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Abstract

We use the maximum a posteriori estimation principle for
learning representations distributed on the unit sphere. We
propose to use the angular Gaussian distribution, which corre-
sponds to a Gaussian projected on the unit-sphere and derive
the associated loss function. We also consider the von Mises-
Fisher distribution, which is the conditional of a Gaussian in
the unit-sphere. The learned representations are pushed to-
ward fixed directions, which are the prior means of the Gaus-
sians; allowing for a learning strategy that is resilient to data
drift. This makes it suitable for online continual learning,
which is the problem of training neural networks on a con-
tinuous data stream, where multiple classification tasks are
presented sequentially so that data from past tasks are no
longer accessible, and data from the current task can be seen
only once. To address this challenging scenario, we propose
a memory-based representation learning technique equipped
with our new loss functions. Our approach does not require
negative data or knowledge of task boundaries and performs
well with smaller batch sizes while being computationally
efficient. We demonstrate with extensive experiments that
the proposed method outperforms the current state-of-the-art
methods on both standard evaluation scenarios and realistic
scenarios with blurry task boundaries. For reproducibility, we
use the same training pipeline for every compared method
and share the code at https://github.com/Nicolas1203/ocl-fd.

1 Introduction
Deep neural networks can achieve very impressive perfor-
mances when trained on independent and identically dis-
tributed data sampled from a fixed set of classes. In a real-
world scenario, however, it may be desirable to train a model
on a continuous data stream, where multiple classification
tasks are presented sequentially so that the data from the old
tasks are no longer accessible when learning new ones and
data from the current task can be seen only once. This sce-
nario is known as online Continual Learning (CL) and poses
a challenge for standard learning algorithms because the dis-
tribution of data changes over time (continual setting), and
data are not accessible more than once (online setting). If
such factors are not adequately taken into account, a trained
model may suffer from Catastrophic Forgetting (CF), which
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is the loss of previously learned knowledge when learning
new tasks or from new data. Online CL has seen growing
interest in recent years (Guo, Liu, and Zhao 2022; Aljundi
et al. 2019; He and Zhu 2022; Michel et al. 2022; Gu et al.
2022; Prabhu, Torr, and Dokania 2020; Rolnick et al. 2019;
Mai et al. 2022, 2021; Lin et al. 2023), and several variations
have been proposed (Hsu et al. 2018; Mai et al. 2022). This
paper focuses on class-incremental CL.

Among the different approaches for online CL (Mai et al.
2022), memory-based or replay-based methods have shown
the best performances for the online setting (Rolnick et al.
2019; Buzzega et al. 2020; Guo, Liu, and Zhao 2022; Mai
et al. 2022, 2021). In these approaches, a subset of past data
is stored while training. When encountering a new batch
from the stream, another batch is retrieved from memory and
combined with the current batch for training. This mitigates
forgetting by seeing past data along with current data. Re-
cently, representation learning techniques combined with re-
play strategies have shown impressive performances for un-
supervised CL (Fini et al. 2022; Madaan et al. 2022; Davari
et al. 2022) and supervised CL (Mai et al. 2021; Guo, Liu,
and Zhao 2022). However, contrastive learning-based meth-
ods (Mai et al. 2021) often require large batch sizes to ben-
efit from negative samples (Gu et al. 2022), and distillation-
based methods (Guo, Liu, and Zhao 2022) require knowl-
edge of task boundaries.

In this work, we propose an algorithm for memory-based
representation learning based on a new loss function. Our
loss function is devised from the principle of maximum a
posteriori estimation under the hypothesis that the latent
representations are distributed on the unit sphere. Such a hy-
pothesis explicitly takes into account the fact that normal-
izing the latent vectors is a standard practice in contrastive
learning. Specifically, we investigate the angular Gaussian
distribution and the Mises-Fisher distribution, both designed
for modeling antipodal symmetric directional data. The pe-
culiarity of the resulting loss function is that the learned rep-
resentations are pushed toward fixed directions, allowing for
a learning strategy that is resilient to data drift and thus suit-
able for online continual learning. In summary, the contribu-
tions of this work are as follows.

• We devise a new loss function for representation learning
based on the principle of maximum a posteriori estima-
tion. We investigate both the angular Gaussian distribu-
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Figure 1: Training with fixed directions overview. Each class is assigned to a fixed vector of the standard basis. When changing
task T , new classes are encountered and mapped to remaining standard basis vectors. Best viewed in color.

tion and the von Mises-Fisher distribution for modeling
representations that are restricted on the unit sphere.

• The key idea is to essentially assign pre-determined, mu-
tually separated class means in the hidden space (in this
case chosen to be the one-hot vectors) and training inputs
from each class are coerced to increase overlap with its
own class mean. The proposed loss function is resilient
to data drift and does not require negative data or knowl-
edge of task boundaries and performs well with smaller
batch sizes while being computationally efficient.

• We show experimentally on benchmark datasets for on-
line continual learning that the proposed approach out-
performs state-of-the-art methods in most scenarios, and
is robust to blurry task boundaries.

The paper is organized as follows. Section 2 describes re-
lated work and formally defines the problem addressed. Sec-
tion 3 explains the mechanisms of our method. Section 4
presents our experimental results. Section 5 analyses the be-
haviour of the proposed approach, and section 6 concludes
the paper.

2 Related Work
Representation Learning In representation learning, it
is common to work with latent vectors projected onto the
sphere (Chen et al. 2020; Mai et al. 2021; Grill et al.
2020; Chen and He 2021; Wang and Isola 2020; Zbontar
et al. 2021). Contrastive learning is a popular family of ap-
proaches for representation learning and has been applied to
online CL in previous work, producing state-of-the-art re-
sults (Mai et al. 2022; Guo, Liu, and Zhao 2022; Cha, Lee,
and Shin 2021; Michel et al. 2022). However, contrastive
losses require large batch size to sample enough negatives.
In this work, we introduce a loss adapted to CL which does
not need negative samples.

Class Incremental Learning (CIL) One of the most pop-
ular continual learning scenario is CIL (Hsu et al. 2018),
which refers to learning from a sequence of tasks, where
each task is composed of non-overlapping classes. Formally,
consider {T1, · · · , TK} a learning sequence ofK tasks, with
{D1, · · · ,DK} the corresponding dataset sequence with
Dk = (Xk, Yk) the data-label pairs. In CIL, it is assumed
that ∀k, j ∈ {1, · · · ,K} if k ̸= j then Yk ∩ Yk2

= ∅ and
the number of classes in each task is the same. In this study,
we also refer to this setup as clear boundaries, meaning that
task boundaries are clearly defined as no overlap between
tasks exists.

Online Continual Learning In online CL, a new con-
straint is added by restricting the model to seeing the data
only once. This problem has been demonstrated to be sig-
nificantly harder than its offline counterpart and has been the
main focus of various recent works (Aljundi et al. 2019; Rol-
nick et al. 2019; Guo, Liu, and Zhao 2022; Gu et al. 2022;
Buzzega et al. 2020; Caccia et al. 2022). Notably, replay-
based methods have shown the best performances.

Replay-Based Methods In recent years, several methods
using fixed memory for replaying past data have addressed
online CL. Experience Replay (Rolnick et al. 2019) intro-
duces the use of a Reservoir sampling strategy (Vitter 1985)
to replay past data while training on the current task. A-
GEM (Lopez-Paz and Ranzato 2017) leverages memory data
to constrain the current optimization step. DER++ (Buzzega
et al. 2020) improves ER by adding knowledge distillation
between tasks. SCR (Mai et al. 2021) also capitalizes on
replaying past data but uses a supervised contrastive loss
(Khosla et al. 2020). OCM (Guo, Liu, and Zhao 2022) takes
advantage of memory data in online CL with knowledge dis-
tillation and maximizes mutual information between previ-
ous and current representation with infoNCE (Oord, Li, and
Vinyals 2019). Likewise, DVC (Gu et al. 2022) combines
rehearsal strategies and information maximization. Other
strategies using no-memory data usually perform poorly in
an online context. In this work, we also focus on online CL
and leverage memory data with reservoir sampling. How-
ever, we introduce a new loss based on Maximum a Posteri-
ori estimation, defined in section 3.

Fixed Directions Recall that classification using cross en-
tropy often ends with selecting components of the logit,
which corresponds to a scalar product of the logit with basis
vectors. In this sense, the usual practice uses a fixed classi-
fier at the end of the network. This has been made more pre-
cise and generalized in previous works (Pernici et al. 2021;
Bojanowski and Joulin 2017). However, our theoretical mo-
tivations lead to a more general framework from which mul-
tiple loss functions can be derived. Additionally, contrary to
our approach, proposed losses are computed on unnormal-
ized vectors (not projected on the hypersphere) while in this
work, we take into consideration normalized representations
and adapt the expression of the proposed loss to the hyper-
spherical topology.

Learning on the Unit Sphere Hyperspherical loss func-
tions have been proposed in previous studies (Hasnat et al.
2017; Mettes, Van der Pol, and Snoek 2019) leveraging von
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Mises-Fisher distributions. In this work, we propose a more
general framework and introduce new loss functions based
on Saw distributions (Saw 1978).

3 Proposed Approach
In this section, we define the proposed approach by intro-
ducing new losses for online CL.

3.1 Representation Learning With Maximum a
Posteriori Estimation

We are interested in estimating a function χ : RD → [[1, L]]
that maps an input data to its corresponding class label, with
D ∈ N the dimensionality of the input data, and L ∈ N the
number of classes. Let us consider x ∈ RD. For a given class
c ∈ [[1, L]], we are interested in the posterior probability

P(Y = c|X = x) =
P(X = x|Y = c)P(Y = c)

P(X = x)
, (1)

where X and Y are the random variables corresponding to
the input and label. In terms of probability densities, we have
the posterior density

p(Y = c|X = x) =
gc(x)πc∑L
ℓ=1 gℓ(x)πℓ

(2)

with gc the conditional p.d.f. of X given Y = c and πc =
P(Y = c) the prior probability for class c.

Let us consider a latent variable z ∈ Rd produced by an
encoder Φθ(.) parameterized by θ such that z = Φθ(x), with
d ∈ N the dimension of the latent space. The posterior from
Equation (2) can be written according to the random variable
Z:

p(Y = c|Z = z) =
fc(z)πc∑L
ℓ=1 fℓ(z)πℓ

(3)

where fc is the conditional distribution of Z given Y = c.
The objective is now to find the best mapping fromX toZ to
maximize the posterior distribution. Namely, we aim to find
the parameters θ⋆ such that θ⋆ = argmaxθ p(Y |Z). For a
set of b independent observations (zi, yi)1≤i≤b, this amounts
to maximizing p(y1 · · · yb|z1 · · · zb) =

∏L
c=1

∏
i∈Ic

p(Y =
c|zi) with Ic = {i ∈ [[1, b]] | yi = c}. The posterior distribu-
tion in Equation (3) can be thus expressed as

p(y1 · · · yb|z1 · · · zb) =
L∏

c=1

∏
i∈Ic

fc(zi)πc∑L
ℓ=1 fℓ(zi)πℓ

. (4)

Eventually, we express the resulting loss in a batch-by-batch
manner. For an incoming batch B = (xi, yi)1≤i≤b of size b
we minimize Equation (5) with respect to parameters θ with
CB the classes in batch B. We take πl = 0 for classes that are
not represented in the current batch and πl = 1 otherwise.

LMAP (B, θ) = −
∏

c∈CB

∏
i∈Ic

fc(Φθ(xi))πc∑
ℓ∈CB

fℓ(Φθ(xi))πℓ
. (5)

3.2 Saw Distributions on the Unit Sphere
The objective defined in Equation (5) requires us to express
the conditional density functions explicitly. In representation
learning, it is common to work with normalized vectors in
the latent space (Chen et al. 2020; Mai et al. 2021; Grill et al.
2020; Chen and He 2021; Wang and Isola 2020; Zbontar
et al. 2021), making it natural to consider distributions on the
unit sphere. In a seminal paper (Saw 1978), Saw presented
a large class of distributions on the sphere parameterized by
a mean direction µc (with ∥µc∥ = 1) and a concentration
κ ≥ 0. These distributions depend on a point z on the sphere
(with ∥z∥ = 1) only through the scalar product t = z⊤µc,
leading to the general form

fc(z) = aκ gκ(z⊤µc). (6)

Here above, aκ is a normalization constant, the scalar prod-
uct corresponds to the cosine similarity and gκ(t) is a non-
negative increasing function that must verify a normalizing
condition derived from the tangent-normal decomposition of
the sphere (Saw 1978).

A recent study (Asao, Sakamoto, and Takagi 2022) sug-
gests that the representations learned by a neural network
have a tendency to follow a Gaussian mixture model, which
supports the assumption that the density on the sphere in
Equation (6) shall be derived from such Gaussian mixture.
In representation learning, we usually project the represen-
tation onto the unit sphere, which has a virtue in stabilizing
training. Hence, we shall use the probability distribution of
a projected Gaussian distribution onto the unit sphere.

This distribution, in the isotropic case, is the Angular
Gaussian (AGD) distribution, which is a Saw distribution
(Saw 1978) (of dimensions d) defined by

gAGD
κ (t) = e−

1
2κ

2
∞∑

n=0

(κt)n Γ
(
d
2 + n

2

)
n! Γ

(
d
2

) . (7)

This expression of the AGD is given without proof in (Saw
1978). We prove it and give different expressions of the
probability density for a general Gaussian vector N (µ,Σ)
projected onto the unit-sphere in Appendix. One of these
expressions reduces to (7) in the isotropic case Σ = σ2I ,
with κ2 = ||µ||2/σ2, with ||µ|| = ||z|| = 1.

Alternatively, starting from a normal distribution with
isotropic covariance κ−1I and mean µc, we can condition
on ∥z∥ = 1 to obtain the Von Mises–Fisher (vMF) distribu-
tion, which is a Saw distribution with

gvMF
κ (t) = exp(κ t). (8)

3.3 Fixed Directions for Continual Learning
Working with the Saw distributions in Section 3.2 requires
knowledge of the mean directions of the different classes.
With L equiprobable classes, it is natural to use a one-hot
encoding of these classes; or, in other words, to assign them
to the vertexes of the standard L-simplex. Alternatively, one
could estimate these directions as a parameter of the net-
work (Hasnat et al. 2017), or estimate them on the fly. The
latter is cumbersome, however, as it requires large batches
for the normalized mean estimation to be accurate, and the
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estimation is strongly biased at the start of each task when
new classes are encountered.

Formally for a class c, we set µc = ec =
[0, 0, . . . , 1, 0, . . . 0], a vector where every component is 0
except the c-th component. With this strategy, the directions
have the same distance of

√
2 from one another. Fixing di-

rections also implies that they are independent of batch size
or training step, which brings training stability. Such stabil-
ity is crucial in CL, where new classes can easily conflict
with older ones in the latent space (Caccia et al. 2022). Fi-
nally, fixed directions are obtained at no computational cost.
We emphasize that in online CL, maintaining low computa-
tional overhead is also an important aspect, as new batches
can come in fast succession while storage is limited. An
overview of fixing mean direction onto the unit sphere is
given in Figure 1.

3.4 Loss Expression
Taking the logarithm of the objective defined in Equation (5)
we obtained the general loss expression:

Llog
MAP(B, θ) = −

∑
c∈CB

∑
i∈Ic

log
gκ
(
e⊤c Φθ(xi)

)
πc∑

ℓ∈CB

gκ
(
e⊤ℓ Φθ(xi)

)
πℓ

(9)

with CB the classes in batch B, θ the parameters of the
model, Ic = {i ∈ [[1, b]] | yi = c} the data indexes for
class c, and ec the c-th vector of the standard basis. Note
that the above general expression includes the losses pro-
posed in (Lin et al. 2023; Hasnat et al. 2017) based on the
von Mises-Fisher distribution.

The Angular Gaussian loss with Fixed Directions (AGD-
FD) is obtained by plugging (7) into (9), and it is denoted by
LAGD-FD(B, θ). Likewise, the expression of the von-Mises-
Fischer loss with Fixed Directions (vMF-FD) is obtained by
plugging (8) into (9). In all our experiments, we work under
the assumption that every class has the same prior.

3.5 Implementation Details
Multi-View Batch In online CL, the model has to over-
come not only a changing data distribution but also the fact
that data outside of memory are seen only once. To improve
leveraging information from the incoming batch, each image
is augmented several times to artificially increase the current
batch size and show many ’views’ of current data simulta-
neously. Specifically, for an incoming batch B and a ran-
dom augmentation procedure Aug(.), the model is trained
on BI = B

⋃n
i=1Aug(B) with n the number of views. We

show in section 5 leveraging a multi-view batch helps im-
prove performances.

Guillotine Regularization Similar to recent Representa-
tion Learning techniques, we apply Guillotine Regulariza-
tion (Bordes et al. 2023), to our model. Specifically, we ex-
press our model as Φθ(.) = (ψθp◦ϕθr )(.) with θ = {θp, θr}.
ψθp is referred to as the projection layer and ϕθr the rep-
resentation layer. The projection layer usually is a simple
multilayered perceptron, while the representation layer is a
full neural network (e.g. a ResNet). During training, latent

variables z = (ψθp ◦ ϕθr )(x) are used for computing the
loss from Equation (9). For inference, the projection layer is
dropped, and latent variables h = ϕθr (x) are used for the
downstream task.

3.6 Training Procedure

Since our proposed approach leads to learning representa-
tion, an extra step is needed in order to obtain our final
classifier. For fair comparison, we consider that only images
stored in memory are available at the end of training. Simi-
lar to SCR, when evaluating, the entire memory is used for
training an intermediate classifier Cw, with parameters w, on
top of the frozen representations from ϕθr . During the eval-
uation step Cw ◦ ϕθr (.) is used. A detailed procedure of our
method is presented in algorithm 1.

Algorithm 1: Proposed Training Method
Input: Data stream S; Memory M; Augmentation procedure
Aug(.); Representation Learning Model Φθ(.) = (ψθp ◦
ϕθr )(.); Intermediate classifier Cw(.); Number of augmenta-
tions n;
Output: End-to-end classifier Cw ◦ ϕθr (.); MemoryM;
Training Phase:
M← {}
for BS ∈ S do
BM ← Retrieve(M) ▷ Random retrieval
BC ← BS ∪ BM
(XI , YI)← BC

⋃n
i=1Aug(BC)

B ← (Φθ(XI), YI)

θ ← Adam(Llog
MAP(B, θ)) ▷ Losses from Section 3.4

M←MemoryUpdate((XS , YS),M) ▷ Reservoir
Sampling
Testing Phase:
(XM, YM)←M ▷ Get all stored memory data
HM ← ϕθr (XM) ▷ Encode all memory data
w ← Train(HM, YM, Cw) ▷ Train from frozen
representations
return: θr; w;M

4 Experiments

In this section, we describe our experimental setup and anal-
yse obtained results of our method.

4.1 Towards Real-World Scenarios

Blurry Task Boundaries As introduced in section 2, CIL
setups assume clear task boundaries. As an effect, several
methods rely on knowing when the task change occurs to use
techniques such as distillation (Buzzega et al. 2020; Guo,
Liu, and Zhao 2022). However, in a real-world scenario,
there is no guarantee that task boundaries are clearly defined.
Therefore simulating such an environment is crucial for test-
ing models robustness. In that sense, we construct datasets
with blurry task boundaries.
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Figure 2: Visualisation of class proportions in the incoming batch during training. The left side shows data drift with clear
boundaries while the right side shows data drift with blurry boundaries for σ = 1500 with 3 tasks, 10,000 images per task. Ci

corresponds to the classes of task Ti with i ∈ [1, 3].

Algorithm 2: Blurry task boundaries shuffling
Input: Stream sequence with clear boundaries Sc; Scale σ;
Output: Stream sequence with blurry boundaries Sb
Sb ← {}
while |Sc| ≥ 0 do

i ∼ HN (σ) ▷ Sample from a Half-Normal p.d.f.
Sb ← Sb ∪ Sc[i] ▷ Add i-th element of Sc to Sb
Sc ← Sc\{Sc[i]} ▷ Drop i-th element of Sc

return: Sb

To create such a dataset we start from a dataset with clear
boundaries and shuffle it using algorithm 2. We use a Half-

Normal distribution with p.d.f fHN (y, σ) =
√
2

σ
√
π
e−

y2

2σ2

where y ≥ 0 and σ is the scale parameter. The resulting
data shift can be visualized in Figure 2.

Random Label Order In previous work, experiments are
often concluded with the same label order for every run
(Guo, Liu, and Zhao 2022; Buzzega et al. 2020). However,
studies show that label order is important in CL (Yoon et al.
2020). For fair comparison, we experimented for several
runs and for each run, the order of the labels is randomly
changed. This ensures more reproducibility and generaliza-
tion of the proposed results.

4.2 Evaluation Protocol
Subsequent is an exhaustive description of the datasets and
baselines we considered, as well as details regarding the im-
plementation decisions of our experiment.

Datasets To build continual learning environments, varia-
tions of standard image classification datasets (Krizhevsky
et al. 2009; Le and Yang 2015) are used. As introduced
in section 4.1, we distinguish two variations of original
datasets, one with clear task boundaries (clear variants) and
the other with blurry task boundaries (blurry variants). For
clear variants, each task is composed of non-overlapping
classes while in blurry variants we introduce some overlap
with the procedure previously described. More details are
given in Appendix (Michel et al. 2023).

Baselines Several state-of-the-art approaches for online
CL are used for comparison. ER (Rolnick et al. 2019) is
a memory-based approach using a reservoir sampling (Vit-
ter 1985) with a cross-entropy loss. SCR (Mai et al. 2021)

is a memory-based approach trained using the SupCon loss
(Khosla et al. 2020) and a reservoir sampling. GDumb
(Prabhu, Torr, and Dokania 2020) is a method that stores
data from stream in memory, ensuring a balanced class se-
lection. The model is trained offline on memory data at in-
ference time. AGEM (Chaudhry et al. 2019) ensures that
the average loss of past task does not increase by constrain-
ing the gradient using memory data. DER++ (Buzzega et al.
2020) leverages knowledge distillation and reservoir sam-
pling. DVC (Gu et al. 2022) maximizes information from
different images views. ER-ACE (Caccia et al. 2022) lever-
ages an asymmetric cross-entropy loss along with reservoir
sampling. OCM (Guo, Liu, and Zhao 2022) maximizes mu-
tual information with infoNCE (Oord, Li, and Vinyals 2019)
and uses reservoir sampling. PFC (Pernici et al. 2021) which
combined experience replay and Pre-Fixed Classifiers.

Metrics For evaluation, we use the average accuracy
across all tasks at the end of training. This is also known
as the final average accuracy (Kirkpatrick et al. 2017; Hsu
et al. 2018; Mai et al. 2022).

Implementation Details For memory-based models, ex-
cept GDumb, we use random retrieval and reservoir sam-
pling for memory management. DVC, SCR, and OCM em-
ploy a two-layer MLP with 512 neurons for intermediate
layers (ReLU activation) and 128 neurons for the projec-
tion layer. Since our model requires more dimensions than
classes, the projection layer output size remains fixed at 512,
but additional dimensions can be added as new classes ap-
pear. For all methods, we use a full untrained ResNet18.
Stream batch size (|XS |) is 10 and memory batch size
(|XM|) is 64 for all methods. We use a Nearest Class Mean
(NCM) classifier for intermediary classification. Other inter-
mediate classifiers can be used but we observed little impact
on the accuracy.

Hyperparameter Search We performed a hyper-
parameter search on CIFAR100 with a memory size
M = 5k and 10 tasks. This search includes data augmen-
tation. Best parameters were kept and used for training on
every dataset. For fair comparison, we applied this strategy
to all approaches, including ours. For OCM we used the
parameters from the original paper. Details regarding
parameter selection can be found in Appendix (Michel et al.
2023).
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CIFAR10 CIFAR100 Tiny ImageNet
Method M=500 M=1k M=1k M=2k M=5k M=2k M=5k M=10k

AGEM 16.88±1.42 16.86±1.24 4.3±0.7 4.28±0.66 4.24±0.66 0.71±0.12 0.73±0.09 0.74±0.13

DER++ 47.01±5.76 53.18±5.8 21.74±1.72 28.42±2.45 34.92±1.52 6.65±1.12 13.58±1.47 14.82±5.21

DVC 55.8±4.67 61.42±2.68 19.79±2.63 23.19±3.6 27.43±3.26 2.45±1.27 1.72±0.74 2.22±1.39

ER-ACE 54.15±1.89 61.36±1.99 27.71±0.82 32.95±1.12 39.66±1.15 15.27±1.07 22.69±1.53 27.49±1.42

ER 52.51±6.27 59.02±3.27 23.04±0.9 29.65±1.33 35.52±1.43 12.49±0.5 20.55±0.96 24.06±1.01

GDUMB 34.06±1.81 41.42±1.25 11.43±0.69 15.74±0.61 25.53±0.44 7.07±0.38 13.79±0.5 21.72±0.4

PFC 57.21±0.84 62.90±0.92 24.1±0.90 31.1±1.60 38.6±0.90 11.73±0.73 19.15±2.2 23.51±2.15

SCR 60.63±1.19 68.17±0.97 30.31±0.64 36.64±0.62 40.6±0.76 19.44±0.34 23.21±0.76 24.43±0.7

OCM 68.47±1.07 72.6±1.98 29.09±1.41 36.67±1.01 42.49±1.45 19.38±0.61 27.52±0.8 32.3±1.34

vMF-FD 60.17±2.09 69.86±1.02 32.98±0.83 41.04±0.81 50.39±0.75 19.85±0.68 28.8±0.62 34.21±0.69

AGD-FD 61.29±1.54 70.06±1.11 33.77±0.84 41.85±0.85 50.54±0.67 20.46±0.71 29.56±0.68 34.77±0.52

Table 1: Final average accuracy (%) for all methods on datasets CIFAR10 split into 5 tasks, CIFAR100 split into 10 tasks, and
TinyIN split into 100 tasks for varying memory sizes M . Tasks boundaries are clear in this setting. Results are computed over
10 runs, and the means and standard deviations are displayed. Best results are in bold. Second are underlined.

Data Augmentation For DER++, ER-ACE and GDumb
we use random crop and random horizontal flip as aug-
mentation. For every other method, we use the same data
augmentation procedure composed of random crop, random
horizontal flip, color jitter, and random grayscale. For our
method, we use a number of views n = 5. OCM comes with
additional data augmentation, which we did not change.

Adaptation to Blurry Boundaries For blurry boundaries,
we adapted methods that required knowing task boundaries
for this setup. Namely, we detected task changes with sim-
ple rules. (1) If new classes appear in the stream batch, a
new task starts (2) Every task must be at least 100 batches
long. This strategy helped to adapt OCM and DER++ but is
limited as it can detect more tasks than desired.

4.3 Experimental Results
Clear Boundaries The proposed approach has shown to
outperform every considered baseline on CIFAR-100 and
Tiny datasets with clear boundaries, as displayed in Table
1. This margin becomes even more significant for larger
memory sizes on CIFAR-100 up to 8.05% with M = 5k,
which exhibits better scaling with memory size than com-
pared methods. Moreover, our method outperforms every
considered baselines except OCM on CIFAR-10. However,
experiments on blurry variants show evidence that OCM
performances highly rely on task boundaries.

Blurry Boundaries As shown in Table 2, our method
outperforms every other method in this scenario. Notably,
OCM, which requires precise task change for distillation,
suffers from a consequent drop in performance in the blurry
scenario while our approach gains performance instead. This
demonstrates that our method is more suited to realistic sce-
narios than current state-of-the-art approaches.

5 Model Analysis
In subsequent we study the impact of several hyper-
parameters for our method. We also apply some of our meth-
ods components such as multi-view batch and guillotine reg-
ularization to other methods for a fair comparison.

Impact of not fixing µc In section 3.3, we discussed the
choice of µc, the mean for class c. In the following we com-
pare the effect of fixing µc as (i) µc = ec where ec is the
c-th vector of the standard basis; to its estimation as (ii)
µc = µ̂c/||µ̂c||, the spherical mean, where µ̂c is the arith-
metic mean of class c computed with current batch represen-
tations. Given that the mean estimation depends on the batch
size, we also explore the effect of increasing the number of
images retrieved from memory, denoted as |XM|, to facili-
tate more accurate estimation for larger batch sizes. Results
in Table 3 demonstrate that fixing the mean values during
training leads to a substantial improvement in the overall ac-
curacy, even when using larger batch sizes.
Impact of concentration parameter κ Another hyper-
parameter to choose for our method is the concentration pa-
rameter κ. On the one hand, the concentration must be low
enough for the problem to be feasible but on the other hand,
when the concentration falls below a certain value, Gaussians
will overlap, which can lead to lower classification accuracy.
To illustrate this effect, Figure 3 depicts the impact of differ-
ent values of κ on the classification accuracy, where optimal
values occur at κ2 = 7 for vMF and κ2 = 0.2 for AGD.
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Figure 3: Final average accuracy (%) for κ2 ∈ [0.02, 20]
on CIFAR-100 with M = 5k.

Impact of the number of views n Due to the online set-
ting, increasing the number of views has a notable impact on
the performances, as shown in Table 4. To ensure reasonable
training time, we use n = 5 in our experiments, but increas-
ing n could be considered for better performances. To dis-
cern the individual impacts of the multi-augmentation and
the proposed training loss, we apply the former to SCR and
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CIFAR10 CIFAR100 Tiny ImageNet
Method M=500 M=1k M=1k M=2k M=5k M=2k M=5k M=10k

AGEM 12.62±1.92 12.28±2.44 2.36±0.33 2.51±0.27 2.42±0.33 1.15±0.24 1.18±0.25 1.16±0.3

DER++ 49.49±5.18 55.17±4.15 26.25±2.08 28.52±10.05 33.48±4.75 11.07±2.06 18.47±2.84 22.88±4.38

DVC 58.26±2.29 62.38±2.89 24.5±2.02 26.3±5.74 33.16±2.57 11.6±2.02 17.78±2.5 18.16±4.05

GDUMB 34.06±1.81 41.42±1.25 11.43±0.69 15.74±0.61 25.53±0.44 7.08±0.39 13.79±0.76 22.35±0.23

ER 54.55±2.04 61.7±2.41 23.68±0.95 29.84±1.83 36.27±1.52 11.33±2.03 19.14±1.46 24.51±1.63

ER-ACE 59.93±3.12 65.3±1.52 29.54±1.0 34.73±0.71 41.16±1.57 20.85±0.85 26.79±0.97 31.6±1.01

SCR 61.27±1.34 68.31±1.61 30.81±0.54 36.42±0.42 40.19±0.57 19.39±0.55 23.08±0.58 24.26±0.63

OCM 47.4±3.11 51.98±6.03 26.81±1.54 34.77±0.82 40.34±1.47 18.11±0.85 25.37±1.0 29.88±0.67

vMF-FD 63.87±1.72 71.04±1.29 34.68±0.76 42.0±0.68 50.71±0.60 21.71±0.54 30.21±0.51 35.16±0.49

AGD-FD 64.38±2.0 71.59±0.99 36.32±0.68 43.51±0.35 50.84±0.72 23.57±0.4 31.75±0.42 35.96±0.47

Table 2: Final average accuracy (%) for all methods on blurry variants with CIFAR10 split into 5 tasks, CIFAR100 split into
10 tasks and TinyIN split into 100 tasks for varying memory sizes M . Dataset boundaries are blurred with a scale σ = 1500.
Results are computed over 10 runs and the means and standard deviations are displayed. Best results are in bold. Second are
underlined.

µc \ |XM| 16 32 64 128 256 512
µ̂c/||µ̂c|| 16.42±0.25 19.23±0.5 25.54±1.48 35.82±0.65 44.54±0.82 45.79±0.79

ec 36.91±1.08 45.42±0.7 50.36±0.58 50.98±0.38 49.98±0.72 49.62±0.49

Table 3: Final AA on CIFAR100 with 10 tasks and M=5k for fixed mean µc = ec and spherical mean estimates µc = µ̂c/||µ̂c||,
and various values of |XM|, the number images retrieved from memory. Means and standard deviations from 5 runs are showed.

n 3 4 5 6 7 8 9 10
SCR 43.9±0.6 44.4±0.4 44.9±1.0 45.5±0.4 45.3±0.6 45.5±0.8 46.5±0.6 46.3±0.5
ER 42.6±1.0 45.0±2.0 44.2±1.5 44.6±1.1 44.3±1.2 44.1±1.9 43.7±1.0 44.3±1.7

ER-ACE 42.2±0.9 42.1±1.4 42.8±0.7 42.7±0.8 41.8±1.7 41.1±1.8 40.9±1.3 -
AGD-FD 49.4±0.4 50.0±0.4 50.1±0.7 51.1±0.4 51.1±0.3 50.9±0.6 51.7±0.3 51.2±0.4
vMF-FD 49.5±0.6 50.0±0.7 50.7±0.5 50.9±0.7 50.9±0.4 50.4±0.7 50.9±0.3 50.8±0.3

Table 4: Accuracy on CIFAR100 with 10 tasks, M = 5k for SCR, ER, ER-ACE, vMF-FD, AGD-FD and the number of views
n ∈ [3, 10]. Means and standard deviations over 5 runs are displayed.

record the resulting performances in Table 4. Notably, using
a multi-view batch also boosts SCR performance, but our
method still outperforms SCR even with identical numbers
of augmentations. This observation reinforces the efficacy of
the proposed loss function.

6 Conclusion
This paper proposes a new approach to deal with image
classification, adapted to Continual Learning. This approach
provides a framework that allows to outperform current
state-of-the-art methods. Our learning strategy is to search
for the neural network’s representations that maximize the
a posteriori probability density, a known and consistent ap-
proach.

The obtained performance likely results from the choice
of data distribution. Since the data used are projected onto
the hypersphere, a standard practice in representation learn-
ing, we consider distributions on the sphere: the von Mises
Fisher distribution and the angular Gaussian distribution.
The angular Gaussian distribution, which effectively corre-
sponds to the projection of Gaussian data on the sphere, is
the one that shows the best performance, probably because it
is the model that most closely approximates the nature of the
data. A third ingredient that explains the performance is the
use of fixed mean directions, corresponding to each of the
classes. This both simplifies the implementation and makes

the method robust to data-drift. It is particularly noticeable
in the case of blurry boundaries between tasks, where our
approach further widens the gap with other approaches. Fi-
nally, the results are based on careful implementations and a
relevant choice of hyperparameters. Comparisons have been
obtained both on standard evaluation scenarios and on more
realistic datasets with blurry task boundaries. All methods
were carefully re-implemented, often performing better than
advertised in the original papers. Beyond pure performance,
our approach is computationally efficient and does not re-
quire large batch sizes or negative data.

Here we used distributions with an i.i.d. assumption on
the components. It is possible that the use of a non-diagonal
covariance matrix would further improve the results. More-
over, other probability distributions, such as a multivariate
Student-t on the sphere, can be considered. Finally, the ap-
plication of our new losses to non-online batch learning
should also be considered.
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