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Measuring Goal-Directedness

Anonymous Authors1

Abstract
We define maximum entropy goal-directedness
(MEG), a formal measure of goal-directedness
in causal models and Markov decision processes,
and give algorithms for computing it. Measuring
goal-directedness is important, as its a critical ele-
ment of many concerns about harm from AI. It is
also of philosophical interest, as goal-directedness
is a key aspect of agency. MEG is based on an
adaption of the maximum causal entropy frame-
work used in inverse reinforcement learning. It
can be used to measures goal-directedness with
respect to a known utility function, a hypothe-
sis class of utility functions, or a set of random
variables. We prove that MEG satisfies several
desiderata, and demonstrate our algorithms in pre-
liminary experiments.

1. Introduction
In order to build more useful AI systems, a natural inclina-
tion is to try to make them more agentic. But while agents
built from language models are touted as the next big ad-
vance (Wang et al., 2024), agentic systems have been identi-
fied as a potential source of harms from the mundane (Chan
et al., 2023) to the catastrophic (Ngo et al., 2022). Agency
is thus a key focus of behavioural evaluations (Shevlane
et al., 2023) and governance (Shavit et al.). Some prominent
researchers have even called for a shift towards designing ex-
plicitly non-agentic systems (Dennett, 2017; Bengio, 2023).

A critical aspect of agentcy is the ability to pursue goals.
Indeed, the standard theory of agency defines agency as the
capacity for intentional action – action that can be explained
in terms of mental states such as goals (Schlosser, 2019).
But when are we justified in ascribing such mental states?
According to Dennett’s instrumentalist philosophy of mind
(1989), whenever doing so is useful for predicting a system’s
behaviour.
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Figure 1. Computing maximum entropy goal-directedness (MEG).

This paper’s key contribution is a method for formally mea-
suring goal-directedness, based on that idea. Since pursuing
goals is about having a particular causal effect on the envi-
ronment, it is natural to define it in a causal model. Causal
models are general enough to encompass most frameworks
popular among ML practitioners, such as single decision
prediction, classification, and regression tasks as well as
multi-decision (partially observable) Markov decision pro-
cesses. They also offer enough structure to usefully model
many ethics and safety problems (Everitt et al., 2021a; Ward
et al., 2024a; Richens et al., 2022; Richens and Everitt,
2024; Everitt et al., 2021b; Ward et al., 2024b; Halpern and
Kleiman-Weiner, 2018; Wachter et al., 2017; Kusner et al.,
2017; Kenton et al., 2023).

MEG operationalises goal-directedness as follows, illus-
trated by the subsequent running example.

A variable D in a causal model is goal-directed
with respect to a utility function U to the extent
that the conditional probability distribution of D
is well-predicted by the hypothesis that D is opti-
mising U .

Example 1. A mouse begins at the centre of a gridworld
(Figure 1a). It observes that a block of cheese is located
either to the right or left (S) with equal probability, proceeds
either away from it or towards it (D), and thus either obtains
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Evaluating Agency through Maximum-Entropy Goal-Directedness

the cheese or does not (T ).

Suppose that the mouse moves left when the cheese is to
the left and right when it is to the right, thus consistently
obtaining the cheese. Intuitively, this behaviour seems goal-
directed, but can we quantify how much? Figure 1 gives
an overview of our procedure. We first model the system
of interest as a causal Bayesian network (Figure 1b) with
variables S for the cheese’s position, D for the mouse’s
movement, and T for whether or not the mouse obtains
the cheese. We identify a candidate decision variable D
and target variable T , and hypothesise that the mouse is
optimising a utility function of T (Figure 1c). We form a
model of what behaviour we should expect from D if it
is indeed optimising U and measure how well this model
predicts D’s observed behaviour (Figure 1d).

Ziebart (2010)’s maximum causal entropy (MCE) frame-
work suggests a promising way to construct a model for
behaviour under a given utility function. However, there are
several obstacles to applying it to our problem: it cannot
measure the predictive usefulness of known utility functions,
and it only finds the most predictive linear utility function.
In practice, arbitrary known utility functions can be plugged
in, but the results are not scale-invariant. We overcome
these difficulties by returning to first principles and deriving
an updated version of the MCE framework.

Our contributions are as follows. We (i) adapt the MCE
framework to derive maximum entropy goal-directedness
(MEG), a philosophically-grounded measure of goal-
directedness with respect to known utility functions, and
show that it satisfies several key desiderata (Section 3); (ii)
we extend MEG to measure goal-directedness in cases with-
out a known utility function (Section 4); (iii) we adapt the
algorithms of the MCE framework to conduct small-scale
experiments (Section 5).

Related Work. Inverse reinforcement learning (IRL) (Ng
and Russell, 2000) focuses on the question of which goal
a system is optimising, whilst we are interested in to what
extent it can be seen as optimising a goal. Several works
use different formalisms to consider when it is valid to
view a system as an agent. Biehl and Virgo (2022); Virgo
et al. (2021) propose a definition of agency in Moore ma-
chines based on whether a system’s internal state can be
interpreted as beliefs about the hidden states of a POMDP.
Others take a Bayesian approach inspired by Dennett’s in-
tentional stance. Oesterheld (2016) combines the intentional
stance with Bayes’ theorem in cellular automata but does not
consider specific models of behaviour. More closely related
to our work is (Orseau et al., 2018), which applies Bayesian
IRL in POMDPs using a Solomonoff prior over utility func-
tions and an ε-greedy model of behaviour. This lets them
infer a posterior probability distribution over whether an ob-

served system is a (goal-directed) ”agent” or ”just a device”.
The main thing that distinguishes our approach from these
is that we consider arbitrary variables in a causal model, and
we derive our behaviour model from the principle of maxi-
mum entropy. Moreover, our approach leads to algorithms
that can take advantage of differentiable classes of utility
functions, so it is amenable to being scaled up using deep
neural networks. Like us, (Kenton et al., 2023) considers
goal-directedness in a causal graph, but they require vari-
ables to be manually labelled as mechanisms or object-level,
and only provide a binary distinction between agentic and
non-agentic systems (see also Appendix D).

2. Background
We use capital letters for random variables V , we write
dom(V ) for their domain, which we assume to be finite,
and we use lowercase for outcomes v ∈ dom(V ). Bold-
face denotes sets of variables V = {V1, . . . , Vn}, and their
outcomes v ∈ dom(V ) =×i

dom(Vi). Parents and de-
scendants of V in a graph are denoted by PaV and DescV ,
respectively (where paV and descV are their instantiations).

Causal Bayesian networks (CBNs) are a class of probabilis-
tic graphical models used to represent causal relationships
between random variables (Pearl, 2009).

Definition 2.1 (Causal Bayesian network). A Bayesian
network M = (G,P ) over a set of variables V =
{V1, . . . , Vn} consists of a joint probability distribution P
which factors according to a directed acyclic graph (DAG)
G, i.e., P (V1, . . . , Vn) =

∏n
i=1 P (Vi | PaVi), where PaVi

are the parents of Vi in G. A Bayesian network is causal if
its edges represent direct causal relationships, or formally
if the result of an intervention do(X = x) for any X ⊆ V
can be computed using the truncated factorisation formula:
P (v | do(X = x)) = Πi:vi /∈xP (vi | pavi) if v is consis-
tent with x or P (V | do(X = x)) = 0 otherwise.

Figure 1b depicts Example 1 as a CBN, showing the causal
relationships between the location of the cheese (S), the
mouse’s behavioural response (D), and whether or not the
mouse obtains the cheese (T ).

We are interested in to what extent a set of random variables
in a CBN can be seen as goal-directed. That is, to what
extent we can interpret them as decisions optimising a util-
ity function. In other words, we are interested in moving
from a CBN to a causal influence diagram (CID), a type
of probabilistic graphical model that explicitly identifies
decision and utility variables.

Definition 2.2 (Causal Influence Diagram (Everitt et al.,
2021a)). A causal influence diagram (CID) M = (G,P ) is
a CBN where the variables V are partitioned into decision
D, chance X , and utility variables U . Instead of a full joint
distribution over V , P consists of conditional probability
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Evaluating Agency through Maximum-Entropy Goal-Directedness

distributions (CPDs) for each non-decision variable V ∈
V \D.

A CID can be combined with a policy π, which specifies a
CPD πD for each decision variable D, in order to obtain a
full joint distribution. We call the sum of the utility variables
the utility function and denote it U =

∑
U∈U U . Policies

are evaluated by their total expected utility Eπ[U ].

CIDs can model a broad class of decision problems, in-
cluding Markov decision processes (MDPs) and partially
observable Markov decision processes (POMDPs) (Everitt
et al., 2021b).

3. Measuring goal-directedness with respect to
a known utility function

Maximum Entropy Goal-directednes. Dennett’s instru-
mentalist approach to agency says that we can ascribe men-
tal states (such as utilities) to a system to the extent that
doing so is useful for predicting its behaviour (Dennett,
1989). To operationalise this, we need a model of what
behaviour is predicted by a utility function. According to
the principle of maximum entropy (Jaynes, 1957), we should
choose a probability distribution with the highest entropy
distribution satisfying our requirements, thus minimising
unnecessary assumptions (following Occam’s razor). We
can measure the entropy of a policy by the expected en-
tropy of its decision variables conditional on their parents
Hπ(D || PaD) = −

∑
D∈D Ed,PaD∼Pπ

log πD(d | PaD).
This is Ziebart et al. (2010)’s causal entropy, which we
usually refer to as just the entropy of π.

In our setting, the relevant constraint is expected utility. To
avoid assuming that only optimal agents are goal-directed,
we construct a set of models of behaviour which covers all
levels of competence an agent optimising utility U could
have. We define the set of attainable expected utilities in
a CID as att(U) = {u ∈ R | ∃π ∈ Π(Eπ [U ] = u)} (this
will always be an interval).
Definition 3.1 (Maximum entropy policy set, known util-
ity function). Let M = (G,P ) be a CID with de-
cision variables D and utility function U . The maxi-
mum entropy policy set for u ∈ att(U) is Πmaxent

U,u =
argmaxπ|Eπ [U ]=u Hπ(D || PaD). The maximum en-
tropy policy set for U is the set of maximum entropy
policies for any attainable expected utility Πmaxent

U =⋃
u∈att(U) Π

maxent
U,u .

For each attainable expected utility, Πmaxent
U contains the

highest entropy policy which attains it. In MDPs, this pol-
icy is unique πmaxent

U,u and can be found with backwards
induction (see Appendix A).

We measure predictive accuracy using cross-entropy, as is
common in ML. We subtract the predictive accuracy of the

uniform distribution, so that we measure predictive accuracy
relative to random chance. This makes MEG always non-
negative.

Definition 3.2 (Maximum entropy goal-directedness, known
utility function). Let M = (G,P ) be a CID with decision
variables D and utility function U . The maximum entropy
goal-directedness (MEG) of a policy π with respect to U is
MEGU (π) = maxπmaxent∈Πmaxent

U

Eπ

[ ∑
D∈D

(
log πmaxent(D | PaD)− log

1

| dom(D) |

)]
.

(1)

The maximising policy in Πmaxent
U in Equation (1) obtains

the same expected utility as π. So rather than taking the
maximum over a wide set of maxent policies, MEG can
also be computed by measuring the predictive accuracy of
the maxent policy satisfying the constraint Eπmaxent [U ] =
Eπ[U ].

If instead of having access to a policy π, we have access
to a set of trajectories {(pai

D1)
, Di

1, . . . ,paDi
n
, Di

n)}i, the
expectation Eπ in Equation (1) can be replaced with an
average over the trajectory set. This is an unbiased and
consistent estimate of MEGU (π) for the policy π generating
the trajectories.

Example. Consider a policy π in Example 1 that proceeds
towards the cheese with probability 0.8. How goal-directed
is this policy with respect to the utility function U that gives
+1 for obtaining the cheese and −1 otherwise?

To compute MEGU (π), we first find the maximum en-
tropy policy set Πmaxent

U , and then take the maximum pre-
dictive accuracy with respect to π. In a single-decision
setting, for each attainable expected utility u there is a
unique πmaxent

U,u . It has the form of a Boltzmann policy

πmaxent
U,u (d | s) = exp(β·E[U |d,s])∑

d′ exp(β·E[U |d′,s]) . The rationality
parameter β = β(u) can be varied to get the right ex-
pected utility. Predictive accuracy with respect to π is max-
imised by πmaxent

U,0.8 , which has a rationality parameter of
β = log 2. The expected logprob of a prediction of this pol-
icy is Eπ

[
log πmaxent

U,0.8 (D | PaD)
]
= −0.50, while the ex-

pected logprob of a uniform prediction is log( 12 ) = −0.69.
So we get that MEGU (π) = −0.50 − (−0.69) = 0.19.
For comparison, predictive accuracy for the optimal policy
π∗ is maximised when β = ∞, and has MEGU (π

∗) =
0− (−0.69) = 0.69.

Properties. We now show that MEG satisfies three im-
portant desiderata. First, since utility functions are usually
only defined up to translation and rescaling, a measure of
goal-directedness with respect to a utility function should be
translation and scale invariant. MEG satisfies this property:
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Proposition 3.1 (Translation and scale invariance). Let M1

be a CID with utility function U1, and let M2 be an identical
CID but with utility function U2 = a ·U1+b, for some a, b ∈
R. Then for any policy π, MEGU1

(π) = MEGU2
(π).

Second, goal-directedness should be minimal when ac-
tions are chosen completely at random and maximal when
uniquely optimal actions are chosen.

Proposition 3.2 (Bounds). Let M be a CID with utility func-
tion U . Then for any policy π we have 0 ≤ MEGU (π) ≤∑

D∈D log(|dom(D)|), with equality in the lower bound if
π is the uniform policy, and equality in the upper bound if
and only if π is the unique optimal (or anti-optimal) policy
with respect to U .

Note that MEG has a natural interpretation as the amount of
evidence provided for a goal-directed policy over a purely
random policy. The larger a decision problem, the more
opportunity there is to see this evidence, and so the higher
MEG can be.

Third, a system can never be goal-directed towards a utility
function it cannot affect.

Proposition 3.3 (No goal-directedness without causal influ-
ence). Let M = (G,P ) be a CID with utility function U
and decision variables D such that, Desc(D) ∩ PaU = ∅.
Then MEGU (D) = 0.

Comparison to MCE IRL Our method is closely related
to MCE IRL (Ziebart et al., 2010; Gleave and Toyer, 2022).
In this subsection, we discuss the key similarities and differ-
ences. The MCE IRL method seeks to find a utility function
that explains the policy π. It starts by identifying a set of
n linear features fi and seeks a model policy that imitates
π as far as these features are concerned but otherwise is as
random as possible. It thus applies the principle of max-
imum entropy with n linear constraints. The form of the
model policy involves a weighted sum of these features. In
a single-decision example, it takes the form

πMCE(d | s) =
exp (E [

∑
i wifi | d, s])∑

d′ exp (E [wifi | d′, s])
. (2)

The weights wi are interpreted as a utility function over the
features fi. MCE IRL can, therefore, only return a linear
utility function.

In contrast, our method seeks to measure the goal-
directedness of π with respect to an arbitrary utility function
U , linear or otherwise. Rather than constructing a single
maximum entropy policy with n linear constraints, we con-
struct a class of maximum entropy policies, each with a
different single constraint on the expected utility.

A naive alternative to defining the goal-directedness of π
with respect to U as the maximum predictive accuracy across

U’s maximum policy set, we could simply plug in our util-
ity function U to πMCE from Equation (2), and use that to
measure predictive accuracy. If U is linear in the features
fi, we could substitute in the appropriate weights, but even
if not, we could still replace

∑
i wifi with U . Indeed, this

is often done with nonlinear utility functions in deep MCE
IRL (Wulfmeier et al., 2015).

However, this would not have a formal justification, and we
would run into a problem: scale non-invariance. Plugging
in 2 · U would result in a more sharply peaked πMCE than
U ; in Example 1, we would get that the mouse is more goal-
directed towards 2 · U than U , with a predictive accuracy
(measured by negative cross-entropy) of -0.018 vs -0.13. In
contrast, constructing separate maximum entropy policies
for each expected utility automatically handles this issue.
The policy in Πmaxent

2·U which maximises predictive accuracy
for π has an inversely scaled rationality parameter β′ = β

2
compared to the maximally predictive policy in Πmaxent

2·U .
In other words, they are the same policy, and we get that
MEGU (π) = MEG2·U (π) = 0.19 (cf. Proposition 3.1).

4. Measuring goal-directedness without a
known utility function

In many cases where we want to apply MEG, we may not
know exactly what utility function the system could be
optimising. For example, we might suspect that a content
recommender is trying to influence a user’s preferences, but
may not know exactly in what way. In this section, we
extend our definitions for measuring goal-directedness to
the case where the utility function is unknown. We first
extend of notion of CIDs to consider various possible utility
functions.

Definition 4.1. A parametric-utility CID (CID) MΘ is a
set of CIDs {Mθ | θ ∈ Θ} which differ only in the CPDs
of their utility variables.

In effect, a parametric CID is a CID with a parametric
class of utility functions UΘ. The maximum entropy policy
set from Definition 3.1 is extended accordingly, to include
maximum entropy policies for each utility function and each
attainable expected utility with respect to it.

Definition 4.2 (Maximum entropy policy set, unknown
utility function). Let MΘ = (G,P ) be a parametric-
utility CID with decision variables D and utility function
UΘ. The maximum entropy policy set for UΘ is the set
of maximum entropy policies for any attainable expected
utility for any utility function in the class: Πmaxent

UΘ =⋃
θ∈Θ,u∈att(Uθ) Π

maxent
Uθ,u .

Definition 4.3 (MEG, unknown utility function). Let
MΘ = (G,P ) be a parametric-utility CID with decision
variables D and utility function UΘ. The maximum en-
tropy goal-directedness of a policy π with respect to UΘ is

4
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MEGUΘ(π) = maxU∈UΘ MEGU (π).

Definition 4.4 (MEG, target variables). Let M = (G,P )
be a CBN with variables V . Let D ⊆ V be a hypothesised
set of decision variables and T ⊆ V be a hypothesised set of
target variables. The maximum entropy goal-directedness of
D with respect to T , MEGT (D), is the goal-directedness
of π = P (D | PaD) in the parametric CID with decisions
D and utility functions U : dom(T ) → R (the set of all
utility functions over T ).

For example, if we only suspected that the mouse in Exam-
ple 1 was optimising some function of the cheese T , but
didn’t know which one, we could apply Definition 4.4 to
consider the goal-directedness towards T under any utility
function defined on T . Thanks to translation and scale in-
variance (Proposition 3.1), there are effectively only three
utility functions to consider: those that provide higher utility
to cheese than not cheese, those that do the opposite, and
those that are indifferent.

Note that T has to include some descendants of D, in order
to enable positive MEG (Proposition 3.3). However, it is
not necessary that T consists of only descendants of D (i.e.
T need not be a subset of Desc(D)). For example, goal-
conditional agents take an instruction as part of their input
PaD. The goal-directedness of such agents can only be fully
appreciated by including the instruction in T .

Pseudo-terminal goals. Definition 4.4 enable us to state a
result about pseudo-terminal goals: however goal-directed
some decision variables D are towards some target variables
T , it must be at least as goal-directed towards any variables
S which d-separate D from T . For example, in ??, the
agent must be at least as goal-directed towards S3 as it is
towards U3, since S3 blocks all paths (i.e. d-separates) from
{D1, D2} to U3.

Theorem 4.1 (Pseudo-terminal goals). Let M =
((V ,E), P ) be a CBN. Let D,T ,S ⊆ V such that
D ⊥ T | S. Then MEGT (D) ≤ MEGS(D).

It is well known that an agent that is goal-directed with re-
spect to some variable has an instrumental incentive to con-
trol any variables which mediate between the two (Everitt
et al., 2021a). Theorem 4.1 shows that if the mediating vari-
able d-separates the decision from the downstream variable,
then the instrumentally useful variable becomes indistin-
guishable in a certain sense from the terminally valued one.
This means that we do not have to look arbitrarily far into
the future to find evidence of goal-directedness. An agent
that is goal-directed with respect to next week must be goal-
directed with respect to tomorrow.
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Figure 2. (a) The CliffWorld environment. (b) MEG of ε-greedy
policies for varying ε. (c) MEG for optimal policies for various
reward functions.

5. Experiments
By adapting algorithms from the maximum causal en-
tropy framework (Ziebart, 2010), we can estimate MEG
in Markov decision processes. Figure 2c shows the results
of some preliminary experiments in the Cliffworld environ-
ment (Gleave et al., 2020). In the first, we measured the
goal-directedness of policies of varying degrees of optimal-
ity, as measured by the value of ε for different ε-greedy
policies. Predictably, the goal-directedness with respect to
the environment reward decreased toward 0 as the policy
became less optimal. So did unknown-utility MEG — since
as ε increases, the policy becomes increasingly uniform,
it does not appear goal-directed with respect to any utility
function over states.

In the second, we measured the goal-directedness of optimal
policies for reward functions specifying tasks of varying
difficulty. Goal-directedness with respect to the true reward
function decreased as the task became easier to complete.
A way to interpret this is that as the number of policies
which do well on a reward function increases, doing well
on that reward function provides less and less evidence for
deliberate optimisation. In contrast, unknown-utility MEG
stayed high even as the environment reward becomes easier
to satisfy, indicating there was some other reward function
for which the policy provided strong evidence. We discuss
our algorithms in Appendix A, and give more details on the
experiments in Appendix C.

6. Conclusion
We proposed maximum entropy goal-directedness (MEG), a
formal measure of goal-directedness grounded in the philo-
sophical literature and the maximum entropy principle. We
proved that MEG satisfies several key desiderata, including
scale invariance, and that it gives insights about instrumen-
tal goals. We conducted small scale experiments. In future
work we hope to apply MEG to neural network interpretabil-
ity by measuring the goal-directedness of a neural network
agent with respect to a hypothesis class of utility functions
constructed from the network’s hidden states.
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A. Computing MEG in Markov Decision
Processes

In this section, we give algorithms for computing MEG
in MDPs. First, we define what an MDP looks like as a
causal influence diagram. We then establish a soft value it-
eration algorithm for computing maximum entropy policies
in MDPs, which we use in algorithms for computing MEG
when the utility function is known or unknown.

Definition A.1. A Markov Decision Process (MDP) is
a CID with variables {St, Dt, Ut}nt=1, decisions D =
{Dt}nt=1 and utilities U = {Ut}nt=1, and such that for
t between 1 and n, PaDt

= {St}, PaUt
= {St}, while

PaSt
= {St−1, Dt−1} for t > 1, and PaS1

= ∅.

Constructing Maximum Entropy Policies In MDPs,
Ziebart’s soft value iteration algorithm can be used to con-
struct maximum entropy policies satisfying a set of linear
constraints. We apply it to construct maximum entropy
policies satisfying expected utility constraints.

Definition A.2 (Soft Q-Function). Let M = (G,P ) be an
MDP. Let β ∈ R. For each Dt ∈ D we define the soft
Q-function Qsoft

β,n : dom(Dt) × dom(PaDt
) → R via the

recursion:

Qsoft
β,t(dt | pat)

= E
[
Ut + logsumexp(β ·Qsoft

β,t+1(· | PaDt+1))
∣∣dt,pat+1

]
for t < n,

Qsoft
β,n(dn | pan)

= E [Un | dn,pan] ,

where logsumexpβ(Qsoft
β,t+1(· | PaDt+1)) =

log
∑

dt+1∈dom(Dt+1)
exp(βQsoft

β,t+1(dt+1 | PaDt+1
)).

Using the soft Q-function, we show that there is a unique
π ∈ Πmaxent

U,u for each U and u in MDPs.

Theorem A.1 (Maximum entropy policy in MDPs). Let
M = (G,P ) be an MDP with utility function U , and let
u ∈ att(U) be an attainable expected utility. Then there
exists a unique maximum entropy policy πmaxent

u ∈ Πmaxent
U,u ,

and it has the form

πmaxent
u,t (dt | pat) =

πmaxent
β,t (dt | pat) =

=
exp(β ·Qsoft

β,t(dt | pat))∑
d′∈dom(Dt)

exp(β ·Qsoft
β,t(d

′
t | pat))

where β = argmaxβ′∈R∪{∞,−∞}
∑

t Eπ

[
log(πmaxent

β′ (dt | pat))
]
.

Known Utility Function To apply Definition 3.1 to mea-
sure the goal-directedness of a policy π in a CID M with
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respect to a utility function U , we need to find the maximum
entropy policy in Πmaxent

U which best predicts π. We can
use Theorem A.1 to derive an algorithm that finds πmaxent

u

for any u ∈ att(U).

Fortunately, we do not need to consider each policy in
Πmaxent

U,u individually. We know the form of πmaxent
u , and

only the real-valued rationality parameter β varies depend-
ing on u. Denote policies of the form of ?? as πmaxent

β =
softmax(β ·Qβ,i). The gradient of the predictive accuracy
with respect to β is then

∇βEπ

[ ∑
D∈D

(
log πmaxent

β (D | PaD)− log
1

| dom(D) |

)]
= Eπ [U ]− Eπmaxent

β
[U ]

The predictive accuracy is a concave function of β, so we
can apply gradient ascent to find the global maximum in β,
which is the same as finding the maximum in u.

MEGU (π) can therefore be found by alternating between
applying the soft value iteration of Definition A.2 to find
πmaxent
β , computing Eπ [U ] − Eπmaxent

β
[U ], and taking a

gradient step. See Algorithm 1.

Algorithm 1 Known-utility MEG in MDPs
Input: MDP M , policy π
Output: MEGU (π)

1: initialise rationality parameter β, set learning rate α.
2: repeat
3: Apply soft value iteration to find Qsoft

β

{Definition A.2}
4: πmaxent

β ← softmax(β ·Qsoft
β )

5: g ←
(
Eπ [U ]− Eπmaxent

β
[U ]

)
6: β ← β + α · g
7: until Convergence
8: Return:

Eπ

[∑
D∈D

(
log πmaxent

β (D | PaD)− log 1
|dom(D)|

)]
In all cases Algorithm 1 converges. If the β that maximises
predictive accuracy is∞ or −∞, which can happen if π is
optimal or anti-optimal with respect to U , then it can never
reach the (nonetheless finite) value of MEGU (π), but will
still converge in the limit.

Unknown-utility algorithm To find unknown-utility
MEG, we maximise the predictive accuracy of πmaxent

θ,β with
respect to both θ and β. Assuming that UΘ is a differen-
tiable class of functions, such as a neural network, we can
take the derivative of the predictive accuracy with respect to
θ and get Eπ [∇θU ]− Eπmaxent

β
[∇θU ].

Algorithm 2 extends Algorithm 1 to this case.

Algorithm 2 Unknown-utility MEG in MDPs
Input: Parametric MDP MΘ over differentiable class of

utility functions, policy π
Output: MEGUΘ

(π)
1: Initialise utility parameter θ, rationality parameter β,

set learning rate α.
2: repeat
3: Apply soft value iteration to find Qsoft

θ,β

{Definition A.2}
4: πmaxent

θ,β ← softmax(β ·Qsoft
θ,β)

5: gβ ←
(
Eπ

[
Uθ

]
− Eπmaxent

β

[
Uθ

])
6: gθ ←

(
Eπ

[
∇θUθ

]
− Eπmaxent

β

[
∇θUθ

])
7: β ← β + α · gβ
8: θ ← β + α · gθ
9: until Stopping condition

10: Return:
Eπ

[∑
D∈D

(
log πmaxent

θ,β (D | PaD)− log 1
|dom(D)|

)]

An important caveat is that if Uθ is a non-convex function
of θ (e.g. a neural network), Algorithm 2 need not converge
to a global maximum. In general, the algorithm provides
a lower bound for MEGUθ

(π), and hence for MEGT (π)
where T = PaUΘ . In practice, we may want to estimate the
soft Q-function and expected utilities with Monte Carlo or
variational methods, in which case the algorithm provides
an approximate lower bound on goal-directedness.

B. Experimental Evaluation
We carried out two experiments to measure known-utility
MEG with respect to the environment reward function and
unknown-utility MEG with respect to a hypothesis class of
utility functions. We used an MLP with a single hidden
layer of size 256 to define a utility function over states.

Our experiments measured MEG for various policies in
the CliffWorld environment from the seals suite (Gleave
et al., 2020). Cliffworld (Figure 2a) is a 4x10 gridworld
MDP in which the agent starts in the top left corner and
aims to reach the top right while avoiding the cliff along
the top row. With probability 0.3, a wind causes the agent
to move upwards by one more square than intended. The
environment reward function gives +10 when the agent is in
the (yellow) goal square, -10 for the (dark blue) cliff squares,
and -1 elsewhere. The dotted yellow line indicates a length
3 goal region.

MEG vs Optimality of policy. In our first experiment,
we measured the goal-directedness of policies of varying
degrees of optimality by considering ε-greedy policies for
ε in the range 0.1 to 0.9. Figure 2b shows known- and

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Evaluating Agency through Maximum-Entropy Goal-Directedness

unknown utility meg for each policy 1 Predictably, the goal-
directedness with respect to the environment reward de-
creased toward 0 as the policy became less optimal. So did
unknown-utility MEG — since as ε increases, the policy be-
comes increasingly uniform, it does not appear goal-directed
with respect to any utility function over states.

MEG vs Task difficulty In our second experiment, we
measured the goal-directedness of optimal for reward func-
tions of varying difficulty. We extended the goal-region of
Cliffworld to run for either 1, 2, 3 or 4 squares along the
top row and back column, and considered an optimal poli-
cies for each reward function. Figure 2c shows Cliffworld
with a goal region of length 3. Figure 2b shows the results.
Goal-directedness with respect to the true reward function
decreased as the task became easier to complete. A way to
interpret this is that as the number of policies which do well
on a reward function increases, doing well on that reward
function provides less and less evidence for deliberate opti-
misation. In contrast, unknown-utility MEG stays high even
as the environment reward becomes easier to satisfy. This
is because the optimal policy proceeds towards the nearest
goal-squares and, hence, it appears strongly goal-directed
with respect to a utility function which gives high reward
to only those squares. Since this narrower utility function
is more difficult to do well on than the environment reward
function, doing well on it provides more evidence for goal-
directedness. In Appendix G.3, we visualise the policies in
question to make this more explicit. We also give tables of
results for both experiments.

C. Discussion
Limitations One limitation of the MEG measure for goal-
directedness is that it relies on having a causal model of the
environment, so that one can compute the maximum entropy
policy for a given utility function.

Second, MEG for a policy can depend on what variables are
included in the model. For example, if a policy is highly
goal-directed towards some variable T not included in our
model, MEG may still be low. Relatedly, MEG may also
be affected by whether we use a binary variable for T (or
the decisions D) rather than a fine-grained one with many
possible outcomes. We should, therefore, think of MEG as
measuring what evidence a set of variables provides about a
policy’s goal-directedness.

Lack of evidence does not necessarily mean lack of goal-
directedness. Third, while MEG can be computed with
gradient descent, it can still be computationally intractable

1Known-utility MEG is deterministic. Unknown-utility MEG
depends on the random initialisation of the neural network, so
we show the mean of several runs. Full details are given in Ap-
pendix G.3

for very large sets of random variables. In this paper, we
conduct only preliminary experiments – larger experiments
based on real-world data may explore how serious these
limitations are in practice.

Finally, MEG measures how predictive a utility function is
of an system’s behaviour on distribution, and distributional
shifts can lead to changes in MEG. It may be that by consid-
ering changes to a system’s behaviour under interventions,
as Kenton et al. (2023) do, we can distinguish “true” goals
from spurious goals, where the former predict behaviour
well across distributional shifts, while the latter happen to
predict behaviour well on a particular distribution (perhaps
because they correlate with true goals). We leave this to
future work.

Societal implications An empirical measure of goal-
directedness may be enable researchers and companies to
keep better track how goal-directed LLMs and other systems
are. This is important for dangerous capability evaluations
(Shevlane et al., 2023) and governance (Shavit et al.). A
potential downside is that it could enable bad actors to create
even more dangerous systems. We judge this risk as minor
since the relationship between goal-directedness and danger
is fairly indirect.

D. Comparison to Discovering Agents
This paper is inspired by Kenton et al. (2023), who proposed
a causal discovery algorithm for identifying agents in causal
models, inspired by Dennett’s view of agents as systems
”moved by reasons”. Our approach has several advantages
over theirs, which we enumerate below.

Mechanism variables. (Kenton et al., 2023) assume access
to a mechanised structural causal model, which augments
an ordinary causal model with mechanism variables which
parameterise distributions of ordinary object-level variables.
An agent is defined as a system that adapts to changes in the
mechanism of its environment. However, the question of
what makes a variable a mechanism is left undefined, and
indeed, the same causal model can be expressed either with
or without mechanism variables, leading their algorithm
to give a different answer. For example, Example 1 has
identical causal structure to (Kenton et al., 2023)’s in, but
without any variables designated as mechanisms. Their al-
gorithm says the version with mechanism variables contains
an agent while the version without does not, despite them
being essentially the same causal model. Figure 3 shows our
example depicted as a mechanised structural causal model.
We fix this arbitrariness by making our definition in ordinary
causal Bayesian networks.

Utility variables. Their algorithm assumes that some vari-
ables in the model represent agents’ utilities. We bring
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L D

T

(a) CBN

D T

D̃ T̃

(b) Mechanised CBN

D T

D̃ T̃

(c) Mechanised CID

Figure 3. Example 1 can be equally well represented with a CBN
(a) or mechanised CBN (b), but (Kenton et al., 2023)’s algorithm
only identifies an agent in (b). (c) shows the resulting mechanised
CID. In contrast, MEG is unchanged between (b) and (c). Note
also that the causal discovery algorithm identifies T as a utility
variable, where where MEG adds a new utility child to T .

this more in line with the philosophical motivation by treat-
ing utilities as hypothesised mental states with which we
augment our model.

Predictive accuracy. (Kenton et al., 2023)’s approach for-
malises Dennett’s idea of agents as systems “moved by
reasons”. We build on this idea but bring it more in line
with Dennett’s notion of what it means for a system to be
moved by a reason — that the reason is useful for predicting
its behaviour.

Gradualist vs Essentialist. The predictive error viewpoint
gives us a continuous measure of goal-directedness rather
than a binary notion of agency, which is more befitting of
the gradualist view of agents which inspired it.

Practicality. Their algorithm is theoretical rather than some-
thing that can be applied in practice. But ours is straight-
forward to implement, as we demonstrate in Appendix C.
This opens up a range of potential applications, including
behavioural evaluations and interpretability of ML models.

Interventional distributions. The primary drawback of
MEG is that it doesn’t necessarily generalise outside of the
distribution. Running MEG on interventional distributions
may fix this. We leave an extension of MEG to interven-
tional distributions for future work.

E. Proofs of MEG Properties
Proposition 3.1 (Translation and scale invariance). Let M1

be a CID with utility function U1, and let M2 be an identical
CID but with utility function U2 = a ·U1+b, for some a, b ∈
R. Then for any policy π, MEGU1

(π) = MEGU2
(π).

Proof. Since MEG is defined as maximum predictive accu-
racy over a maximum entropy policy set, showing that two

utility functions have the same maximum entropy policy set
is enough to show that they give the same MEG to every
policy. We show that Πmaxent

U2
= Πmaxent

U1
.

If π ∈ Πmaxent
U2

, then π is a maximum entropy policy such
that Eπ [U2] = u for some u ∈ att(U2). But then π must be
a maximum entropy policy such that Eπ [U1] = a · u+ b ∈
att(U1), so π ∈ Πmaxent

U1
.

The converse is similar.

Proposition 3.2 (Bounds). Let M be a CID with utility func-
tion U . Then for any policy π we have 0 ≤ MEGU (π) ≤∑

D∈D log(|dom(D)|), with equality in the lower bound if
π is the uniform policy, and equality in the upper bound if
and only if π is the unique optimal (or anti-optimal) policy
with respect to U .

Proof. Recall that MEGU (π) = maxπmaxent∈Πmaxent
U

Eπ

[ ∑
D∈D

(
log πmaxent(D | PaD)− log

1

| dom(D) |

)]
.

To get the lower bound, note that the expression being max-
imised can be rewritten as∑

PaD Pπ(PaD) (H(Punif)−H(πmaxent(· | PaD)) where
Punif is the uniform distribution over dom(D). Since the
entropy of a distribution cannot exceed the entropy of the
uniform distribution, this expression is nonnegative. It’s
also clear from this expression that MEG is zero for the
uniform policy.

For the upper bound, note that H(πmaxent(· | PaD))
is nonnegative, so MEGU ≤ Eπ [H(Punif)] =
log (|dom(D)|) = log

(∏
D∈D |dom(D)|

)
=∑

D∈D log(|dom(D)|).

To show that we have equality when π is the unique optimal
or anti optimal policy, note that in that case π must be
deterministic. Also, π must be in Πmaxent

U , since there
can be no higher entropy way to get the same expected
utility. Then since π maximises predictive accuracy with
respect to itself, the H(πmaxent(· | PaD)) term becomes
H(π(· | PaD) = 0 and we attain the upper bound.

For the converse, we can show that if π is not uniquely
optimal or anti-optimal, the πmaxent which best predicts it
is not deterministic, and so the H(πmaxent(· | PaD)) term
does not go to 0.

Proposition 3.3 (No goal-directedness without causal influ-
ence). Let M = (G,P ) be a CID with utility function U

10
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and decision variables D such that, Desc(D) ∩ PaU = ∅.
Then MEGU (D) = 0.

Proof. Since U is not a descendant of D, it follows from
the Markov property of causal Bayesian networks that
U ⊥ D | PaD. That means all policies achieve the same
expected utility u. So the maximum entropy policy set
Πmaxent

U contains only the uniform policy. We get that
MEGU (π) =

−E

[ ∑
D∈D

log
1

| dom(D) |
− log

1

| dom(D) |

]
= 0.

Theorem 4.1 (Pseudo-terminal goals). Let M =
((V ,E), P ) be a CBN. Let D,T ,S ⊆ V such that
D ⊥ T | S. Then MEGT (D) ≤ MEGS(D).

Proof. We will show that the maximum entropy policy set
Πmaxent

UT (where UT is the set of all utility functions over T )
is a subset of Πmaxent

US , so the maximum predictive accuracy
taken over the latter upper bounds the maximum predictive
accuracy taken over the former.

Let π ∈ Πmaxent
UT , so π = πmaxent

U,u for some UT ∈ UT . If
we can find a utility function US ∈ US such that for all
π, Eπ

[
US

]
= Eπ

[
UT

]
, then the maximum entropy policy

with Eπ

[
UT

]
= u must also be the maximum entropy pol-

icy with Eπ

[
US

]
= u. It would follow that π ∈ Πmaxent

UT

and so Πmaxent
US ⊆ Πmaxent

UT .

To construct such a utility function, let US(s) =∑
t P (T = t | S = s)UT (t). Note that since D ⊥ T | S,

P (T = t | S = s) is not a function of π. Then for any π,

Eπ

[
UT

]
=

∑
t

Pπ(t)UT (t)

=
∑
s

Pπ(s)
∑
t

Pπ(t | s)UT (t)

=
∑
s

Pπ(s)
∑
t

P (t | s)UT (t)

(since D ⊥ T | S)

=
∑
s

Pπ(s)US(s)

= Eπ

[
US

]
.

F. Proof of Theorem A.1
Theorem A.1 (Maximum entropy policy in MDPs). Let
M = (G,P ) be an MDP with utility function U , and let
u ∈ att(U) be an attainable expected utility. Then there

exists a unique maximum entropy policy πmaxent
u ∈ Πmaxent

U,u ,
and it has the form

πmaxent
u,t (dt | pat) =

πmaxent
β,t (dt | pat) =

=
exp(β ·Qsoft

β,t(dt | pat))∑
d′∈dom(Dt)

exp(β ·Qsoft
β,t(d

′
t | pat))

where β = argmaxβ′∈R∪{∞,−∞}
∑

t Eπ

[
log(πmaxent

β′ (dt | pat))
]
.

Proof. The attainable utility set is a closed interval
att(U) = [umin, umax]. We first consider the case where
u ∈ (umin, umax).

In this case we are seeking the maximum entropy policy in
an MDP with a linear constraint satisfiable by a full support
policy, so we can invoke Ziebart’s result on the form of
such policies (Ziebart, 2010; Ziebart et al., 2010; Gleave
and Toyer, 2022). In particular our feature is the utility U .
We get that the maximum entropy policy is a soft-Q policy
for a utility function β · U with a rationality parameter of 1,
where β = argmaxβ′∈R

∑
t Eπ

[
log(πmaxent

β′ (dt | pat))
]
.

This can be restated as a soft-Q policy for U with a ra-
tionality parameter of β. It follows from Ziebart that
β = argmaxβ′∈R πmaxent

β , and allowing β = ∞ or −∞
does not change the argmax.

In the case where u ∈ {umin, umax}, it’s easy to show
that the maximum entropy policy which attains u ran-
domises uniformly between optimal actions (for umax) or
anti-optimal actions (for umin). These policies can be ex-
pressed as limβ→∞ πmaxent

β and limβ→−∞ πmaxent
β respec-

tively.

G. Experimental Details
G.1. Tables of results

Known Utility Unknown Utility
k = 1 37.8 34.3± 2.6
k = 2 21.4 32.1± 0.5
k = 3 16.8 33.6± 0.5
k = 4 18.9 35.4± 0.6
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Known Utility Unknown Utility
ε = 0.1 2.4 26.1± 0.11
ε = 0.2 1.5 17.4± 0.2
ε = 0.3 0.95 11.0± 0.25
ε = 0.4 0.50 6.2± 0.08
ε = 0.5 0.20 2.9± 0.06
ε = 0.6 0.04 1.0± 0.003
ε = 0.7 0.003 0.10± 0.002
ε = 0.8 0.001 0.10± 0.003
ε = 0.9 0.008 0.091± 0.007

G.2. Visualising optimal policies for different lengths of
goal region.

(a) Occupancy measures of
optimal policy when k = 1.

(b) Occupancy measures of
optimal policy when k = 4.

Figure 4. Occupancy measures

Figure 4a and Figure 4b show the occupancy measures for
an optimal policy for k=1 and k=4 respectively, where k
is the length of the goal region in squares. Although the
goal region is larger in the latter case, the optimal policy
consistently aims for the same sub-region. This explains
why unknown-utility MEG is higher than MEG with respect
to the environment reward. The policy does just as well on
a utility function whose goal-region is limited to the nearer
goal squares as it does on the environment reward, but fewer
policies do well on this utility function, so doing well on it
constitutes more evidence for goal-directedness.

G.3. Further details

The experiments were carried out on a personal laptop with
the following specs:

• Hardware model: LENOVO20N2000RUK

• Processor: Intel(R) Core(TM) i7-8665U CPU @
1.90GHz, 2112 Mhz, 4 Core(s), 8 Logical Processor(s)

• Memory: 24.0 GB

We used an environment from the SEALS library2, and
adapted an algorithm from the imitation library3. Both are
released under the MIT license.

2https://github.com/HumanCompatibleAI/seals
3https://github.com/HumanCompatibleAI/imitation

For information on hyperparameters see the code.
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