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Abstract

Efficient generation of 3D conformations of a molecule from its 2D graph is a key challenge
in in-silico drug discovery. Deep learning (DL) based generative modelling has recently
become a potent tool to tackling this challenge. However, many existing DL-based meth-
ods are either indirect—leveraging inter-atomic distances or direct—but requiring numerous
sampling steps to generate conformations. In this work, we propose a simple model ab-
breviated TensorVAE capable of generating conformations directly from a 2D molecular
graph in a single step. The main novelty of the proposed method is focused on feature en-
gineering. We develop a novel encoding and feature extraction mechanism relying solely on
standard convolution operation to generate token-like feature vector for each atom. These
feature vectors are then transformed through standard transformer encoders under a condi-
tional Variational Autoencoder framework for generating conformations directly. We show
through experiments on two benchmark datasets that with intuitive feature engineering,
a relatively simple and standard model can provide promising generative capability out-
performing more than a dozen state-of-the-art models employing more sophisticated and
specialized generative architecture.

1 Introduction

Recent advance in deep learning has enabled significant progress in computational drug design (Chen et al.
2018)). Particularly, capable graph-based generative models have been proposed to generate valid 2D graph
representation of novel drug-like molecules (Honda et al.| [2019; Mahmood et al.|2021; [Yu & Yu, [2022)), and
there is an increasing interest on extending these methods to generating 3D molecular structures which are
essential for structured-based drug discovery (Li et al.,|2021;|Simm et al.,|2021;|Gebauer et al.,2022). A stable
3D structure or conformation of a molecule is specified by the 3D Cartesian coordinates of all its atoms.
Traditional molecular dynamics or statistical mechanic driven Monte Carlo methods are computationally
expensive, making them unviable for generating 3d molecular structures at scale (Hawkins| 2017)). In this
regard, deep learning(DL)-based generative methods have become an attractive alternative.

DL-based generative methods may be broadly classified into three categories: distance-based, reconstruction-
based, and direct methods. The main goal of distance-based methods is learning a probability distribution
over the inter-atomic distances. During inference, distance matrices are sampled from the learned distribution
and converted to valid 3D conformations through post-processing algorithms. Two representative methods
of this category include GraphDG (Simm & Herndndez-Lobatol [2019) and CGCF (Xu et al., 2021a). An
advantage of modeling distance is its roto-translation invariance property—an important inductive bias for
molecular geometry modeling (Kohler et al.l [2020). Additional virtual edges and their distances between
274 and 3"% neighbors are often introduced to constrain bond angles and dihedral angles crucial to gener-
ating a valid conformation. However, [Luo et al. (2021) have argued that these additional bonds are still
inadequate to capture structural relationship between distant atoms. To alleviate this issue, DGSM (Luo
et al,[2021) proposed to add higher-order virtual bonds between atoms in an expanded neighborhood region.
Another weakness of the distance-based methods is the error accumulation problem; random noise in the
predicted distance can be exacerbated by an Euclidean Distance Geometry algorithm, leading to generation
of inaccurate conformations (Xu et al. |2022} 2021D).
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To address the above weaknesses, reconstruction-based methods directly model a distribution over 3D co-
ordinates. Their main idea is to reconstruct valid conformations from distorted coordinates. GeoDiff (Xu
et al., 2022) and Uni-Mol (Zhou et al., |2022) are pioneering studies in this respect. Though sharing sim-
ilar idea, they differ in the process of transforming corrupted coordinates to stable conformations. While
GeoDiff adapts a reverse diffusion process (Sohl-Dickstein et al., [2015]), Uni-Mol treats conformation recon-
struction as an optimization problem. Despite their promising performance, both methods require designing
of task-specific and complex coordinate transformation methods. This is to ensure the transformation is
roto-translation or SE(3)-equivariant. To achieve this, GeoDiff proposed a specialized SE(3)-equivariant
Markov transition kernel. On the other hand, Uni-Mol accomplished the same by combining a task-specific
adaption of transformer (Vaswani et al.,|2017)) inspired by the AlphaFold’s Evoformer (Jumper et al. [2021)
with another specialized equivariant prediction head (Satorras et al., 2021)). Furthermore, GeoDiff requires
numerous diffusing steps to attain satisfactory generative performance which can be time consuming.

CVGAE (Mansimov et al.,[2019) and DMCG (Zhu et al., [2022) have attempted to resolve the generative effi-
ciency issue by developing models that can produce a valid conformation directly from a 2D molecular graph
in a single sampling step. Regrettably, the performance of CVGAE is significantly worse than its distance-
based counterparts mainly due to the use of inferior graph neural network for information aggregation (Zhu
et al.L|2022)). DMCG aimed to improve the performance of its predecessor by using a more sophisticated graph
neural network and a loss function invariant to symmetric permutation of molecular substructures. Although
DMCG achieved superior performance, acquiring such loss function requires enumerating all permutations
of a molecular graph, which can become computationally expensive for long-sequence molecules.

Regardless of their category, a common recipe of success for these models can be distilled to developing model
architecture with ever increasing sophistication and complexity. There is little attention on input feature
engineering. In this work, we forgo building specialized model architecture but instead focus on intuitive
input feature engineering. We propose to encode a molecular graph using a fully-connected and symmetric
tensor. For preliminary information aggregation, we run a rectangle kernel filter through the tensor in a 1D
convolution manner. This operation has a profound implication; with a filter width of 3, the information
from two immediate neighbors as well as all their connected atoms can be aggregated onto the focal atom
in a single operation. It also generates token-like feature vector per atom which can be directly consumed
by a standard transformer encoder for further information aggregation.

The generative framework follows the standard conditional variational autoencoder (CVAE) setup. We start
with building two input tensors with one encoding only the 2D molecular graph and the other also encoding
3D coordinate and distance. Both tensors go through the same feature engineering step and the generated
feature vectors are fed through two separate transformer encoders. The output of these two encoders are then
combined in an intuitive way to form the input for another transformer encoder for generating conformation
directly. The complete generative model is abbreviated as TensorVAE.

In summary, the proposed method has three main advantages. (1) Direct and Efficient, generating con-
formation direclty from a 2D molecular graph in a single step. (2) Simple, not requiring task-sepecific
design of neural network architecture, relying only on simple convolution and off-the-shelf transformer ar-
chitecture; (3) Easy to implement, no custom module required as both PyTorch and TensorFlow offer
ready-to-use convolution and transformer implementation. These advantages translate directly to excellent
practicality of the TensorVAE method. We demonstrate through extensive experiments on two benchmark
datasets that the proposed TensorVAE, despite its simplicity, can perform competitively against 22 recent
state-of-the-art methods for conformation generation and molecular property prediction.

2 Method

2.1 Preliminaries

Problem Definition. We formulate molecular conformation generation as a conditional generation task.
Given a set of molecular graphs G and their corresponding i.i.d conformations R, the goal is to train
a generative model that approximates the Boltzman distribution, and from which a valid conformation
conditioned on a molecular graph can be easily sampled in a single step.



Under review as submission to TMLR

Story Line. In the ensuing sections, we breakdown the formulation of the proposed method in three novel
ideas. We first introduce how a molecular graph can be encoded using a 3D tensor. Then, we demonstrate
how token-like feature vector can be generated from the input tensor by using a 1D convolution operation.
The generated feature tokens resemble those used in the language modelling, thereby allowing the use of
standard transformer encoders for effective information aggregation. Finally, we propose a novel mechanism
to combine the outputs of the transformer encoders under a conditional-VAE framework to arrive at the
final generative model.

2.2 Input tensor graph

Message passing graph neural network (GNN) is a popular feature extraction backbone for DL-based molec-
ular conformation generation. The input for this backbone is often composed of three components, including
atom features, edge features and an adjacency matrix. Atom and edge features normally pass through sepa-
rated embedding steps before being fed to the GNN. Adjacency matrix is then used to determine neighboring
atoms for layer-wise information aggregation. Although bond features are aggregated onto atom features
and vice versa, these two features are maintained separately throughout the message passing layers (Gilmer
et al., 2017, Satorras et all 2021)). Instead of having separated inputs, our first simple idea is to combine
them into a single input. Specifically, we add an additional dimension to the adjacency matrix, making it
a 3D tensor. Each cell on-diagonal of the tensor holds the focal atom feature vector to which information
from nearby connected atoms are aggregated.
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Figure 1: Benzene ring tensor graph example. Note that the values in the feature vector and its dimension
are for demonstration purpose only. We explain how they are determined in Sec@

We consider three types of atom features comprising atom type, charge and chirality. Each feature is one-hot
encoded and they are stacked together to form a single atom feature vector. There are two variants of the
atom feature vector corresponding to two input tensors for the two encoders of the CVAE framework: an
encoder conditioned only on graph (referred to as the G tensor) and the other conditioned on both graph
and coordinates (referred to as the GDR tensor). For the GDR tenosr, every focal atom feature vector has
three additional channels incorporating the 3D coordinate of the respective atom, and a distance channel
filled with zeros.

Each off-diagonal cell holds the stacked neighbour atom and bond features. The considered bond features
are bond type, bond stereo-chemistry type, ring size and normalized bond length. A virtual bond is also
included in the bond type. It is worth noting that all virtual bonds share the same virtual bond type; they
only differ in their normalized bond length. The normalized bond length is calculated as edge length (1 for
direct neighbor, 2 for 2"¢ neighbor, etc.) divided by the longest chain length. To construct off-diagonal
feature vector, we first sum the atom feature vectors of the connected atoms. This vector is then stacked
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with one-hot encoded bond type vector, normalized bond length, and one-hot encoded ring size vector to
become the off-diagonal feature vector. Since there are no bond features for a focal atom, the bond feature
vector channels on-digonal are also filled with Os. Therefore, both on and off-diagonal feature vectors
have the same dimension.

There are also two variants of the off-diagonal feature vector. For the G tensor, coordinate and distance
channles are excluded. For the GDR tensor, to match the size of the on-diagonal feature vector, every off-
diagonal feature vector has three more coordinate channels filled with Os, and an additional distance channel
holding the Euclidean distance between two connected atoms. This off-diagonal feature vector is obtained
for all atom pairs, making the proposed tensor fully-connected and symmetric.

A tensor encoding of the benzene ring is illustrated in Fig[l] Having obtained the tensor representation, a
naive way of building a generative model is to apply a convolutional neural network directly on the tensor, and
train it to predict a distribution over the inter-atomic distances. We utilize a standard UNet (Ronneberger
et al,[2015) structure to map the input tensor to a probability distribution over a distance matrix containing
all pair-wise Euclidean distances. Distance matrices are then sampled and converted to valid conformations
following the same method presented in GraphDG (Simm & Herndndez-Lobato, 2019)). We refer to this
model as the NaiveUNet. More details of the NaiveUNet can be found in Sec[A.4l

This naive model achieves unsatisfactory performance as shown in Tab[l] and Tab[I2] merely outperforming
GraghDG and is far from that of the state-of-the-art. There are two major issues to this approach. First,
with a small kernel size (3 x 3 used in the UNet), it takes many convolution layers to achieve information
aggregation between atoms that are far apart; it does not take full advantage of high-order bonds (chemical
or virtual) already made available in the input tensor. Secondly, the output size grows quadratically with
the number of atoms, as compared to only linear growth in the reconstruction-based or direct generation
methods. The solution to the first issue is rather simple, obtained by increasing the kernel size to expand its
“field of view”. On the other hand, solving the second issue requires elevating the naive two-step generative
model to a direct one.

2.3 Extended kernel and Attention Mechanism

We observe that every row or column of the proposed tensor contains global information encompassing a focal
atom and all of its connected atoms (by both chemical and virtual bond). This motivates our second main
idea which is to extend the length of the kernel to the length of the tensor graph while keeping the width
unaltered. This idea has a profound implication; global information from the immediate neighbors, all their
connected atoms, and all the bond features can be aggregated onto the focal atom in a single convolution
operation. In contrast, achieving the same aggregation may require many layers of propagation for the naive
model and other GNN-based models. A direct consequence of this modification is that only 1D convolution
is permitted. With multiple kernels being applied simultaneously, each stride of these kernels generates a
feature vector for a single atom. An illustration of the 1D convolution operation is shown in Fig[2]

Token 1 Token 2 Token N
3 x 3 Conv Kernel N x 3 Conv Kernel D:D [E o 0o 0 0 [E
o ) s\ T /
;- L

Cls|v]|v]|v]|d Cls|v]v|v]d Cls|v]|v]v|d
s |Cld]|v | |v]vVv s |Cld|v|v]|v s|Cld]|v]|v]v
v|id|C|s|v]|v v id|C|s|v]|v vid|C|s|v|v
viv|s|[C|d]|v ' viv|s|Cl|d]|v -Im viv]s]|C|ld]|v
viv|v|d|C|s viv|v]d|C]|s viv]v]d|C|s
d|v|v| v]s|C d|lv|v]|v]s|C d|{v]v|v]s|C

Figure 2: Extending kernel and 1D convolution.

We further observe that the generated feature vectors resemble the token-like feature vectors used in language
modeling. This observation combined with the proven success of attention mechanism in other related work
leads to the selection of transformer architecture as the backbone of our generative model. A significant
advantage of using transformer’s self-attention mechanism is, similar to the extended kernel, it enables a
global information aggregation from and for all atoms. It also eliminates the need to maintain separated
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atom and bond features at each step of feature transformation. We present further insight and a more
detailed analysis of the adavantage of this input feature engineering in Sec[A.T] There is also an interesting
equivalence between the information aggregation achieved by a fully-connected MPNN (Gilmer et al., 2017)
and running a 1 x 1 convolution operation over the proposed input tensor, as detailed in Sec[A-2]

2.4 Putting everything together

Conditional variational autoencoder framework. We aim at obtaining a generative model py(R|G)
that approximates the Boltzmann distribution through Maximum Likelihood Estimation. Particularly, given
a set of molecular graphs G and their respective ground-truth conformations R, we wish to maximize the
following objective.

log py (RIG) = log / p(2)po (R|z, G) dz (1)

A molecular graph can have many random conformations. We assume this randomness is driven by a latent
random variable z ~ p(z), where p(z) is a known distribution e.g. a standard normal distribution. As
po (R|z,G) is often modeled by a complex function e.g. a deep neural network, evaluation of the integral
in Eq is intractable. Instead, we resort to the same techniques proposed in the original VAE (Kingma &
Welling |2013)) to establish a tractable lower bound for Eq

logpe (R|G) > Eq, (z|r,c) [logpe (B2, G)] — Dkr [quw (2| R, G) ||p (2)] (2)

where Dy, is the Kullback-Leibler divergence and ¢, (z|R,G) is a variational approximation of the true
posterior p (z|R, G). We assume p (z) = A (0,I) and ¢, (z|R, G) is a diagonal Gaussian distribution whose
means and standard deviations are modeled by a transformer encoder. The input of this transformer en-
coder is the proposed tensor containing both the coordinate and distance information. We denote this
tensor the GDR tensor. On the other hand, pg (R|z,G) is further decomposed into two parts: a decoder
po, (R|z,009, (G)) for predicting conformation directly and another encoder oy, (G) for encoding the 2D
molecular graph. The input tensor for og, (G) is absent of coordinate and distance information, and is there-
fore denoted the G tensor. Both encoders share the same standard transformer encoder structure. However,
there is a minor modification to the transformer structure for the decoder. Specifically, the Query, Key
matrices for the first multi-head attention layer are computed based on the output vectors of gy, (G), and
the Value matrices come directly from the reparameterization of the output of ¢, (2| R, G), as z = iy + Zwe,
where p,, and X, are the predicted mean and standard deviation respectively. € is sampled from A4 (0, I).
We present the complete picture of how the two encoders and the decoder are arranged in a CVAE framework

in Fig[3]

Intuition behind the modified attention. There are multiple ways to join together the output of the
two encoders to form the input to the final decoder. Popular methods include stacking or addition. We tried
both these methods with unsatisfactory performance. We notice that, due to direct stacking or addition of
the sampled output of g, onto the output of oy, , attention weights computed in the first layer of the decoder
are easily overwhelmed by random noise of the sampled values, and become almost indiscernibleﬂ This
leads to ineffective information aggregation which is then further cascaded through the remaining attention
layers. Intuitively, in the first attention layer, the attention weights dictating how much influence an atom
exerts on the other should predominantly be determined by the graph structure, and remain stable for the
same molecule. Further, attention weights are computed by Query and Key matrices. Therefore, these two
matrices should stay stable for the same graph. This motivates our third and final main idea; that is,
we compute Query and Key matrices only from the output {hlL s ey hﬁ} of oy, , and attribute the variation
in conformation to the Value matrices which are directly sampled from {z1,...,2ny} ~ ¢u. The resultant
information aggregation is much more meaningful and each output vector corresponding to an individual
atom carries distinct features, facilitating information aggregation of the ensuing attention layers.

1Imagine a mixture model with randomly varying mixture weights.
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Figure 3: Variational AutoEncoder framework (left) and modified multi-head attention (right)

Roto-translation invariant loss. Following ConfVAE (Xu et al., 2021b), we formulate the reconstruction
loss as.

— log pe (R\Z,G):—ZZ (RM A(R,R).)Q (3)

where A (+) is a function aligning the predicted conformation R onto the reference conformation R. We choose
Kabsch algorithm (contributors, [2022)) as the alignment method which translates and rotates the predicted
conformation onto its corresponding ground-truth before loss computation. This makes the reconstruction
loss roto-translation invariant. Finally, the KL-loss component D, [q (2|R, G) ||p (#)] does not involve any
coordinate. Therefore, the objective function defined in Eq[2is roto-translation invariant.

Direct conformation generation at inference time. To generate a single conformation, we first con-
struct the G tensor of a molecular graph and obtain a single latent sample {z1,...z2x5} from a standard
diagonal Gaussian distribution. The G tensor is passed through oy, encoder to produce {hf, e hk} which
is then combined with the latent sample via the modified multi-head attention mechanism. The output of
this modified attention layer further goes through L — 1 standard attention layers to be transformed to the
final conformation. The entire generation process depends only on a 2D molecular graph, and
requires a single sampling step and a single pass of the Tensor VAE model.

3 Experiment

In this section, we first elaborate on the implementation details of the TensorVAE model including determin-
ing the size of the input tensors, network architecture and how the entire framework is trained end-to-end.
We then present conformation generation experiment results of the proposed TensorVAE on three benchmark
data-sets, including GEOM-QM9, GEOM-Drugs and Platinum data-sets. While the GEOM datasets contain
unbound conformations of molecules, the Planinum dataset contains molecular conformations bound to their
respective protein targets. The generative performance of the proposed model is compared to those of 15



Under review as submission to TMLR

state-of-the-art baselines. In addition to conformation generation, we compare the molecular property pre-
diction performance of the proposed method against 7 more state-of-the-art baselines on the MolecularNet
(Wu et all 2018) benchmark.

3.1 Experiment setup

Dataset. Following existing work (Luo et al., |2021; [Shi et al. 2021} [Xu et al., 2021bja; |2022; |Zhou et al.)
2022), we utilize the GEOM data-set for evaluating the performance of the proposed TensorVAE. GEOM
contains 37 million energy and statistical weight annotated molecular conformations corresponding to 450,000
molecules (Axelrod & Gémez-Bombarelli,2022). This dataset is further divided into two constituent datasets,
Drugs and QM9. The Drugs dataset covers 317,000 median-sized molecules averaging 44.4 number of atoms.
The QM9 dataset contains 133,000 smaller molecules averaging only 18 atoms.

We follow Xu et al.| (2022) to randomly select 40,000 molecules from each dataset to form the training
set. For each molecule, we choose the top 5 most likelyﬂ conformations. This results in 200,000 training
conformations for each train set. For validation set, we randomly sample 2,500 conformations for both Drugs
and QM9 experiments. Finally, for testing, following (Shi et al., [2021; Xu et al., 2022)), we randomly select
200 molecules each with more than 50 and less than 500 annotated conformations from QM9, and another
200 with more than 50 and less than 100 annotated conformations from Drugg’}

The GEOM dataset contains conformations of molecules that are not bound to any specific target. To assess
the proposed model’s ability to generate ligand-protein bound conformations, we additionally evaluate its
performance using the Platinum dataset (Friedrich et al) 2017). The Platinum dataset is derived from the
Pretein Data Bank (Berman et al., 2000) and consists of two high-quality ligand-protein bound conforma-
tion dataset: a comprehensive dataset and a diversified subset of 4,626 and 2,912 structures, respectively.
Following the setup in (Friedrich et al., [2017)), we test the performance of the proposed TensorVAE on the
diversified subset.

Determining input tensor size and atom ordering. We conduct a basic data analysis on the entire
Drugs dataset to determine the 98.5'" percentile of the number of atoms to be 69, and the percentage of
molecules having more than 69 atoms and with more than 50 but less than 100 conformations is only 0.19%.
Accordingly, we set the size of the input tensor to 69 x 69 for Drugs experiment. On the other hand, we use
the maximum number of atoms 30 for QM9 experiment. The channel features for the input tensor include
atom types, atom charge, atom chirality, bond type, bond stereo-chemistry and bond in-ring size. For the
GDR tensor, we also include 3D coordinate channels and a distance channel. The resulting channel depth
is 50 for GDR tensor and 46 for G tensor. The detailed information of these features and their encoding
method is listed in Sec[AT5] The ordering of the atoms along the diagonal of the tensor is determined by a
random Depth-First Traversal (DFT) of the molecular graph.

Implementation details. We implement the proposed TensorVAE using Tensorflow 2.5.0. All three trans-
former encoders of Tensor VAE follow the standard Tensorflow implementation inhttps://www.tensorflow.
org/text/tutorials/transformer. All of them have 4 layers, 8 heads and a latent dimension of 256. Both
QM9 and Drugs experiments share the same network architecture and hyper-parameter configuration. We
present the detailed training hyperparameter configuration in Sec[A-3]

Evaluation metrics. We adopt the widely accepted coverage score (COV) and matching score (MAT) (Shi
et al., 2021)) to evaluate the performance of the proposed TensorVAE model. These two scores are computed
as;

COV (C,,C,) = ﬁ {ReC.RMSD (R, R) <6, vReC,}| (4)
MAT (C,,C,) = ﬁ R%C:T min RMSD (R, fz) (5)

2Ranked by their Boltzmann weight.
3This limit on the number of conformations for testing molecules is taken directly from https://github.com/
DeepGraphLearning/ConfGF| which is also followed by all other compared methods in the GEOM experiment.
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where C, is the set of generated conformations and C, is the corresponding reference set. The size of C,
is twice of that of C,., as for every molecule, we follow (Xu et al., |2022) to generate twice the number of
conformations as that of reference conformations. ¢ is a predefined threshold and is set to 0.5A for QM9 and
1.25A for Drugs respectively (Shi et all 2021) . RMSD stands for the root-mean-square deviation between
R and 1:2, and is computed using the GetBestRMS method in the RDKit (Riniker & Landrum) |2015) package.
While COV score measures the ability of a model in generating diverse conformations to cover all reference
conformations, MAT score measures how well the generated conformations match the ground-truth. A good
generative model should have a high COV score and a low MAT score.

To evaluate the accuracy of the proposed model on the Platinum dataset, we employ two metrics: the
root-mean-square deviation (RMSD) for four ensemble sizes (10, 50, 250, and 500) and the percentage of
molecules with RMSD within specified thresholds (0.5, 1.0, 1.5, and 2) for two ensemble sizes (50 and 250).
In terms of generative speed evaluation, we calculate and compare the mean and median generation times
for the four ensemble sizes across all 2,912 molecules.

Baselines. We first compare the generative performance of the proposed TensorVAE model to those of
1 classical RDKit method; 5 distance-based methods including GraphDG, CGCF, ConfVAE, ConfGF and
DGSM; 2 reconstruction-based methods including GeoDiff and Uni-Mol; 3 direct methods including CVGAE;,
GeoMol, and DMCG. For the Platinum dataset, we also incorporate 4 classical methods, namely Ballon DG
and Ballon GA (Vainio & Johnson, 2007), MultiConf-Dock (Sauton et al. [2008) and ETKDG (Riniker &
Landrum), [2015).

We then compare the molecular property prediction performance of the proposed model (specifically the
GDR encoder) to 7 more strong baselines comprising D-MPNN (Yang et al., 2019)), AttentiveFP (Xiong
et all 2019), N-Gram (Liu et al., |2019)), PretrainingGNN (Hu et al., [2019), GROVER (Rong et al. [2020)),
GEM (Fang et al., |2022) and finally again Uni-Mol.

3.2 Results and Discussion

Unbound conformation generation. The COV and MAT scores for all compared methods on both QM9
and Drugs datasets are presented in Tab[I] The proposed TensorVAE achieves the state-of-the-art generative
performance. Additionally, we have conducted 4 ablation studies on the input feature engineering method
in Sec[A-§| to demonstrate why 1D convolution with a N x 3 kernel is crucial to achieving a good generative
performance. While none of the cited baselines quantify confidence of their results, we have included standard
deviations in all our results.

In Tab TensorVAE! results and standard deviations are obtained by running 10 experiements each with
a different random seed on a single 200 testing molecules set, corresponding to 23,079 and 14,396 testing
conformation for QM9 and Drugs, respectively. TensorVAE? results are obtained by running 10 experiements
each with a different random seed as well as a different set of 200 testing molecules. In this setting, both
testsets contain 2,000 testing molecules, amounting to more than 280k and 140k testing conformations for
QM9 and Drugs, respectively. The number of testing conformations is more than 70% of that
of training conformations. Attaining consistent performance on this much larger testset consolidates
the generalization capability of the proposed TensorVAE, and verifies its robustness under random
permutation of atom ordering. Additionally, as noted by |Xu et al. (2022), Eqs and || are only the
recall scores. We also present the precision scores results in TabJI0] of Sec[A'6] where TensorVAE again
achieves the state-of-the-art performance with a considerable margin.

Xu et al.| (2021b]) discovered that the quality of conformations generated by deep generative models can
be further refined by an additional empirical force field (FF) (Halgren) [1996) optimization procedure. Uni-
Mol also leverages FF optimization to improve its generative performance. Different from GeoDiff which
reconstructs a valid conformation directly from random noisy coordinates, Uni-Mol simply refines an initial
conformation optimized by RDKit (using ETKGD with FF (Riniker & Landruml 2015)).

For a fair comparison, we exclude deep generative models relying on FF optimization from Tab[T]and compare
their performances separately in Tab[2] Again, the proposed TensorVAE with FF optimization outperforms
all of them with a significant margin.
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Table 1: Performance comparison between TensorVAE and 10 baselines on GEOM dataset.

QM9 Drugs

Models COV (%) + MAT (A) | CoV (%) + MAT (A) |

Mean Median Mean Median | Mean Median Mean Median
RDkit 83.26  90.78 0.3447 0.2935 60.91  65.70 1.2026 1.1252
CVGAE 0.09 0.00 1.6713 1.6088 0.00 0.00 3.0702 2.9937
GraphDG 73.33  84.21 0.4245 0.3973 8.27 0.00 1.9722 1.9845
CGCF 78.05  82.48 0.4219 0.3900 53.96  57.06 1.2487 1.2247
ConfVAE 80.42  85.31 0.4066 0.3891 53.14  53.98 1.2392 1.2447
ConfGF 88.49  94.13 0.2673 0.2685 62.15  70.93 1.1629 1.1596
GeoMol 71.26  72.00 0.3731 0.3731 67.16 T71.71 1.0875 1.0586
DGSM 91.49  95.92 0.2139 0.2137 78.73  94.39 1.0154 0.9980
GeoDiff 92.65  95.75 0.2016 0.2006 88.45  97.09 0.8651 0.8598
DMCG 94.98  98.47 0.2365 0.2312 91.27 100 0.8287 0.7908
TensorVAEL 98.11 100 0.1970 0.1926 | 94.91 100 0.7789 0.7585

+0.25 +0 +0.0016 £0.0027 | £0.35 =£0 +0.0027 =£0.0076
Tensor VAE2 97.11 100 0.2041 0.1920 93.34  99.90 0.8074 0.7927

+0.31 40 +0.0046 +0.007 | £1.17 +0.31 +0.0135 +0.0186

*Bold font indicates best result. Results for RdKit, CVGAE, GraphDG, CGCF, ConfGF are taken
from (Shi et al.| [2021)); all other results are taken from (Zhou et al., [2022]).

Table 2: Performance comparison between methods with FF optimization on GEOM Drugs dataset

o

COV(%) 1 MAT(A) |
Method Mean Median Mean Median
CVGAE 83.08 9521  0.9829 0.9177
GraphDG 84.68 93.94  0.9129  0.9090
Uni-Mol 91.91 100 0.7863  0.7794
CGCF 9228 9815  0.7740  0.7338
ConfVAE 91.88 100 0.7634  0.7312
GeoDiff 92.27 100 0.7618  0.7340
94.74 100 0.6985 0.6845
2
TensorVAE® | g 66 1 4+0.012  +0.0196

*Results for CVGAE, GraghDG, CGCF, and ConfVAE
are taken from (Xu et al.l 2021Db)); GeoDiff and Uni-Mol
results are from their source paper.

In terms of simplicity, the proposed TensorVAE uses a standard transformer encoder and a simple Kabsch
alignment loss. On the other hand, due to the lack of effective input feature engineering, both DMCG
and Uni-Mol require design of sophisticated network architectures and complex loss functions to achieve a
good generative performance. A direct consequence of these complicated designs is a large number of model
parameters, as shown in Tab[3]
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Table 3: Comparison of number of parameters among TensorVAE, DMCG and Uni-Mol.

Method ‘ Number of parameters
DMCG 128M
Uni-Mol 47.81M
TensorVAE training 11.56M
TensorVAE inference 6.65M

*TensorVAE has less number of parameters dur-
ing inference time as the GDR encoder is not
needed.

In terms of efficiency, TensorVAE is a direct generative model capable of producing conformation from a 2D
molecular graph in a single step. It takes only 62 seconds using a single Xeon 8163 CPU to decode 200 QM9
molecules, and 128 seconds for 200 Drug molecules. In comparison, GeoDiff requires 5,000 diffusion steps
per conformation, and takes around 8, 500 seconds for decoding 200 QM9 molecules and 11, 500 seconds for
decoding 200 Drugs molecules on a single Tesla V100 GPU. The proposed Tensor VAE achieves more
than 100x speed up. Finally, some samples of the TensorVAE generated conformations are shown in Fig[4]
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Protein-ligand bound conformation generation. The performance evaluation of the proposed model
on generating ligand-bound conformation is vital to establish its potential application in high throughput
virtual screening of drug candidates. Following the setup in |Friedrich et al. (2017)), we further compare
the performance of the proposed TensorVAE model with 5 popular baselines on the Platinum dataset. We
took the TensorVAE model trained on the GEOM-drugs conformations, and applied it directly to the Plat-
inum diverse dataset for conformer ensemble generation. Before presenting the evaluation results on the
Platinum dataset, we would like to first emphasize the difference between the Platinum dataset which was
proposed in [Friedrich et al.| (2017)) and the GEOM dataset which we have used to train TensorVAE. While
the GEOM-drugs dataset mainly contains vacuum conformer-rotamer ensembles that are generated using
semi-empirical density functional theory, the Platinum dataset only includes protein-bound ligand confor-
mations. The energy states of conformers bound to a protein target are different from those of the stable
unbound conformers. The underlying distributions governing the generation of these two datasets also differ
significantly. Testing on the Platinum dataset without any retraining or finetuning creates a distribution
shift from that of the GEOM training data. Inevitably, this will lead to performance degradation of the
proposed TensorVAE. However, evaluating the proposed TensorVAE on the Platinum dataset remains valu-
able for assessing its ability to generalize and accurately generate valid ligand-protein bound conformations,
despite being trained solely on unbound conformations.

We have repeated the experiments from Table 3 to Table 6 in |Friedrich et al. (2017). The results of these
experiments are presented below.

Maximum ensemble size 10 50 250 500
Mean | Median | Mean | Median | Mean | Median | Mean | Median

Balloon DG 1.10 0.97 1.00 0.86 0.92 0.77 0.89 0.74
Balloon GA 1.22 1.10 0.90 0.80 0.72 0.63 0.67 0.58
RDKit 1.00 0.89 0.77 0.64 0.63 0.52 0.59 0.48
ETKDG 0.98 0.87 0.77 0.66 0.63 0.54 0.59 0.51
Multiconf-DOCK 0.99 0.89 0.84 0.72 0.80 0.69 0.80 0.69
TensorVAE 1.02 0.95 0.85 0.77 0.73 0.67 0.69 0.63

Table 4: Arithmetic Mean and Median RMSD in A Obtained for the Platinum Diverse Dataset.

Maximum ensemble size 50 250
Minimum accuracy [A] | 05 [ 1.0 | 1.5 [ 20 [ 05 [ 1.0 | 1.5 | 2.0
Balloon DG 0.29 [ 0.57 [ 0.77 [ 0.92 [ 0.33 | 0.62 [ 0.81 [ 0.92
Balloon GA 0.30 [ 0.727[0.90 [ 0.97 [ 0.43 | 0.84 [ 0.96 | 0.99
RDKit 0.39 [ 0.71 [ 0.89 [ 0.96 | 0.48 | 0.82 [ 0.95 | 0.98
ETKDG 0.36 | 0.72 [ 0.91 [ 0.97 [ 0.45 | 0.83 [ 0.95 | 0.99
Multiconf- DOCK 0.32 | 0.68 | 0.87 [ 0.96 | 0.34 | 0.71 | 0.89 | 0.97
TensorVAE 0.27 [ 0.65 [ 0.89 [ 0.97 [ 0.34 | 0.76 [ 0.95 | 0.99

Table 5: Fraction of Structures of the Platinum Diverse Dataset Successfully Reproduced within a Specified
RMSD Threshold.

Although the proposed TensorVAE is trained solely on unbound conformations, it demonstrates comparable
performance to 5 popular baselines in terms of accurately generating ligand-protein bound conformations
(Tab and Tab, which serves to validate its generalization capability. More specifically, it demonstrates a
slight performance advantage over Balloon DG/GA and multiconf-Dock; however, it falls short of matching
the performance achieved by RDkit and ETKDG. This result appears to contradict the findings obtained
from the GEOM dataset, where the proposed TensorVAE outperformed RDKkit.

The main reason of this contradiction could be attributed to the distribution shift or dataset shift be-
tween training and testing. Additionally, for constructing the training dataset, we sampled 40,000 molecules

11



Under review as submission to TMLR

from GEOM drugs dataset and only retained the top-5 conformations with the highest Boltzmann weight
for each molecule. These conditions further restrict the energy search space for conformation generation.
Consequently, the Boltzmann distribution approximated (and learned) by the proposed TensorVAE might
not be directly suited to prediction of ligand-bound conformations without further fine-tuning.

Maximum ensemble size 10 o0 250 500
Mean | Median | Mean | Median | Mean | Median | Mean | Median

Balloon DG 10 10 50 50 249 250 498 500
Balloon GA 9 10 49 50 244 250 487 500
RDKit 10 10 50 50 250 250 500 500
ETKDG 10 10 50 50 250 250 500 500
Multiconf-DOCK 9 10 36 50 78 57 80 57
TensorVAE 10 10 50 50 250 250 500 500

Table 6: Arithmetic Mean and Median Ensemble Sizes Measured for the Platinum Diverse Dataset.

In terms of generative capability (Tab@, the proposed TensorVAE is able to generate the complete 10-, 50-,
250-, and 500-conformers ensemble sizes for all molecules which puts it head-to-head against RDKit and
ETKDG. In terms of generative speed (Tab, as the proposed TensorVAE only needs a single pass of the
neural network to generate conformations for each ensemble size, its mean and median runtimes (measured

on a single core of Xeon 8163 CPU) are significantly faster than the other compared methods.

Maximum ensemble size 10 50 250 500
Mean | Median | Mean | Median | Mean | Median | Mean | Median
Balloon DG 6 5 27 24 132 117 260 260
Balloon GA 4 3 19 17 105 98 256 234
RDKit 1 1 5 4 22 18 42 34
ETKDG 1 1 4 3 16 12 32 23
Multiconf-DOCK 5 1 8 2 15 3 15 3
TensorVAE <1 <1 <1 <1 1 1 2 2

Table 7: Arithmetic Mean and Median Runtimes in Seconds Measured for the Platinum Diverse Dataset.

Molecular property prediction. Following Uni-Mol (Zhou et al., 2022) and GEM (Fang et al., 2022]), we
report property prediction result on the MolecularNet (Wu et al., [2018) QM9 regression task. The goal of
this task is to estimate homo, lumo, and homo-lumo gap properties of molecules in the QM9 dataset based
on their molecular structure. We adapt the proposed GDR encoder to this regression task by changing its
prediction head. We defer the details of this adaption and training procedure to SedA.3] We report the
mean average error(MAE) over all the test samples.

The result of the adapted model is compared to those of 7 other models including;
o D-MPNN (Yang et al., 2019), AttentiveFP (Xiong et al. [2019) and GEM which are GNN based

models without pretraining;

o N-Gram (Liu et al,|2019)), PretrainingGNN (Hu et al.,|2019) and GROVER (Rong et al., 2020) with
pretraining;

e a variant of Uni-Mol without pretraining.

The MAE for all compared methods are summaried in Tabl8] The proposed GDR encoder produces a
SOTA performance with less than 5M parameters. This experiment demonstrates that the proposed feature
engineering method is very effective at information aggregation.
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Table 8: Property prediction result comparison based on MolecularNet QM9 benchmark.

Method MAE

D-MPNN 0.00814 (0.00001)
AttentiveFP 0.00812 (0.00001)
N-Gram 0.00964 (0.00031)
PretrainGNN 0.00922 (0.00004)
GROVER base 0.00984 (0.00055)
GROVER large 0.00986 (0.00025)
GEM 0.00746 (0.00001)
Uni-Mol w/o pretraining | 0.00653 (0.00040)
GDR encoder (ours) 0.00553 (0.00012)

*All results are taken from (Zhou et al. [2022).
Values in parenthesis are standard deviation ob-
tained by repeating experiments 4 times.

4 Reproducibility statement

We did not introduce any task-specific neural network archiecture. The results presented in this study can be
straightforwardly reproduced using publically available datasets and ready-to-use implementation of convo-
lution and Transformer from either PyTorch or TensorFlow. We have also provided detail hyper-parameter
setup to ensure reproducibility. We have included the complete code for reproducing the conformation gen-
eration results in https://anonymous.4open.science/r/TensorVAE-4576/ and code for reproducing the
property prediction results in https://anonymous.4open.science/r/TensorVAE-ODE7.

5 Conclusion

We develop TensorVAE, a simple yet powerful model able to generate 3D conformation directly from a
2D molecular graph. Unlike many existing work focusing on designing complex neural network structure,
we focus on developing novel input feature engineering techniques. We decompose these techniques into
three main ideas, and explain how one idea naturally connects to the next. We first propose a tensor
representation of a molecular graph. Then, we demonstrate that sliding a rectangle kernel through this
tensor in an 1D convolution manner can achieve a global information aggregation. Finally, we present the
complete CVAE-based framework featuring 2 transformer-based encoders and another transformer-based
decoder, and propose a novel modification to the first multi-head attention layer of the decoder to enable
sensible integration of the output of the other two encoders.

The proposed TensorVAE demonstrates state-of-the-art generative performance compared to recently pro-
posed deep-learning-based generative models on the GEOM dataset, utilizing DFT-generated unbound con-
formations. When directly applied to the Platinum dataset, which contains ligand-protein bound confor-
mations, the proposed method offers faster generation speed while maintaining competitive accuracy as
compared to 5 popular and classical methods. The ability of TensorVAE to generalize and generate accurate
bound conformations establishes a strong foundation for our immediate next step. Our next objective is to
enhance the capabilities of TensorVAE by expanding its architecture. This expansion will enable the model
to take both unbound ligand and protein conformers as input and produce valid bound ligand conformation
as output. By pursuing this goal, we aim to improve the model’s ability to generate conformer ensemble
suitable for docking to specific protein targets.
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A Appendix

A.1 Global information aggregation beyond the N*"-hop

A geometric interpretation of GNN’s message passing layer is it aggregates information between atoms (and
their bond) that are 1-hop away. With L layers, information from atoms that are L-hop apart can be
aggregated. Here, we define a global information aggregation as the N*"-hop aggregation with N being the
total number of atoms, where each atom is able to aggregate information from all other atoms.

It is worth noting that for a fully-connected GNN, a 1-hop message passing can already achieve this global
information aggregation. Transformer’s self-attention can be considered as a type of fully-connected GNN.
However, a vanilla transformer can only aggregate features from each token/atom; if edge features are
not included, they needed to be incorporated somehow through additional inputs (e.g. the pair interaction
matrix of Uni-Mol). The primary reason motivating the creation of the fully-connected tensor representation
is we want each generated token contain both atom and bond features, such that we can eliminate the pair
interaction or bond matrix. To achieve this, we fill each column of the fully-connected tensor with;

o focal atom features;
e chemical and virtual bond features indicating how the focal atom is connected to all other atoms;

e atom features of all connected atoms, since for off-diagonal cell, we sum atom features of both the
neighbour atom and the focal atom.

Running a N x 1 kernel filter on the proposed tensor also achieves a global information aggregation. By
increasing kernel width to 3, the aggregation window includes global information from two immediate neigh-
bours. This type of information aggregation extends far beyond just N*"-hop.

More interestingly, when multiple kernels are applied simultaneously to the same N x 3 x C region, each
kernel is free to choose whichever group of atom/bond features to attend to depending on its kernel weights.
This resembles the multi-head attention mechanism of a transformer, where each kernel(head) contributes to
a portion of the generated feature token. We believe the effective global information aggregation driven by
these two (tensor representation + 1D Conv) simple yet intuitive ideas is the main reason why the proposed
TensorVAE achieves superior performance with a much less number of parameters.
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A.2 Connection to a fully-connected Message Passing GNN

We show that information aggregation achieved by running a 1 x 1 convolution over the proposed tensor
representation is similar to that achieved by a fully-connected MPNN (Gilmer et al., [2017)).

When running a 1 x 1 convolutional operation over the proposed tensor, a W € RV1*F*C kernel matrix is
shared among all V x N cells of the tensor, where F' is the number of kernels and C' is the channel depth.
Since each cell, regardless it is on-diagonal or off-diagonal, is stacked with an atom feature vector and a
bond feature vector, the weight matrix can be decomposed into two parts, W, € RF*% and W, € RF*Ce,
where C,, is the atom feature vector size and C, is the bond feature vector size. The bond feature vector for
on-diagonal cells is filled with zeros, since there is no self connection for focal atoms. Subsequently, for each
column n of the tensor, a 1 x 1 convolution operation followed by a sum-aggregation over the rows can be
decomposed into 3 steps;

o Off-diagonal cell aggregation. For each off-diagonal cell, we first sum the atom feature vectors
of the focal atom and its cell-specific neighbour atom, as described in Fig[l] Due to convolution
operation, the dot product of the summed vector and W, is then computed. Simultaneously, the
dot product between the bond feature vector and W, is also computed. The resulting two feature
vectors are added together. This aggregation process can be expressed as;

Wyohd + W,hS 4+ Ween m € RFX?

where h0 € RC>1 B € Rl and e, € R*! are the focal atom feature of the n'* col-
umn, neighbour atom feature of the m!”* cell in column n, and bond feature between the nt”* focal
atom and its m** neighbour atom, respectively. If we concat RO K% . and én,m into a single vector
(N en,m)ﬂ this operation can also be represented as;

cREX(C+Cw) cR(C+Ov)x1

M (hgvh(y)men,m) = (WvaaWe) : (hgvh?nven,m)

« Row-wise aggregation. The above aggregation operation generates a feature vector (of size R *1)
for each off-diagonal row of column n. The sum-aggregation over these rows generates a feature vector
which contains the aggregated information from all neighbour atoms.

1 _ 0 1,0
m, = E M (hn,hm,envm)
’I’TLEN\n

« Complete aggregation. Finally, we aggregate this feature vector ml onto the focal atom feature
to complete the sum-aggregation operation over all the rows of column n.

n

hy, =U (hy,m,,) = ReLu (W,h) +m,,)
Noticeably, the M and U operators correspond exactly to the message passing phase of a single forward pass
of a fully-connected MPNN, as described by Eqs.1 and 2 of the MPNN paper (Gilmer et al., [2017]).

Similarly, the feature aggregation operation of a N x 1 kernel can be expressed as;

hl =ReLu [ WIh) + > (W hd + WhS, + W, en m)
mEN\

This type of aggregation is more flexible and has more expressive power as different node and edge features are
weighted differently. This flexibility is further increased with a N x 3 kernel whose corresponding aggregation
can be expressed as;

4we define (o) as a concatenation operator as in MPNN (Gilmer et al., [2017)
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(4,5,k) (i,5,k) N\e
hj=ReLu | > Wehd+ > N WEmhd + WE™hl,, + W™ eem

where i, j, k are the indices of three adjacent columns. In this respect, the information aggregation
achieved by a fully-connected MPNN is a special case (the simplest form) of a more general
framework embodied by a single convolution operation over the proposed tensor representa-
tion.
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A.3 Training hyperparameters

Conformation generation. Training is conducted on a single Tesla V100 GPU. We follow a similar learning
rate schedule, shown by Eq.3 of the original Transformer paper (Vaswani et al.l[2017)) but with d,0qe; = 9612.
This results in a maximum learning rate of 1.6e~%. To tackle the notorious issue of KL vanishing (Fu et al.,
2019), we set a minimum KL weight of 1e~* and double it every 62.5¢% iterations until a maximum weight
of 0.0256 is reached. We select Adam optimizer (Kingma & Bal, [2015) default hyperparameters for training.
We present some interesting observations of the training/validation curve corresponding to this setup in
Sec[A.7 For both experiments, the TensorVAE is trained for 1e9 iterations with a batch size of 128. The
implementation details of NaiveUNet is explained in Sec[A4]

Molecular property prediction. For the molecular property prediction task, we use the same GDR
transformer encoder structure (4 attention layers and approximately 5M parameters) and add an additional
mean pooling layer, which is then followed by a linear layer for property prediction. We follow the same data
train-val-test split in Uni-Mol and GEM and standardize the output property data. We train the GDR model
for 300 epochs with a batch size of 128. The learning rate schedule is the same as that of the TensorVAE.

19



Under review as submission to TMLR

A.4 NaiveUnet model architecture
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Figure 5: Naive UNet model. N = 69

We train the above NaiveUNet on the Drugs dataset for 30 epochs with a constant learning rate of le™%,
and batch size of 32. We follow the same method presented in GraphDG (Simm & Hernandez-Lobato), [2019)
to convert the predicted distance matrix to conformation.

A.5 Atom and bond features

We list the atom features and bond features together with the encoding method used to construct the
proposed tensor in Tab[9}

Table 9: Atom and bond features used to construct input tensor.

Feature name ‘ Feature value Encoding method
Atom type H,C, N, O, F, S, Cl, Br,

P, 1, Na, B, Si, Se, K, Bi one-hot
Atom charge -2,-1,0,1,2,3 one-hot
Atom chirality Unspecified, Tetrahedral CW

Tetrahedral CCW, Other one-hot
Bond type Single, Double, Triple, Aromatic, Virtual | one-hot
Normalized bond length | - real-value
Bond stereochem StereoNone, StereoAny, StereoZ

StereoE, StereoCIS, StereoTrans one-hot
Bond in-ring size 3-10 one-hot
Coordinate (3 channels) | - real-value
Pair wise atom distance | - real-value

A.6 COV and MAT precision results

The precision COV and MAT scores are defined as;

COVp (C,,C,) {kec,RMSD (R, R) <5, VREC,}|

_ L
1G]

MATp (C,,C,) 3" min RMSD (R, R)

1
TG,
Col fee
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Table 10: Precision performance comparison on GEOM Drugs dataset

COVp(%) t MATp(A) |
Method Mean Median Mean Median
GraphDG 2.08  0.00 24340  2.4100
CGCF 21.68 13.72 1.8571  1.8066
ConfVAE 22.96  14.05 1.8287  1.8159
ConfGF 23.42  15.52 1.7219  1.6863
GeoDiff 61.47  64.55 11712 1.1232
72.12 79.02 1.0655 1.0355
2
TensorVAE® | /=" 119 4+0.0145 40.0166

*Results for GraphDG, CGCF, ConfVAE, ConfGF and
GeoDiff are taken from (Xu et al., [2022).
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A.7 Training and validation curve

We present the train and validation plots for KL and reconstruction loss based on Drugs dataset in Fig[6a]and
Fig respectively. Both plots are based on an initial KL weight of 1e~* doubling every 62.5k iterations (40
epochs). While KL validation loss reached 18.29 after 1¢° iterations (640 epochs), the reconstruction/RMSD
loss reached 0.64A at the end of training. During the first 5 epochs of training, model learning focused
on reducing the KL loss due to it is orders of magnitude larger than the RMSD loss. We were expecting
this trend to continue for a while until both losses converge roughly in the same range. However, much to
our surprise, the model seemed to find a way to drastically reduce RMSD loss much earlier by leveraging
the information from the GDR encoder; it learned to "cheat" by directly reversing coordinate information
embedded in the output of GDR encoder back to the original conformation. The RMSD loss dropped to as
low as 0.08A. On the other hand, the KL loss climbed to almost 800, signaling signifcant divergence from
standard normal distribution. At this stage, output of the GDR encoder contains informative features of
the original 3D coordinates. With the KL loss weight increasing, it becomes more difficult for the model to
cheat since training is forcing the output of GDR encoder to conform to a standard uninformative Gaussian
distribution. The KL loss started to drop while the RMSD loss remained steady, indicating increasing
reliance on the output of G encoder for reconstructing the conformation. As the output of GDR encoder
becomes less informative, the model learned to rely almost entirely on the aggregated feature from the G
encoder to decode conformation.

We attempted to initiate the training with a much larger initial KL weight (1e=2) to prevent "cheating" from
begining. However, this quickly led to the notorious KL vanishing issue (Fu et al., [2019)). We figure that
"cheating" is actually beneficial in that it reduces learning difficulty particularly for the decoder; its weights
are tuned on easy training task, simply reversing what GDR encoder has done. In other words, the tuned
weights of the decoder already hold crucial information on how to decode highly informative input features.
As KL weight increases, model learning shifts to make the output of G encoder more informative. Also, this
maybe an easier learning task as the RMSD loss is already very low (back-propagation of this loss contributes
little to weight update); instead, model learning primarily focuses on optimizing the KL loss. This two-stage
iterative loss optimization is much easier than optimizing both losses simultaneously throughout the training
process.
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(a) KL loss. (b) RMSD loss.

Figure 6: Training and validation plots for Drugs dataset. Orange line: Train; Blue line: Validation
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A.8 Ablation studies

In this section, we further demonstrate the effectiveness and necessity of running an 1D convolution with
N x 3 kernels over the proposed input tensor through 4 ablation studies on GEOM drugs dataset.

Why is 1D convolution necessary. We have shown a model based on a 3 x 3 kernel in Sec[A4] called
NaiveUNet. Here, we provide a more detailed analysis of why NaiveUNet produces unsatisfactory result.
The primary reason for this poor performance is the “field of view” of a conventional d X d (d < N) kernel
only sees a partial connection pattern of a focal atom. In comparison, a N x 3 kernel’s “field of view”
encompasses the complete connection pattern of a focal atom. We further observe that when applying a
3 x 3 kernel filter to the top left region of the proposed tensor, its field of view only includes a focal atom,
its two neighboring atoms and how the focal atom is connected to them. There are two main disadvantages
associated with this. Firstly, it only achieves a 1-hop information aggregation. Secondly when the 3 x 3
kernel moves to an off-diagonal part of the tensor, where most connections are virtual bonds (as atoms of a
molecule are often sparsely connected), information aggregation occurs mostly between atoms that are not
chemically connected and is therefore less meaningful than that on the diagonal part of the tensor. For these
two reasons, the NaiveUNet’s performance on the GEOM Drugs dataset is the worst as shown in Tab[I2]

What happens if we remove all virtual bonds. Notice that if we remove all the virtual bonds in each
column and still run a IV x 3 kernel through the tensor, its “field of view” is a “2-hop atomic-environment”
(because the focal atom can “see” how neighboring atoms are chemically connected to all their direct neigh-
bors). Another observation is that after removing all virtual bonds, each column does not correspond to a
fully-connected MPNN. Therefore it no longer enables a global information aggregation. The conformation
generation results of this variant of TensorVAE on Drugs dataset is shown as as TensorVAE ablal in table
below. It is observed that due to a less effective local information aggregation as a result of removing all
virtual bonds (and related atom features), the performance is worse than of the complete TensorVAE version.

What happens if a N x 1 kernel is used. The third ablation study concerns with using a N x 1 kernel
with a smaller "field of view" as compared to that of a N x 3 kernel. Its performance on Drugs dataset
is shown as TensorVAE abla2 in Tab[T2] It performs slightly better than the ablation removing all virtual
bonds. The reason is that though its field of view is smaller, it still achieves a global information aggregation
for the focal atom. Nevertheless, it underperforms the complete TensorVAE version due to a smaller "field
of view" for information aggregation.

What happens if a 1 x 1 kernel is used This setup corresponds to connecting a fully-connected MPNN
with a standard transformer backbone for conformation generation. Since using a 1 x 1 kernel leads to a
model with a signicantly less model compacity as compared to the models in previous ablation studies, we
experimented with 6 hyper-parameter configurations listed as following to ensure this variant has roughly
the same model capacity (number of parameters).

Table 11: Experimental setups for 1 x 1 kernel.

Model name ‘ Embedding size | KL weight schedule No. of transformer layers | No. of parameters
MPNNVanila | 256 same as TensorVAE 4 6.5M
largel 320 same as TensorVAE 4 11M
large2 256 same as TensorVAE 6 10M
large3 320 le-5 doubling every 16 epochs | 6 11M
large4 320 le-6 doubling every 16 epochs | 6 11M
large5 320 le-7 doubling every 16 epochs | 6 11M

There are two ways to increase the number of parameters of the MPNN-based variant to match that of the
TensorVAE employing a N x 3 kernel for a fair comparison, including a larger embedding size and more
transformer layers. These two setups correspond to large 1 and large 2. Unfortunately, training for these 3
setups failed to reduce RMSD error after more than 10 epochs of training; we kept facing the KL vanishing
problem. To tackle this, we experimented with 3 more configurations (large 3,4 and 5) with much lower KL
weights and shorter step period to force training to focus more on reducing the RMSD loss. Unfortunately
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again, after more than 40 epochs (25+ hours) of training all three efforts have also failed to resolve this issue.

We have included the train:

Figure 7:

It is observed that for all
almost constant at 4.0, indi

ing and validation curve for all 6 experiments below.
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Training and validation curves for the MPNN ablation study.

cases, while KL error quickly decreases to close to zero, the RMSD loss stays
cating model’s inability to learn. It seems that the MPNN-based models struggle

to learn any meaningful information that contribute to producing valid conformations. Instead, they always

resort to reducing KL loss
ablation studies manife

which is a much easier learning task. This fact combined with previous 3
st an emerging trend that the TensorVAE model’s capacity to learn

difficult conformation generation task improves with the increase of expressive power of its

aggregation mechanism

. In other words, the extra flexibility introduced by the increased kernel size

(from 1 x 1 to N x 3) is a main contributing factor to the promising performance of the TensorVAE model.
Therefore, we conclude that the design choice made to use a N x 3 kernel is sensible and fully justified.

Table 12: Performance comparison among models with different input feature engineering setup on GEOM

Drugs dataset

COVv MAT
Method Mean Median Mean Median
NaiveUNet 52.14 +£1.48 51.69+1.17  1.43224+0.0247  1.3861 + 0.0173
TensoVAE ablal | 90.72+1.54 99.53 +£0.64 0.8748 +0.0161  0.8619 + 0.0214
TensoVAE abla2 | 91.04 +1.21  99.74 +£0.42 0.8706 +0.0131  0.8561 + 0.0204
TensorVAE 93.34 £0.35 99.90£0.31 0.8074 £0.0135 0.7927 £ 0.0186
*The standard deviations for all ablation studies are obtained by testing on 2000 testing
molecules.
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