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ABSTRACT

Humans rely on strong inductive biases to learn from few examples and abstract
useful information from sensory data. Instilling such biases in machine learning
models has been shown to improve their performance on various benchmarks
including few-shot learning, robustness, and alignment. However, finding effective
training procedures to achieve that goal can be challenging as psychologically-
rich training data such as human similarity judgments are expensive to scale, and
Bayesian models of human inductive biases are often intractable for complex,
realistic domains. Here, we address this challenge by introducing a Bayesian
notion of generative similarity whereby two datapoints are considered similar if
they are likely to have been sampled from the same distribution. This measure can
be applied to complex generative processes, including probabilistic programs. We
show that generative similarity can be used to define a contrastive learning objective
even when its exact form is intractable, enabling learning of spatial embeddings
that express specific inductive biases. We demonstrate the utility of our approach by
showing that it can be used to capture human inductive biases for geometric shapes,
distinguish different abstract drawing styles that are parameterized by probabilistic
programs, and capture abstract high-level categories that enable generalization.

1 INTRODUCTION

Human intelligence is characterized by strong inductive biases that enable humans to form meaningful
generalizations (Tenenbaum et al., 2011; Lake et al., 2015), learn from few examples (Lake et al.,
2015), and abstract useful information from sensory data (Gershman, 2017). Instilling such biases
into machine learning models has been at the center of numerous recent studies (Kumar et al., 2022;
McCoy et al., 2020; Peterson et al., 2019; Hebart et al., 2020; Sucholutsky et al., 2023a; Sucholutsky
& Griffiths, 2024; McCoy & Griffiths, 2023; Muttenthaler et al., 2024; Snell et al., 2023; Jha et al.,
2023), and has been shown to improve accuracy, few-shot learning, interpretability, and robustness
(Sucholutsky et al., 2023b). Key to this effort is the ability to find effective training procedures
to imbue neural networks with these inductive biases. Two prominent approaches for this are i)
leveraging the literature on modeling human inductive biases with Bayesian models (Tenenbaum
et al., 2011; Griffiths et al., 2010) to specify a computational model for the bias of interest and then
distilling it into the model, usually via meta-learning (Kumar et al., 2022; Binz et al., 2023; McCoy
et al., 2020), and ii) incorporating psychologically-rich human judgments in the training objectives of
models such as soft labels (Sucholutsky & Schonlau, 2021), categorization uncertainty (Collins et al.,
2023; Peterson et al., 2019), language descriptions (Kumar et al., 2022; Marjieh et al., 2023), and
similarity judgments (Muttenthaler et al., 2024; Jha et al., 2023; Esling et al., 2018).

While both approaches are promising, they are not without limitations. Though Bayesian models
provide an effective description of human inductive biases, they are often computationally intractable
due to expensive Bayesian posterior computations that require summing over large hypothesis spaces.
This problem is particularly pronounced when considering symbolic models which are often used to
describe human inductive biases (Lake et al., 2019; 2017; Sablé-Meyer et al., 2021; 2022; Quilty-
Dunn et al., 2023). Likewise, incorporating human judgments in model objectives may be intuitive,
but it is often not scalable for the data needs of modern machine learning. For example, while
incorporating human similarity judgments (i.e., judgments of how similar pairs of stimuli are) has
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Figure 1: Schematic representation of generative similarity. A. Graphical models for the same and
different data generation hypotheses. B. Example same and different quadrilateral shape pairs.

been shown to improve model behavior (Esling et al., 2018; Jha et al., 2023; Muttenthaler et al., 2024),
collecting them at the scale of modern datasets is challenging as the number of required judgments
grows quadratically in the number of stimuli (though see Marjieh et al. (2023) for proxies).

Here, we introduce a third approach for instilling inductive biases based on the method of contrastive
learning (Chen et al., 2020), a widely used training procedure in machine learning. Contrastive
learning uses the designation of datapoints as being the “same” or “different” to learn a representation
of those datapoints where the “same” datapoints are encouraged to be closer together and “differ-
ent” datapoints further apart. This approach provides a way to go from a similarity measure to a
representation. We define a principled notion of similarity based on Bayesian inference (initially
proposed in Kemp et al., 2005) and show that it can be naturally implemented in a contrastive
learning framework even when its exact form is intractable. Specifically, given a set of samples and a
hierarchical generative model of the data from which data distributions are first sampled and then
individual samples are drawn (e.g., a Gaussian mixture), we define the generative similarity between
a pair of samples to be their probability of having been sampled from the same distribution relative
to that of them being sampled from two independently-drawn distributions (Figure 1). By using
Bayesian models to define similarity within a contrastive learning framework, we provide a general
procedure for instilling human inductive biases in machines.

To demonstrate the utility of our approach, we apply it to four domains of increasing complexity.
First, we consider a Gaussian mixture example where similarity and embeddings are analytically
tractable, which we then further test with simulations. Second, we consider a generative model
for quadrilateral shapes where generative similarity can be computed in closed form and can be
incorporated explicitly in a contrastive objective. By training a model with this objective, we show
that it acquires human-like regularity biases in a geometric reasoning task. Third, we consider
probabilistic programs, using two classes of probabilistic programs from DreamCoder (Ellis et al.,
2021; Sablé-Meyer et al., 2022). While generative similarity is not tractable in this case, we show
that it can be implicitly induced using a Monte Carlo approximation applied to a triplet loss function,
leading to a representation that better captures the structure of the programs compared to standard
contrastive learning. Fourth, we show the scalability of this approach by applying our method to
a standard large-scale machine learning dataset, ImageNet (Deng et al., 2009), and demonstrate
how generative similarity can allow for the learning of high-level, hierarchical image categories that
enable generalization. Viewed together, these results highlight a path towards alignment of human
and machine intelligence by instilling useful inductive biases from Bayesian models of cognition
into machine models via a scalable contrastive learning framework, and allowing neural networks to
capture abstract domains that previously were restricted to symbolic models.

2 GENERATIVE SIMILARITY AND CONTRASTIVE LEARNING

We begin by laying out the formulation of generative similarity and its integration within a contrastive
learning framework. Given a set of samples D and an associated generative model of the data
p(D) =

∫
p(D|θ)p(θ)dθ where p(θ) is some prior over distribution parameters (e.g., a beta prior) and

p(D|θ) is an associated likelihood function (e.g., a Bernoulli distribution), we define the generative

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

similarity between a pair of samples sgen(x1, x2), to be the Bayesian probability odds ratio for the
probability that they were sampled from the same distribution to that of them being sampled from
two independent (or “different”) distributions

sgen(x1, x2) =
p(same|x1, x2)

p(different|x1, x2)
=

∫
p(x1|θ)p(x2|θ)p(θ)dθ∫

p(x1|θ1)p(x2|θ2)p(θ1)p(θ2)dθ1dθ2
(1)

where we assume that a priori p(same) = p(different) (i.e., the prior over the two hypotheses is
uniform). The same and different data generation hypotheses are shown in Figure 1A along with
example same and different pairs in Figure 1B in the case of a generative process of quadrilateral
shapes, with the same pair corresponding to two squares, and the different pair corresponding to a
square and a trapezoid. This definition builds on existing Bayesian models of similarity in cognitive
science (Shepard, 1987; Tenenbaum & Griffiths, 2001), and in particular Kemp et al. (2005).

Given the definition of generative similarity, we next distinguish between two scenarios. If sgen is
tractable, then its incorporation in a contrastive loss function is straightforward: given a parametric
neural encoder ϕφ(x) and a prescription for deriving similarities from these embeddings, e.g.
semb = s0e

−d where d is a distance measure and s0 is a constant, we can then directly optimize
the embedding parameters such that the difference between the generative similarity and the
corresponding embedding similarity is minimized, e.g.,

φ∗ = argmin
φ

Ep(semb(ϕφ(X1), ϕφ(X2))− sgen(X1, X2))
2. (2)

If, on the other hand, sgen is not tractable, we can implicitly incorporate it in a neural network using
individual triplet loss functions (here we focus on triplets for convenience, but our formalism can be
easily adapted to larger sample tuples). Specifically, given a generative model of the data, we can
define a corresponding contrastive generative model on data triplets (X,X+, X−) as follows

pc(x, x
+, x−) =

∫
p(x|θ+)p(x+|θ+)p(x−|θ−)p(θ+)p(θ−)dθ+dθ− (3)

and then given a choice of a triplet contrast function ℓ, e.g., d(ϕ(x), ϕ(x+)) − d(ϕ(x), ϕ(x−)) or
some monotonic function of it (alternatively, one could also use an embedding similarity measure
such as the dot product; Sohn, 2016), we define the optimal embedding to be

φ∗ = argmin
φ

Epcℓ(ϕφ(X), ϕφ(X
+), ϕφ(X

−)) (4)

Crucially, this function can easily be estimated via Monte Carlo with triplets sampled from
θ+, θ− ∼ p(θ), sample distributions
x, x+ ∼ p(x|θ+), sample ‘same’ examples
x− ∼ p(x|θ−), sample ‘different’ examples

(5)

The functional in Equation 4 has a desirable property: in Appendix A we prove that if ℓ is chosen
to be convex and strictly increasing in ∆ϕ(x, x

+, x−) ≡ d(ϕ(x), ϕ(x+)) − d(ϕ(x), ϕ(x−)) (e.g.,
softmax loss ℓ(∆ϕ) = log(1 + exp(∆ϕ)); Sohn, 2016), then the optimal embedding that minimizes
Equation 4 ensures that the expected distance between same pairs is strictly smaller than that of
different pairs as defined by the processes in Figure 1A, i.e.,

Epsamed(ϕ
∗(X), ϕ∗(X+)) < Epdiffd(ϕ

∗(X), ϕ∗(X−)). (6)

2.1 RELATED WORK

We next discuss how our framework for instilling human inductive biases connects to existing
contrastive techniques. First, observe that by carrying out the integration in Equation 1 we have
sgen(x1, x2) = p(x1, x2)/p(x1)p(x2) where p(x1, x2) =

∫
p(x1|θ)p(x2|θ)p(θ)dθ and p(x1,2) are

its marginals. This means that (up to a logarithm) generative similarity is a specific type of point-wise
mutual information (Church & Hanks, 1990). While point-wise mutual information (MI) is broadly
concerned with sample independence, generative similarity goes further by tying this independence
to a hierarchical generative structure that encapsulates an inductive bias associated with the data. This
is in line with work suggesting that the success of MI-based contrastive learning approaches hinges
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significantly on the specific inductive biases incorporated in the process (Tschannen et al., 2019).
Notable contrastive methods with losses based on MI maximization include SimCLR (Chen et al.,
2020) and InfoNCE (Oord et al., 2018) more broadly. SimCLR is a training framework whereby
a representation is learned by applying various augmentations to the training data and then using
those to construct positive and negative pairs that are then incorporated in a contrastive (e.g. triplet)
loss. Crucially, positive and negative pairs in SimCLR (and InfoNCE) are usually constructed in
a domain-agnostic manner by applying augmentations such as rotations and rescalings to the data.
While this is a good default strategy, when there is prior expectation about the structure of the
underlying generative process it glosses over finer within- and across-category relations that are
explicitly incorporated in our generative similarity sampling scheme (Equation 5). Put differently,
SimCLR corresponds to a default generative process in which a base image is sampled and then a
random augmentation is applied, as opposed to richer generative models that group the base images
themselves into meaningful hierarchies reflecting human inductive biases.

Second, it is possible to show under suitable regularization (to ensure that sgen can be treated as a
distribution) that generative similarity (Equation 1) can be derived as the minimizer of the functional
DKL[s||psame]−DKL[s||pdiff] (see Appendices B-D) which is reminiscent of contrastive divergence
learning, a method based on a contrastive objective between two Kullback-Leibler (KL) divergences
(Carreira-Perpinan & Hinton, 2005). However, while the above objective is also a contrastive
difference between divergences, it is different from that found in CDL in which the goal is to reduce
the difference between the divergences whereas in our case it is to increase their (negative) contrast.

Third, our framework is by no means the only contrastive framework that incorporates a Bayesian
component. Here it is worth noting two lines of work: (i) Contrastive kernel methods such as the
mutual information kernel (MIK) (Seeger, 2001) and the positive pair kernel (PPK) (Johnson et al.,
2022). Both MIK and PPK involve a kernel object that is analogous to Equation 1 as the basis of
their approach. However, they both differ from our current framework, the former being largely
a support vector machine, and the latter considering generative processes in the limited sense of
domain-agnostic augmentations (as with SimCLR) and without explicitly incorporating the kernel in
a contrastive loss (as with Equations 2-5). It is also unclear from these works why such contrastive
kernels can be an effective way of instilling human inductive biases in machines. (ii) Other hybrid
Bayesian contrastive learning methods (e.g., Liu & Wang (2023)) devise Bayesian computations
to mine hard negative examples to improve contrastive training. However, this approach is quite
different from the way Bayesian computations are incorporated in our framework.

3 EXPERIMENTS

3.1 ILLUSTRATIVE EXAMPLE: GENERATIVE SIMILARITY OF A GAUSSIAN MIXTURE

To get a sense of the contrastive training procedure with generative similarity, we begin with a
Gaussian mixture example. Gaussian mixtures are an ideal starting point because i) they are analyti-
cally and numerically tractable, and ii) they play a key role in the cognitive literature on models of
categorization (Rosseel, 2002; Sanborn et al., 2010). Consider a data generative process that is given
by a mixture of two Gaussians with means µ1,2, equal variances σ2, and a uniform prior p1,2 = 1/2.
Without loss of generality, we can choose a coordinate system in which µ1 = −µ2 ≡ µ. Consider
further a subfamily of embeddings that are specified by linear projections ϕφ(x) = φ · x where φ is a
unit vector of choice φ · φ = 1. A natural measure of contrastive loss in this case would be

Epcℓ = Epc

[
ϕφ(X) · ϕφ(X

−)− ϕφ(X) · ϕφ(X
+)

]
(7)

i.e., using the ‘dot’ product as a measure of embedding similarity (Sohn, 2016) (for one-dimensional
embeddings this is just a regular product). By plugging in the definition of the Gaussian mixture
and simplifying using Gaussian moments (see Appendix E), Equation 7 boils down to Epc

ℓ ∝
−4||µ||22 cos2 θφµ where θφµ is the angle between φ and µ. This loss is minimized for cos θφµ = ±1
or equivalently φ∗ = ±µ̂ where µ̂ is the normalized version of µ. This means that the optimal linear
mapping is simply one that projects different points onto the axis connecting the centers of the two
Gaussians µ1 − µ2 = 2µ, which is equivalent to a linear decision boundary that is orthogonal to
the line µ1 − µ2 and passing through the origin, and thus effectively recovering a linear classifier
(Figure 2A). We further confirmed in a simulation that this behavior persists when applying the
Monte-Carlo approximation in Equation 5 with a quadratic loss to a two-layer perceptron (Figure 2B;
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A B C

Figure 2: Encoding the generative similarity of a Gaussian mixture. A. Optimal linear projection
vector φ for a symmetric Gaussian mixture with means ±µ. B. Learned 1D embedding values from
a two-layer perceptron for points sampled from a 2D Gaussian mixture (colors indicate values). C.
Mean generative similarity as a function of distance in the embedding space shown in B (discretized
into 500 quantile bins). Shaded area indicates 95% CIs bootsrapped over data points.

classification test accuracy of 99.7%; additional details in Appendix F). Moreover, we compared
distance in the learned embedding space to the theoretical generative similarity values in that case
and found excellent agreement (Spearman’s ρ(498) = −0.99, p < 10−3; Figure 2C). We also found
that the 95% confidence interval (CI) on the average distance for same pairs was [1.62, 1.66] whereas
for different pairs it was [4.77, 4.91], consistent with the prediction of Equation 6.

3.2 INSTILLING HUMAN GEOMETRIC SHAPE REGULARITY BIASES

Background: Psychological research suggests that the human species is uniquely sensitive to
abstract geometric regularity (Henshilwood et al., 2011; Saito et al., 2014). Sablé-Meyer et al. (2021)
compared diverse human groups (varying in education, cultural background, and age) to non-human
primates on a simple oddball discrimination task. Participants were shown a set of five reference
shapes and one “oddball” shape and were prompted to identify the oddball (Figure 3A). The reference
shapes were generated using basic geometric regularities: parallel lines, equal sides, equal angles,
and right angles, which can be specified by a binary vector corresponding to the presence or absence
of these specific geometric features. There were 11 types of quadrilateral reference shapes with
varying geometric regularity, from squares (most regular) to random quadrilaterals containing no
parallel lines, right angles, or equal angles/sides (least regular; Figure 3B). In each trial, five different
versions of the same reference shape (e.g., a square) were shown in different sizes and orientations.
The oddball shape was a modified version of the reference shape, in which the lower right vertex was
moved such that it violated the regularity of the original reference shape (e.g., moving the lower right
vertex of a trapezoid such that it no longer has parallel sides). Figure 3A shows an example trial.

Sablé-Meyer et al. (2021) found that humans were sensitive to these geometric regularities (right
angles, parallelism, symmetry, etc.) whereas non-human primates were not. Specifically, they found
that human performance was best on the oddball task for the most regular shapes, and systematically
decreased as shapes became more irregular. Conversely, non-human primates performed well above
chance, but they performed worse than humans overall and, critically, exhibited no influence of
geometric regularity (Figure 3B). Additionally, they tested a pretrained convolutional neural network
(CNN) model, CorNet (Kubilius et al., 2019), on the task. CorNet (Core Object Recognition Network)
is a convolutional neural network model with an architecture that explicitly models the primate ventral
visual stream. It is pretrained on a standard supervised object recognition objective on ImageNet
and is one of the top-scoring models of “brain-score”, a benchmark for testing models of the visual
system using both behavioral and neural data (Schrimpf et al., 2018). Like the monkeys, CorNet
exhibited no systematic relationship with the level of geometric regularity (Figure 3B).

Generative Similarity: Intuitive geometry serves as an ideal case study for our framework because
i) it admits a generative similarity measure that can be computed in closed form, and ii) we can use it
to test whether our contrastive training framework can induce the human inductive bias observed by
Sablé-Meyer et al. (2021) in a neural network. Recall that the shape categories of Sablé-Meyer et al.
(2021) can be specified by binary feature vectors corresponding to the presence or absence of abstract

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

geometric features (equal angles, equal sides, parallel lines, and right angles of the quadrilateral)
from which individual examples (or exemplars) can be sampled. Formally, we can define a natural
generative process for such shapes as follows: given a set of binary geometric feature variables
{F1, . . . , Fn} ∈ {0, 1}n, we define a hierarchical distribution over shapes by first sampling Bernoulli
parameters θi for each feature variable Fi from a prior Beta(α, β), then sampling feature values
f = (f1, . . . , fn) from the resulting Bernoulli distributions Bern(θi), and then uniformly sampling a
shape σ(f) from a (possibly large) list of available exemplars S(f) = {σ1(f), . . . , σM (f)} that are
consistent with the sampled feature vector f (the set could also be empty if the geometric features are
not realizable due to geometric constraints). In other words, the generative process is defined as

θi ∼ Beta(α, β), sample Bernoulli parameters
fi ∼ Bern(θi), sample discrete features
σ(f) ∼ Uniform(S(f)), sample shape exemplar

(8)

This process covers both soft and definite categories, and our current setting corresponds to the special
limit α = β → 0, in which case the Beta prior over Bernoulli parameters becomes concentrated
around 0 and 1 so that the process becomes that of choosing a category specified by a set of geometric
attributes and then sampling a corresponding exemplar. In Appendix G, we use the conjugacy relations
between the Beta and Bernoulli distributions to derive the generative similarity associated with the
process in Equation 8, and we show that in our limit of interest (α = β → 0) the corresponding
generative similarity measure between shapes σ1, σ2 with feature vectors f (1)

i , f
(2)
i is given by the

formula log s(σ1(f
(1)), σ2(f

(2))) ∝ −
∑

i(f
(1)
i − f

(2)
i )2.

We used this generative similarity measure to finetune CorNet, the same model Sablé-Meyer et al.
(2021) used in their experiments, to see whether our measure would induce the human geometric
regularity bias (Figure 3). Specifically, given a random pair of quadrilateral stimuli from Sablé-Meyer
et al. (2021), we computed the above quantity (i.e. the Euclidean distance) between their respective
binary geometric feature vectors (presence and absence of equal sides, equal angles, and right angles)
and finetuned the pretrained CorNet model on a contrastive learning objective using these distances.
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Figure 3: Generative similarity can instill human geometric regularity biases. A. The oddball
task of Sablé-Meyer et al. (2021) used six quadrilateral stimulus images, in which five images were
of the same reference shape (differing in scale and rotation) and one was an oddball (highlighted in
red) that diverged from the reference shape’s geometric properties. In this example, the reference
shape is a rectangle; note that the oddball does not have four right angles like the rectangles. B.
Sablé-Meyer et al. (2021) examined error rates for humans, monkeys, and pre-trained Convolutional
Neural Networks (CNNs) (Kubilius et al., 2019) (top) across quadrilaterals of decreasing geometric
regularity. We evaluate the same CNN model with different finetuning objectives (bottom). We report
the Spearman rank correlation between model performance and number of geometric regularities
across quadrilateral type (see Table 1 in Appendix I for these values). Error bars denote confidence
intervals over different subjects (humans, monkeys, or model training seeds). C. Correlation between
model error rates and human or monkey error rates. Error bars denote 95% CIs over 10 training runs.
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This pushed quadrilaterals with similar geometric features together and pulled those with different
geometric features apart in the model’s representation (additional details regarding training are
provided in Appendix I). Like Sablé-Meyer et al. (2021), to test the model on the oddball task, we
extract the embeddings for all 6 choice images and choose the oddball as the one that is furthest (i.e.
Euclidean distance) from the mean embedding.

Results: The geometric regularity effect observed for humans in Sablé-Meyer et al. (2021) was
an inverse relationship between geometric regularity and error rate (see green line in top plot of
Figure 3B). For example, humans performed best on the most regular shapes, such as squares
and rectangles. This regularity effect was absent in the monkey and pretrained CorNet error rates
(Figure 3B; top panel). In Figure 3B (bottom panel), we show error rates as a function of geometric
regularity on a CorNet model finetuned on generative similarity (GenSim CorNet; blue line bottom
plot). We also show the performance of a CorNet model finetuned on a supervised classification
objective on the quadrilateral stimuli (grey line bottom plot), where the model must classify which of
the 11 categories a quadrilateral belongs to. Note that Sablé-Meyer et al. (2021) also finetuned CorNet
on the same supervised classification objective in their supplementary results, and we replicate their
results here as a baseline for our proposed method. Both models were trained for 13 epochs (the
same number of epochs used by Sablé-Meyer et al. (2021)). Like humans, the model error rates for
the GenSim CorNet model significantly increase as the shapes become more irregular (Spearman’s
ρ(9) = 0.88, p = 0.0003). This is not the case for the model finetuned with supervised classification
(Spearman’s ρ(9) = 0.472, p = 0.142). We also correlated the error rates of the finetuned models
with those of humans and monkeys (Figure 3C) and see a double dissociation between the two
models. Specifically, the generative similarity-trained CorNet model’s error rates match human error
rates significantly more than monkey error rates, t(18) = 12.45, p < 0.0001, whereas those of the
baseline supervised CorNet model match monkey error rates significantly more than human error
rates (Figure 3C), t(18) = 17.43, p < 0.0001. This double dissociation is consistent across different
subjects (see Supplementary Figure S3. We replicated the geometric regularity effect when using
contrastive learning with generative similarity on a different architecture (Supplementary Figure S1)
and also saw that training on a standard contrastive learning objective from SimCLR (Chen et al.,
2020) does not yield the regularity effect (Supplementary Figure S2).

3.3 LEARNING ABSTRACT DRAWINGS USING GENERATIVE SIMILARITY OVER
PROBABILISTIC PROGRAMS

Background: Our next test case is based on a recent study on capturing human intuitions of
psychological complexity for abstract geometric drawings (Sablé-Meyer et al., 2022). Sablé-Meyer
et al. (2022) framed geometric concept learning as probabilistic program induction within the
DreamCoder framework (Ellis et al., 2021). A base set of primitives were defined such that motor

Geometry LoT Primitives 
Program :=
 | Program; Program    Concatenate: run one program and then another 
 | Repeat([Int=2]) { Program }  Repeat a program a certain number of times 
 | Subprogram { Program }  Execute a program, then restore the original state 
 ------------------------------
 | Trace([t=Int=1],    Trace a curve by moving according to the parameters
      [speed=Num=+1],
      [acceleration=Num=+0]
      [turningSpeed=Num=+0])
 | Move([t=Num=+1])   Move a certain distance without tracing anything
 | Turn(angle-Num)    Rotate the current heading

Repeat(2) { 
 Trace(accel=((1 + 1) + 1), rotSpeed=1)
}

Sampled Program Corresponding Image
render
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(Number of Program Primitives)
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Figure 4: Generative similarity helps contrastive learning models better represent probabilistic
programs. A. Primitives of the generative Language of Thought (LoT) DreamCoder model im-
plemented in Sablé-Meyer et al. (2022). Primitives are recursively composed to produce symbolic
programs that can be rendered into geometric pattern stimuli. B. Sablé-Meyer et al. (2022) trained
DreamCoder on two sets of drawings, Celtic and Greek, to produce two different grammars that
produced qualitatively different drawings. C. Performance (with CI’s over 10 training runs) of embed-
dings on classifying images as from the Celtic or Greek grammars. D. Performance of embeddings
on predicting the number of primitives of the program used to generate the image stimulus (see A).
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programs that draw geometric patterns are generated through recursive combination of these primitives
within a Domain Specific Language (DSL, Figure 4A). The DSL contains motor primitives, such
as tracing a particular curve and changing direction, as well as control primitives to recursively
combine subprograms, such as Concat (concatenate two subprograms together) and Repeat (repeat
a subprogram n times). DreamCoder can be trained on drawings to learn a grammar from which
probabilistic programs can be sampled. These probabilistic programs can then be rendered into
images such as the ones seen in Figure 4. Sablé-Meyer et al. (2022) used a working memory task
with these stimuli to show people’s intuitions about the psychological complexity of the image can be
modeled through the complexity of the underlying program (Sablé-Meyer et al., 2022).

The study showed that DreamCoder can produce grammars of different abstract drawing styles
depending on its training data. For example, when trained on “Greek-style” drawings with highly
rectilinear structure, DreamCoder learns a grammar that synthesizes programs which capture this
drawing style (Figure 4B). Likewise, when trained on “Celtic-style” drawings that feature lots of
circles and curves, DreamCoder learns a different grammar that captures the Celtic drawing style
(Figure 4B). Both grammars use the same set of base primitives, but weight the primitives differently
and thus produce images that differ in their abstract drawing style.

Generative Similarity: To test whether generative similarity over probabilistic programs can allow
neural networks to capture the abstract structure that such programs represent we trained a neural
network using generative similarity over probabilistic programs from the different grammars discussed
in the previous section (Greek or Celtic, see Figure 4B). In this case, the generative similarity is
intractable, but we can apply a Monte Carlo approximation to Equation 4 by sampling from the
program grammar. We employ the following technique to generate Monte Carlo triplet samples for
the triplet contrastive loss function. The anchor is randomly sampled from either the Celtic or Greek
grammars that are learned through DreamCoder (with equal probabilities). The positive example is
sampled from the same grammar as the anchor and the negative example is another random sample
from either the Celtic or Greek grammar with equal probability, consistent with Equation 5.

We used 20k examples from both the Celtic and Greek grammars (40k images in total) for training and
800 examples from each grammar for testing. Because of the similarity of the stimuli in Figure 4B
to handwritten characters, we used the same CNN architecture that Snell et al. (2017) used on the
Omniglot dataset (Lake et al., 2019) with six convolutional blocks consisting of 64-filter 3 × 3
convolution, a batch normalization layer, a ReLU nonlinearity, and a 2× 2 max-pooling layer. As
a baseline, we trained another model, with the same architecture and training data, on a standard
contrastive learning objective used in the SimCLR paper (Chen et al., 2020). The SimCLR objective
produces augmented versions of an image (e.g. random cropping, rotations, gaussian blurring, etc.)
with the goal of making representations of an image and its augmented version as similar as possible
and representations of different images as dissimilar as possible. See Appendix J for more details.

Results: To compare the ability of the contrastive objectives to separate Celtic or Greek images,
we took the embeddings of all test images and trained a logistic regression model to classify Celtic
or Greek images. Training and evaluation used five-fold cross-validation, tuning the regularization

PC1

P
C
2

D

Figure 5: PCA space of embeddings from model trained with generative similarity triplet loss.
The model clearly seperates “Greek” (left) from “Celtic” (right) styles, with mixed styles in between.
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parameter using nested folds within the training set. The mean test set classification accuracy from
the embeddings trained with contrastive generative similarity was 84% (95% CI [81.9, 84.9]), signifi-
cantly higher than that of the SimCLR contrastive learning baseline, 72.8% (95% CI [71.8, 73.8]),
t(18) = 12.81, p < .0001 (see Figure 4C). We replicated these results on a different architecture
(Supplementary Figure S4). We also found that the first two principal components of the model’s
embeddings can separate the two drawing styles (Figure 5), supporting the notion that generative
pretraining facilitates factorization of task-relevant dimensions (Campbell & Cohen, 2024).

We also compared the ability of the learned embeddings to encode properties of the underlying
program (Figure 4D). For each test image, we counted the number of motor and control primitives
(Figure 4A) within the programs used to generate each image. Then, we trained a ridge regression
model to predict this number from the respective image embedding, regressing out average grey-level
of the image prior to training as a potential confound. The ridge regression model was trained
and evaluated using five-fold cross-validation, where the regularization parameter was tuned using
nested folds within the training set. The average test set score using the generative similarity model,
R2 = 0.50 (95% CI [0.46, 0.52]), was significantly higher than that of the SimCLR baseline model,
R2 = 0.23 (95% CI [0.21, 0.24]), t(18) = 17.48, p < 0.0001. This suggests that the embedding
space of the generative similarity model better encodes properties of the original programs.

3.4 CAPTURING INDUCTIVE BIASES TOWARDS ABSTRACT HIERARCHICAL CATEGORIES IN
NATURAL IMAGES WITH GENERATIVE SIMILARITY

Background: An important facet of human intelligence is the ability to formulate abstract categories
that allow us to generalize across individual stimuli. For example, when encountering a dog for the
first time, we may come up with the abstract category of “animal” and generalize this concept to
different instances, such as a cat. Humans naturally organize such abstract categories into complex
hierarchies (e.g., living organism → animal → mammal → dog; Tenenbaum et al., 2011; Murphy,
2004). This hierarchical structure is reflected in many big machine learning datasets, including
ImageNet classes (Deng et al., 2009). This provides a way to test whether generative similarity can
capture human-like inductive biases towards abstract categories.

Generative Similarity: To show that generative similarity with contrastive learning can enable
learning of embeddings that encode abstract categories we use the ImageNet-based dataset “tieredIm-
ageNet” (Ren et al., 2018), which organizes ImageNet images into abstract categories that contain
multiple subclasses unique to that category (see Figure 6A). Each class belongs to only one category.
Additional details are provided in Appendix K.

Classes

Category Tool

Letter
Opener

Hatchet Corkscrew Screwdriver

Examples

Restraint

Padlock Combo
Lock

Hair Slide Disc Brake Knot

Level 1 Triplet

Level 2 Triplet

Anchor Positive Image Negative Image

A

B C

Hammer

Test Set Categories
0.0

0.1

0.2

0.3

0.4

Ac
cu
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cy

Abstract Category Classi�cation
GenSim (ours)
SimCLR (baseline)

Figure 6: Generative Similarity for Abstract Categories in Natural Images. A. The Tiered
ImageNet Dataset is organized into high-level, abstract categories that each have their own subclasses.
B. To train a network on Generative Similarity, we sampled triplets at different levels of abstraction.
C. Performance of network trained on Generative Similarity vs. SimCLR baseline. The same
architecture and training data were used for both. For categories unseen during training, the network
trained with Generative Similarity had significantly higher accuracy in predicting image category.
Red lines indicate chance levels. Error bars indicate 95% confidence intervals over 5 training runs.
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To train on these images with generative similarity, we use a Monte Carlo estimate based on sampling
triplets at the two different levels of abstraction in the tieredImageNet dataset (see Figure 6B). At
the top level of abstraction, the positive image is sampled from the same category of the anchor
image, but with an independent class (so the positive image and anchor image may have different
classes). The negative image is from a category sampled independently (so the negative image may
have a different category). For the bottom level of abstraction, the positive image is sampled from
the same category and same class, and the negative image is sampled from the same category but
independent class. To bias the network towards learning higher-level abstract categories, we sampled
80% top-level triplets and 20% bottom-level triplets during training. We used the same triplet-style
contrastive loss employed in the abstract drawing style domain (with Euclidean distances). As a
baseline, we used SimCLR with image augmentations consisting of random resized crops, random
horizontal flips, random gaussian blurring, and random grayscaling of the image.

Results: For both losses (Generative Similarity vs. SimCLR), we used a standard ResNet architecture
and trained on the training dataset of tieredImageNet for 10 epochs. To quantify how much the
learned embeddings have encoded abstract categories, we used the learned model embeddings to train
a Linear SVM classifier to classify high-level categories from the images. We did this for images
from held-out test categories. Our results, displayed in Figure 6C, show that generative similarity
performs significantly better than the baseline at predicting abstract categories, highlighting how
generative similarity can capture an abstract notion of high-level tiered categories. We replicated
these results on a different architecture (Figure S6).

4 DISCUSSION

We have introduced a new framework for learning representations that capture human inductive biases
by combining a Bayesian notion of generative similarity with contrastive learning. Our framework is
very general and can be applied to any hierarchical generative process, even when the exact form of
inferences is intractable, allowing neural networks to capture domains that were previously restricted
to symbolic models. To demonstrate the utility and flexibility of our approach we applied it to an array
of domains that vary in complexity. First, we investigated an analytically tractable case that involved
a mixture of two Gaussians and showed that mean generative similarity monotonically decreases with
respect to distance in the contrastively-learned embedding space (Figure 2). Second, we examined a
visual perception task with quadrilaterals used in cognitive science (Sablé-Meyer et al., 2021) and
showed that our procedure is able to produce the human geometric regularity bias in models that were
previously unable to (Figure 3). Third, we show improved representations of probabilistic programs
for abstract human drawing styles compared to standard contrastive paradigms like SimCLR (Chen
et al., 2020) (Figure 4). Fourth, we use a standard large-scale machine learning dataset, ImageNet, to
show generative similarity can learn embeddings that encode abstract, high-level categories compared
to standard contrastive paradigms, even those not seen in training (Figure 6).

There are some limitations to our work that point towards future directions. First, there may be
multiple candidates reflecting different hypotheses concerning the generative model, and more broadly
not all domains admit a transparent hierarchical structure. Characterizing the kind of generative
models underlying human judgments in domains of interest (see e.g., Destler et al. (2023) for a recent
study on skeletal models of shapes) is key to instilling the right inductive biases in machine models.
Therefore, solving the inverse problem, i.e., inferring the generative model itself from the data in
tandem with generative similarity is a promising avenue. Second in our work we mainly focus on
domains related to vision, but our framework is general enough to be applicable for other modalities.
For example, Large Language Models can often produce unpredictable failures in logical (Wan et al.,
2024) and causal (Kıcıman et al., 2023) reasoning. Cognitive scientists have written models for
human logical reasoning (Piantadosi et al., 2016) or causal learning (Goodman et al., 2011) based
on probabilistic Bayesian inference. Potential future work may involve contrastive learning with
generative similarity over Bayesian models of reasoning to imbue language models with logical and
causal reasoning abilities. Note that, although contrastive learning is most commonly used in vision,
there is precedence for its use in the language domain (Gao et al., 2021; Luo et al., 2024).

Strong inductive biases are a hallmark of human intelligence. Finding ways to imbue such biases
in machine models is key for developing more generally intelligent AI as well as for achieving
human-AI alignment. Our work offers a new path towards that goal.
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APPENDIX

A SEPARATION IN EXPECTATION

Our goal is to show that for any triplet loss function ℓ(∆ϕ) that is convex and strictly increasing
in ∆ϕ(x, x

+, x−) = dϕ(x, x
+)− dϕ(x, x

−) where dϕ(x, y) = d(ϕ(x), ϕ(y)) is a given embedding
distance measure (e.g., softmax loss or quadratic loss), then the optimal embedding that minimizes
Equation 4 ensures that the expected distance between same pairs is strictly smaller than that of
different pairs as defined by the generative process in Figure 1A. To see that, let ϕ∗ denote the optimal
embedding and let ℓ∗ denote its achieved loss. By definition, for any suboptimal embedding ϕsub
which achieves ℓsub we have ℓ∗ < ℓsub. One such suboptimal embedding (assuming non-degenerate
distributions) is the constant embedding which collapses all samples into a point ϕsub = ϕ0. In that
case, we have ∆ = 0 and hence ℓ∗ < ℓ(0). Now, using Jensen inequality we have

ℓ(0) > ℓ∗ = Epc
ℓ(∆ϕ∗(X,X+, X−)) ≥ ℓ(Epc

∆ϕ∗(X,X+, X−)). (A1)

Observe next that since ℓ is strictly increasing (and hence its inverse is well-defined and strictly
increasing) it follows that Epc∆ϕ∗(X,X+, X−) < 0. Finally, by noting that

Epc
dϕ∗(X,X+) =

∫
p(x|θ+)p(x+|θ+)p(x−|θ−)p(θ+)p(θ−)dϕ∗(x, x+)dxdx+dx−dθ+dθ−

=

∫
p(x|θ+)p(x+|θ+)p(θ+)dϕ∗(x, x+)dxdx+dθ+

= Epsamedϕ∗(X,X+)

and likewise,

Epc
dϕ∗(X,X−) =

∫
p(x|θ+)p(x+|θ+)p(x−|θ−)p(θ+)p(θ−)dϕ∗(x, x−)dxdx+dx−dθ+dθ−

=

∫
p(x|θ+)p(x−|θ−)p(θ+)p(θ−)dϕ∗(x, x−)dxdx−dθ+dθ−

= Epdiffdϕ∗(X,X−)

we arrive at the desired result

Epsamedϕ∗(X,X+) < Epdiffdϕ∗(X,X−). (A2)

B GENERATIVE SIMILARITY AS AN OPTIMAL SOLUTION

In what follows we will show that generative similarity (Equation 1) can be derived as the minimizer
of the following functional

L[s] = DKL[s||psame]−DKL[s||pdiff]− β−1H(s) + λ

[∫
s(x, x′)dxdx′ − 1

]
(B1)

where DKL is the Kullback-Leibler divergence, H is entropy, and the linear integral is a Lagrangian
constraint that ensures that s is normalized so that the other terms are well defined. Note that
while λ > 0 is a Lagrange multiplier, β−1 > 0 is a free parameter of our choice that controls the
contribution of the entropy term and we may set it to one or a small number if desired. In other words,
the minimizer s∗ of L is the maximum-entropy (or entropy-regularized) solution that maximizes the
contrast between psame and pdiff in the DKL sense (i.e. it seeks to assign high weight to pairs with
high psame but low pdiff, and low values for pairs with low psame but high pdiff). To derive s∗, observe
that from the definition of the KL divergence we have

DKL[s||psame]−DKL[s||pdiff] =

∫ [
s(x, x′) log

s(x, x′)

psame(x, x′)
− s(x, x′) log

s(x, x′)

pdiff(x, x′)

]
dxdx′

=

∫
[s(x, x′) log pdiff(x, x

′)− s(x, x′) log psame(x, x
′)] dxdx′
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Next, varying the functional with respect to s we have

δL
δs

= log pdiff(x1, x2)− log psame(x1, x2) + β−1 [log s(x1, x2) + 1] + λ = 0 (B2)

which yields

s∗(x1, x2) =
1

Z(β, λ)

[
psame(x1, x2)

pdiff(x1, x2)

]β
(B3)

where we defined Z(β, λ) ≡ eβλ+1. Next, from the Lagrange multiplier equation δλL = 0 we have

Z(β, λ) =

∫ [
psame(x1, x2)

pdiff(x1, x2)

]β
dx1dx2 (B4)

which fixes λ as a function of β assuming that the right-hand integral converges. Two possible sources
of divergences are i) pdiff(x1, x2) approaches zero while psame(x1, x2) remains finite, and ii) the
integral is carried over an unbounded region without the ratio decaying fast enough. The latter issue
can be resolved by simply assuming that the space is large but bounded and that the main probability
mass of the generative model is far from the boundaries (which is plausible for practical applications).
As for the former, observe that when pdiff(x1, x2) ≡

∫
p(x1|θ1)p(x2|θ2)p(θ1)p(θ2)dθ1dθ2 = 0 it

implies (from non-negativity) that p(x1|θ1)p(x2|θ2) = 0 for all θ1,2 in the support of p(θ) which in
turn implies that psame(x1, x2) ≡

∫
p(x1|θ)p(x2|θ)p(θ)dθ = 0. In other words, if pdifferent vanishes

then so does psame (but not vice versa, e.g. if p(x1|θ) and p(x2|θ) have non-overlapping support as a
function of θ). Likewise, the rate at which these approach zero is also controlled by the same factor
p(x1|θ1)p(x2|θ2) → 0 and so we expect the ratio to be generically well-behaved.

Finally, setting β = 1 we arrive at the desired Bayes odds relation

s∗(x1, x2) ∝
psame(x1, x2)

pdiff(x1, x2)
=

p(same|x1, x2)

p(different|x1, x2)
(B5)

where the second equality follows from the fact that we assumed that a priori p(same) = p(different).
As a sanity check of the convergence assumptions, consider the case of a mixture of two one-
dimensional Gaussians with means µ1 = −µ2 = µ and uniform prior, and as a test let us set σ = 1
and µ ≫ 1 so that the Gaussians do not overlap and are far from the origin. In this case, we assume
that the space is finite x ∈ [−Λ,Λ] such that Λ ≫ µ ≫ 1 so that the Gaussians are unaffected by the
boundary. Then, for points that are far from the Gaussian centers, e.g. at the origin x1 = x2 = 0 for
which the likelihoods are exponentially small we have

p(x1, x2|same)
p(x1, x2|different)

=
1
2e

− (+µ)2

2 × e−
(+µ)2

2 + 1
2e

− (−µ)2

2 × e−
(−µ)2

2

( 12e
− (+µ)2

2 + 1
2e

− (−µ)2

2 )× ( 12e
− (+µ)2

2 + 1
2e

− (−µ)2

2 )
= 1 (B6)

which is indeed finite.

C CONNECTIONS TO OTHER LOSS FUNCTIONS

The unregularized divergence difference DKL[s||psame]−DKL[s||pdiff] can also be related to a special
case of the loss objective in Equation 4. Specifically, observe that

DKL[s||psame]−DKL[s||pdiff] =

∫
[s(x, x′) log pdiff(x, x

′)− s(x, x′) log psame(x, x
′)]dxdx′ (C1)

where DKL[p||q] =
∫
p(x) log[p(x)/q(x)]dx is the Kullback-Leibler (KL) divergence. While the

left-hand-side in Equation C1 may seem rather different from Equation 4, the cancellation in the KL
divergences yields a special case of Equation 4 with ℓ(∆) = ∆ upon minimal redefinitions, namely,
recasting distance measures as similarities d(x, y) → s0 − s(x, y) and substituting probabilities
with their logarithm p → log p (i.e., applying a monotonic transformation; see Appendix D). Indeed,
varying the functional in Equation 4 with respect to s along with a simple quadratic regularizer (see
Appendix D) yields s∗(x1, x2) ∝ psame(x1, x2)− pdiff(x1, x2) which is equivalent to the generative
similarity measure (Equation 1) up to a monotonic transformation of probabilities p → log p.
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D THE SPECIAL CASE OF ℓ(∆) = ∆

We consider the triplet loss objective under the special case of ℓ(∆) = ∆ where ∆(x, x+, x−) =
d(x, x+) − d(x, x−). Recasting the distance measures as similarities d(x, y) → s0 − s(x, y) and
unpacking Equation 4 we have

L[s] = Epc∆(X,X+, X−)

= Epc
s(X,X−)− Epc

s(X,X+)

= Epdiffs(X,X−)− Epsames(X,X+)

=

∫
[s(x, x′)pdiff(x, x

′)− s(x, x′)psame(x, x
′)]dxdx′

where the third equality follows from an identical derivation to the one found in Appendix A above
Equation A2.

Our goal next is to find the similarity function which minimizes L[s] by varying it with respect to
s, i.e., δsL = 0. As before, since L is linear in s we need to add a suitable regularizer to derive a
solution (otherwise δsL = 0 has no solutions). Here we are no longer committed to a probabilistic
interpretation of s and so a natural choice would be a quadratic regularizer

Lreg[s] = L[s] + λ

(∫
s2(x, x′)dxdx′ − Λ

)
(D1)

for some constants Λ, λ > 0. Varying the Lagrangian with respect to the similarity measure we have

δLreg

δs
= pdiff(x1, x2)− psame(x1, x2) + 2λs(x1, x2) = 0 (D2)

This in turn implies that the optimal similarity measure is given by

s∗(x1, x2) =
1

2λ
[psame(x1, x2)− pdiff(x1, x2)] (D3)

Likewise, for the Lagrange multiplier we have

δLreg

δλ
=

∫
s2(x, x′)dxdx′ − Λ = 0 (D4)

Plugging in the optimal solution we have

1

4λ2

∫
[psame(x, x

′)− pdiff(x, x
′))]

2
dxdx′ − Λ = 0 (D5)

The integral is positive since it is the squared difference between two normalized probability distribu-
tions, and so denoting its value as Cp > 0 we can solve for λ

λ =
1

2

√
Cp

Λ
(D6)

Thus, putting everything together we have

s∗(x1, x2) =

√
Λ

Cp
[psame(x1, x2)− pdiff(x1, x2))] (D7)

E GAUSSIAN MIXTURES AND LINEAR PROJECTIONS

To derive the linear projection result, we start by plugging in the definition of the Gaussian mixture
generative process (i.e., uniformly sampling a Gaussian and then sampling points from it) into
Equation 4

Epc
ℓ(X,X+, X−) =

∑
i=1,2

∑
j=1,2

∫
ℓ(ϕ(x), ϕ(x+), ϕ(x−))×

× 1

4

1

((2π)dσ2d)3/2
exp

(
− (x− µi)

2 + (x+ − µi)
2 + (x− − µj)

2

2σ2

)
dxdx+dx−
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Now, recall that

ℓ(x, x+, x−) = ϕφ(x) · ϕφ(x
−)− ϕφ(x) · ϕφ(x

+)

= (φ · x)(φ · x−)− (φ · x)(φ · x+)

Substituting into the loss formula and integrating we have

Epc
ℓ ∝

∑
i,j

∫
(φ · x)(φ · x−) exp

(
− (x− µi)

2 + (x− − µj)
2

2σ2

)
dxdx−

− 2
∑
i

∫
(φ · x)(φ · x+) exp

(
− (x− µi)

2 + (x+ − µi)
2

2σ2

)
dxdx+

Note next that since x+ and x− are dummy integration variables, we can further rewrite

Epc
ℓ ∝

∑
i ̸=j

∫
(φ · x)(φ · x−) exp

(
− (x− µi)

2 + (x− − µj)
2

2σ2

)
dxdx−

−
∑
i

∫
(φ · x)(φ · x+) exp

(
− (x− µi)

2 + (x+ − µi)
2

2σ2

)
dxdx+

Thus, using the fact that the distributions are separable and standard Gaussian moment formulae we
arrive at

Epcℓ ∝
∑
i ̸=j

(φ · µi)(φ · µj)−
∑
i

(φ · µi)(φ · µi) (E1)

Finally, plugging in µ1 = −µ2 = µ and using the fact that ||φ||22 = φ · φ = 1 we have

Epc
∝ −4(φ · µ)2 = −4||µ||22 cos2 θφµ. (E2)

F GAUSSIAN MIXTURES AND TWO-LAYER PERCEPTRONS

To test the Monte Carlo approximation of Equation 5 and to see how well it tracks the theoretical gen-
erative similarity, we considered an embedding family that is parametrized by two-layer perceptrons.
For the generative family, we chose as before a mixture of two Gaussians, this time with mean values
of µ1 = (5, 5) and µ2 = (1, 1) and unit variance σ2 = 1. As for the loss function, here we used a
quadratic (Euclidean) loss of the form

L =
1

Ntriplets

∑
{x,x+,x−}

[
(ϕ(x)− ϕ(x+))2 − (ϕ(x)− ϕ(x−))2

]
(F1)

where {x, x+, x−} are triplets sampled from Equation 5. We trained the perceptron model using
10,000 triplets (learning rate = 10−5, hidden layer size = 32, batch-size = 256, and 300 epochs).
The resulting model successfully learned to distinguish the two Gaussians as seen visually from the
embedding values in Figure 2B, and also from the test accuracy of 99.7%. Finally, we wanted to see
how well the embedding distance tracked the theoretical generative similarity, which in this case can
be derived in closed form by simply plugging in the Gaussian distributions in Equation 1

s(x1, x2) =
1
2e

− (x1−µ1)2

2σ2 × e−
(x2−µ1)2

2σ2 + 1
2e

− (x1−µ2)2

2σ2 × e−
(x2−µ2)2

2σ2

( 12e
− (x1−µ1)2

2σ2 + 1
2e

− (x1−µ2)2

2σ2 )× ( 12e
− (x2−µ1)2

2σ2 + 1
2e

− (x2−µ2)2

2σ2 )
. (F2)

The mean generative similarity as a function of embedding distance between pairs (grouped into 500
quantile bins) is shown in Figure 2C. We see that it is indeed a monotonically decreasing function of
distance in embedding space (Spearman’s ρ(498) = −0.99, p < 10−3). Moreover, we found that the
average distance 95% (1.96-sigma) confidence interval (CI) for same pairs was [1.62, 1.66] whereas
for different pairs it was [4.77, 4.91], consistent with the prediction of Equation 6.
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G GENERATIVE SIMILARITY OF GEOMETRIC SHAPE DISTRIBUTIONS

Our goal is to derive the generative similarity measure associated with the process in Equation 8

s(σ1(f
(1)), σ2(f

(2))) =
psame(σ1, σ2)

pdiff(σ1, σ2)
(G1)

Plugging in the different Beta, Bernoulli, and uniform distributions into the nominator of Equation 1
we have

psame(σ1, σ2) =
∑
f̂
(1,2)
1···n

∫
δ(f̂ (1) − f (1))

|S(f̂ (1))|
δ(f̂ (2) − f (2))

|S(f̂ (2))|

×
∏
i

[
θ
f
(1)
i +f

(2)
i +α−1

i (1− θi)
f̄
(1)
i +f̄

(2)
i +β−1/B(α, β)

]
dθ1···n

where we defined f̄i = 1 − fi and used the definition of the Bernoulli distribution Bern(fi; θi) =
θfii (1− θi)

f̄i , and the Beta distribution Beta(θi;α, β) = θα−1
i (1− θi)

β−1/B(α, β) where B is the
Beta function and is given by B(z1, z2) =

∫ 1

0
dttz1−1(1−t)z2−1 which is well-defined for all positive

numbers z1, z2 > 0. Note that the delta function δ(f̂ − f) simply enforces the fact that by definition
each stimulus is consistent with only one set of feature values (otherwise there would be at least
one feature of the stimulus that is both True and False which is a contradiction). Likewise, |S(f̂)| is
the cardinality of the exemplar set associated with the feature vector f̂ which accounts for uniform
sampling. Likewise, for the denominator of Equation 1 we have

pdiff(σ1, σ2) =
∑
f̂
(1)
1···n

∫
δ(f̂ (1) − f (1))

|S(f̂ (1))|

∏
i

[
θ
f
(1)
i +α−1

(1)i (1− θ(1)i)
f̄
(1)
i +β−1/B(α, β)

]
dθ

(1)
1···n

×
∑
f̂
(2)
1···n

∫
δ(f̂ (2) − f (2))

|S(f̂ (2))|

∏
j

[
θ
f
(2)
j +α−1

(2)j (1− θ(2)j)
f̄
(2)
j +β−1/B(α, β)

]
dθ

(2)
1···n

The above integrals might seem quite complicated at first but the conjugacy relation between the Beta
and Bernoulli distributions as well as the delta functions simplify things drastically. Indeed, the delta
functions cancel the summation over features, and the cardinality factors cancel out in the ratio so
that we are left with a collection of Beta function factors (see definition of Beta function above)

s(σ1(f
(1)), σ2(f

(2))) =

∏
i B(f (1)

i + f
(2)
i + α, f̄

(1)
i + f̄

(2)
i + β)B(α, β)∏

i B(f (1)
i + α, f̄

(1)
i + β)

∏
j B(f (2)

j + α, f̄
(2)
j + β)

(G2)

Taking the logarithm and rearranging the terms we have

log s(σ1(f
(1)), σ2(f

(2))) =
∑
i

log
B(f (1)

i + f
(2)
i + α, f̄

(1)
i + f̄

(2)
i + β)B(α, β)

B(f (1)
i + α, f̄

(1)
i + β)B(f (2)

i + α, f̄
(2)
i + β)

(G3)

Now, recall the following Beta function identities1

B(x+ 1, y) =
x

x+ y
B(x, y); B(x, y + 1) =

y

x+ y
B(x, y) (G4)

Using these identities we can group and simplify the different ratios contributing to the sum depending
on the values of the features. If f (1)

i = f
(2)
i = 1 then we have

log
B(2 + α, 0 + β)B(α, β)

B(1 + α, 0 + β)B(1 + α, 0 + β)
= log

α+ 1

α+ β + 1

α+ β

α
(G5)

1These follow from the fact that B(z1, z2) = Γ(z1)Γ(z2)/Γ(z1+ z2) where Γ is the Gamma function which
satisfies Γ(z + 1) = zΓ(z) for any z > 0 (Artin, 2015).
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If on the other hand f
(1)
i = 1 and f

(2)
i = 0 or f (1)

i = 0 and f
(2)
i = 1 then we have

log
B(1 + α, 1 + β)B(α, β)

B(1 + α, 0 + β)B(0 + α, 1 + β)
= log

β

α+ β + 1

α+ β

β
(G6)

and finally for f (1)
i = f

(2)
i = 0 we have

log
B(0 + α, 2 + β)B(α, β)

B(0 + α, 1 + β)B(0 + α, 1 + β)
= log

β + 1

α+ β + 1

α+ β

β
(G7)

Next, defining Σ1 and Σ2 to be the sets of features that hold true for stimuli σ1 and σ2, we can write

log s(σ1(f
(1)), σ2(f

(2))) = |Σ1 ∩ Σ2| log
α+ 1

α+ β + 1

α+ β

α

+ (|Σ1 − Σ2|+ |Σ2 − Σ1|) log
β

α+ β + 1

α+ β

β

+ |Σ̄1 ∩ Σ̄2| log
β + 1

α+ β + 1

α+ β

β

where |Σ1 ∩ Σ2| is the number features that hold true for both stimuli, |Σi − Σj | is the number of
features that hold true for σi but not for σj , and finally |Σ̄1 ∩ Σ̄2| is the number of features that hold
neither for σ1 nor for σ2. Observe next that by definition |Σ̄1 ∩ Σ̄2| = n− |Σ1 ∩Σ2| − |Σ1 −Σ2| −
|Σ2 − Σ1| where n is the overall number of features. From here it follows that

log s(σ1(f
(1)), σ2(f

(2))) = |Σ1 ∩ Σ2| log
α+ 1

α

β

β + 1

+ (|Σ1 − Σ2|+ |Σ2 − Σ1|) log
β

β + 1

+ n log
β + 1

α+ β + 1

α+ β

β

In the limit of α = β → 0 we have

log s(σ1(f
(1)), σ2(f

(2)) = n log 2− log
β + 1

β
(|Σ1 − Σ2|+ |Σ2 − Σ1|) (G8)

where the first term is simply a constant. Finally, observe that

|Σ1 − Σ2|+ |Σ2 − Σ1| =
∑
i

f
(1)
i (1− f

(2)
i ) + f

(2)
i (1− f

(1)
i ) (G9)

=
∑
i

f
(1)
i − 2f

(1)
i f

(2)
i + f

(2)
i

=
∑
i

(f
(1)
i − f

(2)
i )2

where the third equality follows from the fact that f2 = f for binary features. In other words,
the generative similarity reduces to a monotonically decreasing function of the Euclidean distance
between the geometric features of shapes

log s(σ1(f
(1)), σ2(f

(2)) = n log 2− log
β + 1

β

∑
i

(f
(1)
i − f

(2)
i )2 (G10)

which is the desired result.

H REPRODUCIBILITY

The authors of this work have made great efforts in ensuring its reproducibility. Anonymized
code to train the models used in Figures 2–6 are included in the attached file to the submission.
Detailed proofs of theoretical results mentioned in this work are in Appendices A–G. Details of our
empirical experiments are in Appendices I–K. We include multiple results for control experiments in
Appendices L–Q, including reproducing major results with different architectures.
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Table 1: List of geometric regularities for each quadrilateral type (sorted from most regular to least)
shape rightAngles parallels symmetry equalSides equalAngles
square 4 2 4 4 4
rectangle 4 2 2 2 4
losange 0 0 2 4 2
parallelogram 0 2 1 2 2
rightKite 2 0 1 2 2
kite 0 0 1 2 2
isoTrapezoid 0 1 1 1 2
hinge 1 0 0 1 0
rustedHinge 0 0 0 1 0
trapezoid 0 1 0 0 0
random 0 0 0 0 0

I DETAILS ON QUADRILATERAL EXPERIMENT

For our main experiments, we use the CorNet model which was used in the original work (variant
‘S’) that introduces the Oddball task (Sablé-Meyer et al., 2021). CorNet contains four “areas”
corresponding to the areas of the visual stream: V1, V2, V4, and IT. Each area contains convolutional
and max pooling layers. There are also biologically plausible recurrent connections between areas
(e.g., V4 to V1). After IT, the penultimate area in the visual stream, a linear layer is used to readout
object categories. The model is pretrained on ImageNet on a standard supervised object recognition
objective. The pretrained CorNet model’s performance on the Oddball task is reported in Figure 3B.

For finetuning the model on the supervised classification objective, we followed the protocol used in
the supplementary results of Sablé-Meyer et al. (2021). Specifically, 11 new object categories are
added to the model’s last layer, and the model is trained to classify a quadrilateral as one of the 11
categories shown in Figure 3B. For training data, we used quadrilaterals from all 11 categories with
different scales and rotations (though the specific quadrilateral images used in the test trials were held
out). We used a learning rate of 5e-6 using the Adam optimizer with a cross entropy loss. Training
was conducted on an NVIDIA Quadro P6000 GPU with 25GB of memory.

For finetuning the model on the generative similarity contrastive objective, we first calculated the
Euclidean distance of the model’s final layer embedding between different quadrilateral images, then
calculated the Euclidean distance between the quadrilaterals’ respective geometry feature vectors,
and finally used the mean squared error between the embeddings’ distance and the feature vectors’
distance as the loss. The geometric feature vectors were a set of 22 binary features encoding the
following properties: 6 features per pair of edges encoding whether their lengths are equal or not, 6
features per pair of angles coding whether their angles are equal or not, 6 features per pair of edges
encoding whether they were parallel or not, and 4 features per angle encoding whether they were
right angles or not. See Table 1 for a list of these values. Like the supervised model, we used training
data from each category of quadrilaterals with different scales and rotations (though specific images
used in the test trials were held out). We used the Adam optimizer with a learning rate of 5e-4. We
used the exact same training data, learning rate, and optimizer when running the control experiments
for finetuning CorNet on the SimCLR objective (Figure S2). Training was conducted on an NVIDIA
Quadro P6000 GPU with 25GB of memory.

J DETAILS ON DRAWING STYLES EXPERIMENT

We used the DreamCoder grammars Sablé-Meyer et al. (2022) trained on Greek and Celtic drawings
respectively to obtain training data. Both models used the same DSL (see Figure 4A) but, because they
are trained on different images, they weigh those primitives differently and thus combine primitives
differently when sampling from the grammar. We obtained 20k images from both grammars (40k
images in total) and used 800 additional examples from each grammar for testing. Each image as a
128× 128 gray-scale image. Images were normalized to have pixel values between 0-1 by dividing
by 255.
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Because of the similarity of the stimuli in Figure 4B to handwritten characters, we used the same
CNN architecture that Snell et al. (2017) used on the Omniglot dataset (Lake et al., 2019) with six
convolutional blocks consisting of 64-filter 3× 3 convolution, a batch normalization layer, a ReLU
nonlinearity, and a 2× 2 max-pooling layer. This network outputs a 256-dimensional embedding.
Our experiment was replicated with another CNN architecture (CorNet), which yielded similar results
(Figure S4). We used two different training objectives: a standard contrastive learning objective from
SimCLR (Chen et al., 2020) and one based on a Monte-Carlo estimate of generative similarity. For
both objectives, we used the same learning rate 1e-3 and the same Adam optimizer with a batch size
of 128.

For the SimCLR baseline objective, images in the batch were randomly augmented. The augmenta-
tions were: random resize crop, random horizontal flips, and random Gaussian blurs. The original
SimCLR paper also had augmentations corresponding to color distortions which we did not use
because our data were already grayscale images. Like SimCLR, we used the InfoNCE loss function
(Oord et al., 2018). Let vi be the embedding of image i and v′i be the embedding of image i’s
augmented counterpart. The loss is 1

N

∑N
i=1 log

f(vi,v
′
i)

1
N

∑
j exp f(vi,v′

j)
where f is a similarity function

between embeddings (SimCLR used cosine similarity). This effectively pushes representations of
images and their augmented counterparts to be more similar while also pushing representations of
images and other images’ augmented counterparts to be more dissimilar. Training was conducted
with one NVIDIA Tesla P100 GPU with 16GB of memory.

For the generative similarity objective, let image a be the representation of the anchor image that
is sampled from a random grammar c ∈ {Celtic,Greek}. Let p be the representation of a positive
image that is another image sampled from c and n be the negative image that is randomly sampled
from either grammar (and is therefore considered an independent sample). Using these samples, we
compute the positive Euclidean distance d(p, a) and the negative Euclidean distance d(n, a) in order
to compute the loss function d(p, a)− d(n, a) (see Equation 5). Training was conducted with one
NVIDIA Tesla P100 GPU with 16GB of memory.

K DETAILS ON ABSTRACT CATEGORIES EXPERIMENT

Our training data came from the tieredImageNet dataset (Ren et al., 2018). In the training set, there
are 20 categories containing a total of 351 classes (in which each class can contain thousands of
examples). In the test set, there are 8 categories containing a total of 151 classes. The categories
are mutually exclusive so no class belongs to more than one category. Images were resized to
224× 224× 3 (for 3 RGB channels) before training. We trained a standard ResNet (He et al., 2016)
architecture on both types of losses. We used two different training objectives: a standard contrastive
learning objective from SimCLR (Chen et al., 2020) and one based on a Monte-Carlo estimate of
generative similarity. For both objectives, we used the same learning rate 1e-3 and the same Adam
optimizer with a batch size of 256.

For the SimCLR objective, we used the same objective and image augmentations as the drawing style
experiment, but also included random grayscaling since ImageNet images are colored. Training was
conducted with one NVIDIA Tesla P100 GPU with 16GB of memory.

For the generative similarity objective, we used the same Euclidean-based distance for the triplet
loss as the Drawing Styles experiment. However, we included a new mechanism for identifying
“high-level” and “low-level” triplets (see Figure 6B). For high-level triplets, the idea is that we are
sampling from the top-level in the hierarchical generative model (Figure 6A). The positive image
is sampled from the same category of the anchor image, but with an independent class (so the
positive image and anchor image may have different classes). The negative image is from a category
sampled independently (so the negative image may have a different category). This corresponds to a
sample from the generative model at the top of the hierarchy without consideration for the bottom
level (the classes). For low-level triplets, we are sampling from the bottom-level of the hierarchical
generative model, conditioned on a specific high-level category. Therefore, the positive image is
sampled from the same category and same class, and the negative image is sampled from the same
category but independent class. To bias the network towards learning higher-level abstract categories
(as humans typically do), we sampled 80% top-level triplets and 20% bottom-level triplets during
training. Training was conducted with one NVIDIA Tesla P100 GPU with 16GB of memory.
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For evaluating the ability of the learned embeddings to encode information about abstract categories,
we fit a Linear SVM to predict either images from previously unseen test categories (8-way classifica-
tion). This analysis was also repeated for predicting the training categories (20-way classification)
as a supplementary analysis (Figure S5). The SVM was fit for upto 100 epochs (stopping when the
loss fails to decrease by more than 1e-3 for 5 epochs). We trained the SVM within a three-fold cross
validation loop, evaluating classification accuracy on a held-out test set, and then reported the mean
across the three folds.

L REPRODUCTION OF GEOMETRIC REGULARITY EFFECT WITH A DIFFERENT
ARCHITECTURE
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Figure S1: To show the regularity effect can generalize to a different architecture, we finetuned
ResNet-101 (He et al., 2016) on the GenSim objective and show that it recovers the human geometric
regularity effect. Note that in their supplement, Sablé-Meyer et al. (2021) also reported that a
pretrained ResNet-101 fails to produce the geometric regularity effect.

M NO GEOMETRIC REGULARITY EFFECT FOR STANDARD CONTRASTIVE
LEARNING
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Figure S2: We finetune CorNet using the standard contrastive objective in SimCLR (Chen et al.,
2020). Specifically, simple augmentations (cropping and resizing, rotations, etc) were applied to
individual quadrilateral images, and then the CNN was trained to push its representations of those
images together, to be more similar (i.e., less distant) to their augmented counterparts, and pull its
representations of different quadrilateral images apart, to be more dissimilar (i.e., more distant) from
each other. Finetuning on this objective does not result in the human geometric regularity effect.
Note that the performance of this network is much higher than that of other models and both humans
and baboons. To understand why, recall that the reference image choices in the Oddball task are
different scales/rotations of the reference image. Because the SimCLR objective applies similar image
augmentations to minimize the distance of an image’s embedding with its augmented counterpart,
the overlap between the training paradigm and the Oddball task allows the network to overfit to the
Oddball task. Crucially, however, this network is not human-like because it lacks the regularity effect
and therefore does not have the human inductive bias we strive to instill in this work.
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N CONSISTENCY OF GEOMETRIC REGULARITY EFFECT ACROSS DIFFERENT
SUBJECTS
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Figure S3: Consistency of Figure 3C results across different subjects Correlation between mean
finetuned models’ error rates with individual human or monkey error rates. This is a reproduction of
Fig. 3C, but with behavior correlations for individual subjects instead of the average over subjects.
Error bars denote 95% confidence intervals over different subjects (different monkeys or different
humans).

O REPRODUCING DRAWING STYLE EXPERIMENTS WITH A DIFFERENT
ARCHITECTURE
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Figure S4: To show the generality of the results in Figure 4, we reproduced the results with a different
CNN architecture (CorNet) than the one reported in Figure 4. With a different architecture, training
on the GenSim contrastive objective still can decode Greek or Celtic drawing style better (left) and
predict the number of motor and control primitives used (right). Errorbars are 95% confidence
intervals over different model training runs.
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P HIERARCHICAL CATEGORIES EXPERIMENT FOR TRAINING SET
CATEGORIES
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Figure S5: For the result in Figure 6, we show the performance for GenSim-trained networks on
predicting image categories that were in the training distribution. Errorbars are 95% confidence
intervals over different model training runs. Red line indicates chance levels. Note chance is lower
on predicting training categories than test, because there were more training categories (20 vs. 8).

Q REPRODUCING HIERARCHICAL CATEGORIES EXPERIMENT WITH A
DIFFERENT ARCHITECTURE
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Figure S6: To show the generality of the results in Figure 6, we reproduced the results with a different
CNN architecture (CorNet) than the one reported in Figure 6. With a different architecture, training
on the GenSim contrastive objective still can decode high-level categories that were unseen during
training. Errorbars are 95% confidence intervals over different model training runs. Red line indicates
chance levels.
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