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ABSTRACT

Depth estimation is a key topic in the field of computer vision. Self-supervised
monocular depth estimation offers a powerful method to extract 3D scene informa-
tion from a single camera image, allowing training on arbitrary image sequences
without the need for depth labels. However, monocular unsupervised depth esti-
mation still cannot address the issue of scale and often requires ground truth for
calibration. In the deep learning era, existing methods primarily rely on relation-
ships between images to train unsupervised neural networks, often overlooking
the fundamental information provided by the camera itself. In fact, the intrinsic
and extrinsic parameters of the camera can be used to compute depth information
for the ground and its related areas based on physical principles. This informa-
tion can offer rich supervisory signals at no additional cost. Additionally, by as-
suming that objects like people, cars, and buildings share the same depth as the
corresponding ground, the physical depth of the entire scene can be inferred, and
gaps in the depth map can be filled. Since some areas may have depth estima-
tion errors, to make full use of these regions, we introduce a contrastive learning
self-supervised framework. This framework consists of two networks with the
same structure: the Anchor network and the Target network. While calculating
depth, the network also outputs semantic segmentation results to assist in com-
puting the physics depth, which is then used as the label for the model. Semantic
segmentation can identify dynamic objects, reducing photometric reprojection er-
rors caused by moving objects. The predictions from the Anchor network are used
as pseudo-labels for training the Target network. Reliability is determined by en-
tropy, dividing the predicted depth into positive and negative samples to maximize
the use of physics depth information.

1 INTRODUCTION

Monocular depth estimation plays a critical role in fields such as computer vision Newcombe et al.
(2011); Luo et al. (2021); Tateno et al. (2017), scene understanding Hazirbas et al. (2017), and 3D
mapping Li et al. (2023). Its goal is to infer depth from a single RGB image, but this is inherently
an ill-posed problem due to scale ambiguity, as the same 2D image can be projected from infinitely
many 3D scenes. The advent of convolutional neural networks has significantly advanced monoc-
ular depth estimation Simonyan & Zisserman (2014); Szegedy et al. (2015); He et al. (2016), with
the most accurate results being achieved through supervised learning Eigen et al. (2014); Fu et al.
(2018); Ranftl et al. (2020); Bhat et al. (2021), which requires sparse depth data collected by sen-
sors like LiDAR as labels. The high cost of data collection and labeling has driven researchers to
explore self-supervised depth estimation frameworks. Early self-supervised methods used regres-
sion modules to estimate per-pixel depth and infer 3D structures Godard et al. (2019); Gordon et al.
(2019); Peng et al. (2021); Watson et al. (2019), relying on photometric consistency loss for model
training. However, the accuracy of self-supervised monocular depth estimation still falls short when
compared to supervised learning methods. In deep learning-driven depth estimation, the rich infor-
mation provided by sensors is often overlooked. This paper proposes a camera model that combines
image semantics with the camera’s physical model (including intrinsic and extrinsic parameters) to
calculate the depth information of road surfaces. Based on this, we can directly infer the depth of
objects on the ground, such as buildings and vehicles, and generate a dense depth map by filling in
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Figure 1: The overview of our framework. The Anchor network uses two decoders to output seman-
tic segmentation and depth, combined with the camera model to compute physics depth as labels.
The depth estimation decoder outputs bins and cost volume through ViT, which are aggregated into
depth values. Combined with the pose estimated by the pose network, photometric reprojection
loss is generated, and Λtis calculated through semantic segmentation. When Λt ≥ θΛ, the scene is
considered static, and photometric reprojection error is used; otherwise, the scene is dynamic, and
masking is applied. In the contrastive learning framework, The anchor and target networks have
the same structure, as shown in the figure above. The predictions from the anchor network serve
as pseudo-labels for the target network. Unsupervised loss is calculated for reliable pixels, and
contrastive loss is applied to make full use of unreliable pixels

missing points, thus providing supervision for self-supervised models without relying on additional
equipment such as LiDAR. To effectively utilize the physics-based depth information, we designed
a self-supervised network framework based on contrastive learning. If only accurate ground areas
are selected as pseudo ground truth in the physics depth, many pixels may be wasted. We believe
that every pixel is critical for model training, even if there are errors. Unreliable predictions may
confuse nearby depth intervals, but the judgment for pixels outside large disparity regions is gen-
erally more accurate. Therefore, these pixels can be used as negative samples for the least likely
categories. Based on this, we explored a contrastive learning strategy with positive and negative
samples to maximize the use of depth information directly calculated from the camera model. Our
network also outputs semantic segmentation, which not only aids in calculating physics-based depth
but also identifies dynamic objects. The segmentation-guided photometric reprojection loss effec-
tively reduces errors caused by moving objects, further improving the accuracy of depth estimation.
In summary, our main contributions include: 1.We propose a novel mechanism that leverages cam-
era physics model parameters to calculate depth information for a large portion of the scene, thereby
supervising the depth estimation network. We refer to this depth information as physics depth. 2.To
address scale uncertainty problem in unsupervised monocular depth estimation, our method provides
an absolute scale rather than just a relative scale. 3.For the physics depth calculated from camera
model, we have designed a contrastive learning self-supervised neural network training framework
that integrates physics depth supervision with self-supervised methods. The framework for physics
depth computation and self-supervised network training is shown in Fig. 1.

2 RELATE WORK

2.1 DEPTH ESTIMATION

Monocular depth estimation has seen significant advancements since the pioneering work by Eigen
et al. (2014),. Since then, the field has evolved with improvements in both network architectures
and loss functions Laina et al. (2016); Lee et al. (2018); Liu et al. (2015); Miangoleh et al. (2021).
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Approaches in supervised monocular depth estimation typically revolve around either pixel-wise
regression Eigen et al. (2014); Zhao et al. (2021); Ranftl et al. (2021); Huynh et al. (2020) or pixel-
wise classification Fu et al. (2018); Diaz & Marathe (2019). While regression predicts continuous
depths, it can pose optimization challenges, whereas classification, though easier to optimize, re-
sults in discrete depth predictions. Self-supervised depth estimation has gained prominence due to
the difficulty in acquiring accurate ground truth data. The seminal work by Zhou et al. (2017) in-
troduced a framework for jointly training depth and pose networks using image reconstruction loss.
Subsequent innovations, such as minimum re-projection loss and auto-masking loss by Godard et al.
(2019), further advanced the state of the art. Scale ambiguity in monocular Structure-from-Motion
(SfM) models, a common challenge, has been addressed by incorporating real-time data like GPS
or camera velocity in works such as Guizilini et al. (2020) and Chawla et al. (2021). These methods
rely on photometric consistency for re-projection Wang et al. (2004). In stereo depth estimation,
disparity prediction, which is inversely related to depth, plays a crucial role. Garg et al. (2016)
introduced self-supervised training of monodepth models with stereo pairs, which was refined by
Godard et al. (2017) using left-right consistency and later extended to continuous disparity predic-
tion by Garg et al. (2020). Stereo models predict absolute depth scales, while monocular models
typically predict relative depth, requiring calibration with ground truth. Integrating physics-based
depth data improves the accuracy of absolute depth predictions, particularly for datasets like KITTI.

2.2 GEOMETRIC PRIORIS

Geometric priors have become increasingly important in monocular depth estimation. Among them,
the normal constraint Long et al. (2021); Qi et al. (2018) is widely applied, ensuring that the normal
vectors of the predicted depths align with those of the ground truth. The piecewise planarity prior
Gallup et al. (2010) provides a practical approximation for real-world scenes. Although monocular
depth estimation inherently suffers from ambiguity, and while Transformers have improved predic-
tion accuracy, they do not fundamentally address the core error issues in monocular depth estimation.
Geometric priors help alleviate some uncertainty, but their overall contribution to solving the prob-
lem remains limited. We utilize camera model parameters to compute scene depth directly. The
surface normal method Xue et al. (2020); Wagstaff & Kelly (2021) calculates surface normals and
estimates camera height through camera parameters, thereby determining the scale factor. However,
while these methods focus on using camera parameters to compute scale, they do not consider how
to use the camera model as a prior for depth estimation. Our approach offers more accurate and
generalizable depth predictions, further improving model performance.

3 PHYSICS DEPTH

3.1 PHYSICS DEPTH FOR FULL FIELD OF VIEW

This paper presents a monocular depth estimation algorithm that calculates absolute depth by com-
bining camera intrinsic and extrinsic parameters with semantic segmentation. The method uses
physics principles to estimate the depth of flat surfaces within the camera’s field of view, generat-
ing a physics-based depth map under the assumption that all surfaces are ideal planes. Semantic
segmentation is then applied to identify planar regions, and the results are extrapolated to adjacent
ground and vertical surfaces, with gaps filled using segmentation information and image inpainting
techniques. In planar regions, the accuracy is close to that of LiDAR results. Our method uses
a pinhole camera model, known for its minimal distortion and real-world applicability. It can be
adapted to different camera types with adjustments based on specific characteristics. For each pixel,
a unit vector (r̂) is computed, representing the camera ray direction, which translates the pixel’s
position into its line of sight in the physical world. r̂ = [u, v, f ]/

√
u2 + v2 + f2 . The pixel co-

ordinates (u, v) originate from the optical center (Ox, Oy), or principal point. The focal length f is
the average of the focal lengths in the x and y directions, defined as f = (fx + fy)/2 . To scale the
physics depth to different dimensions, adjust the unit vector (r̂). Let Worg and Horg be the original
image dimensions, and Wnew and Hnew the desired dimensions. The scaling factors for width and
height are Swidth = Wnew/Worg and Sheight = Hnew/Horg. The scaled pixel coordinates (u′, v′) are
(Swidth×u, Sheight×v), with the scaled optical center (O′

x, O
′
y) and focal lengths (f ′

x, f
′
y) being scaled

similarly. The scale-adjusted unit vector (r̂′) is derived in r̂. r̂′ = [u′, v′, f ′]/
√
u′2 + v′2 + f ′2 For
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a camera with roll, pitch, and yaw angles, the rotation matrix (Rc) representing the camera’s orien-
tation relative to the ground can be computed as follows:

Rroll =

[
1 0 0
0 c(roll) s(roll)
0 −s(roll) c(roll)

]
, Rpitch =

[
c(pitch) 0 −s(pitch)

0 1 0
s(pitch) 0 c(pitch)

]
(1)

Ryaw =

[
c(yaw) s(yaw) 0
−s(yaw) c(yaw) 0

0 0 1

]
, Rc = Ryaw ∗Rpitch ∗Rroll (2)

Using Rc we rotate the camera ray vector to align it with the ground coordinate system: r̂c = Rc ∗ r̂′
Since r̂c(rc,u, rc,v, rc,f ) is a unit vector, the 3D coordinates of the point, P = (xc, yc, zc), on the
ground surface in camera’s coordinate system can be determined by multiplying rc with the point-
to-point distance (d) of the ground point from camera. [xc, yc] = d ∗ [rc,u, rc,v]. When the height of
the camera (h) is known from the camera’s extrinsic parameters and assuming the camera coordinate
system’s y-axis is oriented downwards, then yc = h, and the point-to-point distance d and xc can be
calculated as shown below: d = h/rc,v, xc = d ∗ rc,u. The projection of a three-dimensional point
from the camera coordinate system (xc, yc, zc) to the two-dimensional image plane (u, v), can be
accurately represented using the following linear camera model equation:

Zc

[
u
v
1

]
=

 f ′
x 0 O′

x
0 f ′

y O′
y

0 0 1

[ xc

yc
zc

]
,K =

 f ′
x 0 O′

x
0 f ′

y O′
y

0 0 1

 (3)

where K denotes the camera’s intrinsic matrix. By substituting xc and yc into Eq. 3, we can derive
zc for any pixel (u, v) on the ground, allowing depth and 3D coordinate computation for all ground
pixels using the known camera height. This method was evaluated on the KITTI Geiger et al. (2013)
and Cityscapes Cordts et al. (2016) datasets.

3.2 EXTENSION OF PHYSICS DEPTH

Our physics-based depth method closely aligns with LiDAR data for flat surfaces but may overfit
to road regions. To improve effectiveness in diverse scenes, we extended the method to cover the
entire image. By assuming flat surfaces at camera level and incorporating vertical elements like
vehicles and buildings, we create a more comprehensive depth map, termed Edge Extended Physics
depth. We extend the physics depth to vertical entities in contact with flat surfaces, like vehicles and
buildings, by propagating depth values from intersection points, forming the Edge Extended Physics
depth. Missing depth for partially connected objects is filled using the Telea inpainting technique
Telea (2004). For objects not touching the ground, depth is extrapolated from nearby objects. The
sky is filled with 1.5 times the maximum inpainted depth, creating a seamless Dense Physics depth
label for subsequent networks. The effectiveness of Our method has been validated on the KITTI
Geiger et al. (2013) and Cityscapes Cordts et al. (2016) datasets, showing accuracy closely aligned
with LiDAR-derived depth measurements, particularly for ground surfaces.

4 SELF-SUPERVISED CONTRASTIVE DEPTH LEARNING

4.1 NETWORK ARCHITECTURE

In our study, selecting the physics depth of ground regions as labels based on accuracy may result
in many pixels being unused due to errors. We believe every pixel is crucial for model training,
even if its prediction is uncertain. While interpolated depth may cause confusion in similar ranges,
it should maintain high confidence for pixels in larger disparity ranges, allowing those pixels to be
convincingly treated as negative samples. To fully leverage this data, we developed a self-supervised
contrastive learning framework. We discretize depth values and linearly combine the predicted clas-
sifications to obtain accurate estimates. Our framework uses physics depth as labels to train an
anchor network, and the anchor network’s predictions for accurate regions are retained as pseudo-
labels for self-supervised training of the target network, progressively increasing the proportion of
accurate regions in each iteration. Our network also outputs semantic segmentation, which aids in
computing physics depth and identifies dynamic objects. This helps reduce errors in photometric re-
projection loss caused by moving objects. We propose a semantic segmentation-guided photometric
reprojection loss that improves accuracy by excluding dynamic objects from calculation.
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In this study, the depth regression task is transformed into a classification task by discretizing con-
tinuous depth values into fixed-width bins. To improve precision and mitigate depth discontinuities,
final depth values are reconstructed through a linear combination of bin centers. Additionally, the
Spacing-Increasing Discretization (SID) strategy from Fu et al. (2018) is used to divide the depth
range into non-uniform intervals, enhancing accuracy for small depth variations at long distances.
tSID
i = elogα+i· log β/α

n , i = 0, 1, . . . , N Here, ti ∈ {t0, t1, . . . , tN} represents the discrete depth
thresholds. The N Softmax scores pk, where k = 1, ..., N , at each pixel are interpreted as probabil-
ities over the depth-bin centers c(b), which are computed from the bin-width vector b as follows:

c(bi) = dmin + (dmax − dmin)(bi/2 +

i−1∑
j=1

bj), d̃ =

N∑
k=1

c(bk)pk (4)

where the final depth value d̃ is calculated from the linear combination of Softmax scores at that
pixel and the depth-bin-centers c(b). Our encoder-decoder architecture is based on the transformer
structure of MonoVit Zhao et al. (2022), with the semantic segmentation task being trained using
supervised learning. For the depth estimation task, we employ self-supervised learning, where the
depth decoder receives input from the ViT and predicts depth bins and cost volumes. The cost
volume is constructed by comparing relative distances between different points within the image,
inspired by SQLDepth Wang et al. (2023b), which introduces coarse query points to calculate object-
to-point distances, reducing computational costs. By dividing the feature map into larger patches and
enhancing these patch embeddings using a transformer, we implicitly represent objects within the
image. The final layer of the ViT outputs a dot product and softmax, which are fed into a multilayer
perceptron (MLP) to predict the depth intervals (bins). On each plane of the cost volume, pixel-wise
softmax is first applied to convert each plane into a probability map for each pixel. These maps
are then used for weighted summation to obtain a vector representing different depth counts. Using
the depth intervals extracted from the cost volume, the cost volume is compressed into a volume
matching the shape of the depth intervals by applying 1×1 convolutions. The compressed volume
is converted into probability maps on the planes, and depth for each pixel is computed through
probability-weighted linear combinations, aggregating depth values using the depth interval centers
and their corresponding probability weights.

For the supervised training utilizing physics depth as ground truth, we employ the cross-entropy loss
function Ls is cross-entropy (CE) loss:

Lphy =
1

|Bl|
∑

(xl
i,d

l
i)∈Bl

ℓce(d
l′

i ,d
l
i), (5)

where dl
i represents the physics depth for the i-th image.

4.2 SEMANTICALLY-GUIDED PHOTOMETRIC CONSISTENCY

We use semantic masking to improve depth estimation by reducing photometric loss errors from
moving DC objects. The model includes one encoder with two decoders: one for depth estimation
(self-supervised) and one for segmentation (supervised with weighted cross-entropy loss).

Lseg = −

〈∑
s∈S

wsȳt,s ⊙ log(yt,s)

〉
(6)

ȳt,s represents the ground truth labels, yt,s denotes the predicted results, and ⊙ indicates element-
wise multiplication between the two matrices. For consecutive frames It−1 and It, our model in-
dependently estimates their respective depths, Dt−1 and Dt. These frames are then projected into
3D point clouds, Qt−1 and Qt, following the principles of 3D projection. The camera’s motion
between these frames is estimated by the pose network, producing a transformation matrix Tt−1→t.
This matrix is applied to the point cloud Qt to generate an estimated point cloud Q̂t−1, expressed
as Q̂t−1 = Tt−1→tQt. The image It is then reconstructed by warping the previous frame It−1

according to Eq. 7. The photometric loss Lph is calculated by comparing the reconstructed image
Ît−1→t with the actual target image It.

Qxy
t−1 = Dxy

t−1 ·K−1

[
x
y
1

]
, It−1→t [u] = It−1 ⟨u′⟩, Lph = ph (It, It−1→t) (7)

ph (It, It−1→t) =
α
2 (1− SSIM (It, It−1→t)) + (1− α) ∥(It, It−1→t)∥1 (8)

α is set to 0.85 Godard et al. (2019), and ph represents the photometric reconstruction error.
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Lph (p) = min
s∈[−1,1]

pe (It−1 (p) , It−1→t (p)) , Ls = |∂xd∗t | e−|∂xIt| + |∂yd∗t | e−|∂yIt| (9)

1 stands for forward, 2 stands for backward. Following Godard et al. (2019), we use edge-aware
smoothness loss Ls to sharpen edges and smooth continuous depth surfaces in the depth.

In dynamic scenes, the movement of dynamic and camera-related (DC) objects leads to contami-
nation in the photometric consistency error. To address this issue, we construct a dynamic object
mask µt to filter out these dynamic objects, ensuring that photometric error is computed only on pix-
els corresponding to static objects. Specifically, we project the semantic segmentation result mt−1

from time step t − 1 to the current frame t, and use a nearest-neighbor sampling strategy to retain
the class information of the nearest pixel, ensuring the accuracy of the projected semantic mask.
mt−1→t = near(mt−1,ut→t−1,ut−1). Inspired by Klingner et al. (2020), we learn the features of
DC objects by determining when they are in a static state, rather than directly excluding all DC ob-
jects. If a DC object is observed to be in motion, the semantic mask projected onto the target image
mt−1→t will have lower consistency with the semantic mask in the target image mt, as shown in
Fig. 4. Based on this, we can calculate the Intersection over Union (IoU) for dynamic object classes
between mt−1→t and mt is Λt,t−1 =

∑
i∈I κt,t−1,i/

∑
i∈I νt,t−1,i,

κt,t−1,i =

{
1, mt,i ∈ SDC ∧mt−1→t,i ∈ SDC

0, else
, νt,t−1,i =

{
1, mt,i ∈ SDC ∨mt−1→t,i ∈ SDC

0, else
(10)

The indicator Λt,t′ ∈ [0, 1] represents perfect alignment and no moving DC objects when it equals
1, while a value of 0 indicates a significant presence of moving DC objects. If two frames at times
t′ ∈ T ′ = {t− 1, t+ 1} are considered, the mean value Λt across all Λt,t′ is computed. We define
a threshold θΛ ∈ [0, 1], above which an image is regarded as static. By defining moving DC object
classes SDC ⊂ S, the DC object mask µt ∈ {0, 1} is defined by its pixel elements:

µt,i =

{
1, mt,i /∈ SDC ∧mt−1→t,i /∈ SDC

0, else.
(11)

In the mask, for each pixel position i belonging to a DC object in any of the frames, the value is
0, and 1 otherwise. After obtaining the DC object mask µt, we can define a semantically-guided
photometric loss based on Equation 9.

Lsegph (p) = min
s∈[−1,1]

µt ⊙ pe (It−1 (p) , It−1→t (p)) , (12)

We determine whether each image is static or dynamic after each epoch by calculating the mean
value Λt for each image and selecting the threshold θΛ. During training, if Λt < θΛ, we apply the
semantically-masked photometric loss from Equation 12; otherwise, we use the Equation 9

4.3 SELF-SUPERVISED CONTRASTIVE LEARNING

We use a contrastive learning self-supervised framework, as shown in Fig 1, where the Anchor Net-
work and Target Network share the same architecture. The only difference between the two models
is how their weights are updated. The architecture and weights θs of the Anchor Network follow
Section 4.1, while the weights θs of the Target Network are updated as the exponential moving av-
erage of the Anchor Network’s weights. We use physics depth as labels to train the Anchor model,
while simultaneously updating the Target model. For the depth predicted by the Target model, we
ignore unreliable pseudo-label pixel locations when calculating the unsupervised loss and use con-
trastive loss to fully leverage the unreliable pixels excluded from the unsupervised loss. To mitigate
overfitting to low-quality pseudo-labels of physics depth, we filter out unreliable labels based on the
entropy of each pixel’s probability distribution. Specifically, let pij represent the softmax proba-
bilities produced by the Target model for the i-th unlabeled image at pixel j, where C denotes the
number of classes. Its entropy is computed by:

H(pij) = −
C−1∑
c=0

pij(c) log pij(c), (13)

where pij(c) represents the value of pij at the c-th dimension. We classify pixels with entropy in
the top αt at training epoch t as unreliable pseudo-labels. These unreliable labels are excluded from
supervision. Consequently, we define the pseudo-label for the i-th unlabeled image at pixel j as:

d̂uij =

{
argmax

c
pij(c), if H(pij) < γt,

ignore, otherwise,
(14)

6
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Full Physics Road Surface Flat Surface Edge Extended Dense Physics
depth Physics depth Physics depth Physics depth depth

+/- 5% error 47.29% 80.24% 60.30% 41.83% 38.88%
+/- 10 % error 58.34% 99.33% 74.89% 55.44% 52.45%

Table 1: Physics depth in a sample KITTI image.

where γt represents the entropy threshold at t-th training step. The setting of γt is based on Wang
et al. (2022). As self-supervised training progresses, the predicted depth in unlabeled regions be-
comes more reliable, allowing a gradual reduction in the proportion of unreliable pixels. Once
reliable pseudo-labels are obtained, they are included in the unsupervised loss in Eq. 15. For self-
supervised training with pseudo-labeled images, we use cross-entropy loss Lu.

Lu =
1

|Bu|
∑

xu
i ∈Bu

ℓce(d̂
l′

u , d̂
u
i ), (15)

where d̂u
i is the pseudo-label for the i-th unlabeled image. The weight λu for Lu is defined as the

reciprocal of the percentage of pixels with entropy smaller than threshold γt in the current mini-batch
multiplied by a base weight η:

λu = η · |Bu| ×H ×W∑|Bu|
i=1

∑H×W
j=1 ⊮

[
ŷuij ̸= ignore

] (16)

where ⊮(·) is the indicator function, and η is set to 1. Since physics depth is accurate in flat regions,
errors elsewhere may lead to inaccurate pseudo-labels from the Anchor network. Ignoring these
areas would reduce the amount of available training data. However, unreliable physics depth is
classified as less likely to belong to regions with large depth differences, so we select it as a negative
sample. Our contrastive learning framework consists of three components: anchor pixel, positive
candidate, and negative candidate. During training, anchor pixels are sampled for each class in the
mini batch. The set of features for labeled anchor pixels in class c is denoted as Al

c:

Al
c = {zij | dij = c, pij(c) > δp} , (17)

where dij is the ground truth for pixel j in labeled image i, zij represents its feature, and δp is the
positive threshold, set to 0.3. For unlabeled data, Au

c is similarly defined using the pseudo-label d̂ij ,
and the final set of all qualified anchors for class c is denoted as Ac.

Au
c =

{
zij | d̂ij = c, pij(c) > δp

}
,Ac = Al

c ∪ Au
c . (18)

Positive and Negative Samples. For each class, the positive sample is represented by the centroid
of all anchors, computed as:

z+c =
1

|Ac|
∑

zc∈Ac

zc. (19)

The negative samples are determined using a binary variable nij(c), which indicates if the j-th pixel
of image i qualifies as a negative sample for class c. This is defined as:

nij(c) =

{
nl
ij(c), if image i is labeled,

nu
ij(c), otherwise,

(20)

For labeled images, a pixel qualifies as a negative sample for class c if: (a) it does not belong to class
c, and (b) it is difficult to distinguish between class c and its true category. This is represented by:

nl
ij(c) = ⊮ [yij ̸= c] · ⊮ [0 ≤ Oij(c) < rl] , (21)

where Oij represents the pixel-level category ranking, and rl is the lower rank threshold, set to 3.
For unlabeled images, a pixel is considered a negative sample for class c if: (a) it is unreliable, (b) it
is unlikely to belong to class c, and (c) it does not belong to the least probable categories.

nu
ij(c) = ⊮ [H(pij) > γt] · ⊮ [rl ≤ Oij(c) < rh] , (22)

where rh is the upper rank threshold set to 20. Finally, the set of negative samples for class c is:

Nc = {zij | nij(c) = 1} . (23)

Lc represents the pixel-level InfoNCE Oord et al. (2018) loss, defined as:
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Method Scale Test AbsRel ↓ Sq Rel↓ RMSE↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Monodepth2 Godard et al. (2019) LiDAR Scale 32.260 0.159 1.689 5.168 0.238 0.830 0.931 0.967

Physics Depth Scale 32.487 0.158 1.968 5.287 0.242 0.842 0.930 0.966
MonoVit Zhao et al. (2022) LiDAR Scale 28.354 0.110 0.759 4.248 0.199 0.872 0.954 0.979

Physics Depth Scale 28.096 0.108 0.743 4.241 0.200 0.874 0.955 0.979
SQLDepth Wang et al. (2023b) LiDAR Scale 43.51 0.087 0.659 4.096 0.165 0.920 0.970 0.984

Physics Depth Scale 44.17 0.089 0.664 4.101 0.169 0.918 0.969 0.982

Table 2: Evaluation of different models with LiDAR Depth Scaling Factor and Physics Depth Scal-
ing Factor.

KITTI Date Road Physics
Depth Error: +/- 5%

Road Physics
Depth Error: +/- 10%

Flat Surface
Physics Depth
Error: +/- 5%

Flat Surface
Physics Depth
Error: +/- 10%

2011-09-26 84.28% 96.26% 75.08% 89%
2011-09-28 80.61% 85.64% 61.21% 77%
2011-09-29 90.53% 97.34% 74.46% 91%
2011-09-30 76.43% 91.86% 56.98% 81%
2011-10-0 78.12% 94.61% 62.77% 85%

Table 3: Error between physics depth and
KITTI Ground truth. The proportion of the
5-days road physics depth error and the flat sur-
face physics depth error within 5% and within
10% of ground truth, respectively, in the KITTI
dataset.

Method Type AbsRel ↓ Sq Rel↓ RMSE↓ log10↓
Zhou Zhou et al. (2017) S 0.383 5.321 10.470 0.478
DDVO Wang et al. (2018) M 0.387 4.720 8.090 0.204
Monodepth2 Godard et al. (2019) M 0.322 3.589 7.417 0.163
CADepthNet Yan et al. (2021) M 0.312 3.086 7.066 0.159
SQLDepth Wang et al. (2023b) M 0.306 2.402 6.856 0.151
Ours M 0.304 2.213 6.792 0.148

Table 4: The quantitative depth comparison of
the Make3d dataset.

City
Road Physics
Depth Error:
+/- 5%

Road Physics
Depth Error:
+/- 10%

Ground Surface
Physics Depth
Error: +/- 5%

Ground Surface
Physics Depth
Error: +/- 10%

aachen 87.48% 94.77% 73.17% 86.94%
bochum 80.76% 93.22% 65.51% 83.95%
bremen 86.55% 97.64% 72.60% 88.29%
cologne 81.66% 98.88% 75.14% 88.82%
darmstadt 82.49% 95.44% 69.95% 86.56%
dusseldorf 83.22% 93.59% 68.79% 84.96%
erfurt 83.78% 94.26% 69.58% 85.85%
hamburg 82.77% 96.81% 67.93% 84.22%
hanover 76.59% 97.45% 64.71% 83.00%
monchengladbach 83.42% 94.73% 63.75% 82.48%
strasbourg 84.63% 95.62% 61.44% 81.52%
stuttgart 80.49% 96.38% 68.52% 85.26%
tubingen 85.44% 92.76% 67.22% 84.69%
ulm 89.00% 98.38% 73.35% 87.89%
weimar 80.06% 93.69% 64.47% 82.58%
zurich 88.99% 97.52% 70.72% 85.82%
jena 77.90% 92.85% 63.75% 81.85%
krefeld 86.23% 94.11% 65.83% 83.92%

Table 5: Error between physics depth and
Cityscape Ground truth: The proportion of
Road Physics Depth Error and Ground Surface
Physics Depth Error for different cities in the
Cityscape dataset.

Lc =− 1

C ×M

C−1∑
c=0

M∑
i=1

log

 e⟨zci,z
+
ci⟩/τ

e⟨zci,z
+
ci⟩/τ +

∑N
j=1 e

⟨zci,z
−
cij⟩/τ

 , (24)

where M is the total number of anchor pixels, and zci denotes the representation of the i-th anchor
for class c. Each anchor pixel is associated with one positive sample, zci+, and N negative samples,
z−cij . The feature representation z = g ◦ h(x) is obtained from the representation head. The cosine
similarity between two pixel features, denoted as ⟨·, ·⟩, ranges from −1 to 1, requiring a temperature
parameter τ . Following Wang et al. (2022), we set M = 50, N = 256, and τ = 0.5.

5 EXPERIMENT

5.1 PHYSICS DEPTH EVALUATION

Physics Depth Methodology: In Section 3, five types of physics depth are analyzed: complete,
road, ground, edge-expanded, and dense physics depth. Using the KITTI dataset, Figure 2a illus-
trates these types. The process starts with applying our segmentation result to segment the image,
where ’d’ and ’f’ refer to road and flat ground areas. The images in ’c’, ’e’, ’h’, ’g’, and ’i’ show
different stages of the physics depth calculation.

Error distribution: The comparison in Fig. 2b and Table 1 shows that the physics-based depth
estimation is highly accurate for road surfaces (b), with over 99% of pixels having less than 10%
error and more than 81% having less than 5% error compared to LiDAR data. This suggests that
physics-based depth can reliably substitute LiDAR for scaling in self-supervised monocular depth
estimation on flat surfaces. However, accuracy decreases when applied to surfaces like sidewalks
and parking lots, which are not perfectly level with the camera, and errors increase further when
extending the logic to vertical surfaces.

Scale Alignment: In Table 2, we compared three monocular depth estimation models by calculating
the ratio between model-predicted depths and both ground truth and physics depth. Results show
the scaling factor derived from physics depth closely matches that of the ground truth, with strong
performance in the Monovit model. This indicates that physics depth can reliably replace LiDAR
for calculating the scaling factor, enhancing the autonomy of self-supervised models.

5.2 EVALUATION OF PHYSICS DEPTH

In this paper, we systematically generated physics-based depths for the entire KITTI and Cityscapes
datasets to support model training. We examined variations in road and flat surface physics depths
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Method Type Year Resolution AbsRel ↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Velocity depth Zhou et al. (2020) M 2020 1024×320 0.112 0.816 4.715 0.190 0.880 0.960 0.982
Monodepth2 Godard et al. (2019) MS 2019 1024×320 0.106 0.806 4.630 0.193 0.876 0.958 0.980
HR-Depth Lyu et al. (2021) MS 2021 1024×320 0.101 0.716 4.395 0.179 0.899 0.966 0.983
Lite-Mono Zhang et al. (2023) M 2023 1024×320 0.097 0.710 4.309 0.174 0.905 0.967 0.984
MonoVIT Zhao et al. (2022) M 2023 1024×320 0.096 0.714 4.292 0.172 0.908 0.968 0.984
DualRefine Bangunharcana et al. (2023) MS 2023 1024×320 0.096 0.694 4.264 0.173 0.908 0.968 0.984
ManyDepth Watson et al. (2021) M 2021 1024×320 0.087 0.685 4.142 0.167 0.920 0.968 0.983
RA-Depth He et al. (2022) M 2022 1024×320 0.097 0.608 4.131 0.174 0.901 0.968 0.985
PlaneDepth Wang et al. (2023a) MS 2023 1280×384 0.090 0.584 4.130 0.182 0.896 0.962 0.981
SQLDepth Wang et al. (2023b) M 2023 1024×320 0.087 0.659 4.096 0.165 0.920 0.970 0.984
Ours M 2024 1024×320 0.085 0.583 3.770 0.158 0.922 0.970 0.986

Table 6: The quantitative depth comparison using the Eigen split of the KITTI dataset Geiger et al.
(2013). M: trained with monocular videos; MS: trained with stereo pairs.

Method Size Test AbsRel ↓ Sq Rel↓ RMSE↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Pilzer et al Pilzer et al. (2018) 512× 256 1 0.240 4.264 8.049 0.334 0.710 0.871 0.937
Struct2Depth Casser et al. (2019) 416× 128 1 0.145 1.737 7.280 0.205 0.813 0.942 0.976
Monodepth2 Godard et al. (2019) 416× 128 1 0.129 1.569 6.876 0.187 0.849 0.957 0.983
Lee Lee et al. (2021b) 832× 256 1 0.111 1.158 6.437 0.182 0.868 0.961 0.983
InstaDM Lee et al. (2021a) 832× 256 1 0.111 1.158 6.437 0.182 0.868 0.961 0.983
ManyDepth Watson et al. (2021) 416× 128 2 0.114 1.193 6.223 0.170 0.875 0.967 0.989
SQLDepth Wang et al. (2023b) 416× 128 1 0.110 1.130 6.264 0.165 0.881 0.971 0.991
Ours 416× 128 1 0.103 1.090 5.937 0.157 0.895 0.974 0.991

Table 7: The quantitative depth comparison of the Cityscape dataset. M: trained with monocular
videos; MS: trained with stereo pairs.

across both datasets. As indicated in Tables 3 and 5, around 90% of KITTI pixels had errors below
10%, with 80% showing less than 5% error compared to LiDAR depths. The Cityscapes dataset
performed even better, with 95% of pixels within 10% error and 85% within 5% compared to
the Cityscapes disparity data. While road physics depth exhibited higher accuracy than flat sur-
face depth, road pixels were fewer in number. To increase pixel density, we extended the physics
depth approach to flat surfaces, though this introduced slightly larger error margins. Nonetheless,
as shown in Tables 3 and 5, despite being less accurate, the flat surface depth still enhances the
dataset and helps mitigate overfitting. Our analysis also revealed that KITTI had lower accuracy
than Cityscapes, likely due to differences in camera calibration—KITTI uses one calibration file
per day, whereas Cityscapes provides individual calibration files for each image. This suggests that
improved calibration contributes to better physics depth accuracy. Our method, particularly for flat
surfaces like roads, shows strong potential to replace LiDAR for calculating scale factors in self-
supervised monocular depth estimation. Visual results are provided in Figure 2a.

5.3 DEPTH ESTIMATION

KITTI: We evaluated our model on the KITTI dataset. As shown in Table 6, our method outper-
forms previous state-of-the-art self-supervised approaches. These gains are due to the integration
of physics-based depth, confidence measures, and consistency checks in both 2D and 3D spaces.
Figure 3a highlights the model’s superior ability to capture detailed scene structures and achieve
accurate reconstructions, surpassing MonoVit Zhao et al. (2022), RA-Depth He et al. (2022), and
DualRefine Bangunharcana et al. (2023).

Cityscapes: We evaluated our model’s generalization by fine-tuning and training it from scratch on
the Cityscapes dataset, using a model pre-trained on KITTI for fine-tuning. As shown in Table 7,
our model consistently outperforms competing approaches.

Make3D: To assess generalization, we conducted a zero-shot evaluation on the Make3D dataset
using the model pre-trained on KITTI. As shown in Table 4, our model achieves lower errors com-
pared to other zero-shot models, demonstrating strong generalization capability. Figure 3b further
illustrates the model’s superior performance, delivering sharper depth predictions and more accurate
scene details, showcasing its adaptability to diverse scenarios without requiring fine-tuning.

5.4 ABLATION STUDY

Physics Depth: Table 8 shows that using physics depth as labels for supervised learning results in
significant errors. While the physics depth has smaller errors for ground and flat surfaces, certain
interpolated pixel depths exhibit larger errors.

Contrastive Module: Table 8 demonstrates that the contrastive learning module effectively lever-
ages both accurate and inaccurate depth information from the physics depth, mitigating the impact
of erroneous depths on the model. This improves the accuracy of depth estimation.
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(a) Physics Depth Methodology on KITTI: (a) se-
mantic segmented image (b) RGB image (c) full
physics depth (d) road segmented from seman-
tic segmented image (e) physics depth of road (f)
ground segmented from semantic segmented im-
age (g) physics depth of ground (h) edge extended
physics depth (i) dense physics depth.

(b) Error distribution of Physics depth: (a) full
physics depth and error distribution (b) road physics
depth and error distribution (c) flat surface physics
depth and error distribution (d) edge extended physics
depth and error distribution (e) dense physics depth
and error distribution (f) sparse LiDAR depth as
ground truth.

Figure 2: Left: Physics Depth Methodology on KITTI; Right: Error distribution of Physics depth.

(a) Qualitative results on KITTI: From top to
bottom the models are MonoVit Zhao et al.
(2022), RA-Depth He et al. (2022), DualRe-
fine Bangunharcana et al. (2023), our models.

(b) Qualitative results on make3d (Zero-shot): From left to right
the models are Monodepth2 Godard et al. (2019), RA-Depth He
et al. (2022), MonoVit Zhao et al. (2022), SQLDepth Wang et al.
(2023b), our models.

Figure 3: Left: Qualitative results on KITTI; Right: Qualitative results on make3d (Zero-shot).

Semantically Guided Photometric Loss: Table 8 Compared to using physics depth alone in super-
vised learning, photometric reprojection error helps refine the erroneous regions in the physics depth.
Furthermore, by using semantic segmentation to identify moving objects, the segmentation-guided
reprojection error further enhances the accuracy of self-supervised depth estimation.

Physic
Depth

Photometric
Loss

Semantically
Guided

Contrastive
Module AbsRel ↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25 ↑

✓ 0.159 1.231 5.898 0.243 0.784
✓ ✓ 0.090 0.641 4.170 0.183 0.895
✓ ✓ ✓ 0.087 0.612 4.043 0.164 0.913
✓ ✓ ✓ ✓ 0.085 0.583 3.770 0.158 0.922

Table 8: Ablation study on KITTI: Ground depth represents the depth obtained using only the
ground, while physics depth represents the depth obtained using the complete physics depth.

6 CONCLUSION

This paper proposes a self-supervised monocular depth estimation model based on calculating
physics depth using the camera model. Existing self-supervised techniques still lag behind super-
vised methods in accuracy and often require ground truth to resolve scale issues. Our network also
outputs semantic segmentation, used for calculating physics depth and identifying dynamic objects.
We introduce a segmentation-guided photometric reprojection loss, which improves accuracy by
excluding dynamic objects. For physics depth, we designed an Anchor-Target network that fully
utilizes both correct and erroneous depth information, enhancing the performance of self-supervised
models. By leveraging physics depth, we resolve the scale problem in monocular depth estimation.
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