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Abstract

Semi-supervised learning (SSL) seeks to utilize unlabeled data to overcome the
limited amount of labeled data and improve model performance. However, many
SSL methods typically struggle in real-world scenarios, particularly when there is a
large number of irrelevant instances in the unlabeled data that do not belong to any
class in the labeled data. Previous approaches often downweight instances from
irrelevant classes to mitigate the negative impact of class distribution mismatch
on model training. However, by discarding irrelevant instances, they may result
in the loss of valuable information such as invariance, regularity, and diversity
within the data. In this paper, we propose a data-centric generative augmentation
approach that leverages a diffusion model to enrich labeled data using both labeled
and unlabeled samples. A key challenge is extracting the diversity inherent in the
unlabeled data while mitigating the generation of samples irrelevant to the labeled
data. To tackle this issue, we combine diffusion model training with a discriminator
that identifies and reduces the impact of irrelevant instances. We also demonstrate
that such a trained diffusion model can even convert an irrelevant instance into
a relevant one, yielding highly effective synthetic data for training. Through a
comprehensive suite of experiments, we show that our data augmentation approach
significantly enhances the performance of SSL methods, especially in the presence
of class distribution mismatch.

1 Introduction

Deep neural networks (DNNs), trained using a large amount of labeled datasets, have shown to achieve
remarkable performance in a variety of supervised learning tasks, such as image classification (LeCun
et al., 2015; Krizhevsky et al., 2017) and object detection (Everingham et al., 2010; Lin et al.,
2014). Nonetheless, the intensive labor of annotating vast datasets often renders the construction of
sufficiently large labeled datasets prohibitively expensive for numerous applications (Oliver et al.,
2018). To address this, semi-supervised learning (SSL) (Chapelle et al., 2009) has emerged as a
viable approach, which aims to leverage abundant unlabeled data to overcome the limited availability
of labeled data.

Recent progress in SSL has made many noteworthy advancements, including techniques such as
pseudo-labeling (Lee, 2013; Pham et al., 2021), consistency regularization (Sajjadi et al., 2016;
Tarvainen & Valpola, 2017; Sohn et al., 2020), and entropy minimization (Grandvalet & Bengio,
2004; Miyato et al., 2018; Berthelot et al., 2019). However, a common limitation of these methods
is their reliance on the critical assumption that both unlabeled and labeled data instances are drawn

*Equal Contribution.
†Corresponding Author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Figure 1: Transforming unlabeled data using a diffusion model. Initially, the unlabeled data includes
classes like trees, fish, and mountains, which are irrelevant to the labeled data’s classes such as trucks,
cars, and ships. The reverse process with class conditioning resolves this mismatch while preserving
the diversity of the original unlabeled samples. More examples can be found in Appendix H.

from an identical distribution. This often leads to significant performance degradation when there is
a class distribution mismatch, as noted in Oliver et al. (2018). Given that real-world settings often
deviate from this assumption (Guo et al., 2020), it becomes crucial to address the class distribution
mismatch for successfully applying SSL in realistic scenarios.

A prevalent approach to mitigate the class distribution mismatch in SSL involves selectively utilizing
unlabeled data through a weighting function which serves to reduce the influence of irrelevant
unlabeled samples (Chen et al., 2020; Guo et al., 2020). While these filtering methods are intuitively
appealing and have shown their effectiveness in mitigating negative effect of the class distribution
mismatch, they may result in the loss of valuable information such as invariance, regularity, and
diversity within the data: even though the labeled data contains only white trucks, could we generate
images of red trucks using the red bike images in the unlabeled dataset?

In this paper, we propose a generative data augmentation approach that leverages a diffusion model
to enrich labeled data using both labeled and unlabeled samples. A key challenge lies in utilizing the
diversity of the unlabeled data to compensate the limited amount of labeled data, while minimizing
the generation of samples that are irrelevant to the classes in the labeled dataset. To address this, we
integrate diffusion model training with a discriminator that evaluates the relevance of each unlabeled
instance. The discriminator’s resulting score is used to assign weights to unlabeled instances, allowing
those with higher relevance to contribute more significantly to the training of the diffusion model.

In addition, drawing inspiration from the approach in Meng et al. (2022), we add noise to each
unlabeled sample and utilize them as guide images during the data generation process. As depicted
in Figure 1, we found that incorporating class conditions into this generation process can transform
possibly irrelevant unlabeled samples into labeled samples while preserving key characteristics of the
original unlabeled samples (e.g., outline, color arrangement, shape, etc.).

Our extensive experimental results, utilizing CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009),
ImageNet-30 (Deng et al., 2009), and ImageNet-100 (Cao et al., 2022) datasets with six baseline
methods, demonstrate that our approach further improves the performance of recent SSL methods,
especially under the class distribution mismatch.

2 Related Works

2.1 Standard Semi-Supervised Learning

Semi-Supervised Learning (SSL) aims to leverage both labeled and unlabeled data to mitigate issues
related to the scarcity and high annotation cost of labeled data. Since many SSL methods operate
under the assumption that labeled and unlabeled data are sampled from an identical distribution,
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we refer to this as the standard SSL setting. Among the various approaches to the standard SSL
setting, we briefly review two of the most representative methods: pseudo-labeling and consistency
regularization.

Pseudo-labeling (Scudder, 1965; McLachlan, 1975; Lee, 2013) is a technique where the model-
predicted labels of the unlabeled data are treated as if they were true labels. Essentially, this method
simply converts unlabeled data into labeled data. On the other hand, consistency regularization (Bach-
man et al., 2014) has become a crucial component in recent SSL regimes. This approach applies data
augmentation on the unlabeled data to regularize the model to yield similar outputs for augmented
views of the same instance (Sajjadi et al., 2016; Laine & Aila, 2017; Sohn et al., 2020).

However, these methods often fail when there is a mismatch between the distributions of labeled and
unlabeled data. In some cases, their performance may be even worse than simply discarding all the
unlabeled data (Oliver et al., 2018). The primary source of the problem is the presence of unlabeled
instances that do not belong to any of the classes present in the labeled data, which we refer to as
out-of-distribution (OOD) instances. They may exacerbate confirmation bias (Arazo et al., 2020) in
pseudo-labeling approaches or intensify the overconfidence problem in consistency regularization
approaches (Chen et al., 2020).

2.2 Open-set Semi-Supervised Learning

The open-set SSL setting refers to the practical yet challenging scenario where the class distributions
of labeled and unlabeled dataset differ significantly. A prevalent solution to the class distribution
mismatch is to filter out OOD instances from the unlabeled dataset. To achieve this, it is necessary
to accurately identify them, despite the absence of label information. Uncertainty-Aware Self-
Distillation (UASD), proposed by Chen et al. (2020), formulates temporally ensembled networks and
utilizes ensemble prediction to quantify predictive uncertainty of labels to identify OOD instances.
DS3L (Guo et al., 2020) adopts a meta-learning approach to selectively use unlabeled data that
enhances generalization performance. OpenMatch (Saito et al., 2021) leverages one-vs-all classifiers
as the OOD detector to filter out OOD instances. Safe-Student (He et al., 2022) employs teacher-
student mechanism and introduces energy-discrepancy, a new scoring function for detecting OOD
instances. The above methods follow the detect-and-filter paradigm, which is the dominant approach
of open-set SSL, assuming that OOD instances are fundamentally harmful.

In contrast to these detect-and-filter approaches, several studies share similar goals to ours, aiming to
harness the potential of OOD unlabeled data rather than simply discarding them. T2T (Huang et al.,
2021) incorporates a warm-up training step using OOD instances to perform a self-supervised pretext
task for learning effective discriminative features. TOOR (Huang et al., 2022) introduces a weighting
mechanism to evaluate the transferability of each OOD instance based on domain similarity and class
tendency, and uses adversarial domain adaptation to align the feature distributions of transferable
OOD instances and in-distribution (ID) instances. Fix-A-Step (Huang et al., 2023) leverages OOD
instances to obtain useful data augmentation to promote diversity of training data, and integrate this
idea into MixMatch (Berthelot et al., 2019). IOMatch (Li et al., 2023) takes into consideration that
the OOD detector may be unreliable, particularly when labeled data are scarce. It instead employs
a multi-binary classifier to produce unified open-set pseudo-labels for labeled and unlabeled data,
including OOD instances.

Our approach significantly deviates from these open-set SSL methods. It is primarily centered on
developing an effective data augmentation strategy from both labeled and unlabeled data, which can
be used to transform an unlabeled OOD instance into a labeled ID instance.

2.3 Recent Diffusion-based Augmentation Approaches

In this section, we provide a detailed comparison of DWD with diffusion-based methods, namely
DPT (You et al., 2023) and DA-Fusion1 (Trabucco et al., 2024).

DPT is a simple yet effective method that integrates diffusion models into SSL. To generate semanti-
cally accurate images, they trained a semi-supervised classifier on partially labeled real images and
used it to assign pseudo-labels for all the data. Subsequently, they trained a conditional diffusion

1Although DA-Fusion is not a SSL algorithm, we include it as a supervised learning baseline due to its
methodological similarity in utilizing image-to-image generation process.
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model using the pseudo-labels to synthesize images and then re-trained the semi-supervised classifier
using these generated images. However, they still rely on the fundamental assumption behind the
standard SSL setting. When faced with mismatch in class distributions, they suffer from the con-
firmation bias in pseudo labels of OOD unlabeled images and become ineffective. In contrast, our
approach addresses the class distribution mismatch by integrating the discriminator into the training
of the diffusion model.

DA-Fusion is a data augmentation method that utilizes a large pretrained text-to-image diffusion
model (i.e., Stable Diffusion, Rombach et al., 2022). Similar to ours, it also initiates the reverse
process with partially noised real images rather than generating images from scratch. However, the
purpose of the generation process is distinctly different from that of our approach. While DA-Fusion
aims to augment given labeled samples with subtle visual details already contained in the pretrained
diffusion model, our method properly trains a diffusion model to capture both the labeled data
distribution and the diversity of unlabeled samples from the given datasets, and transforms irrelevant
unlabeled samples into labeled ones.

3 Preliminaries

Diffusion models (Sohl-Dickstein et al., 2015) incrementally add Gaussian noises to the data
during its forward process and progressively removes this noise during the reverse process to
reconstruct the original data. Given a data point x0, the forward process is defined as a Markov chain
that produces a sequence of noisy samples x1, ...,xT according to a variance schedule β1, ..., βT :

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1) (1)

The forward process exhibits a notable property in that xt at any arbitrary time step t ∈ {1, ..., T}
can be obtained in closed form:

xt =
√
ᾱtx0 +

√
(1− ᾱt)ϵ (2)

where αt = 1− βt, ᾱt =
∏t

i=1 αi and ϵ ∼ N (0, I). As the reverse process can be expressed using
the same functional form when βt is sufficiently small (Feller, 1949; Sohl-Dickstein et al., 2015),
the reverse process is also defined as a Markov chain with learned Gaussian transitions starting at
p(xT ) = N (xT ,0, I):

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)), pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt) (3)

Denoising Diffusion Probabilistic Models (DDPMs) Ho et al. (2020) propose to use a simplified
Gaussian distribution parameterization of the reverse process, which sets Σθ to time-dependent
constants and reparameterizes the mean function approximator µθ(xt, t) with noise predictor ϵθ(xt, t)
which predicts ϵ in (2). The reverse process is then learned by the following objective:

Lddpm = Ex0,t,ϵ[||ϵθ(xt, t)− ϵ||22] (4)

For the conditional DDPM, the primary modification is the incorporation of conditions c (such

as classes or texts) as an additional input, expressed as ϵθ(xt, c, t). This adaptation allows the
diffusion model to take into account specific conditions or attributes during the reverse process,
thereby enhancing its applicability to more targeted scenarios.

Positive-Unlabeled (PU) Learning (Liu et al., 2002; Li & Liu, 2003; Du Plessis et al., 2015; Kiryo
et al., 2017) is a binary classification task in a situation where negative labels are missing. It aims
to train models using positive-labeled and unlabeled data to perform binary classification. The main
idea involves indirectly estimating the model loss on negative samples using the class prior. Given
that unlabeled data are drawn from pu(x) = µ p+(x) + (1 − µ) p−(x), where µ = p(Y = 1) is
the class prior and p+(x) = p(x |Y = 1) and p−(x) = p(x |Y = −1) are positive and negative
class-conditional densities, the loss can be reformulated as:

E [ℓ(g(x), Y )] = µEp+ [ℓ(g(x), 1)] + (1− µ)Ep− [ℓ(g(x),−1)]
= µEp+ [ℓ(g(x), 1)]− µEp+ [ℓ(g(x),−1)] + Epu [ℓ(g(x),−1)] (5)

Here, ℓ denotes a loss function and g represents the model.

4



Figure 2: Schematic diagram of Discriminator-Weighted Diffusion (DWD). The conditional diffusion
model is trained using both labeled and unlabeled data. The unlabeled data is utilized for unconditional
training without class conditions. The pre-trained discriminator assigns weights to each unlabeled
data sample to mitigate the potential negative impact of OOD samples.

4 Methodology

In this section, we introduce our data augmentation method, which leverages a diffusion model to
generate synthetic data to address the scarcity of labeled data. As previously discussed, we start with
training the diffusion model on labeled and unlabeled data while mitigating the class distribution
mismatch. Subsequently, we employ the reverse diffusion process to transform unlabeled samples
into synthesized labeled samples.

4.1 Training Diffusion Model

A simple training scheme for SSL data The diffusion model trained only on the labeled data will
inevitably overfit and merely generate replications due to their limited amount. It is thus essential
to train the diffusion model on both labeled and unlabeled data, while taking advantage of the label
information. We adopt a class-conditional diffusion model, shown in Figure 2, where labeled data are
used for conditional training while unlabeled data are used for unconditional training, trained with
the loss

Lsemi = E(x0,c)∼Dl,t,ϵ[||ϵθ(xt, c, t)− ϵ||22] + α · Ex0∼Du,t,ϵ[||ϵθ(xt, t)− ϵ||22], (6)

where α serves as a hyper-parameter that controls balance between labeled and unlabeled data, Dl

and Du represent labeled and unlabeled datasets. Intuitively, this straightforward objective aims
to train the diffusion model to reconstruct not only the limited labeled data but also the abundant
unlabeled data, thereby regularizing the model against overfitting to the labeled data. It is noteworthy
that this approach shares similarities with the consistency regularization technique in the sense that
the unlabeled data are utilized for regularization purposes.

Discriminator However, when we train the diffusion model with the loss in (6), OOD unlabeled
samples can have a negative impact on capturing important characteristics of the labeled data
distribution. These samples should be made contribute less towards the overall training loss. In
line with aforementioned filtering methods (Chen et al., 2020; Guo et al., 2020), we leverage a
discriminator to weigh the unlabeled data instances. The discriminator is tasked with differentiating
between positive samples that are closely aligned with the distribution of labeled data and negative
samples that are irrelevant. To train the discriminator, we adopt PU learning with the training loss

Ldisc = µ · Ex∼Dl
[−logdϕ(x) + log (1− dϕ(x))] + Ex∼Du [−log (1− dϕ(x))], (7)

where dϕ denotes the discriminator parameterized by ϕ, and µ represents the ratio of positive samples
among unlabeled samples, i.e. belonging to one of the classes in the labeled dataset. This ratio can
either be estimated from the dataset (Menon et al., 2015; Jain et al., 2016; Christoffel et al., 2016) or
treated as a hyperparameter.

We then use the discriminator to assign weights on the unlabeled instances so that they align with
the distribution of labeled data. A simple algebraic manipulation tells us that the following weight
formula yields an unbiased loss estimation via importance sampling:
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Algorithm 1 Discriminator-Weighted Diffusion (DWD) - Training
Input Labeled dataset Dl and unlabeled dataset Du.
Parameter Learning rate ηθ, ηϕ, hyper-parameter µ, α, and total number of iterations Kθ, Kϕ.
Either pretrain the diffusion model ϵθ on Du or acquire an off-the-shelf pretrained diffusion model.
# Train the discriminator dϕ using objective (7):
for n = 0, 1, 2, ...,Kϕ do

Sample a batch of data xl ∼ Dl and xu ∼ Du.
ϕ← ϕ− ηϕ∇ϕ

[
µ · Exl [−logdϕ(x

l) + log (1− dϕ(x
l))] + Exu [−log (1− dϕ(x

u))]
]

end for
# Finetune the diffusion model ϵθ using the discriminator dϕ and weighting function w from (8):
for n = 0, 1, 2, ...,Kθ do

Sample a batch of data (xl, c) ∼ Dl and xu ∼ Du.
θ ← θ − ηθ∇θ

[
Exl,t,ϵ[||ϵθ(xl

t, c, t)− ϵ||22] + α · Exu,t,ϵ[w(x
u) · ||ϵθ(xu

t , t)− ϵ||22]
]

end for
Output Learned diffusion model ϵθ and learned discriminator dϕ.

Proposition 4.1. Given an optimal discriminator d∗, using the following importance weight on
unlabeled data yields an unbiased estimation of the loss function with respect to the labeled data
distribution:

w(x) =
d(x)

µd(x) + (1− µ)(1− d(x))
(8)

For a detailed proof, please refer to Appendix A. The final training loss for the diffusion model then
becomes:

LDWD = E(x0,c)∼Dl,t,ϵ[||ϵθ(xt, c, t)− ϵ||22] + α · Ex0∼Du,t,ϵ[w(x0)||ϵθ(xt, t)− ϵ||22] (9)

The overall training scheme, referred to as Discriminator-Weighted Diffusion (DWD), is outlined
in Algorithm 1.

4.2 Seeding Data Generation with Unlabeled Instances

After training the diffusion model, a straightforward approach to generating synthetic data would be
to start the reverse diffusion process from Gaussian noise. In our methodology, however, we begin the
reverse process using a partially noised image of an unlabeled instance. As we will show in Section 5.3,
we found that this approach leads to additional performance gains. It successfully transforms an
OOD instance into an in-distribution sample while preserving some important characteristics in the
original sample (see Figure 1). Thus we can exploit the diversity present in the unlabeled data when
generating synthetic in-distribution data. The procedure is detailed in Algorithm 2 in the Appendix B.

We can think of two usage scenarios for the samples generated from the diffusion model: we could
take the samples as pseudo-labeled synthetic data to enrich the labeled data and employ a fully
supervised learning method, or take the samples as a transformed unlabeled data by discarding the
class conditions and employ an SSL method. In the latter case, we expect that the SSL method will
perform better, since the class distribution mismatch has been mitigated.

5 Experiments

To assess the effectiveness of DWD, we conduct experiments across a broad set of tasks in two
settings. (1) DWD-SL: a fully supervised learning setting where the unlabeled dataset is converted to
a pseudo-labeled dataset by replacing the instances with their transformations along with their class
conditions as target labels; and (2) DWD-UT: an SSL setting where the unlabeled dataset is replaced
by the transformed unlabeled samples and employ the baseline SSL method.

Tasks The SixAnimal task Oliver et al. (2018) uses CIFAR-10 dataset to classify six animal classes
(bird, cat, deer, dog, frog, and horse). Following the setup in Huang et al. (2023), we sampled 400
images per class for the labeled dataset and included up to 4100 images per class in the unlabeled
dataset. To investigate the impact of class distribution mismatch, we varied the mismatch percentage
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Table 1: Performance comparison on four tasks. We report the mean accuracy averaged over three
seeds, along with standard error. Top scores for each task are highlighted.

Task Name MixMatch FixMatch MPL OpenMatch Fix-A-Step IOMatch DWD-SL

SixAnimal (ζ = 75%) 80.77±0.11 82.50±0.16 65.62±0.47 80.34±0.21 85.34±0.17 83.05±0.16 85.86±0.28
CIFAR-10/100 71.02±0.32 78.91±0.15 70.95±0.34 70.15±0.30 74.60±0.31 77.66±0.22 80.05±0.14
ImageNet-30 68.67±0.37 70.07±0.26 72.65±0.70 72.78±0.48 79.67±0.81 79.23±0.29 82.20±0.38
ImageNet-100 69.30±0.41 65.11±0.32 68.43±0.33 65.42±0.36 65.80±0.49 66.85±0.19 82.81±0.31

Table 2: Performance of standard SSL methods before and after applying DWD-UT. Highlighted
scores show significant increases without overlapping intervals.

Task Name MixMatch Mixmatch
+DWD-UT FixMatch FixMatch

+DWD-UT MPL MPL
+DWD-UT

SixAnimal (ζ = 75%) 80.77±0.11 84.72±0.22 82.50±0.16 87.17±0.19 65.62±0.47 83.88±0.18
Cifar-10/100 71.02±0.32 80.47±0.49 78.91±0.15 83.80±0.25 70.95±0.34 80.24±0.56
ImageNet-30 68.67±0.37 85.20±0.10 70.07±0.26 81.87±0.61 72.65±0.70 90.20±0.23
ImageNet-100 69.30±0.41 81.62±0.36 65.11±0.32 80.38±0.34 68.43±0.33 75.66±0.26

Table 3: Performance of open-set SSL methods before and after applying DWD-UT.

Task Name OpenMatch OpenMatch
+DWD-UT Fix-A-Step Fix-A-Step

+DWD-UT IOMatch IOMatch
+DWD-UT

SixAnimal (ζ = 75%) 80.34±0.21 85.71±0.33 85.34±0.17 86.68±0.23 83.05±0.16 87.20±0.13
Cifar-10/100 70.15±0.30 80.99±0.03 74.60±0.31 79.02±0.75 77.66±0.22 83.22±0.16
ImageNet-30 72.78±0.48 75.28±0.68 79.67±0.81 82.95±0.45 79.23±0.29 81.96±0.26
ImageNet-100 65.42±0.36 80.02±0.45 65.80±0.49 76.23±0.37 66.85±0.19 80.19±0.13

ζ in the composition of the unlabeled dataset. For example, when ζ = 75%, the unlabeled dataset
contains three non-animal classes and one animal classes. We refer Appendix C for further details on
the composition of the unlabeled dataset.

The CIFAR-10/100 task uses CIFAR-10 as the labeled dataset, and CIFAR-100 as the unlabeled
dataset. While the whole CIFAR-100 was taken as the unlabeled dataset, we sampled 100 images per
class from CIFAR-10 to simulate the scarce labeled data scenario. Notably, class labels in CIFAR-10
and CIFAR-100 do not exactly overlap, though there are similarities (e.g., “horse” in CIFAR-10 and
“cattle” in CIFAR-100). Thus, this task complements the SixAnimal task, which had an exact class
overlap between labeled and unlabeled data.

The ImageNet-30 task uses the ImageNet-30 dataset Hendrycks et al. (2019), which is a subset of
ImageNet limited to 30 classes. Following Saito et al. (2021), we selected 5% of the data from the
first 20 classes (approximately 50 samples per class) based on the alphabetical ordering of class
names for the labeled dataset, and used the remaining data as the unlabeled dataset.

The ImageNet-100 task uses ImageNet-100 dataset, which sub-sampled 100 classes from ImageNet,
as described in Cao et al. (2022). We divided these classes equally into 50% ID and 50% OOD classes
following alphabetical order. From each ID class, we selected a small portion (10%) as labeled
data with the remaining data forming the unlabeled dataset. This task assesses the effectiveness on
higher-resolution images with a greater diversity of classes. Please refer to Appendix D for extensive
results under various sizes of labeled dataset.

Baseline SSL methods Since we use DWD to transform the unlabeled dataset into a dataset devoid
of class distribution mismatch, we comprehensively consider as baseline SSL methods those which
operate under the standard setting as well as the open-set setting. The baseline SSL methods under the
standard setting are MixMatch (Berthelot et al., 2019), FixMatch (Sohn et al., 2020), and Meta Pseudo
Labels (MPL) (Pham et al., 2021), and the methods under the open-set setting are OpenMatch (Saito
et al., 2021), Fix-A-Step (Huang et al., 2023), and IOMatch (Li et al., 2023).
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5.1 DWD-SL: Labeled Dataset Augmentation

Table 1 reports the comparative performance of DWD-SL against various baseline SSL methods. The
results clearly demonstrate that DWD-SL substantially surpasses the performance of methods for
standard SSL. This suggests that DWD successfully captures both the inherent distribution of the
labeled data and the diversity of the unlabeled data, yielding highly effective synthetic labeled data
for training.

Notably, DWD-SL even achieves competitive or superior results relative to open-set SSL methods.
This advantage stems from DWD-SL’s ability to transform the diversity of unlabeled data into labeled
samples, rather than using this diversity merely as a form of regularization, as seen in baseline SSL
methods. For further implementation details, please refer to Appendix C.

5.2 DWD-UT: Unlabeled Dataset Transformation

Table 2 and Table 3 show the impact of DWD-UT on the performances of the baseline SSL methods.
From the results, we can confirm that DWD-UT effectively addresses the performance degradation
caused by the class distribution mismatch. Notably, the most significant improvement was observed
in the MPL method. Given that MPL is based on pseudo-labeling, this result indicates that DWD-UT
effectively mitigates the confirmation bias associated with pseudo-labeling of OOD instances in the
unlabeled dataset.

Figure 3 shows how performance degrades over the range of ζ in the SixAnimal task. We can clearly
see that using DWD-UT makes SSL methods generally robust to the degree of class distribution
mismatch, even though they operate under the assumption that there are no OOD instances in the
unlabeled data.

Figure 3: Standard SSL performance with varying ζ.

We also remark that DWD-UT further
improves the performance of open-set
SSL methods. This implies that DWD-
UT is orthogonal to the OOD mitigation
mechanisms used in open-set SSL meth-
ods, offering a distinct contribution in ad-
dressing the class distribution mismatch:
while most of the open-set SSL meth-
ods operate under the detect-and-filter
paradigm to focus on excluding the OOD
instances due to their negative impact,
the diffusion model provides a powerful
tool for making up the diversity lost by
such exclusion.

It is also notable that DWD-UT frequently outperforms DWD-SL, indicating a synergistic effect
between DWD-UT and baseline SSL methods. This may be attributed the underlying data selection
mechanism in the SSL methods (e.g. thresholding used in pseudo-labeling, weighting function in
filtering-based methods), which also contribute to selectively strengthen the impact of synthetic data.

Additionally, to provide direct evidence of DWD-UT’s effectiveness in reducing the class distribution
mismatch, we compute the minimum distance between each unlabeled data sample and the class
centroids of labeled data in the latent space. We refer Appendix E for the results.

5.3 Ablation Studies

We carried out a series of ablation studies on DWD-UT, assessing different training schemes for the
diffusion model and varying noise levels for perturbing seed images. For these studies, we employed
MPL as the baseline SSL method.

Table 4 shows the results of ablation studies conducted on different training schemes for the dif-
fusion model. Several observations can be drawn from these results. Firstly, the utilization of
the discriminator to filter or reduce the weight of OOD instances culminates in a rather marginal
performance improvement. Secondly, the incorporation of the diffusion model to generate synthetic
data contributes to a substantial performance surge above the baseline, even when fine-tuned solely
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Table 4: MPL performance using different training schemes. The notation ϵθ[X] indicates the inclu-
sion of component X in finetuning the diffusion model. MPL + dϕ represents that the discriminator
is utilized for filtering unlabeled data.

Training Method SixAnimal Cifar-10/100 ImageNet-30 ImageNet-100

MPL 65.62 70.95 72.65 68.43
MPL + dϕ 67.19 71.73 83.60 70.74

MPL + ϵθ[Dl] 78.70 75.33 87.44 73.38
MPL + ϵθ[Dl,Du] 80.78 76.79 88.09 74.12

MPL + ϵθ[Dl,Du,dϕ] 83.88 80.24 90.20 75.66

Table 5: MPL performance on SixAnimal with varying noise levels. DWD-UT is not applied at t = 0.

Noise Level t = 0 t = 200 t = 400 t = 600 t = 800 t = 1000

Accuracy (%) 65.62±0.47 73.65±0.28 82.03±0.18 83.88±0.18 83.83±0.11 82.06±0.13

Table 6: Performance of standard SSL and generative augmentation methods on ImageNet-30.

Method MixMatch FixMatch MPL DPT DA-Fusion DWD-SL
Accuracy (%) 68.67±0.37 70.07±0.26 72.65±0.70 78.28±0.48 75.26±0.39 82.20±0.28

with the labeled data. This suggests that transforming irrelevant unlabeled data is more effective than
simply filtering them out. Lastly, the extra step of fine-tuning the diffusion model with the unlabeled
dataset and applying discriminative weighting also offers a nontrivial advantage.

Table 5 shows the variations in performance with different noise levels during the data transformation
process. The results indicate that introducing a moderate level of noise (t = 600 ∼ 800) to the
unlabeled data during the forward diffusion process, as opposed to initiating from pure Gaussian
noise (t = 1000), enhances performance. Therefore, it can be inferred from these findings that the
efficacy of DWD-UT is contingent upon the balance between the level of noise and the information
contained in the unperturbed data. We remark that the optimal noise level can differ among data
instances. While we fixed the noise level to t = 600 in our experiments for simplicity, determining
the noise level individually for each sample presents a potential avenue for future research.

5.4 Comparison with Recent Diffusion-based Augmentation Approaches

We conducted further experiments on the ImageNet-30 task to compare the performance of DWD with
those of DPT and DA-Fusion. To ensure fairness in comparison, we equalized the implementation
of the model structure, data generation process, and the number of augmented data. As shown
in Table 6, both DPT and DA-Fusion have demonstrated effectiveness, yet their performance falls
short compared to that of DWD. This is because DPT, assuming no distribution shift, sometime
generates wrongly labeled synthetic images due to the confirmation bias in pseudo labeld of OOD
unlabeled images, and DA-Fusion only augments given labeled samples with subtle visual details
(Please refer to Appendix I for examples). In contrast, DWD synthesizes new labeled samples by
transforming diverse unlabeled data, successfully resolving the distribution mismatch.

5.5 Additional Experiments

We also conducted additional experiments to analyze computational costs, investigate the effect of the
number of generated data, and assess hyper-parameter sensitivity. For detailed experimental results
and analysis, please refer to Appendix F.
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6 Conclusion

In this paper, we highlighted the potential of diffusion models for addressing class distribution
mismatch in SSL. We introduced Discriminator-Weighted Diffusion (DWD), a semi-supervised
training scheme that leverages a discriminator to identify OOD instances within the unlabeled
data, facilitating effective training of the diffusion model. Our qualitative and quantitative results
demonstrate that DWD captures both the characteristics of labeled data and the diversity of unlabeled
data.

Notably, DWD exhibits a unique capability to convert irrelevant samples into relevant ones, making
it compatible with other SSL methods and illustrating the orthogonality of our approach. Our
extensive experiments show that DWD significantly enhances SSL performance in scenarios with
class distribution mismatch. We hope that DWD will inspire future research focused on addressing
distribution mismatch from a data-centric perspective.
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A Derivation for Proposition 4.1

Problem setting. We consider the two-sample problem setting of PU learning (Ward et al., 2009;
Niu et al., 2016). The discriminator d(x) aims to solve a binary classification problem to classify
input data x into negative or positive class y. Let X ∈ Rd and Y ∈ {−1,+1} denote the input and
output random variables, p(x, y) be the joint probability density function of (X,Y ), and p+(x) =
p(x |Y = +1), p−(x) = p(x |Y = −1) be the positive and negative conditional probability density
functions respectively. The labeled and unlabeled data are assume to be sampled from p+(x) and
p(x) = µ p+(x) + (1− µ) p−(x) respectively, where µ = p(Y = +1) is class prior.

Proof. The goal of the discriminator can be formulated as maximizing following objective

J = Ex∼p+(x) [ log (d (x))] + Ex∼p−(x) [ log (1− d (x))]

=

∫
p+(x) log (d (x)) + p−(x) log (1− d (x)) dx (10)

First order optimality condition gives

p+(x)

d(x)
− p−(x)

1− d(x)
= 0 (11)

Rearranging (11), we can easily show that the optimal discriminator d∗(x) satisfies

d∗(x) =
p+(x)

p+(x) + p−(x)
(12)

Substituting (12) to (8), we have

w(x) =
d∗(x)

µd∗(x) + (1− µ)(1− d∗(x))
=

p+(x)

µ p+(x) + (1− µ) p−(x)
=

p+(x)

p(x)
(13)

Finally, we can use w(x) as importance weights because

Ex0∼p(x)[w(x0)||ϵθ(xt, t)− ϵ||22] =
∫

p+(x0)

p(x0)
p(x0)||ϵθ(xt, t)− ϵ||22dx = Ex0∼p+(x)[||ϵθ(xt, t)− ϵ||22]

(14)

B Data Generation Process

The data generation process is detailed in Algorithm 2. In our experiments, we generate one image
per unlabeled image. For the impact of the number of generated data, please refer to Appendix F.
We chose to generate images before the classification task, rather than during each batch iteration of
training the classification models. Additionally, while we described the sampling process in DDPM
style, DPM-Solver2(Lu et al., 2022) is utilized in implementation for computational efficiency.

Algorithm 2 DWD - Image-Seeded Generation
Input Unlabeled data xu and diffusion model ϵθ.
Parameter Time step t.
Sample Gaussian noise: ϵ ∼ N (0, I)
Forward diffusion process to time step t: xu

t =
√
ᾱtx

u +
√

(1− ᾱt)ϵ
Randomly select class condition c.
# Reverse diffusion process starting at xu

t :
for i = t, t− 1, ..., 1 do
z ∼ N (0, I) if i > 1 else z = 0

xu
i−1 = 1√

αi

(
xu
i − 1−αt√

1−ᾱi
ϵθ(x

u
i , c, i)

)
+
√
βiz

end for
Output Transformed data xu

0 and class condition c

2https://github.com/LuChengTHU/dpm-solver, MIT License
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C Implementation Details

Diffusion model and discriminator. For all experiments, we use official implementation of
latent diffusion model (Rombach et al., 2022), which is publicly available3. Since latent diffusion
models perform diffusion processes in the embedded latent space, there is a trade-off between
computational cost and generation quality depending on the downsampling factor f Rombach et al.
(2022). Therefore, we adjust f based on dataset scale: f = 2 for small-scale datasets and f = 8
for large-scale datasets. The batch sizes for labeled and unlabeled data, denoted as Bl and Bu

respectively, are set to Bl = 16, Bu = 112 for small-scale datasets, and Bl = 4, Bu = 12 for
large-scale datasets. We follow the Rombach et al. (2022) for other configuration such as learning
rate, optimizer, scheduler, etc. After the pre-training phase, we train the models for 200K iterations
for Cifar-10, and 1M iterations for ImageNet. For the discriminator, we employ the ResNet-18 He
et al. (2016) followed by 2 MLP layers. We train the discriminator using AdamW Loshchilov &
Hutter (2019) optimizer with 0.0002 initial learning rate and 0.0001 weight decay. We treat µ as a
hyper-parameter, and set it within {0.25, 0.33, 0.5}. Another hyper-parameter α, which control the
balance between labeled and unlabeled, we set 5 in all tasks.

Common configuration for DWD-SL and DWD-UT. To ensure fair evaluation, task-specific
settings were established for both DWD-SL and DWD-UT. For tasks associated with Cifar-10,
the Wide ResNet-28-2 architecture Zagoruyko & Komodakis (2016)) was employed, with training
conducted using the AdamW optimizer at an initial learning rate of 0.03 across 256 epochs 1,024
iterations per epoch. In the ImageNet-30 task, we follow the settings from Saito et al.(2021) and Li
et al.(2023). Specifically, we employed the ResNet-18 architecture He et al. (2016), and train for 100
epochs with 1,024 iterations per epoch using AdamW 0.1 initial learning rate.

DWD-SL specific configuration. In all DWD-SL tasks, we maintained a 1:1 ratio between labeled
and unlabeled samples within each batch. More specifically, we set Bl = Bu = 64 for SixAnimal
and Cifar-10/100, and Bl = Bu = 32 for ImageNet-30. We applied RandAugment Cubuk et al.
(2020), widely used in the SSL field to achieve robust results, to both original labeled and DWD-SL
data. Additionally, we applied label smoothing to the cross-entropy loss, following the approach used
in MPL Pham et al. (2021). The starting time step t for the reverse diffusion process was set to 600.

DWD-UT specific configuration. For SixAnimal and Cifar-10/100 tasks, we used Bl = 64 and
Bu = 448, while for ImageNet-30, we used Bl = 32 and Bu = 32. Since ImageNet-30 includes
out-of-distribution (OOD) classes in the test set while standard SSL methods inherently cannot
identify OOD classes, we removed OOD samples from the test set for a fair comparison. Additionally,
IOMatch evaluates the performance using balanced accuracy, which classifies all OOD classes as
a additional single class. This could also be an unfair comparison. Therefore, we evaluated only
on the closed set for all tasks. Except aforementioned, we follow their papers for method-specific
hyper-parameters and setting.

Unlabeled data composition in SixAnimal with varying ζ. We configure the SixAnimal task
exactly following Chapelle et al. (2009), Huang et al. (2023). The Table 7 shows the composition of
labeled / unlabeled set of SixAnimal task according to mismatch percentage (ζ).

Table 7: Configuration of labeled/unlabeled class mismatch scenario in CIFAR-10 SixAnimal task.
The bold text of unlabeled set represent the OOD classes.

Labeled set Unlabeled set

ζ = 25% Bird, Cat, Deer, Dog, Frog, Horse Airplane, Dog, Frog, Horse
ζ = 50% Bird, Cat, Deer, Dog, Frog, Horse Airplane, Car, Frog, Horse
ζ = 75% Bird, Cat, Deer, Dog, Frog, Horse Airplane, Car, Ship, Horse
ζ = 100% Bird, Cat, Deer, Dog, Frog, Horse Airplane, Car, Ship, Truck

3https://github.com/CompVis/latent-diffusion, MIT License
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D Extended Evaluation on Class Mismatch and Labeled Data Ratios

Different mismatch ratios of ID and OOD classes in the SixAnimal task. As shown in Figure 3
of our paper, we conducted experiments on the SixAnimal task across various ratios of ID and OOD
classes (ζ = 50%, 75%, 100%). To extend these findings, we included additional experiments with a
lower mismatch ratio, ζ = 25%. Since DWD is designed to address class distribution mismatch, its
effectiveness is expected to decrease as the mismatch ratio lowers. However, we observed that DWD
was still able to improve the baseline method in the ζ = 25% case, although the performance gain
was relatively diminished.

Table 8: Performance evaluation on the SixAnimal task with various ratios of ID and OOD classes (ζ).

Mismatch ratio MixMatch MixMatch
+DWD-UT FixMatch FixMatch

+DWD-UT MPL MPL
+DWD-UT

ζ = 25% 83.78 85.89 (+2.11) 84.56 85.81 (+1.25) 79.70 84.76 (+ 5.06)
ζ = 50% 81.16 84.83 (+3.67) 83.23 87.78 (+4.55) 69.43 85.02 (+15.59)
ζ = 75% 80.77 84.72 (+3.95) 82.50 87.17 (+4.67) 65.62 83.88 (+18.26)
ζ = 100% 79.90 84.08 (+4.18) 81.51 87.03 (+5.52) 57.77 83.73 (+25.96)

Varying the size of labeled data in the ImageNet-100 task. To broaden our evaluation, we
conducted additional experiments on the ImageNet-100 dataset, varying the amount of labeled
data. Specifically, we used either 10% or 30% of each ID class as labeled data, with the remaining
samples forming the unlabeled set. As shown in Table 9, DWD remains effective with different
amounts of labeled data, demonstrating strong performance at both 10% and 30% sampling ratios.
Notably, the performance gain is more pronounced at the 10% sampling ratio, as the advantages
of data augmentation become clearer with smaller datasets. However, DWD’s effectiveness may
be constrained when labeled data is extremely limited, as the diffusion model may struggle to
accurately represent the labeled data distribution. This limitation is also observed in other generative
augmentation methods.

Table 9: Performance evaluation on the ImageNet-100 task with varying sampling ratio (γ).

Sampling ratio MixMatch FixMatch MPL OpenMatch Fix-A-Step IOMatch DWD-SL

γ = 10% 69.30 65.11 68.43 65.42 65.80 66.85 82.81
γ = 30% 77.88 75.83 71.67 77.31 73.90 76.02 84.43

Sampling ratio MixMatch MixMatch
+DWD-UT FixMatch FixMatch

+DWD-UT MPL MPL
+DWD-UT

γ = 10% 69.30 81.62 (+12.32) 65.11 80.38 (+15.27) 68.43 75.66 (+7.23)
γ = 30% 77.88 82.26 (+ 4.38) 75.83 81.35 (+ 5.52) 71.67 77.49 (+5.82)

Sampling ratio OpenMatch OpenMatch
+DWD-UT Fix-A-Step Fix-A-Step

+DWD-UT IOMatch IOMatch
+DWD-UT

γ = 10% 65.42 80.02 (+14.60) 65.80 76.23 (+10.43) 66.85 80.19 (+13.34)
γ = 30% 77.31 81.50 (+ 4.19) 73.90 78.43 (+ 4.53) 76.02 81.52 (+ 5.50)
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E Calculating Distance in Latent Space

We extract features (labeled, original unlabeled, transformed unlabeled) from four datasets using a
pre-trained ResNet-50. The features were normalized, and the pair-wise Euclidean distances between
each unlabeled sample and the nearest class centroid is visualized using Gaussian Kernel Density
Estimation (KDE). As shown in Figure 4, the minimum distances successfully decrease after DWD’s
data transformation. This result indicates that using DWD to transform unlabeled data does more
than just make it look similar to labeled data; it also makes the data semantically similar in the latent
space, showing a deeper level of similarity beyond just appearance.

Figure 4: The distribution of the minimum distance between each unlabeled data sample and the
class centroids of labeled data.

F Additional Experiments

Computational cost analysis. The main limitation of our work is the additional computation re-
quired by incorporating the diffusion model. On the CIFAR-10/100 task, we measured the wall-clock
times and memory consumption for each stage of DWD: pretraining, finetuning (including discrimi-
nator training), and sampling. We compare the computation costs with standard SSL methods, and
the results are reported in Table 10. The additional computation for DWD is not overly burdensome
compared to the baselines. It is worth noting that while we include pretraining costs for completeness,
these can be omitted when off-the-shelf pre-trained diffusion models are available.

Table 10: Computational Cost Comparison.

DWD Baselines

Pretraining Finetuning Sampling Mixmatch Fixmatch MPL

Elapsed time (Hours) 13.8 9.7 0.1 9.2 7.4 6.7
Memory (GB) 7.1 8.0 7.0 4.9 5.5 7.4

[Machine specification] GPU : NVIDIA GeForce RTX 3090 Ti, CPU : Intel(R) Core(TM) i9-10980XE

Effect of the number of generated data. We conducted additional experiments using DWD-SL on
the Cifar-10/100 task, varying the number of generated data denoted as N. The results are summarized
in the Table 11. Here, N = 60K corresponds to the original setting in the paper where one synthetic
labeled sample per one unlabeled sample is generated. We observed further improvement at N = 120K,
with a slight deterioration thereafter. Note that a similar trend was previously reported in Figure 7(c)
of Appendix G in You et al. (2023). A reasonable explanation for the performance deterioration is
that an excessive value of N could cause the classifier to be dominated by synthetic data, thereby
neglecting real data, as suggested by You et al. (2023).

Table 11: Effect of the number of generated data

N 6K 30K 60K 120K 240K

Accuracy (%) 77.64 79.17 80.05 81.24 81.07

17



Hyper-parameters sensitivity. We conducted additional experiments on the SixAnimal task
(ζ=75%) using DWD-SL to assess DWD’s sensitivity to the hyper-parameters. Again, α serves
as weight to control the balance between labeled and unlabeled data (Eq. 9) and µ is treated as
positive sample ratio of unlabeled data to train discriminator (Eq. 7) in our training scheme. We
observed that a wide range of α and µ values successfully outperform most of the baselines (refer
to Table 1 in our paper). Regarding α, an extremely small value may cause the diffusion model
training to focus excessively on the labeled data, failing to reflect the diversity of the unlabeled data
and potentially leading to overfitting. Conversely, an extremely large value may cause the training
to skew towards the unlabeled data, failing to properly capture the labeled data distribution. In our
experiments, an α value around 3 achieves an appropriate trade-off. Regarding µ, the optimal value
is near the true ratio 1 - ζ, as expected.

Table 12: Performance of DWD with various α.

α 1 3 5 10

Accuracy (%) 84.01 85.86 83.83 83.51

Table 13: Performance of DWD with various µ.

µ 0.125 0.25 0.33 0.55

Accuracy (%) 84.56 85.86 85.33 84.72

G Images Corresponding to Discriminator’s Output

As shown in the Figure 5, our discriminator successfully identifies the ID/OOD samples. ImageNet-30
consist of 20 in-domain (ID) classes (acorn, airliner, ambulance, american alligator, banjo, barn,
bikini, digital clock, dragonfly, dumbbell, forklift, goblet, grand piano, hotdog, hourglass, manhole
cover, mosque, nail, parking meter, pillow) and 10 out-of-domain (OOD) classs (revolver, rotary dial
telephone, schooner, snowmobile, soccer ball, stingray, strawberry, tank, toaster, volcano)

(a) High scored samples (b) Low scored samples (c) High scored samples (d) Low scored samples

Figure 5: Selected unlabeled samples based on discriminator’s output on the SixAnimal (a, b) and
ImageNet-30 (c, d).
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H Generated Images

Figure 6: Selected Examples of Data Geneartion Process.
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I Generated Images from DPT and DA-Fusion

Figure 7: Generated images from DPT and DWD. DPT sometimes generates incorrectly labeled
samples (e.g., an image of a schooner, which is an OOD class, labeled as a mosque). Note that while
DPT originally samples images from scratch, we applied our data generation algorithm to DPT for
comparison.

Figure 8: Generated images from DA-Fusion. DA-Fusion only augments given labeled images with
subtle visual details.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss our main limitation (additional computation) in Appendix F.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please refer Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer Appendix C
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide open source repository for reproduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer Appendix C
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report experimental results with the standard error.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer Appendix F
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewd the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no direct path to any negative application.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original paper that produced the dataset, and provided URL and
license of the existing code we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide open source repository that is well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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