (He
et al. 2017) to detect urban villages. Overall, existing stud-
ies on urban villages either focus narrowly on classification
or struggle with inaccurate semantic segmentation. Besides,
such studies often rely on additional data sources such as
street views and traffic data, which do not apply to all cities.

SAM Applications. Since the proposal in April 2023,
SAM has been widely used in different fields, such as medi-
cal image processing (Ma and Wang 2023; Zhou et al. 2023),
3D vision (Cen et al. 2023; Shen, Yang, and Wang 2023), in-
painting (Yu et al. 2023), object tracking (Yang et al. 2023;
Rajič et al. 2023) and so on, which fall into two applica-
tion ways: (i) Fine-tuning or adding an adapter on SAM im-



age encoder. For example, SAMed (Zhang and Liu 2023),
MedSAM (Wu et al. 2023) and 3DSAMadpter (Gong et al.
2023) entail the customization of SAM specifically for med-
ical image segmentation with adapters incorporated, yield-
ing performance improvement in medical image segmenta-
tion tasks. (ii) Generating task-specific prompts. For exam-
ple, AutoSAM (Shaharabany et al. 2023) designs an auxil-
iary convolution network that replaces the prompt embed-
ding for medical imaging domains. RSPrompter (Chen et al.
2023) develops anchor-based and query-based prompts with
SAM for satellite image-based instance segmentation. Mo-
tivated by such SAM-based applications, we adapt SAM to
the urban village identification problem.

Preliminary
In this section, we provide problem statement and important
models of SegFormer and SAM used in the methodology.

Problem Statement. Urban village identification refers to
the task of identifying and delineating the boundaries of ur-
ban villages within a given geographical area, separating
them from the surrounding areas. Thus, the research prob-
lem with satellite images is formally defined as:

Problem 1 Given any satellite image I, the satellite image-
based urban village identification problem is to design
method f to identify specific boundaries U for urban village
therein (if existed), denoted as U :f(I)→ U .

SegFormer. SegFormer (Xie et al. 2021) builds an
encoder-decoder framework to achieve impressive perfor-
mance in semantic segmentation tasks. In the encoder part,
SegFormer employs a hierarchical pyramid Vision Trans-
former (ViT) (Dosovitskiy et al. 2020) to break down the
input image into hierarchical regions and process them at
different levels of abstraction. In the decoder part, a multi-
layer perceptron (MLP) is developed to gather information
from various layers, effectively merging local attention and
global attention mechanisms to create potent representa-
tions, which are finally upsampled to produce the ultimate
segmentation mask.

SAM. SAM (Kirillov et al. 2023) designs a flexible
prompting-enabled model architecture for category-agnostic
segmentation. To be specific, SAM consists of an image en-
coder, a prompt encoder, and a mask decoder, where the
image encoder is pre-trained using the masked autoencoder
technique, the prompt encoder handles dense and sparse in-
puts, and the mask decoder predicts the masks based on
the encoded embeddings. Especially, SAM supports external
prompts like boxes, points, and texts for segmenting objects.

Methodology
Generalist-Specialist Framework Overview. Figure 2
presents the main framework of our proposed UV-SAM
model for the urban village identification problem, which
falls into a generalist-specialist style. Considering the lim-
itations of existing models for urban village identification,
which struggle to accurately define the boundaries of urban
villages, in the generalist part, we leverage SAM’s robust
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Figure 2: The illustration of proposed UV-SAM framework.
The snowflake and torch symbols in the figure signify that
the model parameters in this part are kept frozen and learn-
able, respectively.

edge detection capabilities to learn such finer boundaries.
Moreover, in the specialist part, to provide urban village-
specific prompts for SAM, we employ a lightweight seman-
tic segmentation model, SegFormer, for prompt generation.

Image Encoder. Specifically, given a satellite image I as
input, the image is fed into SAM’s image encoder ΦSAM-Image
with large pre-trained parameters and SegFormer’s image
encoder ΦSeg-Image with small learnable parameters, with out-
put as ISAM and ISeg, respectively. Since ISeg comprises fea-
tures of multiple scales, UV-SAM applies a fusion layer of
MLP ΦAgg to aggregate such features. The above processes
are expressed as:

ISAM = ΦSAM-Image(I) (1)
ISeg = ΦAgg(ΦSeg-Image(I)) (2)

Subsequently, the ISeg goes through the classification
layer within SegFormer to generate masks UMask for ur-
ban villages therein. After undergoing image processing, the
masks are then used to derive the corresponding bounding
boxes UBox. This process can be expressed as:

UMask = MLP(ISeg) (3)
UBox ←−

Image Process
UMask (4)

Prompt Generation. The above masks and bounding
boxes are utilized as prompts, and fed into the prompt en-
coder ΦSAM-Prompt resulting in a sparse prompt embedding
PSAM, which encompasses explicit prompt information on
urban village location details, which is expressed as:

PSAM = ΦSAM-Prompt(UBox, UMask) (5)

Moreover, since both ISAM and ISeg aggregate abstract
semantic information specific to urban villages, UV-SAM
also models both as semantic prompts. Especially, a prompt
generation module is designed to fuse such four types of



prompts together, whose two prompt mixing variants of
ΦAdd

Mix and ΦMLP
Mix can be expressed as:

PMix=Φ
Add
Mix(PSAM, ISeg, ISAM)=PSAM + ISeg + ISAM (6)

PMix=Φ
MLP
Mix (PSAM, ISeg, ISAM)=MLP([PSAM; ISeg; ISAM])

(7)

where ΦAdd
Mix involves directly adding normalized features

and ensures a straightforward fusion of insights, while ΦMLP
Mix

entails concatenating normalized features and then pass-
ing them through a projection head for dimensionality re-
duction, offering a more intricate yet controlled method of
knowledge synthesis. The choice between the two forms
could depend on the nature of the information being merged
and the specific requirements of the task.

Mask Decoder. Finally, based on the mixed prompt and
pre-trained mask decoder in SAM, UV-SAM identifies ur-
ban villages in satellite images as follows:

U = ΦSAM-Mask(ISAM,PMix) (8)

where elements in U identify whether specific pixels belong
to urban villages.

Training Loss. Similar to SAM, in the context of the
larger model, we adopt a mask prediction strategy involving
a linear combination of focal loss Lfocal (Lin et al. 2017),
dice loss Ldice (Milletari, Navab, and Ahmadi 2016) and
mean-square-error loss Lmse at a weight of 1:1:1. In ad-
dition, SegFormer continues to utilize the straightforward
cross-entropy loss LSeg for its loss function. Consequently,
the overall loss can be expressed as follows:

LSAM = Lfocal + Ldice + Lmse (9)
L = λLSAM + LSeg (10)

where λ is a hyper-parameter to weigh the impacts of gener-
alist and specialist modules.

Experiments
In this section, we conduct experiments to answer the fol-
lowing research questions:

• RQ1: How does our proposed UV-SAM model perform
compared with existing baseline approaches?

• RQ2: What is the effectiveness of each designed module
in our proposed UV-SAM model?

• RQ3: Can our proposed UV-SAM model identify the
spatial distribution of urban villages?

• RQ4: Can our proposed UV-SAM model identify the
evolving trends of urban villages with area and amount?

Experiment Setups
Datasets. For our research, we collected datasets consist-
ing of satellite images from two major cities of Beijing and
Xi’an in China. Table 1 reports basic statistics for datasets.
For training purposes, we randomly split the dataset into
three subsets of training, validation, and testing sets with the
proportion of 6:2:2.

City #Satellite Image #Urban Village Year

Beijing 2,491 545 2016
Xi’an 837 205 2018

Table 1: Dataset statistics.

We specifically focus on main urban areas to capture the
dynamics of urban village evolution. The satellite images
are obtained from ArcGIS1 and have a resolution of approxi-
mately 1.05 meters per pixel. To prepare the dataset for train-
ing and evaluation, we merge the individual satellite images
into larger images of 1024× 1024 pixels. This merging pro-
cess ensures that the resulting images contained comprehen-
sive main urban area information.

As for labels, to begin with, we recruited a group of par-
ticipants from urban research and provided them with ap-
propriate incentives. We also conducted training sessions to
ensure that the participants had a good understanding of ur-
ban villages and related background knowledge. To facili-
tate the labeling process, we utilized the EasyData2 crowd-
sourcing platform, through which we randomly assigned im-
age patches to the participants for cross-validation. Each
patch was assigned to three participants to ensure accuracy
and consistency in the labeling process. To maintain qual-
ity control, we assigned specific individuals to validate the
mask annotations provided by the participants. This valida-
tion process helped to ensure the accuracy and reliability of
the obtained mask labels. By conducting per-pixel voting,
we obtained the ground truth labels for all the image patches.

Baselines. We have conducted a comparative analysis of
our model against various baseline approaches:
• FCN (Long, Shelhamer, and Darrell 2015). FCN re-

places fully connected layers with convolutional layers,
enabling end-to-end pixel-wise predictions.

• DeepLabv3+ (Chen et al. 2018). The architecture of
DeepLabv3+ is enhanced by integrating atrous spatial
pyramid pooling and decoder modules, resulting in a
more sophisticated design.

• UVLens (Chen et al. 2021). UVLens integrates bike-
sharing drop-off data and satellite images into image
patches and applies Mask R-CNN (He et al. 2017) model
for urban village identification.

• RSPrompter (Chen et al. 2023). RSPrompter incorpo-
rates elements from both Faster R-CNN (He et al. 2016a)
and Transformer (Vaswani et al. 2017) architectures into
the prompt generation process for satellite image in-
stance segmentation.

Metrics. To evaluate the accuracy of our identification
method, we compare the segmented urban villages with the
ground truth dataset under two types of metrics in respect to
detection accuracy and segmentation accuracy.

For detection accuracy, if a detected urban village spa-
tially overlaps with an urban village in the ground-truth

1https://geoenrich.arcgis.com/
2https://ai.baidu.com/easydata/



Dataset Beijing Xi’an
Method IoU F1-Score Recall Precision IoU F1-Score Recall Precision

FCN 0.660 0.802 0.752 0.859 0.720 0.833 0.800 0.870
DeepLabv3+ 0.650 0.787 0.719 0.870 0.668 0.821 0.780 0.867

UVLens 0.623 0.783 0.777 0.790 0.687 0.863 0.880 0.867
RSPrompter 0.462 0.687 0.860 0.571 0.568 0.800 0.800 0.800

UV-SAM 0.721 0.871 0.893 0.851 0.747 0.904 0.940 0.871

Table 2: Overall performance of UV-SAM and baselines on two datasets. Bold denotes the best results and underline denotes
the second-best results.

dataset, we mark it as true positive, otherwise false positive,
based on which we calculate precision, recall and F1-score.

For segmentation accuracy, we utilize the widely-used In-
tersection over Union (IoU) metric, which is calculated as
the intersection area divided by the union area between the
segmented urban villages and the corresponding ground-
truth urban villages.

Implementation. In our experiments, we consistently em-
ploy the ViT-Large backbone of SAM and the MiT-B0
lightweight encoder of SegFormer, unless specified other-
wise. We select the Adam optimizer to facilitate parame-
ter learning and incorporate a cosine annealing scheduler
to gradually decrease the learning rate. The mini-batch size
is fixed at 4, and the complete training process spans 100
epochs. We conduct a grid search for optimal values of the
learning rate, weight decay, and λ, from {0.005, 0.0005,
0.00005}, {0.01, 0.001} and {0.1, 1, 10}, respectively. Be-
sides, based on the validation performance, we select ΦMLP

Mix
and ΦAdd

Mix for Beijing and Xi’an, respectively. The experi-
ment details are available at the link3.

Overall Performance (RQ1)
Table 2 shows the overall performance comparison on Bei-
jing and Xi’an datasets. From these results, we have the fol-
lowing observations:

• UV-SAM achieves the best performance across both
datasets. The results showcase that our proposed model
achieves state-of-the-art performance, which success-
fully adapts SAM into urban village identification. For
the segmentation accuracy, compared with the baselines,
our model outperforms the best baseline by 4%-9% on
IoU in two datasets. Similar performance improvements
can be also found in F1-score for the detection accu-
racy. It is notable that performance difference on two
datasets with DeepLabv3+. This is due to how well
DeepLabv3+’s structure matches the characteristics of
the Beijing dataset. The DeepLabv3+ architecture com-
bines high-level features for semantic information with
low-level features for capturing boundary details. Bei-
jing’s unique features, with denser traditional courtyard
style housing and shorter buildings, differ from the high-
rise, dense buildings of Xi’an. In addition, owing to the

3https://github.com/tsinghua-fib-lab/UV-SAM
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Figure 3: Mask quality rating distributions by datasets from
our human evaluation study in Beijing and Xi’an, with aver-
age scores shown in the legend.

generalized generalist-specialist framework, all baselines
in Table 2 can be incorporated into UV-SAM as the spe-
cialist module, which can bring further performance im-
provement for urban village identification.

• Existing SAM-based models perform poorly in urban
village identification. According to the results in Ta-
ble 2, the performance of RSPrompter (Chen et al. 2023)
notably lags behind that of other baseline models in terms
of IoU and F1-score, e.g., the worst IoU and F1-score of
0.462 and 0.687 in Bejing dataset. Such results suggest
that the learnable prompts in RSPrompter fail to capture
the intricate and abstract semantic features that hold par-
ticular relevance to urban villages, and thus provide use-
less guidance to SAM. Besides, the performance drop
also emphasizes the non-tricky adaption of SAM to ur-
ban village identification.

• Transformer-based encoders demonstrate a better se-
mantic understanding of urban villages. In the ca-
pacity of transformer-based architectures, our proposed
UV-SAM exhibits remarkable superiority compared with
other CNN-based models, in terms of IoU and F1-score
metrics. As described before, urban villages embody in-
tricate and advanced semantic concepts, and the demar-
cation of their boundaries within satellite imagery is no-
tably influenced by contextual factors in their surround-
ing environment. Thus, the Transformer architecture with
the attention mechanism can better capture fine-grained
features therein, while CNN-based models mainly grasp
higher-level semantic abstractions, leading to inaccurate
boundaries and inferior performance.

Furthermore, to better evaluate the mask quality in ur-



Dataset Beijing Xi’an
Variants IoU F1-Score Recall Precision IoU F1-Score Recall Precision

w/o Box 0.708 0.838 0.876 0.803 0.173 0.267 0.160 0.800
w/o Mask 0.635 0.842 0.860 0.825 0.744 0.876 0.920 0.836

w/o SAM emb 0.697 0.846 0.909 0.791 0.717 0.826 0.900 0.763
w/o Seg emb 0.694 0.832 0.901 0.773 0.733 0.849 0.900 0.804

w/o SAM 0.688 0.854 0.893 0.818 0.731 0.860 0.860 0.860

UV-SAM 0.721 0.871 0.893 0.851 0.747 0.904 0.940 0.871

Table 3: Ablation study of UV-SAM variants on two datasets.

ban villages, we introduce the human study for evaluation
(Kirillov et al. 2023). Specifically, we present masks gener-
ated by models to annotators and require them to rate the
quality of each mask from 1 to 10. A score of 1 means
that the mask has no relevance to urban villages while 10
indicates that there are no noticeable errors in the identi-
fied boundaries of urban village areas. We conduct a com-
parison between the masks produced by SAM and those
generated by SegFormer, along with the ground truth data,
which are presented in Figure 3. The results show that
UV-SAM achieves better mask quality than SegFormer
across both datasets. For example, on the Beijing dataset,
UV-SAM achieves an average rating of 7.59, while Seg-
Former is 6.87, compared with the ground truth of 7.67.
Within the lower score range, UV-SAM’s performance falls
short of the baseline counterpart. Conversely, in the higher
score range, there is a conspicuous increase in frequency.
Such results demonstrate the effectiveness of SAM for seg-
menting boundaries.

Ablation Study (RQ2)
To evaluate the effectiveness of each module in UV-SAM,
Table 3 shows the detection and segmentation performance
of different model variants on both datasets. According to
the results, without the box prompt, our model performance
drops 1.8% and 75.9%. Thus, the box prompt plays an im-
portant role in the performance guarantee, which guides the
mask decoder of the SAM to focus on the regions of inter-
est. Besides, the performance drop on Xi’an dataset can be
largely attributed to the straightforward way of prompt addi-
tion. Moreover, the mask prompt offers a dense embedding
that specifically emphasizes the boundaries of objects within
the image, contributing 11.9% and 0.4% on IoU for two
datasets, respectively. Furthermore, with abstract semantic
information specific to urban villages, the SAM embedding
from the image encoder (large) further achieves 3%-4% im-
provement on IoU. Finally, our model can get an improve-
ment of 2%-3% with the assistance of segmentation embed-
ding obtained from the image encoder(small), capturing the
high-level semantics provided by the specialist-like seman-
tic segmentation model. Thus, all four types of prompts are
essential for effective urban village identification. In addi-
tion, our model performance drops 4.6% and 2.1% without
the SAM. So a generalist-like SAM provides more accurate
boundary information for urban village identification.

Urban VillageHistoric Reserve

Shibalidian

Figure 4: Urban village (UV) distribution in Beijing in 2020.

Spatial Distribution Analysis (RQ3)
To mitigate the potential risks of urban villages to urban de-
velopment as well as improve citizens’ living conditions, the
governments often initiate gradual demolitions and resident
relocations therein. Thus, identifying the spatial distribution
of urban villages offers a crucial reference point for urban
planning. In Figure 4, we visualize the spatial distribution of
urban villages within the sixth ring road of Beijing in 2020.

As depicted in the figure, within the second ring road of
Beijing, numerous historical reserve blocks are presented,
which often consist of courtyard-style housing, accommo-
dating a few households in close proximity. Despite their
historical and conservation value, these areas typically have
small per capita living spaces, poor sanitation conditions,
and low greenery coverage, which align well with the defi-
nition of urban villages. On the contrary, urban villages are
found to be distributed more thinly between the third and
sixth ring roads. Particularly, there is a noticeable clustering
of urban villages near Shibalidian Township4, which is a fa-
mous urban village cluster in Beijing. Moreover, the south-

4https://en.wikipedia.org/wiki/Shibalidian
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Figure 5: Urban village (UV) distribution along Beijing’s
ring roads with respect to area and amount in 2020.

ern and eastern parts of this area show a higher density of
urban villages compared to the western and northern parts.
This discrepancy in distribution could be attributed to histor-
ical population movement patterns and local levels of eco-
nomic development.

To quantify the spatial distribution, we further plot the
urban village distribution curves along Beijing’s ring roads
with respect to area and amount in Figure 5. We crudely de-
termined the count and extent of urban villages by utilizing
the number of predicted masks and their cumulative pixel
values derived from satellite imagery results. According to
the results, there is a significant increase in both area and
number of urban villages between the fifth and sixth ring
roads, where the distance to the urban center is far enough
and the buildings from the original village are preserved.
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Figure 6: The change of the area and number of urban vil-
lages over years in Beijing and Xi’an.

Evolving Trend (RQ4)
To understand the formation, expansion and shrinkage of ur-
ban villages, in Figure 7, we illustrate the variations in ur-
ban village area and quantity between different years for the
cities of Beijing and Xi’an, using the satellite images cap-
tured at various time points.

According to the results, the city of Beijing hosted an es-
timated 1,000 urban villages in 2011, and Xi’an accommo-
dated around 360 urban villages in the year 2013. By 2016
or 2018, the urban villages only decreased by less than 10
square kilometers. However, a notable transformation oc-
curred by the year 2020. During this time, both the spatial

(a) The Jijiamiao
Village in 2011

(b) The Jijiamiao
Village in 2016

(c) The Jijiamiao
Village in 2020

Figure 7: The boundary change of the Jijiamiao Village from
2011 to 2020. The highlighted red regions denote the areas
where urban villages have been identified, signifying a grad-
ual reduction over time.

extent and numerical prevalence of urban villages under-
went a remarkably rapid contraction, resulting in a reduction
of fifty percent compared to their previous levels. This dis-
cernible trend is plausibly attributable to the promulgation
of the Beijing Urban Master Plan(2016-2035) by the gov-
ernmental authorities.

Especially, the example of Jijiamiao Village serves as a
case currently undergoing transformation5. As shown in the
Figure 7, the Jijiamiao Village is surrounded by high-rise
buildings, their outdated structures no longer in sync with
the modern landscape. As early in 2011, policies were intro-
duced to gradually renovate these aging structures. There-
fore, by 2016, their presence had diminished compared to
2011. By 2020, they had nearly disappeared entirely. The
surrounding green spaces and high-rise buildings are also
undergoing slow but steady development.

Conclusion

In this paper, we propose UV-SAM, a vision foundation
model-based framework for urban village identification. The
UV-SAM framework introduces a specialist-like semantic
segmentation model to generate four types of urban village-
specific prompts and then feeds into a generalist-like SAM
model to identify urban village boundaries from satellite
images. Through comprehensive experiments, we substan-
tiate the effectiveness of our model across various datasets,
which also provide deep insights into the spatial distribu-
tions and temporal trends of urban villages. Moreover, our
study demonstrates the possibility of vision foundation mod-
els for sustainable development goals and sustainable cities.

Despite surpassing baseline performance, it’s noteworthy
that our results may exhibit a certain degree of reduced in-
terpretability. Thus, in future work, we aim to delve into the
intricate interplay of features that underlie the emergence
and dissolution of urban villages. We also plan to transfer
the proposed framework to slum identification in cities and
help understand the global informal settlements.

5http://zjw.beijing.gov.cn/bjjs/gcjs/zdgcjs/2016/xmjh/363391/
index.shtml
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EXPERIMENT DETAILS
Experiment Details for Spatial Distributions and
Evolving Trends
Here we introduce the details of the pre-classification mod-
ule for spatial distributions and evolving trends. Due to the
limited size of the dataset, we introduced a binary classifica-
tion model specifically to distinguish urban and non-urban
areas before the semantic segmentation process. The mod-
ule is only applied in the spatial analysis of specific cities
and is independent of our UV-SAM framework.

Datasets. For the training classification model, we con-
struct a dataset for each specific city. The urban village area
is used as positive samples and the non-urban village areas
are randomly selected as negative samples, ensuring a near
1:1 positive-negative ratio in the training, validation, and test
sets.

Implementation. ResNet50 (He et al. 2016b) is used to
implement the classification model. We select the Adam op-
timizer to facilitate parameter learning and incorporate a co-
sine annealing scheduler to gradually decrease the learning
rate. The learning rate is set as 0.0001, and the batch size is
fixed at 32. To quantitatively measure the performance of
the classification model, we adopt the Area Under Curve
(AUC), Recall, Precision, and F1-score as evaluation met-
rics.

Dataset AUC F1-Score Precision Recall

Beijing 0.964 0.868 1.00 0.767
Xi’an 0.756 0.677 0.786 0.595

Table 4: Performance of classification module on two
datasets.

Performance. Table 4 shows the performance of Beijing
and Xi’an datasets. We note a considerable level of pre-
cision achieved in the Beijing dataset, whereas the Xi’an
dataset demonstrates noticeably lower precision. This sub-
stantial contrast in results can be attributed to a combination
of key factors, notably including the limited scope of the
Xi’an dataset and the inherent differences in the quality of
available satellite imagery.

Spatial Distribution Analysis with Street View
Images in Beijing
Due to the high cost of collecting street view imagery, ob-
taining street view images for any given time and location
is not feasible. Consequently, we can only employ such im-
agery as an auxiliary tool to facilitate the observation of ur-
ban village evolution.

As illustrated in Figure 8, we choose three street view im-
ages from both the historical reserve area and the urban vil-
lage cluster of Shibalidian, respectively. These images are
intended to showcase three distinctly different styles of ur-
ban village environments.



Urban VillageHistoric Reserve

Shibalidian

Figure 8: Urban village distribution with street view images
in Beijing in 2020.

(a) The Jijiamiao
Village in 2013

(b) The Jijiamiao
Village in 2015

(c) The Jijiamiao
Village in 2019

Figure 9: The environment change of the Jijiamiao Village
from 2013 to 2019 at street view imagery.

Evolving Trend with Street View Images in Beijing
As shown in Figure 9, We show three street view images at
the same location in different years. Compared to the chaotic
condition of the urban village in 2013, the village had been
demolished in 2015. In 2019, new walls were built to im-
prove the city’s appearance.

Spatial Distribution Analysis with Street View
Images in Xi’an

Urban Village

Shilipu

Figure 10: Urban village distribution in Xi’an in 2022.

In Figure 10, we visualize the spatial distribution of urban
villages within the urban areas of Xi’an, including Lianhu
District, Xincheng District, Beilin District, Yanta District,
Baqiao District and Weiyang District. In Xi’an, there are
few historical reserve blocks. As shown in the figure, the ur-
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Figure 11: Urban village (UV) distribution in Xi’an with re-
spect to area and amount in 2022.

ban villages within the main urban areas demonstrate a dis-
tinct pattern of horizontal distribution. Notably, in the east-
ern area, a distinct clustering of urban villages is evident in
close proximity to Shilipu Village. As for the central area
of Xi’an, several urban villages are identified, which might
be related to potential misidentification caused by the lower
quality of satellite imagery.

Furthermore, we plot distribution curves to visually depict
the spatial distribution patterns. In Figure 11, the area and
amount of urban villages in 2022 are showcased in relation
to their distances from the city center of Xi’an. When the
distance from the city center is between 7 to 11 kilometers,
there is a steep linear increase in the number and area of ur-
ban villages. But at larger distances, the rates of increase be-
come less pronounced. This can be attributed to the ”urban-
suburban-rural” structure created by the rapid process of ur-
ban expansion, where a large number of urban villages are
concentrated in the suburbs.

Evolving Trend in Xi’an

(a) The Yangjia Vil-
lage in 2013

(b) The Yangjia Vil-
lage in 2018

(c) The Yangjia Vil-
lage in 2022

Figure 12: The boundary change of the Yangjia Village from
2013 to 2022. The highlighted red regions denote the areas
where urban villages have been identified, signifying a grad-
ual reduction over time.

The Yangjia Village, where the historical ruin of the
Mingde Gate is located, became a popular choice for tem-
porary residents due to its affordable rental options. In 2013,
the government had planned to take down and renovate the



(a) The Yangjia Vil-
lage in 2014

(b) The Yangjia Vil-
lage in 2017

(c) The Yangjia Vil-
lage in 2019

Figure 13: The environment change of the Yangjia Village
from 2014 to 2019.

village6. As shown in Figure 12, the majority of the Yangjia
Village was deconstructed in 2018. In 2022, a small part
of the Yangjia Village had been transformed into high-rise
buildings, while the majority part had been developed into a
heritage park.

From the street view images of Yangjia Village displayed
in Figure 13, it becomes clear that the village started being
renovated as early as 2014. By 2019, the emergence of tall
buildings became noticeable.
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