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ABSTRACT

Multi-view classification (MVC) generally focuses on improving classification
accuracy by using information from different views, typically integrating them into
a unified comprehensive representation for downstream tasks. However, it is also
crucial to dynamically assess the quality of a view for different samples in order to
provide reliable uncertainty estimations, which indicate whether predictions can be
trusted. To this end, we propose a novel multi-view classification method, termed
trusted multi-view classification, which provides a new paradigm for multi-view
learning by dynamically integrating different views at an evidence level. The
algorithm jointly utilizes multiple views to promote both classification reliability
and robustness by integrating evidence from each view. To achieve this, the
Dirichlet distribution is used to model the distribution of the class probabilities,
parameterized with evidence from different views and integrated with the Dempster-
Shafer theory. The unified learning framework induces accurate uncertainty and
accordingly endows the model with both reliability and robustness for out-of-
distribution samples. Extensive experimental results validate the effectiveness of
the proposed model in accuracy, reliability and robustness.

1 INTRODUCTION

Multi-view data, typically associated with multiple modalities or multiple types of features, often
exists in real-world scenarios. State-of-the-art multi-view learning methods achieve tremendous
success across a wide range of real-world applications. However, this success typically relies
on complex models (Wang et al., 2015a; Tian et al., 2019; Bachman et al., 2019; Zhang et al.,
2019; Hassani & Khasahmadi, 2020), which tend to integrate multi-view information with deep
neural networks. Although these models can provide accurate classification results, they are usually
vulnerable to yield unreliable predictions, particularly when presented with views that are not
well-represented (e.g., information from abnormal sensors). Consequently, their deployment in
safety-critical applications (e.g., computer-aided diagnosis or autonomous driving) is limited. This
has inspired us to introduce a new paradigm for multi-view classification to produce trusted decisions.

For multi-view learning, traditional algorithms generally assume an equal value for different views
or assign/learn a fixed weight for each view. The underlying assumption is that the qualities or
importance of these views are basically stable for all samples. In practice, the quality of a view often
varies for different samples which the designed models should be aware of for adaption. For example,
in multi-modal medical diagnosis (Perrin et al., 2009; Sui et al., 2018), a magnetic resonance (MR)
image may be sufficient for one subject, while a positron emission tomography (PET) image may
be required for another. Therefore, the decision should be well explained according to multi-view
inputs. Typically, we not only need to know the classification result, but should also be able to answer
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“How confident is the decision?” and “Why is the confidence so high/low for the decision?”. To this
end, the model should provide in accurate uncertainty for the prediction of each sample, and even
individual view of each sample.

Uncertainty-based algorithms can be roughly divided into two main categories, i.e., Bayesian and
non-Bayesian approaches. Traditional Bayesian approaches estimate uncertainty by inferring a
posterior distribution over the parameters (MacKay, 1992a; Bernardo & Smith, 2009; Neal, 2012).
A variety of Bayesian methods have been developed, including Laplace approximation (MacKay,
1992b), Markov Chain Monte Carlo (MCMC) (Neal, 2012) and variational techniques (Graves, 2011;
Ranganath et al., 2014; Blundell et al., 2015). However, compared with ordinary neural networks, due
to the doubling of model parameters and difficulty in convergence, these methods are computationally
expensive. Recent algorithm (Gal & Ghahramani, 2016) estimates the uncertainty by introducing
dropout (Srivastava et al., 2014) in the testing phase, thereby reducing the computational cost. Several
non-Bayesian algorithms have been proposed, including deep ensemble (Lakshminarayanan et al.,
2017), evidential deep learning (Sensoy et al., 2018) and deterministic uncertainty estimate (van
Amersfoort et al., 2020). Unfortunately, all of these methods focus on estimating the uncertainty
on single-view data, despite the fact that fusing multiple views through uncertainty can improve
performance and reliability.

In this paper, we propose a new multi-view classification algorithm aiming to elegantly integrate multi-
view information for trusted decision making (shown in Fig. 1(a)). Our model combines different
views at an evidence level instead of feature or output level as done previously, which produces a
stable and reasonable uncertainty estimation and thus promotes both classification reliability and
robustness. The Dirichlet distribution is used to model the distribution of the class probabilities,
parameterized with evidence from different views and integrated with the Dempster-Shafer theory. In
summary, the specific contributions of this paper are:

(1) We propose a novel multi-view classification model aiming to provide trusted and inter-
pretable (according to the uncertainty of each view) decisions in an effective and efficient
way (without any additional computations and neural network changes), which introduces a
new paradigm in multi-view classification.

(2) The proposed model is a unified framework for promising sample-adaptive multi-view
integration, which integrates multi-view information at an evidence level with the Dempster-
Shafer theory in an optimizable (learnable) way.

(3) The uncertainty of each view is accurately estimated, enabling our model to improve
classification reliability and robustness.

(4) We conduct extensive experiments which validate the superior accuracy, robustness, and
reliability of our model thanks to the promising uncertainty estimation and multi-view
integration strategy.

2 RELATED WORK

Uncertainty-based Learning. Deep neural networks have achieved great success in various tasks.
However since most deep models are essentially deterministic functions, the uncertainty of the model
cannot be obtained. Bayesian neural networks (BNNs) (Denker & LeCun, 1991; MacKay, 1992b;
Neal, 2012) endow deep models with uncertainty by replacing the deterministic weight parameters
with distributions. Since BNNs struggle in performing inference and usually come with prohibitive
computational costs, a more scalable and practical approach, MC-dropout (Gal & Ghahramani, 2016),
was proposed. In this model, the inference is completed by performing dropout sampling from the
weight during training and testing. Ensemble based methods (Lakshminarayanan et al., 2017) train
and integrate multiple deep networks and also achieve promising performance. Instead of indirectly
modeling uncertainty through network weights, the algorithm (Sensoy et al., 2018) introduces the
subjective logic theory to directly model uncertainty without ensemble or Monte Carlo sampling.
Building upon RBF networks, the distance between test samples and prototypes can be used as the
agency for deterministic uncertainty (van Amersfoort et al., 2020). Benefiting from the learned
weights of different tasks with homoscedastic uncertainty learning, (Kendall et al., 2018) achieves
impressive performance in multi-task learning.

Multi-View Learning. Learning on data with multiple views has proven effective in a variety of
tasks. CCA-based multi-view models (Hotelling, 1992; Akaho, 2006; Wang, 2007; Andrew et al.,
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(a) Overview of the trusted multi-view classification
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(b) Combining beliefs

Figure 1: Illustration of our algorithm. (a) The evidence of each view is obtained using neural
networks ( 1 ). The obtained evidence parameterizes the Dirichlet distribution ( 2 ) to induce the
classification probability and uncertainty ( 3 ). The overall uncertainty and classification probability
are inferred by combining the beliefs of multiple views based on the DST ( 4 ). The combination
rule and an example are shown in Definition 4 and (b), respectively. Given two sets of beliefs (blue
and green blocks), we recombine the compatible parts of the two sets (brown blocks) and ignore the
mutually exclusive parts (white blocks) of the two sets to obtain the combined beliefs.

2013; Wang et al., 2015a; 2016) are representative ones that have been widely used in multi-view
representation learning. These models essentially seek a common representation by maximizing the
correlation between different views. Considering common and exclusive information, hierarchical
multi-modal metric learning (HM3L) (Zhang et al., 2017) explicitly learns shared multi-view and
view-specific metrics, while AE2-Nets (Zhang et al., 2019) implicitly learn a complete (view-specific
and shared multi-view) representation for classification. Recently, the methods (Tian et al., 2019;
Bachman et al., 2019; Chen et al., 2020; Hassani & Khasahmadi, 2020) based on contrastive learning
have also achieved good performance. Due to its effectiveness, multi-view learning has been widely
used in various applications (Kiela et al., 2018; Bian et al., 2017; Kiela et al., 2019; Wang et al.,
2020).

Dempster-Shafer Evidence Theory (DST). DST, which is a theory on belief functions, was first
proposed by Dempster (Dempster, 1967) and is a generalization of the Bayesian theory to subjective
probabilities (Dempster, 1968). Later, it was developed into a general framework to model epis-
temic uncertainty (Shafer, 1976). In contrast to Bayesian neural networks, which indirectly obtain
uncertainty through multiple stochastic samplings from weight parameters, DST directly models
uncertainty. DST allows beliefs from different sources to be combined with various fusion operators
to obtain a new belief that considers all available evidence (Sentz et al., 2002; Jøsang & Hankin,
2012). When faced with beliefs from different sources, Dempster’s rule of combination tries to fuse
their shared parts, and ignores conflicting beliefs through normalization factors. A more specific
implementation will be discussed later.

3 TRUSTED MULTI-VIEW CLASSIFICATION

It has been shown that using a softmax output as confidence for predictions often leads to high
confidence values, even for erroneous predictions since the largest softmax output is used for the final
prediction (Moon et al., 2020; van Amersfoort et al., 2020). Therefore, we introduce an evidence-
based uncertainty estimation technique which can provide more accurate uncertainty and allow us to
flexibly integrate multiple views for trusted decision making.

3.1 UNCERTAINTY AND THE THEORY OF EVIDENCE

In this subsection, we elaborate on evidential deep learning to quantify the classification uncertainty
for each of multiple views, which simultaneously models the probability of each class and overall
uncertainty of the current prediction. In the context of multi-class classification, Subjective logic (SL)
(Jøsang, 2018) associates the parameters of the Dirichlet distribution (Definition A.1 in the Appendix)
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Figure 2: Typical examples of Dirichlet distribution. Refer to the text for details.

with the belief distribution, where the Dirichlet distribution can be considered as the conjugate prior
of the categorical distribution (Bishop, 2006).

Accordingly, we need to determine the concentration parameters, which are closely related to
the uncertainty. We elaborate on the Subjective logic (Jøsang, 2018), which defines a theoretical
framework for obtaining the probabilities (belief masses) of different classes and overall uncertainty
(uncertainty mass) of the multi-classification problem based on the evidence collected from data. Note
that evidence refers to the metrics collected from the input to support the classification (step 1 in
Fig. 1(a)) and is closely related to the concentration parameters of Dirichlet distribution. Specifically,
for the K classification problems, subjective logic tries to assign a belief mass to each class label and
an overall uncertainty mass to the whole frame based on the evidence. Accordingly, for the vth view,
the K + 1 mass values are all non-negative and their sum is one:

uv +

K∑
k=1

bvk = 1, (1)

where uv ≥ 0 and bvk ≥ 0 indicate the overall uncertainty and the probability for the kth class,
respectively.

For the vth view, subjective logic connects the evidence ev = [ev1, · · · , evK ] to the parameters of the
Dirichlet distribution αv = [αv1, · · · , αvK ] (step 2 in Fig. 1(a)). Specifically, the parameter αvk of
the Dirichlet distribution is induced from evk, i.e., αvk = evk + 1. Then, the belief mass bvk and the
uncertainty uv (step 3 in Fig. 1(a)) are computed as

bvk =
evk
Sv

=
αvk − 1

Sv
and uv =

K

Sv
, (2)

where Sv =
∑K
i=1 (evi + 1) =

∑K
i=1 α

v
i is the Dirichlet strength. Eq. 2 actually describes the

phenomenon where the more evidence observed for the kth category, the greater the probability
assigned to the kth class. Correspondingly, the less total evidence observed, the greater the total
uncertainty. The belief assignment can be considered as a subjective opinion. Given an opinion,
the mean of the corresponding Dirichlet distribution p̂v for the class probability p̂vk is computed as
p̂vk =

αv
k

Sv (Frigyik et al., 2010).

Differences from traditional deep-neural-network classifiers. Firstly, the output of traditional
neural network classifiers can be considered as a point on a simplex, while Dirichlet distribution
parametrizes the density of each such probability assignment on a simplex. Therefore, with the
Dirichlet distribution, SL models the second-order probability and uncertainty of the output. Secondly,
the softmax function is widely used in the last layer of traditional neural network classifiers. However,
using the softmax output as the confidence often leads to over-confidence. In our model, the
introduced SL can avoid this problem by adding overall uncertainty mass. Existing methods (Gal &
Ghahramani, 2016; Lakshminarayanan et al., 2017) usually require additional computations during
inference to output uncertainty. Since the uncertainty is obtained during the inference stage, it is
difficult to seamlessly train a model with high accuracy, robustness and reasonable uncertainty in
a unified framework. Accordingly, the limitations underlying existing algorithms (e.g., inability to
directly obtain uncertainty) also limits their extension to trusted multi-view classification.

For clarity, we provide typical examples under a triple classification task to illustrate the above
formulation. Let us assume that e = 〈40, 1, 1〉 and accordingly we have α = 〈41, 2, 2〉. The
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corresponding Dirichlet distribution, shown in Fig. 2(a), yields a sharp distribution centered on the top
of the standard 2-simplex. This indicates that sufficient evidence has been observed to ensure accurate
classification. In contrast, let us assume that we have the evidence e = 〈0.0001, 0.0001, 0.0001〉,
which is little evidence for classification. Accordingly, we obtain the Dirichlet distribution parameter
α = 〈1.0001, 1.0001, 1.0001〉 and the uncertainty mass u ≈ 1. As shown in Fig. 2(b), in this case,
the evidence induces quite a flat distribution over the simplex. Finally, when e = 〈5, 5, 5〉, there
is also a high uncertainty, as shown in Fig. 2(c), even though the overall uncertainty is reduced
compared to the second case. As shown in Fig. 2(d), we can convert a Dirichlet distribution into a
standard 3-simplex (a regular tetrahedron with vertices (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1)
in R4) based on the subjective logic theory (Eq. 1 and Eq. 2), where the point (M) in the simplex
corresponding to

{
{bk}3k=1, u

}
indicates an opinion. Accordingly, the expectation value p̂ of the

Dirichlet distribution is the projection ofM on the bottom.

3.2 DEMPSTER’S RULE OF COMBINATION FOR MULTI-VIEW CLASSIFICATION

Having introduced evidence and uncertainty for the single-view case, we now focus on their adaptation
to data with multiple views. The Dempster–Shafer theory of evidence allows evidence from different
sources to be combined arriving at a degree of belief (represented by a mathematical object called the
belief function) that takes into account all the available evidence (see Definition 3.1). Specifically,
we need to combine V independent sets of probability mass assignments {Mv}V1 , whereMv ={
{bvk}Kk=1, u

v
}

, to obtain a joint massM =
{
{bk}Kk=1, u

}
(step 4 in Fig. 1(a)).

Definition 3.1 (Dempster’s combination rule for two independent sets of masses) The combination
(called the joint mass) M =

{
{bk}Kk=1, u

}
is calculated from the two sets of masses M1 ={

{b1k}Kk=1, u
1
}

andM2 =
{
{b2k}Kk=1, u

2
}

in the following manner:

M =M1 ⊕M2. (3)
The more specific calculation rule can be formulated as follows:

bk =
1

1− C
(b1kb

2
k + b1ku

2 + b2ku
1), u =

1

1− C
u1u2, (4)

where C =
∑
i 6=j b

1
i b

2
j is a measure of the amount of conflict between the two mass sets (the white

blocks in Fig. 1(b)), and the scale factor 1
1−C is used for normalization.

The joint opinionM is formed based on the fusion of opinionsM1 andM2. The joint belief mass
of class k (bk) and overall uncertainty (u) correspond to the brown blocks in Fig. 1(b). Intuitively, the
combination rule ensures: (1) when both views are of high uncertainty (large u1 and u2), the final
prediction must be of low confidence (small bk); (2) when both views are of low uncertainty (small
u1 and u2), the final prediction may be of high confidence (large bk); (3) when only one view is of
low uncertainty (only u1 or u2 is large), the final prediction only depends on the confident view.

Then, given data with V different views, we can obtain the above-mentioned mass for each view.
Afterwards, we can combine the beliefs from different views with Dempster’s rule of combination.
Specifically, we fuse the belief mass and uncertainty mass between different views with the following
rule:

M =M1 ⊕M2 ⊕ · · ·MV . (5)

After obtaining the joint mass M =
{
{bk}Kk=1, u

}
, according to Eq. 2, the corresponding joint

evidence from multiple views and the parameters of the Dirichlet distribution are induced as

S =
K

u
, ek = bk × S and αk = ek + 1. (6)

Based on the above combination rule, we can obtain the estimated multi-view joint evidence e and
the corresponding parameters of joint Dirichlet distribution α to produce the final probability of each
class and the overall uncertainty.

Advantages of using subjective logic compared with softmax. Compared with softmax output,
using subjective uncertainty is more suitable for the fusion of multiple decisions. Subjective logic
provides an additional mass function (u) that allows the model distinguish between a lack of evidence.
In our model, subjective logic provides the degree of overall uncertainty of each view, which is
important for trusted classification and interepretability to some extent.
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3.3 LEARNING TO FORM OPINIONS

In this section, we will discuss how to train neural networks to obtain evidence for each view,
which can then be used to obtain the corresponding masses {Mv}Vv=1 andM. The neural networks
can capture the evidence from input to induce a classification opinion (Kiela et al., 2018), and the
conventional neural-network-based classifier can be naturally transformed into the evidence-based
classifier with minor changes. Specifically, the softmax layer of a conventional neural-network-based
classifier is replaced with an activation function layer (i.e., RELU) to ensure that the network outputs
non-negative values, which are considered as the evidence vector e. Accordingly, the parameters of
the Dirichlet distribution can be obtained.

For conventional neural-network-based classifiers, the cross-entropy loss is usually employed:

Lce = −
K∑
j=1

yij log(pij), (7)

where pij is the predicted probability of the ith sample for class j. For our model, given the
evidence of the ith sample obtained through the evidence network, we can get the parameter αi (i.e.,
αvi = eii + 1) of the Dirichlet distribution and form the multinomial opinions D(pi|αi), where pi is
the class assignment probabilities on a simplex. After a simple modification on Eq. 7, we have the
adjusted cross-entropy loss:

Lace(αi) =

∫  K∑
j=1

−yij log (pij)

 1

B (αi)

K∏
j=1

p
αij−1
ij dpi =

K∑
j=1

yij (ψ (Si)− ψ (αij)) , (8)

where ψ(·) is the digamma function. Eq. 8 is the integral of the cross-entropy loss function on the
simplex determined by αi. The above loss function ensures that the correct label of each sample
generates more evidence than other classes, however, it cannot guarantee that less evidence will be
generated for incorrect labels. That is to say, in our model, we expect the evidence for incorrect labels
to shrink to 0. To this end, the following KL divergence term is introduced:

KL [D (pi|α̃i) ‖D (pi|1)]

= log

(
Γ(

∑K
k=1 α̃ik)

Γ(K)
∏K

k=1 Γ(α̃ik)

)
+
∑K
k=1 (α̃ik − 1)

[
ψ (α̃ik)− ψ

(∑K
j=1 α̃ij

)]
,

(9)

where α̃i = yi + (1 − yi) � αi is the adjusted parameter of the Dirichlet distribution which can
avoid penalizing the evidence of the groundtruth class to 0, and Γ(·) is the gamma function.

Therefore, given parameter αi of the Dirichlet distribution for each sample i, the sample-specific loss
is

L(αi) = Lace(αi) + λtKL [D (pi|α̃i) ‖D (pi|1)] , (10)
where λt > 0 is the balance factor. In practice, we can gradually increase the value of λt so as
to prevent the network from paying too much attention to the KL divergence in the initial stage of
training, which may result in a lack of good exploration of the parameter space and cause the network
to output a flat uniform distribution.

To ensure that all views can simultaneously form reasonable opinions and thus improve the overall
opinion, we use a multi-task strategy with following overall loss function:

Loverall =

N∑
i=1

[
L(αi) +

V∑
v=1

L(αvi )

]
. (11)

The optimization process for the proposed model is summarized in Algorithm 1 (in the Appendix).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In this section, we conduct experiments on six real-world datasets: Handwritten1, CUB (Wah et al.,
2011), Caltech101 (Fei-Fei et al., 2004), PIE2, Scene15 (Fei-Fei & Perona, 2005) and HMDB

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
2http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
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(Kuehne et al., 2011). We first compare our algorithm with single-view classifiers to validate the
effectiveness of our algorithm in utilizing multiple views. Then, we apply existing classifiers to
multi-view features and conduct experiments under different levels of noise to investigate their ability
in identifying multi-view OOD samples. Details of these datasets and experimental setting can be
found in the appendix.
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Figure 3: Accuracy with uncer-
tainty thresholding.

Compared methods. We compare the proposed method with
following models: (a) MCDO (monte carlo dropout) (Gal &
Ghahramani, 2015) casts dropout network training as approx-
imate inference in a Bayesian neural network; (b) DE (deep
ensemble) (Lakshminarayanan et al., 2017) is a simple, non-
Bayesian method which involves training multiple deep models;
(c) UA (uncertainty-aware attention) (Heo et al., 2018) gener-
ates attention weights following a Gaussian distribution with
a learned mean and variance, which allows heteroscedastic
uncertainty to be captured and yields a more accurate cali-
bration of prediction uncertainty; (d) EDL (evidential deep
Learning) (Sensoy et al., 2018) designs a predictive distribution
for classification by placing a Dirichlet distribution on the class
probabilities.

4.2 EXPERIMENTAL RESULTS

Comparison with uncertainty-based algorithms using the best view. We first compare our algo-
rithm with current uncertainty-based classification methods. The detailed experimental results are
shown in Table 1. Since most existing uncertainty-based classification methods use single-view
data, we report the results of each method with the best-performing view in terms of both accuracy
and AUROC (Hand & Till, 2001) to comprehensively compare our method with others. As shown
in Table 1, our model outperforms other methods on all datasets. Taking the results on PIE and
Scene15 as examples, our method improves the accuracy by about 7.6% and 14.8% compared to the
second-best models (EDL/MCDO) in terms of accuracy respectively. Although our model is clearly
more effective than single-view uncertainty-based models, it is natural to further ask - what happens
if all algorithms utilize multiple views?

Data Metric MCDO DE UA EDL Ours

Handwritten
ACC 97.37±0.80 98.30±0.31 97.45±0.84 97.67±0.32 98.51±0.15

AUROC 99.70±0.07 99.79±0.05 99.67±0.10 99.83±0.02 99.97±0.00

CUB ACC 89.78±0.52 90.19±0.51 89.75±1.43 89.50±1.17 91.00±0.42
AUROC 99.29±0.03 98.77±0.03 98.69±0.39 98.71±0.03 99.06±0.03

PIE ACC 84.09±1.45 70.29±3.17 83.70±2.70 84.36±0.87 91.99±1.01
AUROC 98.90±0.31 95.71±0.88 98.06±0.56 98.74±0.17 99.69±0.05

Caltech101 ACC 91.73±0.58 91.60±0.82 92.37±0.72 90.84±0.56 92.93±0.20
AUROC 99.91±0.01 99.94±0.01 99.85±0.05 99.74±0.03 99.90±0.01

Scene15
ACC 52.96±1.17 39.12±0.80 41.20±1.34 46.41±0.55 67.74±0.36

AUROC 92.90±0.31 74.64±0.47 85.26±0.32 91.41±0.05 95.94±0.02

HMDB ACC 52.92±1.28 57.93±1.02 53.32±1.39 59.88±1.19 65.26±0.76
AUROC 93.57±0.28 94.01±0.21 91.68±0.69 94.00±0.25 96.18±0.10

Table 1: Evaluation of the classification performance.

Comparison with uncertainty-based algorithms using multiple views. To further validate the
effectiveness of our model in integrating different various views, we concatenate the original features
of multiple views for all comparison methods. We add Gaussian noise with different levels of standard
deviations (σ) to half of the views. The comparison results are shown in Fig. 4. As can be observed
that when the data is free of noise, our method can achieve competitive results. After introducing
noise to the data, the accuracy of all the comparison methods significantly decreases. Fortunately,
benefiting from the uncertainty-based fusion, the proposed method is aware of the view-specific noise
and thus achieves impressive results on all datasets. Therefore, the effectiveness for both clean and
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noisy multi-view data is well validated. However, it will be more convincing to explicitly investigate
the performance in uncertainty estimation.
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Figure 4: Performance comparison on multi-view data with different levels of noise.

Uncertainty estimation. To evaluate the uncertainty estimation, we visualize the distribution of
in-/out-of-distribution samples in terms of uncertainty. We consider the original samples as in-
distribution data, while the samples with Gaussian noise are viewed as out-of-distribution data.
Specifically, we add Gaussian noise with the fixed level of standard deviations (σ = 10) to 50%
of the test samples. The experimental results are shown in Fig. 5. According to the results, the
following observations are drawn: (1) Datasets with higher classification accuracy (e.g., Handwritten)
are usually associated with lower uncertainty for the in-distribution samples. (2) In contrast, datasets
with lower accuracy are usually associated with higher uncertainty for the in-distribution samples. (3)
Much higher uncertainties are usually estimated for out-of-distribution samples on all datasets. These
observations imply the reasonability of our model in estimating uncertainty, since it can facilitate
discrimination between these classes. Fig. 3 shows that our algorithm provides much more accurate
predictions as the prediction uncertainty decreases. This implies that trusted decisions are supported
based on the output (classification and its corresponding uncertainty) of our model.

5 CONCLUSION

In this work, we propose a novel trusted multi-view classification (TMC) algorithm which, based
on the Dempster-Shafer evidence theory, can produce trusted classification decisions on multi-view
data. Our algorithm focuses on decision-making by fusing the uncertainty of multiple views, which
is essential for making trusted decisions. The TMC model can accurately identify the views which
are risky for decision making, and exploits informative views in the final decision. Furthermore,
our model can produce the uncertainty of a current decision while making the final classification,
providing intepretability. The empirical results validate the effectiveness of the proposed algorithm in
classification accuracy and out-of-distribution identification.
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