
Suitable is the Best: Task-Oriented Knowledge Fusion
in Vulnerability Detection

Jingjing Wang
Institute of Systems Engineering,

Academy of Military Sciences, PLA
jennywangel@163.com

Minhuan Huang∗
Institute of Systems Engineering,

Academy of Military Sciences, PLA
darbean@126.com

Yuanpin Nie
Institute of Systems Engineering,

Academy of Military Sciences, PLA
yuanpingnie@nudt.edu.cn

Xiang Li
Institute of Systems Engineering,

Academy of Military Sciences, PLA
ideal_work@163.com

Qianjin Du
Department of Computer Science

and Technology, Tsinghua University
dqj20@mails.tsinghua.edu.cn

Wei Kong
School of Information Science and

Engineering, Zhejiang Sci-Tech University
kong_wei@ieee.org

Huan Deng
Institute of Systems Engineering,

Academy of Military Sciences, PLA
denghuan619@163.com

Xiaohui Kuang
Institute of Systems Engineering,

Academy of Military Sciences, PLA
xiaohui_kuang@163.com

Abstract

Deep learning technologies have demonstrated remarkable performance in vulnera-
bility detection. Existing works primarily adopt a uniform and consistent feature
learning pattern across the entire target set. While designed for general-purpose
detection tasks, they lack sensitivity towards target code comprising multiple
functional modules or diverse vulnerability subtypes. In this paper, we present
a knowledge fusion-based vulnerability detection method (KF-GVD) that inte-
grates specific vulnerability knowledge into the Graph Neural Network feature
learning process. KF-GVD achieves accurate vulnerability detection across dif-
ferent functional modules of the Linux kernel and vulnerability subtypes without
compromising general task performance. Extensive experiments demonstrate that
KF-GVD outperforms SOTAs on function-level and statement-level vulnerability
detection across various target tasks, with an average increase of 40.9% in precision
and 26.1% in recall. Notably, KF-GVD discovered 9 undisclosed vulnerabilities
when employing on C/C++ open-source projects without ground truth.

1 Introduction

According to statistics, 26,447 vulnerabilities were disclosed in 2023, continuing the alarming
trend of continuous growth in vulnerability numbers over the past seven years1. Static source code

∗Corresponding author
1https://www.skyboxsecurity.com/resources/report/vulnerability-threat-trends-report-2023/

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: The distribution of CWE-416 (left)
and CWE-119 (right) vulnerabilities across all
modules in the Linux kernel over the past
decade.

Figure 2: CWE-416 vulnerability (left) and
CWE-119 vulnerability (right) discovered in
the net module.

vulnerability detection (VD), as an integral part of the software development lifecycle, plays a crucial
role in enhancing system security and building reliable, high-quality software systems. Early static
analysis tools required experts to define scanning rules for VD. Machine learning (ML)-based VD
methods, on the other hand, required manual predefinition of code features. Currently, deep learning
(DL)-based VD methods can achieve automated VD without the need for manual feature definition and
have proven effective in identifying potential vulnerability patterns. These studies can be categorized
by the target of detection: (1) Targeting open-source code projects. Most of the studies like IVDetect
[1] and Reveal[2] assess the performance of VD methods by evaluating their effectiveness across
entire open-source projects, such as the Linux kernel, QEMU, and more. (2) Focusing on specific
vulnerability types. Some studies primarily concentrate on specific commonly occurring vulnerability
types in real-world applications, such as buffer overflow[3], use before initialization[4], use after free
[5], and so on.

With the prevalent of software applications, the scale and complexity of source code projects increase.
On the one hand, the functionalities of various components or modules within a project vary, leading to
differences in the vulnerability triggering conditions and types. On the other hand, different triggering
mechanisms result in a rich variety of subtypes within the same vulnerability type. Consequently,
potential vulnerability patterns that may exist in target objects often closely correlate with specific
source code contexts and characteristics of particular vulnerability types. However, the training
objective of the current mainstream DL-based VD methods is to learn more comprehensive and
effective vulnerability information, thereby obtaining an optimized model with the best generalization
performance across the entire target source code dataset. In practical application, when a generlized
model is applied to specific scope of source code, the detection of more detailed and distinguishable
potential vulnerability patterns becomes difficult, leading to a compromise in the effectiveness of the
model. Additionally, the vulnerability uncertainty and complexity of the target detection object, as
well as the limitations of available vulnerability data, pose challenges for transfer learning technology
in achieving effective knowledge transfer between the source and target domains. As a result, the
generalization capability of the transfer model in the target domain will be severely limited. In
security practice, scalable models capable of achieving robust VD performance across both the source
and target domains are anticipated. To this end, it is essential to design specific pattern learning
methods for different target tasks.

In this paper, we propose KF-GVD, a Knowledge Fusion-based GNN model for source code
Vulnerability Detection. The object of KF-GVD is to implement the most suitable vulnerabil-
ity pattern learning and identification strategy for task-oriented VD in a flexible manner, while
maintaining a certain degree of generalization of the original model. By incorporating vulnerability
knowledge into the feature learning process of the target, KF-GVD promotes the model to learn the
vulnerability features that are closely related to the current task more efficiently. Through this way,
the biases of the current general-purpose VD methods in target-oriented vulnerability pattern learning
can be corrected to some extent. KF-GVD employs a graph self-attention mechanism to capture
high-weight nodes that influence model decisions during message propagation. By associating with
code statements, it obtains fine-grained vulnerability localization, achieving high transparency and
interpretability of the model, thereby assisting developers in understanding the rationality of model
decision-making. In summary, our contributions in this paper are:

• We propose a task-oriented knowledge fusion method, which integrates specific vulnerability
knowledge in the feature learning process of GNN, it enables the general-purpose VD model
to learn vulnerability features related to the current target more effectively and achieve VD
tailored to specific tasks.

2

Figure 3: The overall architecture of KF-GVD.

• We propose the framework KF-GVD, which can be flexibly adapt to target task detection
while maintaining the generalization performance for source task. The interpretable KF-
GVD achieves effectively vulnerability identification at both the source code function level
and statement level.

• Extensive experiments demonstrate the superiority of KF-GVD in VD performance com-
pared to SOTAs when targeting multiple functional modules or diverse vulnerability subtypes.
Note that KF-GVD discovered and submitted 9 undisclosed vulnerabilities in the open source
C/C++ project without ground truth, proving its effectiveness in real-world applications.

2 Motivation

Figure 1 shows the distribution of the number of security commits related to CWE-416 (Use After
Free) and CWE-119 (Buffer Overflow) in the Linux kernel over the past decade, collected from
NVD. It can be observed that the occurrence proneness of different types of vulnerabilities exhibits a
significant module tendency, especially CWE-119. Of the 11 modules in the Linux kernel, more than
80% of the vulnerabilities occur in the first four modules with the highest number of vulnerabilities.
Additionally, distinct triggering features for different vulnerability types on the same module are
evident. As shown in Figure 2, presenting two typical patch examples in the network module. It can
be observed from the code snippet on the left, a race condition caused by pointer-related resource
leakage release is a major triggering form of CWE-416 vulnerabilities in the net module. In contrast,
CWE-119 in the same module are usually related to restrictive checks lacking critical network
protocol fields.

The above examples are presented to demonstrate that in practical applications, the potential vulnera-
bility patterns associated with program behavior differ and have distinct characteristics depending on
the context of different detection targets and tasks. In such cases, the two existing types of DL-based
VD methods, which employ uniform model optimization and analysis techniques for any target, are
difficult to make full use of known information in diverse practical task scenarios to characterize the
potential vulnerability characteristics of different target codes. The greatly compromised detection
performance will also further burden the code audit in the software development phase. To alleviate
the above problems, KF-GVD employs a simple and efficient knowledge guidance form of artificial
"prompt", which enhances the rationality of model decision-making by combining the historical
information of target tasks and human prior knowledge, corrects the deviation of pattern learning to a
certain extent, and makes it more flexible to adapt to downstream tasks. As the first task-oriented
GNN-based VD method, KF-GVD strives to achieve more accurate and scalable VD with lower
costs.

3 The KF-GVD Framework

The overall architecture of KF-GVD is illustrated in Figure 3. KF-GVD consists of two main phases:
feature representation and vulnerability detection and interpretation.

3.1 Feature Representation

In the feature representation phase, the source code is initially transformed into Code Property Graphs
(CPGs) as the intermediate representation. Subsequently, task-specific vulnerability knowledge

3

Figure 4: An example of feature representation. Figure 5: The workflow of KF-GVD.

subgraphs are extracted from the CPGs. Finally, node feature vectors are encoded according to the
node information of the graph, and combined with the adjacency matrix to form a graph embedding
as the input of the model.

3.1.1 Code Property Graph Generation

The concept of CPG proposed by Yamaguchi, et al. (2014) [6] is a joint data structure that combines
abstract syntax tree, control flow graph, and program dependency graph. CPG has been shown to
model more diverse types of vulnerabilities than conducting a combination of single or two code
properties as an intermediate representation of the source code for static analysis [7, 8]. The key
insight behind KF-GVD’s adoption of CPG as the intermediate representation is to comprehensively
preserve source code information in this stage. This not only enhances the performance of the model
in detecting vulnerabilities across the entire project, but also lays the foundation for the model to
characterize more detailed vulnerability features in subsequent target tasks.

3.1.2 Task-oriented Vulnerability Knowledge Extraction

KF-GVD extracts the knowledge subgraph by initially screening the codes with the most feature
relevance to the current task target, thus affecting the optimization from the source task generalization
model to the specialized target expert model. The task-oriented vulnerability knowledge considered by
KF-GVD includes: vulnerable program operations and sensitive functions related to the vulnerability
type, as well as customized knowledge for specific tasks associated with the target functional scenarios.
As for implementation, we first perform a coarse screening of source code statements for specific
task objectives based on relevant vulnerability knowledge. Then, we map the identified statements
to node sets in the CPG and mask out the remaining nodes weakly related to the task. The left part
of the feature representation example in figure 4 shows the extraction process of the task-oriented
vulnerability knowledge subgraph. For CWE-119 VD in the file module of the Linux kernel, because
the code statement (highlighted in orange) in the code snippet calls the strlcpy() function, which
is considered to be a sensitive function that may introduce CWE-119 type vulnerabilities under
the current task, the associated node (highlighted in orange) and edges of this statement in CPG is
extracted as the knowledge subgraph.

Appendix A provides a more detailed description of the task-oriented vulnerability knowledge
considered by KF-GVD.

3.1.3 Graph Embedding

The CPG node information generated by Joern2 comprises two parts: code element types and code
statements. Figure 4 shows the corresponding information for nodes vk1 and vk2 in the CPG. KF-
GVD adopts two vectors, Vop and Vfunc, to describe the code element types. Vop reflects the operation
type of the code associated with the node, such as field access, memory allocation, mathematical
operations, and so on. Vfunc indicates special function calls, code field types, and so on. Both
Vop and Vfunc use one-hot encoding, and when a node contains only one type of information, the
remaining vector is zero-encoded. Next, we employ a pretrained Word2Vec model to map tokens

2https://joern.io/

4

generated from code statements to fixed-length feature vectors to generate Vsemantic that represent
the semantic information of the source code corresponding to the node. Finally, the three vectors are
concatenated to form the final feature vector of the node. The spatial features of CPG represented
by the adjacency matrix and the node feature matrix constitute the graph embedding, serving as the
input for the subsequent model stage.

3.2 Vulnerability Detection and Interpretation

In this section, we provide a detailed description of the GNN model adopted in KF-GVD and explain
how vulnerability knowledge is leveraged to optimize the model for specific subtasks during VD.
Finally, we describe how KF-GVD utilizes attention mechanisms to interpret and locate potential
vulnerability source code.

3.2.1 Object

For the source code function C corresponding to the CPG G = (V,E), G ∈ G, we define y ∈ Y
as the function-level label of G corresponding to C, where Y = {0, 1}, y = 1 indicates that the
sample is a vulnerability sample, y = 0 otherwise. We define source task O corresponding to dataset
DO = {(Gi, yi)|Gi ∈ GO, yi ∈ YO}Ni=1. Target task T corresponds to dataset DT = {(Gi, yi)|Gi ∈
GT , yi ∈ YT }Mi=1, where N and M are the total number of samples contained in DO and DT , and
N > M . Assuming that a mapping FDO

: GO → YO has been learned on the source task dataset
DO, KF-GVD aims to establish a mapping f : Gt → Yt on the target task T with the assistance
of knowledge Kt relevant to task t. Here, dt represents the dataset associated with any subtask t
under the target task T . Therefore, the workflow of KF-GVD is mainly divided into two parts: model
training on the source task and knowledge fusion on the target task. The workflow of KF-GVD is
shown in Figure 5.

3.2.2 Task-oriented Model with Knowledge Fusion

The second phase in Figure 3 shows the general hierarchical structure of the GNN employed by
KF-GVD. The model utilizes two layers of Graph Convolution Network (GCN) to calculate the new
representation of each node by weighted summation of neighbor node information. Subsequently,
based on the self-attention mechanism, the model obtains weights between nodes, calculating and
retaining high-weighted nodes during message propagation [9]. The graph pooling layer is then
employed to obtain the embedding of the entire graph. Finally, the model obtains function-level
vulnerability identification results for the source code based on the classification layer. Furthermore,
the training process of the model in the source task stage is similar to the current DL-based VD
method. On this foundation, when conducting VD tasks for specific targets, a task-oriented knowledge
fusion layer is introduced.

The current state of the graph G = (V,E), obtained from the GCNs layer, is denoted as HV =
{hvj |vj ∈ V }, j ∈ {1, .., n}, and the corresponding knowledge subgraph Gk = (Vk, Ek) on the
target task t is denoted as HVk

= {hvq |vq ∈ Vk}, q ∈ {1, ..,m}. The calculation of the state
Hu = {huj

|vj ∈ V }, j ∈ {1, ..., n} for G = (V,E) in the fusion layer can be defined as follows:

huj =

{
Fusion(αhvj , βhvq), vj ∈ Vk

hvj , vj /∈ Vk
(1)

where α and β are fusion coefficients, reflecting the degree to which knowledge tailored for a specific
task t influences the pattern learning of the model. Assuming that in the source task O, the model has
been trained on dataset DO, denoted as FDO

. The training of model f for a subtask t, t ∈ T includes
the following steps:

(1) Dataset collection: Define task t corresponding to dataset dt ∈ DT . To ensure that the fused
model f retains the ability to detect vulnerabilities in O to some extent, the training set dϕ for f is
derived from dt and random sampling of DO, defined as do ∈ DO, dϕ = do + dt.

(2) Initialization: Initialize the parameters of f using FDO
to achieve knowledge sharing between the

source task and the target task.

(3) Fusion: During the training phase, we perform the feature fusion operation (Equation 1) only on
the data d′t randomly sampled from dt. The fusion function employs a weighted sum of node features.

5

For implementation, we first evaluate the detection performance of FDO
on dt and consider the

misclassified samples in the first round by FDO
as the preferred subset of d′t for the fusion operation

in the training process of f . We treat this subset of samples as the data subset with understanding
bias of FDO

in the target task. Overall, the knowledge fusion process employed by KF-GVD is also
a process of manual correction and adjustment carried out during the model training phase.

A more detailed computational description of each layer of the model is provided in Appendix B.

3.2.3 Statement-level Interpretation and Location

KF-GVD achieves interpretability through the self-attention mechanism. In the self-attention layer,
the top dγne nodes with the highest attention scores in G will be retained as the input for the pooling
layer, and the states of the remaining nodes will be masked during subsequent message propagation,
where γ is the retain rate. The source code statements corresponding to the crucial nodes which have
high influence on f to make vulnerability decisions are regarded as the interpretation of the current
sample, that is, the fine-grained vulnerability statement location. In the implementation, we realize
the mapping from graph nodes to source code statements through the data files generated by joern.

To improve the performance of KF-GVD in function-level and statement-level VD, we define a graph
G = (V,E) with a labeled node set N = {(vj , lj)|vj ∈ V, lj ∈ L}nj=1, where l represents the node
label. The prediction function f for the target task t can be learned by minimizing the following loss
function:

min

|dϕ|∑
i=1

[LCE(f(gi), yi) + λ

n∑
j=1

LCE(f(gi), lj |yi))] (2)

Here, |dϕ| represents the size of the training dataset under task t, λ is an adjustable hyperparameter.

4 Evaluation

We evaluate the superiority of KF-GVD compared to baseline approaches on two source tasks, S119

and S416, as well as their corresponding target tasks, Tm and Tsub, in order to answer the following
research questions:

RQ1: How does KF-GVD perform compared to other function-level VD methods?

RQ2: How does the interpretation of KF-GVD compare to other fine-grained VD methods in terms of
locating vulnerable statements?

RQ3: How does KF-GVD perform in detecting and locating vulnerabilities in real-world software
products where the presence of vulnerabilities is unknown?

4.1 Experiment Settings

4.1.1 Dataset

The evaluation dataset consists of two parts: the source task dataset and the target task dataset.
Following the current practice of DL-based VD methods, we initially train the model on a widely
collected source task dataset to obtain a model with good generalization performance for a specific
vulnerability type. Subsequently, the model is applied to the target task dataset for VD.

Source Task Dataset: We define two source tasks targeting the detection of CWE-119 and CWE-416
type vulnerabilities, denoted as S119 and S416 respectively. The source task dataset consists of 80%
CWE-119 and CWE-416 type vulnerability information extensively collected from 13 real-world C++
projects from NVD3. The remaining 20% is sourced from academic security defects and synthetic
data provided by SARD4.

Target Task Dataset: Referring to the types of research objects in the current DL-based VD studies
(Section 1), our target tasks are divided into two categories: (1) Tm: Detection of CWE-119 and
CWE-416 type vulnerabilities within various modules in the Linux kernel, denoted as Tm119

and
Tm416

respectively. (2) Tsub: Detection of CWE-119 subtypes, specifically CWE-125 and CWE-787.

3https://nvd.nist.gov/
4https://samate.nist.gov/SARD/test-suites

6

Table 1: Comparison of function-level VD of Tm119
and Tsub on S119. P: Precision(%); R: Recall(%);

F1: F1-score(%)

Method S119
Tm119

Tsub

Fs Drivers Net Include CWE-125 CWE-787
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Cppcheck 45.0 55.7 49.8 33.7 50.5 40.4 32.1 45.9 37.8 44.2 40.0 42.0 23.9 35.7 28.6 24.8 50.6 33.3 29.4 35.7 32.2
Flawfinder 27.6 50.4 35.7 15.3 57.4 24.2 25.9 44.8 32.8 37.6 42.8 40.0 29.7 56.8 39.0 12.9 37.4 19.2 18.3 33.5 23.7

Sysver 54.8 70.6 61.7 23.6 67.2 34.9 28.3 56.2 37.6 15.7 60.9 25.0 33.0 42.6 37.2 39.7 58.4 47.3 33.4 48.6 39.6
VulCNN 63.9 77.4 70.0 35.5 50.7 41.8 27.8 44.6 34.3 39.4 58.6 47.1 22.0 43.5 29.2 16.8 29.1 21.3 17.6 33.0 23.0
Codebert 65.2 67.9 66.5 54.7 39.5 45.9 37.5 40.0 38.7 48.5 44.1 46.2 34.6 51.8 41.5 34.8 57.6 43.4 43.7 48.6 46.0

CodeLlama 70.0 64.1 66.9 55.7 54.9 55.3 45.6 45.8 45.7 57.2 48.0 52.2 49.3 53.9 51.5 37.6 53.9 44.3 48.0 55.8 51.6
Wizardcoder 72.4 52.4 60.8 62.5 35.5 45.3 45.8 48.7 47.2 50.8 42.0 46.0 48.6 56.6 52.3 33.5 52.5 40.9 47.5 51.9 49.6

Devign 68.5 70.2 69.3 30.6 54.2 39.1 35.4 42.8 38.7 48.6 57.2 52.6 25.8 40.3 31.5 20.1 37.9 26.3 18.4 25.0 21.2
ReGVD 74.1 71.2 72.6 60.8 34.2 43.8 40.9 47.1 43.8 52.1 59.1 55.4 44.1 50.8 47.2 29.8 54.0 38.4 44.9 57.2 50.3
IVDetect 79.0 83.3 81.1 46.7 33.3 38.9 33.3 66.7 44.4 66.7 50.0 57.1 40.0 46.2 42.9 31.9 55.8 38.1 46.8 52.4 43.0
GVD-ft 82.9 90.9 86.7 73.5 58.7 65.2 66.7 88.9 76.2 76.3 58.5 64.7 57.1 61.5 59.3 49.8 60.5 54.6 66.7 61.5 64.0

KF-GVD 82.9 90.9 86.7 96.1 95.2 95.7 90.0 94.7 92.3 91.7 75.0 82.5 91.7 84.6 88.0 59.2 80.0 67.9 80.0 84.2 82.1

Table 2: Comparison of function-level VD of Tm416 on S416. P: Precision(%); R: Recall(%); F1:
F1-score(%)

Method S416
Tm416

Net Fs Drivers Kernel Block Include
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Cppcheck 27.7 42.6 33.6 14.8 22.7 17.9 27.0 53.6 35.9 30.7 45.9 36.8 10.3 45.9 16.8 30.2 36.5 33.1 23.6 31.8 27.1
Flawfinder 33.4 45.9 38.7 20.6 36.6 26.4 15.9 42.6 23.2 5.6 22.4 9.0 28.5 62.8 39.2 17.8 26.7 21.4 25.0 39.7 30.7

Sysver 58.4 67.2 62.5 21.9 40.5 28.4 27.2 37.3 31.5 32.5 30.7 31.6 22.7 23.6 23.1 37.9 30.2 33.6 26.3 45.7 33.4
VulCNN 66.9 72.8 69.7 33.4 52.7 40.9 47.0 52.4 49.6 28.5 43.1 34.3 36.8 56.3 44.5 24.7 65.1 35.8 22.5 39.6 28.7
Codebert 66.2 62.3 64.2 50.3 42.2 45.9 47.8 36.7 41.5 42.3 51.6 46.5 46.5 51.1 48.7 42.9 40.8 41.8 40.9 35.1 37.8

CodeLlama 65.9 59.1 62.3 52.9 46.0 49.2 50.6 52.6 51.6 44.1 43.9 44.0 53.3 51.5 52.4 40.5 41.1 40.8 57.6 52.8 55.1
Wizardcoder 59.6 69.3 64.1 53.7 48.2 50.8 42.7 38.2 40.3 39.8 52.0 45.1 55.650.5 52.9 44.3 38.5 41.2 56.4 49.3 52.6

Devign 63.7 79.4 70.7 37.1 42.6 39.7 48.9 50.2 49.5 34.1 56.9 42.6 37.5 44.6 40.7 48.1 33.9 39.8 36.8 70.4 48.3
ReGVD 67.2 71.7 69.4 41.9 43.7 42.8 50.3 51.5 50.9 40.6 45.9 43.1 45.8 55.5 50.2 42.8 34.8 38.4 44.5 65.2 52.9
IVDetect 81.8 94.7 87.8 40.4 36.2 38.2 51.7 51.9 51.8 43.8 41.2 42.4 41.4 60.0 49.0 39.0 35.6 37.2 66.7 80.0 72.7
GVD-ft 86.8 89.3 88.0 53.6 88.2 66.7 73.3 66.0 69.5 41.3 44.7 42.9 39.5 44.7 42.0 51.7 78.4 51.9 50.0 53.3 51.6

KF-GVD 86.8 89.3 88.0 78.6 98.1 87.3 73.9 94.4 82.9 87.1 71.8 78.7 85.4 92.1 88.6 66.7 83.3 74.1 82.4 93.3 87.5

Both of these vulnerability subtypes are also included in the 2023 CWE Top 25 Most Dangerous
Software Weaknesses5.

4.1.2 Baseline Approaches and Evaluation Metrics

We compare KF-GVD at the function level with four types of VD methods, including: (1)Rule-based
commercial static code analysis tools: Cppcheck6 and Flawfinder7. (2) Classical DL-based VD
methods: Sysver [10] and VulCNN [11]. (3) Large-scale code models: Codebert [12], Code Llama
[13], and Wizardcoder [14]. (4) GNN-based VD methods: Devign [8], ReGVD [15] and IVDetect [1].
For statement-level localization comparison, we chose the state-of-the-art fine-grained VD methods
IVDetect [1], LineVul [16] and LineVD [17] as baselines.

We evaluate the performance of KF-GVD and the baseline methods using Precision (P), Recall (R),
and F1-score (F) for both function-level and statement-level comparison. Besides, we also introduce
the ranking metric Mean Average Precision (MAP) in order to explore the performance of the method
on code statements that it considers as the best interpretation for function prediction. Appendix C
provides more specific information on the datasets and experimental settings adopted by KF-GVD.

4.2 Function-level Vulnerability Detection Performance

For ML-based VD methods in addition to large-scale code models, we train and test all models on
the source tasks S119 and S416 separately, and then apply them to the corresponding target tasks.
Additionally, following the concept of transfer learning, we employed the same GNN model as
KF-GVD in the source tasks. For VD in the target tasks, we fine-tuned the GNN model used in
KF-GVD, denoted as GVD-ft, instead of employing knowledge fusion operations, so the results of
VD on the source task are the same as KF-GVD.

5https://cwe.mitre.org/data/definitions/1425.html
6http://cppcheck.net
7https://dwheeler.com/flawfinder

7

Table 3: Comparison of statement-level VD of Tm119
and Tsub on S119. P: Precision(%); R:Recall(%);

F1: F1-score(%)

Method
Tm119

Tsub

Fs Drivers Net Include CWE-125 CWE-787
P R F P R F P R F P R F P R F P R F

IVDetect 32.3 56.1 34.8 10.5 63.1 15.4 36.7 20.4 26.0 9.7 74.7 16.4 2.2 17.1 3.1 16.7 10.0 12.5
LineVD 39.2 27.9 32.6 11.0 58.7 16.1 37.6 21.2 26.8 17.2 53.2 26.1 4.1 24.9 5.3 33.3 20.0 25.0
LineVul 33.8 45.0 38.6 10.7 24.0 14.8 22.4 28.0 24.9 16.3 44.8 23.9 6.4 13.6 8.7 29.8 19.0 23.2
GVD-ft 32.1 55.0 34.5 11.2 66.0 16.4 18.3 10.2 13.0 9.6 85.4 16.3 7.5 51.0 10.3 2.9 1.8 2.2

KF-GVD 82.1 58.7 66.6 38.2 81.1 49.6 74.7 65.5 66.3 54.9 84.4 65.0 31.9 55.8 38.1 29.2 67.9 31.4

Table 4: Comparison of statement-level VD of Tm416 on S416. P: Precision(%); R: Recall(%); F1:
F1-score(%)

Method
Tm416

Net Fs Drivers Kernel Block Include
P R F P R F P R F P R F P R F P R F

IVDetect 19.6 58.1 24.5 15.4 80.8 19.2 20.2 77.9 25.5 27.7 83.8 36.9 15.4 23.6 18.6 67.9 67.7 67.5
LineVD 24.0 98.8 31.3 16.6 55.9 25.6 17.9 75.2 23.3 15.8 72.9 21.9 12.5 16.7 14.3 48.2 49.2 48.7
LineVul 20.9 45.3 28.6 15.3 44.0 22.7 22.8 32.8 26.9 24.9 41.8 31.2 14.1 48.0 21.8 31.7 36.4 33.9
GVD-ft 22.7 58.6 25.3 16.7 71.3 21.8 25.3 69.9 28.0 16.4 66.5 22.4 10.8 55.3 15.2 52.9 52.2 52.4

KF-GVD 56.3 96.3 63.8 55.9 80.8 66.0 76.5 81.1 68.1 80.6 75.9 75.1 27.4 97.3 36.1 73.3 73.1 72.6

Table 1 and Table 2 show the comparison of function-level VD performance on different source
tasks and their corresponding target tasks. It can be obviously observed that despite all baseline
methods being designed to detect the same type of vulnerabilities, they exhibit a noticeable decrease in
performance metrics across various specific target tasks. In contrast, KF-GVD consistently performs
well. Compared to the best results among baseline methods (indicated by underlines in the table),
KF-GVD demonstrates an improvement in precision by 0.6%-44%, recall by 5.8%-29.3%, and an
average gain of 22.6% on F1-score. Although GVD-ft achieved relatively better results than other
baseline methods in most target tasks due to fine-tuning of the model, GVD-ft shows a 23.3% lower
F1 average on Tm119, a 31.6% lower F1-score average on Tm416, and a 15.7% lower F1-score average
on Tsub compared to KF-GVD. This further proves the flexibility and effectiveness of our approach
in VD tailored to specific tasks.

Overall, the effectiveness of rule-based static analysis tools is inferior to that of ML-based VD
methods. This is due to the limitations of finite and fixed manually predefined static scanning rules
when dealing with multiple types of vulnerabilities and detection targets. Moreover, methods that
adopt models like LSTM and CNN exhibit an average reduction of 20.6% on F1-score compared
to approaches based on GNNs. To some extent, this reflects the powerful spatial feature learning
capability of GNNs when dealing with structured languages like source code, as opposed to the
flattened feature processing approach of classical DL networks. It is worth noting that the emerging
large-scale code models have mediocre performance in dealing with tasks related to code vulnerability
detection, and the F1-scores on the corresponding target tasks of S119 and S416 are on average 34.3%
and 33.4% lower than those of KF-GVD. We infer that this is because current large language models
mainly focus on question and answer, completion and other generative tasks rather than classification
tasks.

4.3 Statement-level Vulnerability Detection Performance

Figure 6: Statement-level VD comparison on
MAP@5.

Table 3 and Table 4 present the comparison of
statement-level vulnerability localization results
between KG-GVD and other baseline methods
on the target tasks corresponding to S119 and
S416. In three different target tasks, KF-GVD ex-
hibits a precision improvement of 5.4% - 52.9%
and an average recall enhancement of 2.6% -
73.7% in statement-level vulnerability localiza-
tion compared to suboptimal detection results.
This corresponds to an average gain of 59.7% in
precision and 30.9% in recall, showcasing KF-
GVD’s robust coverage and localization capa-
bilities for vulnerable code during fine-grained
detection. It is worth noting that GVD-ft, which

8

performs suboptimally at the function level, does not exhibit equally good results at the statement
level. This indicates that the fine-tuning approach employed by GVD-ft does not accurately capture
the underlying vulnerability patterns of the target task. Moreover, MAP reflects the average precision
on the top K confident predictions. Following established research practices [1, 18], we set K=5
and compare the statement-level MAP across all methods, as illustrated in Figure 6. Observably,
KF-GVD consistently outperforms other methods in MAP on all target tasks, particularly achieving an
average improvement of 42.4% on Tm119, which further proving the rationality of the function-level
predictions from KF-GVD.

4.4 Case Study

We applied KF-GVD to various C++ open-source libraries commonly targeted for vulnerability
detection. For projects without ground truth, we initially gathered information on publicly disclosed
vulnerabilities for the target objects (obtained from GitHub) and performed detection for specific
unknown vulnerabilities, particularly focusing on several high-risk issues. Taking multiple versions
of Assimp (Open Asset Import Library), used for importing various 3D model file formats, as
an example, we conducted detection on a total of 312 C++ source code files under the Assimp’s
assetlib directory. The detection revealed 19 vulnerabilities, including three reported and published
vulnerabilities (CVE-2022-38528, CVE-2022-45748, CVE-2021-45948), 3 pending confirmation
security issues, and 2 undisclosed vulnerabilities that we have submitted to CNNVD and been
confirmed. Table 5 presents all the undisclosed vulnerabilities detected by KF-GVD in different C++
open-source objects.

Table 5: Undisclosed vulnerabilities detected by KF-GVD in different C++ open-source objects.

ID Project File Location Vul_line
CNNVD-2023-43767151 assimp /. . . /OpenDDLParser.cpp 348
CNNVD-2023-12599427 /. . . /FBXParser.cpp 192
CNNVD-2023-59936877 boost /. . . /detail/rapidxml.hpp 644
CNNVD-2023-23489133 /. . . /basic_regex_creator.hpp 710
CNNVD-2023-20301510 c-blosc2 /. . . /blosc-private.h 120
CNNVD-2023-76730942 exiv2 /. . . /value.cpp 13
CNNVD-2023-90736138 flatbuffers /. . . /util.h 133
CNNVD-2023-83881569 frr /. . . /bgp_attr.c 2658
CNNVD-2023-27702356 harfbuzz /. . . /hb-atomic.hh 172

5 Disscusion

5.1 Threats to Validity

First, in practical applications, we find that KF-GVD has more obvious advantages in target tasks
with more historical version iteration information and knowledge related to specific vulnerability
types, which indicates that the performance of the method can be continuously improved with the
increase of target task-related vulnerability knowledge. However, without any historical vulnerability
information about the target software or knowledge about a specific vulnerability type, method
performance degrades to the level of vulnerability detection with the generalized model. Second,
we only verify the validity of the method on C/C++ code, not other programming languages, and
in principle the method can be extended. Third, we only focus on vulnerability identification and
fine-grained localization within functions, and cannot detect source code vulnerabilities that have
cross-function or cross-file dependencies.

5.2 Limitations and Future Work

During the data processing stage, generating CPG data from source files accounts for more than 75%
of the total processing time, highlighting the need for more efficient data generation tools and process-
ing strategies in the future. Additionally, in the feature embedding stage, we truncate the Vcode that
exceeds the length threshold of the feature vector, which leads to the loss of semantic information to
a certain extent. In the next phase, leveraging the powerful representation and generation capabilities

9

of current large-scale code models to obtain more comprehensive and efficient source code features
will be a future research direction to enhance vulnerability localization performance. Finally, while
KF-GVD has significantly improved statement-level vulnerability localization compared to SOTAs,
there remains substantial room for improvement in fine-grained localization precision relative to
function-level detection results.

More ablation studies on vulnerability knowledge sensitivity, feature representation, and experiments
on cross-domain tasks are provided in Appendix D.

6 Related Works

Current DL-based VD methods achieve automated VD, alleviating the manual burden associated
with rule-based [19] and ML-based approaches [20, 21, 22, 23, 24]. VulDeePecker [3], Sysevr [10],
µVulDeePecker [25], VulCNN [11] combined with classical DL models such as LSTM, BGRU,
CNN, are employed to perform VD on various open-source projects or specific vulnerability types.
The detection granularity of these methods is at the slice or function level. Additionaly, Devign [8],
BGNN4VD [26], Reveal [2] and many other studies based on GNNs perform function-level VD on
entire projects such as QEMU, FFmpeg, Linux kernel, or mixed datasets.

In recent years, some studies have achieved fine-grained vulnerability localization. VulDeelocator [27]
utilizes intermediate code to define program segments for VD, accommodating semantic information
that cannot be conveyed by source code-based representations. By employing the idea of granularity
refinement, VulDeelocator outputs a finer granularity than its input, enhancing the precision of the
detector. Furthermore, IVDetect [1] considers vulnerable statements and their surrounding context
separately through data dependency and control dependency, enabling the model to better distinguish
vulnerable statements. Additionally, IVDetect introduces GNNExplainer [28] to provide subgraphs
in program dependency graph (PDG) as explanations, containing key statements related to the
detected vulnerabilities. Besides, LineVD [18] defines statement-level vulnerability detection as
a node classification task, utilizing GNNs to leverage control and data dependency relationships
between statements. By resolving conflicts between function-level and statement-level information
and learning from both levels, LineVD significantly improves performance.

7 Conclusion

In this paper, we propose KF-GVD, a knowledge fusion-based vulnerability detection method. KF-
GVD alleviates the limitations of current general-purpose detection methods when applied to the
contexts involving multiple functional modules or diverse types of vulnerabilities. By integrating task-
oriented vulnerability knowledge, KF-GVD prompts the model to efficiently explore vulnerabilitiy
patterns tailored to specific tasks while still maintaining general task performance. Our empirical
evaluations demonstrate the superior performance of KF-GVD tailored for diverse specific tasks
in both function-level and statement-level VD. The case study we conducted on real C++ open-
source projects further substantiates the practical effectiveness of KF-GVD in real-world applications.
Notably, KF-GVD identified 9 undisclosed vulnerabilities when applied to real-world C++ open-
source projects, further proving its practicality.

References
[1] Yi Li, Shaohua Wang, and Tien N. Nguyen. Vulnerability detection with fine-grained inter-

pretations. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2021,
page 292–303, New York, NY, USA, 2021. Association for Computing Machinery.

[2] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep learning based
vulnerability detection: Are we there yet. IEEE Transactions on Software Engineering, pages
1–1, 2021.

[3] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi
Zhong. Vuldeepecker: A deep learning-based system for vulnerability detection. arXiv preprint
arXiv:1801.01681, 2018.

10

[4] Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song, Zhiyun Qian, Mohsen
Lesani, Srikanth V. Krishnamurthy, and Paul Yu. Ubitect: a precise and scalable method to
detect use-before-initialization bugs in linux kernel. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, page 221–232, New York, NY, USA, 2020. Association
for Computing Machinery.

[5] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. Effective static analysis of con-
currency Use-After-Free bugs in linux device drivers. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 255–268, Renton, WA, July 2019. USENIX Association.

[6] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and discovering
vulnerabilities with code property graphs. In 2014 IEEE Symposium on Security and Privacy,
pages 590–604, 2014.

[7] Fabian Yamaguchi. Pattern-based vulnerability discovery. 2015.

[8] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective
vulnerability identification by learning comprehensive program semantics via graph neural
networks. Advances in neural information processing systems, 32, 2019.

[9] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International
conference on machine learning, pages 3734–3743. PMLR, 2019.

[10] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. Sysevr: A
framework for using deep learning to detect software vulnerabilities. IEEE Transactions on
Dependable and Secure Computing, 2021.

[11] Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin. Vulcnn: an image-
inspired scalable vulnerability detection system. In Proceedings of the 44th International
Conference on Software Engineering, ICSE ’22, page 2365–2376, New York, NY, USA, 2022.
Association for Computing Machinery.

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and
natural languages. arXiv preprint arXiv:2002.08155, 2020.

[13] Wenhan Xiong Grattafiori, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron,
Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open
foundation models for code. arXiv preprint arXiv:2308.12950, 2023.

[14] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

[15] Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran, and Dinh Phung.
Regvd: revisiting graph neural networks for vulnerability detection. In Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings,
ICSE ’22, page 178–182, New York, NY, USA, 2022. Association for Computing Machinery.

[16] Michael Fu and Chakkrit Tantithamthavorn. Linevul: A transformer-based line-level vulner-
ability prediction. In Proceedings of the 19th International Conference on Mining Software
Repositories, pages 608–620, 2022.

[17] David Hin, Andrey Kan, Huaming Chen, and M. Ali Babar. Linevd: statement-level vulnerability
detection using graph neural networks. In Proceedings of the 19th International Conference on
Mining Software Repositories, MSR ’22, page 596–607, New York, NY, USA, 2022. Association
for Computing Machinery.

[18] David Hin, Andrey Kan, Huaming Chen, and M Ali Babar. Linevd: Statement-level vulnerability
detection using graph neural networks. arXiv preprint arXiv:2203.05181, 2022.

11

[19] Morteza Zakeri-Nasrabadi, Saeed Parsa, Mohammad Ramezani, Chanchal Roy, and Masoud
Ekhtiarzadeh. A systematic literature review on source code similarity measurement and
clone detection: Techniques, applications, and challenges. Journal of Systems and Software,
204:111796, 2023.

[20] Boris Chernis and Rakesh Verma. Machine learning methods for software vulnerability detection.
In Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics,
IWSPA ’18, page 31–39, New York, NY, USA, 2018. Association for Computing Machinery.

[21] Guoyan Huang, Yazhou Li, Qian Wang, Jiadong Ren, Yongqiang Cheng, and Xiaolin Zhao.
Automatic classification method for software vulnerability based on deep neural network. IEEE
Access, 7:28291–28298, 2019.

[22] Riccardo Scandariato, James Walden, Aram Hovsepyan, and Wouter Joosen. Predicting vul-
nerable software components via text mining. IEEE Transactions on Software Engineering,
40(10):993–1006, 2014.

[23] Bo Shuai, Haifeng Li, Mengjun Li, Quan Zhang, and Chaojing Tang. Automatic classification
for vulnerability based on machine learning. In 2013 IEEE International Conference on
Information and Automation (ICIA), pages 312–318, 2013.

[24] Istehad Chowdhury and Mohammad Zulkernine. Using complexity, coupling, and cohesion
metrics as early indicators of vulnerabilities. Journal of Systems Architecture, 57(3):294–313,
2011. Special Issue on Security and Dependability Assurance of Software Architectures.

[25] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. µvuldeepecker: A deep
learning-based system for multiclass vulnerability detection. IEEE Transactions on Dependable
and Secure Computing, 18(5):2224–2236, 2021.

[26] Sicong Cao, Xiaobing Sun, Lili Bo, Ying Wei, and Bin Li. Bgnn4vd: constructing bidirec-
tional graph neural-network for vulnerability detection. Information and Software Technology,
136:106576, 2021.

[27] Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin. Vuldeelocator: a
deep learning-based fine-grained vulnerability detector. IEEE Transactions on Dependable and
Secure Computing, 2021.

[28] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnex-
plainer: Generating explanations for graph neural networks. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

[29] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[30] Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang, and Yanjun
Wu. Vulsniper: Focus your attention to shoot fine-grained vulnerabilities. In IJCAI, pages
4665–4671, 2019.

[31] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Icml, 2010.

[32] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[33] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Yang Xiang, Olivier De Vel, and Paul Mon-
tague. Cross-project transfer representation learning for vulnerable function discovery. IEEE
Transactions on Industrial Informatics, 14(7):3289–3297, 2018.

[34] Zimin Chen, Steve Kommrusch, and Martin Monperrus. Neural transfer learning for repairing
security vulnerabilities in c code. IEEE Transactions on Software Engineering, 49(1):147–165,
2023.

12

[35] Ashita Diwan, Miles Q. Li, and Benjamin C. M. Fung. Vdgraph2vec: Vulnerability detection
in assembly code using message passing neural networks. In M. Arif Wani, Mehmed M.
Kantardzic, Vasile Palade, Daniel Neagu, Longzhi Yang, and Kit Yan Chan, editors, 21st
IEEE International Conference on Machine Learning and Applications, ICMLA 2022, Nassau,
Bahamas, December 12-14, 2022, pages 1039–1046. IEEE, 2022.

[36] Jiao Yin, MingJian Tang, Jinli Cao, and Hua Wang. Apply transfer learning to cybersecu-
rity: Predicting exploitability of vulnerabilities by description. Knowledge-Based Systems,
210:106529, 2020.

13

A Task-Oriented Vulnerability Knowledge

In general, the task-oriented vulnerability knowledge employed by KF-GVD is derived from the
matching rules of existing static analysis tools, relevant academic research findings, publicly available
historical vulnerability information, and the expertise of security audit professionals. They are closely
associated with the detected vulnerability types and contribute to the characterization of features
relevant to the target tasks. Taking CWE-119 type vulnerabilities as an example, the task-oriented
vulnerability knowledge considered by KF-GVD includes program operations and sensitive functions
related to the specific vulnerability type, as well as vulnerability knowledge associated with the
specific detection target, as follows:

Vulnerable program operations: The triggering of vulnerabilities is often caused by certain typical
risky behaviors in the code. According to our statistics, approximately 46% of CWE-119 vulnera-
bilities in the Linux kernel are attributed to a lack of boundary checks (as shown on the right side
of Figure 2). Other contributing factors include the absence of input-output validation, resource
consumption due to memory recursion or iteration, and more.

Sensitive functions: Sensitive functions are closely related to hazardous operations within a program.
For CWE-119 vulnerabilities, we collect and predefine over 80 relevant C/C++ language sensitive
functions, including string copy, concatenation functions (e.g., strcpy, strncpy, strcat, strncat), input
functions (e.g., gets, scanf, fscanf), dynamic memory allocation functions (e.g., alloca) and so on.

Customized knowledge for specific tasks: The manifestation of the same vulnerability type varies
across different functional modules. For example, considering the two most frequently affected
modules, fs and net, as illustrated in Figure 1, vulnerabilities of CWE-119 type are most prevalent
in code statements related to path parsing, symbolic links, and file access within the file system
module. In the network module, key areas introducing CWE-119 vulnerabilities include network
protocol stack parsing, network data processing, and so on. As a result, based on the collected
historical vulnerability information and considering the functional characteristics of the target tasks,
task-related vulnerability nodes can be marked.

B KF-GVD Model

The computation for each layer of the KF-GVD model can be denoted as follows:

GCN layer: After graph embedding, the model input is g = (X,A), where X is the node feature
matrix corresponding to G and A is the adjacency matrix corresponding to graph G. SAGPool uses a
two-layer GCN structure for graph message propagation:

HV = σ(GCN_Layers(g(X,A))) (3)

Where σ(.) is the activation function, HV ∈ Rn×d, where d is the hidden layer dimension of the
network and n is the number of nodes in the graph G.

Self-attention layer: The self-attention layer calculates each node vj of g based on the single-layer
self-attention mechanism of GCN. The attention score of j ∈ 1, .., n during message propagation,
calculated as:

sgj = σ(L̂hjΘatt), Sg = sgj
n
j=1

(4)

Sg ∈ Rn×1 is the final attention score matrix of nodes in g, where L̂ = D̃−
1
2 ÃD̃−

1
2 , is the Laplacian

matrix obtained by normalizing a self connected adjacency matrix Ã = A + I , D̃ ∈ Rn×n is the
degree matrix of Ã, θatt ∈ Rd×1. In this step, the layer will be based on Sg preserves ϕn nodes with
high weights and masks the hidden states corresponding to the remaining nodes, represented as:

idx = Top(Sg, ϕ), HV ′ = mask(idx,HV) (5)

Where V ′ = {v′p}γnp=1 ∈ V is the set of nodes with high weights retained in this layer, and γ is the
retain ratio.

Graph pooling layer: Then, the graph pooling layer aggregates node features to form a fixed size
representation, and the pooling result is based on the features and topology of the graph. SAGPool
uses average maximum pooling to obtain the global graph representation vector rg of g,

rg = Avg({hv′p}
ϕn
p=1) ‖Max({hv′p}

ϕn
p=1) (6)

14

Where hv′p ∈ HV ′ , ‖ is concatenation.

Classification layer: Finally, for the label prediction result ŷi for g is obtained from the fully
connected layer and Softmax, and the expression is as follows:

ŷi = Softmax (MLP (rg)) (7)

where ŷi ∈ Y .

C Experiment Settings

C.1 Data Collection

To ensure that the model learns the potential vulnerability patterns implied in the target task as
comprehensively as possible and achieves good generalization performance on the source task, the
scale of the source task dataset must be larger than that of the sub-task. This aligns with the current
research and application scenarios.

All real data in our datasets are sourced from the National Vulnerability Database (NVD), and we
collect information about target projects or vulnerability types based on publicly available security
commit information related to vulnerabilities. Positive and negative examples are obtained based on
the location of the patch before and after program fixes. Moreover, we extract statement-level labels
based on the diff information of the patches, identifying changes between new and old versions at the
statement level within functions.

During data processing, each CPG generated by Joern corresponds to a function in the source file,
and each graph association file associated with a source file enables mapping from node IDs in the
CPG to source code statements. The experiment employs these preprocessed graph data directly as
objects of study. Statistics on the source and target task datasets are provided in Table 6.

Table 6: Dataset statistics

Dataset Code Files Vul : Non-Vul Label Granularity
S119 6420 1:1.1 Function
S416 3631 1:1.5 Function
Tm 1122 1:2.5 Function, statement
Tsub 460 1:1.1 Function, statement

C.2 Evaluation Metrics

The evaluation metrics used in the experiment can be calculated as follows:

P =
TP

TP + FP
, (8)

R =
TP

TP + FN
, (9)

F1 =
2× P ×R
P +R

. (10)

Here, TP refers to True Positives, TN refers to True Negatives, FP refers to False Positives, and
FN refers to False Negatives. Precision measures the accuracy of the model in predicting positive
instances, while Recall measures the coverage of the model among all actual positive instances.
F1-Score is the harmonic mean of Precision and Recall.

For the evaluation metrics at the statement level, MAP can be calculated as follows:

APq =
1

N

N∑
k=1

P(K)× relK (11)

MAP =
1

Q

Q∑
q=1

APq (12)

15

Where, K represents the top K statements with the highest vulnerability prediction probabilities,
relK denotes the number of actual vulnerable statements among the top K statements. N is the total
number of samples, and Q is the number of classification categories.

C.3 Parameter Settings

Table 7: Parameter settings

Model Parameter Setting

Word2Vec
Min count 0.001

Size 30
Window 5

GNNs

Embedding dim 300
Hidden dim 32

Activation funcion Relu
Learning rate 0.0001

Optimizer Adam
Train:Validation:Test 8:1:1

During the feature extraction phase, CPGs corresponding to source code files were generated using
Joern version 1.1.1033. We employed a pre-trained Word2Vec model for mapping the semantic
information of CPG nodes (Vsemantic) to features. The SAGPool model deployed in both source and
target tasks were implemented using PyTorch version 1.4.0 and CUDA version 10.2. We conducted
all experiments on a workstation equipped with a Quadro RTX 6000 GPU. The model parameters for
KF-GVD are detailed in Table 7.

D Supplementary Experiments

D.1 Vulnerability Knowledge Sensitivity Analysis

To investigate how the knowledge fusion approach of KF-GVD influences the VD performance on
both source and target tasks, we analyze it from the following four aspects:

• The ratio of samples implement knowledge fusion.

(a) Results on function-level VD (b) Results on statement-level VD
Figure 7: The F1-score of KF-GVD with knowledge fusion for different ratio of samples on Tm119

and Tsub.

We investigate how varying the ratio of fused samples in a specific task affects the overall performance
of KF-GVD. Figure 7 shows the influence of the ratio of samples employed knowledge fusion (KF-
ratio) on the F1-score for function-level and statement-level VD on the target tasks Tm119

and Tsub.
It can be observed that, for function-level VD, an increase in the number of fused samples may
influence the model’s performance to some extent. Similarly, at the statement level, the performance
tends to reach a "saturation" state with an increase in fused samples. The model achieves optimal
results for both function-level and statement-level detection when the ratio of samples subjected to
the knowledge fusion operation is approximately 0.3-0.5 of the total task dataset. According to our
statistics, the ratio of samples subjected to fusion in our practice ranges from 0.28-0.56, which aligns
with the experimental expectations.

16

• Knowledge subgraph fusion coefficient.

Figure 8: The average F1-score of KF-GVD on different fusion coefficient settings.

In the experiments, we kept the feature values of the nodes α = 1 (Equation 1) fixed and varied
the fusion coefficient β to investigate the impact of vulnerability knowledge on the model’s feature
learning for specific tasks. To ensure a model configuration with a certain level of consistency, we
calculated the average F1-score of KF-GVD for all subtasks within each target task under different
fusion coefficient settings. As shown in Figure 8. It can be observed that when the value of β is
small, it has almost no impact on the overall performance of the model. The model performs well for
specific tasks when beta is in the range of 1.5-2. However with the increase of β value the influence
of relevant knowledge on model feature learning is significant and the performance of the model
decreases obviously and is almost ineffective. This also to some extent reflects that the manually
introduced vulnerability knowledge adopted by KF-GVD, serving as a supplement to the current task
conditions, cannot replace the inherent information in the source code for expressing vulnerability
patterns.

• Performance of the model fused with target task-related knowledge adopted on the source tasks.

Table 8: Results of applying the target task model to their corresponding source tasks.

(a) The results of applying the models trained on Tm119

and Tsub to S119.

Task P(%) R(%) F(%)
S119 82.9 90.9 86.7
Fs 91.7 91.1 91.4

Drivers 90.2 90.4 91.4
Net 89.6 84.9 87.2

Includes 93.7 86.4 89.9
CWE-125 77.1 89.8 82.9
CWE-787 83.2 85.0 84.1

AD 5.48 2.67 0.82

(b) The results of applying the models trained on Tm416

to S416.

Task P(%) R(%) F(%)
S416 86.8 89.3 88.0
Fs 91.9 85.0 88.3

Drivers 89.7 88.4 89.1
Net 81.82 94.7 87.8

Includes 79.3 98.8 88.0
Kernel 95.4 83.8 89.2
Block 86.6 82.4 84.4
AD -0.76 -0.5 -0.17

Table 8 shows the results of applying the models trained with fused knowledge from target tasks to
their corresponding source tasks. In the last row, we calculate the Average Difference (AD) of evalua-
tion metrics for the models before(in the first row) and after knowledge fusion for the corresponding
source tasks. It can be observed that even though KF-GVD incorporates new vulnerability knowledge
specific to certain tasks, it still manages to maintain the initial VD performance to some extent on the
source tasks, with an improvement on S119 and only marginal decreases within 1% for all metrics on
S416.

• The impact of implementing different task-oriented vulnerability knowledge.

We conduct the ablation study on the impact of implementing different task-oriented vulnerability
knowledge on the performance of KF-GVD. The knowledge related to specific vulnerability type
(vulnerable program operations and sensitive functions) is denoted as K1, and the customized
knowledge for specific tasks as K2. Table 9 shows F1-score (%) comparison of VD through the
fusion of different vulnerability knowledge on the target tasks corresponding to S119. For the target
task Tm119

, using only K1 resulted in an average increase of 11.9% in the F1-score, and an average

17

improvement of 16.3% by K2 only; for the target task Tsub, K1 resulted in an average increase of
15.1% in the F1-score, and K2 resulted in an average improvement of 7.5%. It can be observed that
target tasks like Tsub are more sensitive to K1. Furthermore, the combined integration of K1 and
K2 resulted in average F1 gains of 23.3% for Tm119

and 15.7% for Tsub, further demonstrating the
effectiveness of the proposed method.

Table 9: F1-score (%) comparison of VD through the fusion of different vulnerability knowledge on
the target tasks corresponding to S119.

Strategy Tm119
Tsub

Fs Drivers Net Include CWE-125 CWE-787
GVD 65.2 76.2 64.7 59.3 54.6 64.0

GVD + K1 80.4 79.1 82.9 70.6 71.3 77.5
GVD + K2 88.6 85.9 78.6 77.4 62.6 71.0

GVD + K1 + K2 95.7 92.3 82.5 88.0 67.9 82.1

D.2 Feature Representation Sensitivity Analysis

We evaluate the impact of the feature representation method employed by KF-GVD on VD per-
formance by using different graph representation methods and embedding models on S119 and its
corresponding target tasks.

• Graph representation based on different code properties.

Table 10: F1-score (%) comparison of VD using different graph representations on S119 and its
corresponding target tasks.

Graph S119
Tm119

Tsub
Fs Drivers Net Include CWE-125 CWE-787

CFG 54.4 46.8 50.8 45.2 49.3 54.6 50.3
PDG 61.8 60.7 57.9 52.3 56.8 59.6 56.5
CPG 86.7 95.7 92.3 82.5 88.0 67.9 82.1

As shown in Table 10, compared to a single code property, the CPG-based code representation method
achieves an average F1-score improvement of 27.1% on target tasks. To enable the pre-trained general
model to more flexibly adapt to a diverse range of downstream target tasks for enhanced VD, it is
crucial to consider more comprehensive vulnerability features during the modeling stage. Although
the CPG-based approach may result in slower performance compared to using a single code property
during model training, we believe that this trade-off is justified and acceptable, given the potential
gains in detection accuracy and model adaptability.

• Generate node semantic features Vsemantic using different embedding models.

Table 11: F1-score (%) comparison of VD using different embedding models on S119 and its
corresponding target tasks.

Model S119
Tm119

Tsub
Fs Drivers Net Include CWE-125 CWE-787

Code2Vec 84.2 92.8 94.6 83.8 88.9 68.3 79.6
Code2Seq 67.5 70.9 68.4 63.3 66.1 52.8 61.4
Word2Vec 86.7 95.7 92.3 82.5 88.0 67.9 82.1

Table 11 shows the F1-score (%) comparison of VD using different embedding models on S119 and
its corresponding target tasks. It can be observed that the impact of using Code2Vec and Word2Vec
embedding methods on the performance of KF-GVD is very close, and both are superior to the
Code2Seq embedding model. However, KF-GVD adopts Word2Vec as the embedding model for
generating node semantic feature vectors for the following reasons: First, since the CPG already

18

incorporates AST properties, we consider the AST parsing process in Code2Vec to be redundant
and more time-consuming, whereas Word2Vec is simpler and more efficient in comparison. Second,
while Code2Seq leverages attention mechanisms that provide advantages in handling complex code
structures and long-distance dependencies. For KF-GVD, the complex structure and dependencies of
the source code are represented by CPG as a whole, and the source code corresponding to the CPG
node is a concise code snippet or statement generated by joern parsing. We infer that this is also the
reason for the relatively poor performance of the Code2Seq model.

D.3 The Performance of KF-GVD on Cross-Domain Tasks

Table 12: F1-score (%) comparison of VD on cross-domain tasks.

Method L->F L->O F->L F->O O->L O->F
Cppcheck 37.5 28.2 40.1 27.6 32.4 19.0
Flawfinder 27.5 18.6 22.8 24.1 14.8 25.9

Sysver 39.9 29.4 30.1 34.2 32.4 33.5
VulCNN 48.4 32.3 42.3 36.4 35.9 27.3
Devign 44.6 35.1 41.2 43.1 34.3 47.5
ReGVD 54.3 33.9 38.6 40.1 44.8 50.2
IVDetect 50.1 47.3 48.5 49.7 42.6 48.6
GVD-ft 55.8 50.0 53.5 48.0 62.1 54.7

KF-GVD 57.1 54.0 62.4 56.8 65.6 60.3

We further verify the generalization of KF-GVD in cross-domain VD scenarios, and conduct cross-
domain VD among Linux kernel (L), FFmpeg (F) and Openssl (O). Table 12 shows the comparison
of F1 scores (%) on six cross-domain tasks. It can be observed that compared to suboptimal methods,
KF-GVD achieves an improvement of 1.3%-8.9% in F1-score, with an average gain of 5.4%. The
above experiments demonstrate the effectiveness of KF-GVD in cross-domain VD tasks compared
to SOTAs. On the other hand, compared with specific CWE-oriented VD tasks (an average gain
of 22.6% in F1-score), KF-GVD performs relatively poorly in cross-domain tasks. The unknown
vulnerability patterns between cross-domain projects, and the significant differences in programming
paradigms and code functionality across projects pose challenges to effective knowledge transfer.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

20

Justification: The method proposed in this paper is application-oriented and does not include
theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4.1 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

Answer: [Yes]

Justification: The dataset has been uploaded to the supplementary materials, and the detail
can be found in Appendix C.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In section 4 and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section 1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

23

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We adopt our own datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

24

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Motivation
	The KF-GVD Framework
	Feature Representation
	Code Property Graph Generation
	Task-oriented Vulnerability Knowledge Extraction
	Graph Embedding

	Vulnerability Detection and Interpretation
	Object
	Task-oriented Model with Knowledge Fusion
	Statement-level Interpretation and Location

	Evaluation
	Experiment Settings
	Dataset
	Baseline Approaches and Evaluation Metrics

	Function-level Vulnerability Detection Performance
	Statement-level Vulnerability Detection Performance
	Case Study

	Disscusion
	Threats to Validity
	Limitations and Future Work

	Related Works
	Conclusion
	Task-Oriented Vulnerability Knowledge
	KF-GVD Model
	Experiment Settings
	Data Collection
	Evaluation Metrics
	Parameter Settings

	Supplementary Experiments
	Vulnerability Knowledge Sensitivity Analysis
	Feature Representation Sensitivity Analysis
	The Performance of KF-GVD on Cross-Domain Tasks

