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Abstract

Compactness in deep learning can be critical to001
a model’s viability in low-resource applications,002
and a common approach to extreme model com-003
pression is quantization. We consider Iterative004
Product Quantization (iPQ) with Quant-Noise005
(Fan et al., 2020) to be state-of-the-art in Quan-006
tization Aware Training (QAT), but this quan-007
tization framework suffers from preventable008
inference quality degradation due to prevalent009
empty clusters in bi-directional language mod-010
eling tasks. In this paper, we propose several011
novel enhancements aiming to improve the ac-012
curacy of iPQ with Quant-Noise by focusing013
on resolving empty clusters. Our contribution,014
which we call Partitioning-Guided k-means015
(PG k-means), is a heavily augmented k-means016
implementation composed of three main com-017
ponents. First, we propose a partitioning-based018
pre-assignment strategy that minimizes initial019
empty clusters and encourages an even weight-020
to-cluster distribution. Second, we propose an021
empirically superior empty cluster resolution022
heuristic executed via cautious partitioning of023
large clusters. Finally, we construct an optional024
optimization step that consolidates intuitively025
dense clusters of weights to ensure shared repre-026
sentation. The proposed approach consistently027
reduces the number of empty clusters in iPQ028
with Quant-Noise by 100x on average, uses 8x029
fewer iterations during empty cluster resolution,030
and improves overall model accuracy by up to031
12%, when applied to RoBERTa on a variety of032
tasks in the GLUE benchmark.033

1 Introduction034

There is a more critical need than ever for com-035

pact, but effective, deep learning models in an age036

where even minimal models may have hundreds037

of millions of parameters. With the recently ex-038

plosive popularity of truly large language mod-039

els (LLMs), achieved primarily through scaling040

compute resources, the constraints of low-resource041

deployment environments must be freshly consid- 042

ered and addressed. Given that, effective model 043

compression is a research area of significant inter- 044

est. A number of simple and popular compression 045

methodologies exist, such as weight sharing (De- 046

hghani et al., 2018), weight pruning (LeCun et al., 047

1989), or knowledge distillation via teacher-student 048

relationships during training (Hinton et al., 2014; 049

Sanh et al., 2019; Jiao et al., 2019), but many of 050

these are most applicable for models that are over- 051

parameterized. 052

Quantization is an alternative approach, and it re- 053

duces the memory footprint of weights for a model 054

by generally reducing the number of bits per weight 055

for that weight’s representation. Various quantiza- 056

tion methodologies exist (Gupta et al., 2015; Cour- 057

bariaux et al., 2015; Stock et al., 2020), but Iterative 058

Product Quantization (iPQ) with Quant-Noise (Fan 059

et al., 2020) enabled during training and/or fine- 060

tuning has cemented itself as the state-of-the-art for 061

non-post hoc quantization. iPQ with Quant-Noise 062

improves on the performance of several competi- 063

tive predecessors (Stock et al., 2020; Jacob et al., 064

2017) for extreme compression (referring to com- 065

pression ratios of 10x or more), but issues still 066

remain. 067

A notable problem for many quantization meth- 068

ods is empty cluster resolution, which is ultimately 069

a NP-hard problem for modern clustering algo- 070

rithms. We posit that the presence of empty clusters 071

often leads to noteworthy losses in inference qual- 072

ity, so we consider their minimization a priority. 073

Generally, we find that iPQ with Quant-Noise suf- 074

fers from a significant number of unresolved empty 075

clusters (e.g., over a hundred empty clusters for a 076

linear layer; more details later) and that there is 077

considerable performance degradation associated 078

with this (e.g., observing a 2.7% difference in ac- 079

curacy between models featuring an empty cluster 080

resolution heuristic and models without one). In 081

this paper, we start by going over the empty clus- 082
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ter problem in detail, analyzing the number and083

distribution of empty clusters across compression084

ratios and layers for models quantized with iPQ085

with Quant-Noise, and providing a brief, intuitive086

explanation as to how empty clusters lead to per-087

formance degradation.088

To better address the empty cluster problem089

for extreme model compression, we propose090

Partitioning-Guided k-means (PG k-means), which091

is composed of several novel and effective tech-092

niques to improve the clustering algorithm typically093

employed by iPQ with Quant-Noise in extreme094

compression applications. The proposed scheme095

includes three major contributions. First, we pro-096

pose a replacement for the typically random (or097

influenced random) placement of initial centroids098

with a pre-assignment strategy that minimizes ini-099

tial empty clusters and guides k-means towards a100

roughly even distribution of weight assignments101

to clusters. Second, we propose an empirically su-102

perior empty cluster resolution heuristic executed103

via cautious partitioning of populous clusters into104

new sub-clusters. Finally, we construct an optional105

optimization step that consolidates dense clusters106

of weights to ensure that they map to a single cen-107

troid after quantization completes and are not erro-108

neously/unintentionally separated.109

To validate the viability of this approach, we110

test our complete method on RoBERTa (Liu et al.,111

2019) fine-tuned for several tasks in the GLUE112

benchmark. When compared directly to the state-113

of-the-art in iPQ with Quant-Noise, our method114

reduces the average number of empty clusters on a115

layer-by-layer basis by 100x on average, reduces116

the number of layers with empty clusters consis-117

tently by at least 25x, and typically undergoes 8x118

fewer iterations for empty cluster resolution. More-119

over, the proposed PG k-means consistently super-120

sedes the accuracy scores of iPQ with Quant-Noise121

by up to 2.4% for MNLI, up to 12% for RTE, and122

up to 4.2% for QNLI, all on extremely compressed123

models.124

2 Background125

We focus our brief review of existing literature on126

popular methods of quantization with a focus on127

extreme compression. Weight-sharing (Dehghani128

et al., 2018), weight-pruning (LeCun et al., 1989),129

and knowledge distillation (Hinton et al., 2014;130

Sanh et al., 2019; Jiao et al., 2019) are useful com-131

pression methods, but are not our focus and are syn-132

ergistic to our method. Fixed-point scalar quantiza- 133

tion (Gupta et al., 2015; Courbariaux et al., 2015) 134

is also a popular quantization method, but tends 135

to be unsuitable for high compression ratios when 136

employed alone, and as such is not covered here. 137

2.1 Popular Quantization Methodologies 138

Product quantization (PQ) is a long-time solution 139

for extreme compression applications. PQ is a 140

subset of the more general form of vector quan- 141

tization (VQ) that, for a given set of weights in 142

a matrix for a layer Wl, learns a codebook filled 143

with code-words for each column of that weight 144

matrix. Compression with PQ is accomplished via 145

the division of each column of Wl into some m 146

vectors per column c, with m× c total vectors. All 147

of these vectors share the same layer-wide code- 148

book instead of one per column. Codebooks are 149

typically determined via several iterations of a clas- 150

sical k-means algorithm (Lloyd, 1957) with a fixed 151

number of k centroids such that the reconstruction 152

error is minimized, although this is customizable 153

to any clustering algorithm. 154

Iterative product quantization (iPQ) was pro- 155

posed by Stock et al. 2020 to minimize the sig- 156

nificant performance degradation that often occurs 157

in vanilla PQ in two ways: by focusing on minimiz- 158

ing the error of the reconstructed output of a given 159

layer as opposed to the reconstructed weights and 160

by doing so in an iterative manner from layer to 161

layer. Intuitively, quantizing online while training 162

or fine-tuning and layer-by-layer allows later layers 163

to adjust as they examine the quantized output of 164

previous layers, conditioning reconstruction error 165

robustness. iPQ remains a state-of-the-art quantiza- 166

tion method for generalizable extreme compression, 167

although enhancements have been proposed (Fan 168

et al., 2020). 169

2.2 Quantization Aware Training and 170

Quant-Noise 171

Expanding on these previous methods, Fan et al. 172

focus on their application during training, ensuring 173

that challenges such as null gradients during back- 174

ward passes for quantized weights and widespread 175

drift in network output are met with capable so- 176

lutions. Straight-through estimators (STEs) are 177

commonly used to deal with gradient issues for 178

Quantization Aware Training (QAT) (Jacob et al., 179

2017; Bengio et al., 2013; Courbariaux and Bengio, 180

2016), but significant bias can still be introduced. 181

In response, Quant-Noise (Fan et al., 2020) is pro- 182
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Compression Ratio of 11.81
Layer Type MNLI RTE QNLI
Embedding 0.0 0.0 0.0
q_proj 28.5 31.5 32.3
k_proj 30.6 30.5 30.3
v_proj 25.8 28.8 27.5
out_proj 28.6 27.7 26.4
FC1 6.4 6.2 6.0
FC2 4.8 4.2 4.9

Compression Ratio of 15.9
Layer Type MNLI RTE QNLI
Embedding 0.0 0.0 0.0
q_proj 121.7 114.2 122.1
k_proj 119.3 119.0 115.3
v_proj 108.3 111.2 114.8
out_proj 89.1 95.2 93.1
FC1 6.9 8.3 7.4
FC2 0.1 0.3 0.0

Table 1: Average number of empty clusters (lower is better) per layer type in RoBERTa quantized with typical iPQ
with Quant-Noise and fine-tuned for MNLI, RTE, and QNLI. All results are derived from quantized models with
compression ratios of 11.81 (left) and 15.9 (right). The total number of clusters for linear layers was 3072 and for
embedding layers was 768.

posed as a methodology that quantizes only a ran-183

domly selected portion of the weights of a given184

layer during training and fine-tuning, mitigating the185

bias introduced by STEs and still conditioning the186

network for reconstruction error robustness. iPQ187

with Quant-Noise during training and fine-tuning188

forms the current state-of-the-art for highly gener-189

alizable and extreme model compression.190

3 Empty Clusters Issue in Extreme Model191

Compression192

3.1 Heuristics for Empty Cluster Resolution193

Empty clusters are a classical problem in k-means194

algorithms. Depending on the application, unre-195

solved empty clusters can be numerous and may196

cause considerable performance loss. Most k-197

means implementations host some empty cluster198

resolution heuristics to mitigate the number of de-199

generate solutions (Aloise et al., 2017; Torrente200

and Romo, 2020; Chun, 2021; Feiping et al., 2022).201

However, there is no theoretical guarantee that all202

empty clusters are resolved within reasonable run-203

time and these heuristics are not always widely204

applicable. Fairseq’s (Ott et al., 2019) iPQ with205

Quant-Noise implementation hosts a computation-206

ally efficient mixture of two popular heuristics, ϵ-207

greedy and ϵ-random (Aloise et al., 2017). Upon208

encountering an empty cluster, their mixed strat-209

egy greedily chooses the most populous non-empty210

cluster, bases a new centroid off of the one of the211

populous cluster, and randomly perturbs both.212

3.2 Increased Empty Cluster Occurrence in213

Extreme Model Compression214

While efficient, we find that the popular empty215

cluster resolution heuristic employed by iPQ with216

Quant-Noise struggles to completely resolve empty 217

clusters for quantized RoBERTa models fine-tuned 218

for tasks on the GLUE benchmark, and the issue 219

generally aggravates when the model is compressed 220

more. Table 1 demonstrates the average number 221

of empty clusters per type of layer produced by 222

iPQ with Quant-Noise on various tasks within the 223

GLUE benchmark for compression ratios of 11.81 224

and 15.9. We note that for many layer types, deeper 225

quantization tends to produce more empty clus- 226

ters, aligning with inference quality degradation for 227

deeper compression ratios. Clearly, empty clusters 228

are prevalent and need to be addressed for extreme 229

model compression. 230

3.3 Quality Degradation from Empty Clusters 231

in Model Quantization 232

Loss of prediction quality is often observed in the 233

presence of empty clusters. Part of this is due to 234

a corresponding loss in model expressivity. For a 235

layer in a poorly quantized model with dozens of 236

empty clusters, its range of outputs is artificially 237

limited. As a trivial example, if those dozens of 238

empty clusters were to be filled with just a sin- 239

gle weight each such that the centroids of those 240

clusters corresponded directly to each weight, the 241

expressivity of the layer necessarily improves (as- 242

suming non-trivial weight distributions). Given 243

that, the presence of empty clusters is necessarily 244

sub-optimal and their minimization should be a 245

priority, although heuristics that attempt to resolve 246

empty clusters need to be cautious to avoid drift- 247

ing from locally optimal solutions. In practice, we 248

find that for iPQ with Quant-Noise, a significant 249

loss in quality occurs when no empty cluster reso- 250

lution heuristic is applied for quantizing RoBERTa 251

fine-tuned for MNLI, producing a model with an 252
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accuracy of 76.2% versus a model with an accu-253

racy 79.0% with the mixed heuristic this baseline254

natively employs.255

3.4 Effects of Codebook Pruning for Empty256

Clusters257

It is worth noting that a natural counterpoint to the258

issues with empty clusters would be to propose259

pruning of the PQ codebook for those useless cen-260

troids to improve a given quantized model’s com-261

pression ratio. While this can be done, in practice,262

we found that for most applications this would only263

improve the compression ratio by less than one264

percent (e.g. a compression ratio of 15.29 would265

shift to 15.31 for MNLI results for iPQ with Quant-266

Noise). Given that, we do not consider this moving267

forward for our tests. If empty cluster pruning268

would have a significant effect on the compression269

ratio of a model, it is likely that the model is poorly270

quantized to begin with and its performance for271

that compression ratio would be compromised.272

4 Proposed: Partitioning-Guided273

K-Means (PG k-means)274

To better address problems associated with empty275

clusters and improve overall prediction quality,276

we propose Partitioning-Guided k-means (PG k-277

means), a novel k-means implementation loosely278

inspired by binary-space partitioning applied to-279

wards an empirically superior pre-assignment strat-280

egy and empty cluster resolution. Our scheme fo-281

cuses on encouraging an initially even distribution282

of weights to clusters and guarantees zero empty283

clusters for the initial state of k-means. Addition-284

ally, our method seeks to resolve empty clusters285

during k-means iterations by splitting up popu-286

lous clusters into new, smaller sub-clusters. While287

our method does not provide theoretical guaran-288

tees for reducing the number of empty clusters,289

in all target applications our tests showed a mini-290

mized number of empty clusters when compared to291

the state-of-the-art iPQ with Quant-Noise, and for292

many applications all empty clusters were resolved.293

Our proposed algorithm, PG k-means, consists of294

three primary steps that heavily augment a typi-295

cal k-means implementation: Partitioning-Guided296

Pre-assignment, Partitioning-Guided Cluster Fine-297

tuning, and an optional optimization called Dense298

Weights Consolidation. Detailed pseudo-code for299

PG k-means can be found in our supplementary300

materials.301

Figure 1: Illustration of Partitioning-Guided Pre-
assignment across two partitioning time-steps when ap-
plied to a synthetic distribution. Tentative clustering
is decided via n-dimensional, spherical partitions cen-
tered on the farthest point within the cluster of a given
tentative centroid. The radius of the spherical partition
targets a dynamically determined number of weights
that would be assigned to the new clusters.

4.1 Partitioning-Guided Pre-assignment 302

The performance of k-means implementations de- 303

pends heavily on the pre-assignment strategy defin- 304

ing the initial placement of centroids. While ran- 305

dom placement, or influenced random placement, 306

is somewhat popular and is employed for k-means 307

in iPQ with Quant-Noise, such strategies can result 308

in significant variation in final cluster assignments. 309

Moreover, such pre-assignment strategies com- 310

monly lead to numerous empty clusters that need 311

resolution. In response, we propose an alternative 312

that we call Partitioning-Guided Pre-assignment. 313

Our pre-assignment strategy focuses on guaran- 314

teeing that no empty clusters are present initially 315

for non-trivial weight distributions, without relying 316

on an empty cluster resolution heuristic. Here, we 317

use the term “weight distribution” to refer to the 318

distribution of the weights (i.e., data points) that 319

are being quantized in the n-dimensional space. In 320

order to accomplish this, our method constructs 321

initial clusters by recursively bisecting the over- 322

all weight distribution, guiding k-means towards 323

roughly even assignments of weights to each clus- 324

ter and minimizing initial empty clusters. Specifi- 325

cally, Partitioning-Guided Pre-assignment begins 326

by assigning a temporary centroid for the entire 327

set of weights in a layer, labelled as “Centroid 1” 328

in Figure 1. An n-dimensional sphere is then con- 329

structed to roughly bisect the overall weight distri- 330

bution into two clusters. This sphere is centered on 331

the weight that has the furthest Euclidean distance 332

from the temporary centroid (e.g., top-right point in 333
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Figure 1), intuitively the data point with the worst334

representation in the temporary cluster. Upon the335

temporary cluster being bisected, the temporary336

centroid is removed and replaced by two new cen-337

troids that are generated for the two new clusters,338

corresponding to "Centroid 2" and "Centroid 3"339

in the figure. This strategy is executed recursively340

on the new clusters until the desired number of341

centroids have been determined.342

While Partitioning-Guided Pre-assignment bi-343

sects temporary clusters at every time-step, we344

note that the method for determining the radius345

of the partitioning sphere is customizable. Our pro-346

posed method focuses on enforcing a roughly even347

distribution of assigned weights to clusters, but348

alternatives with different goals could improve per-349

formance. We leave it to future work to investigate350

the potential of these alternatives.351

4.2 Partitioning-Guided Cluster Fine-tuning352

While a more even distribution of assignments353

via the execution of Partitioning-Guided Pre-354

assignment already minimizes the initial occur-355

rence of empty clusters, they can still arise during356

k-means iterations. As k-means settles in a local357

optimum durings its iterations, the solution repre-358

sented by that local optimum may call for fewer in-359

tuitive, or natural, clusters than prescribed at a high360

level. This produces a perceived overestimation of361

the number of clusters, where k-means can repre-362

sent the same locally optimum solution with fewer363

centroids than are provided. However, as we have364

already covered, the presence of empty clusters is365

necessarily sub-optimal and their resolution is im-366

portant to model performance. To enable extreme367

empty cluster resolution towards that end and seek-368

ing to push k-means out of these erroneous local369

optima, we propose Partitioning-Guided Cluster370

Fine-tuning.371

At a high level, our method for empty cluster372

resolution seeks out populous clusters and attempts373

to split them into multiple smaller clusters. In order374

to split clusters efficiently, instead of bisecting each375

populous cluster until its size reaches the average376

cluster size of the entire weight distribution, we377

propose guiding splits by providing a target post-378

split cluster size that scales dynamically across379

iterations.380

Intuitively, we could set the target cluster size381

simply as the average cluster size of all clusters382

larger than the layer-wide average. In practice,383

however, we have observed that this is too aggres-384

sive and can potentially split large, dense clusters 385

into too many sub-clusters. Nevertheless, explic- 386

itly avoiding splitting dense clusters is difficult, 387

as calculating the accurate cluster density can be 388

computationally expensive. We propose a more 389

efficient solution, detailed in Equation 1, that cau- 390

tiously splits extremely large clusters by scaling 391

the target cluster size alongside the size of the non- 392

empty cluster. For Equation 1, we denote nlc as 393

the number of weights in the non-empty cluster 394

being split, Savg as the aforementioned adjusted 395

average, and Sscl as the scaling target cluster size. 396√
nlc/Savg is the number of small clusters that a 397

large cluster would be split into assuming using 398

Savg as the target, and the square root of that scales 399

down the speed, preventing a large cluster from 400

being partitioned into too many small clusters. 401

Sscl = max(
√
nlc

√
Savg, Savg) (1) 402

4.3 Dense Weights Consolidation 403

This optional optimization is propelled by the obser- 404

vation that typical k-means and PG k-means with- 405

out this augmentation will occasionally split up a 406

dense cluster of weights such that those weights are 407

mapped to separate, sometimes far-away, centroids. 408

To address this issue, we propose Dense Weights 409

Consolidation to ensure that a dense cluster, which 410

should intuitively be represented by the same cen- 411

troid, is preserved. To achieve that, assuming a 412

dense cluster can be identified, we first use a single 413

representative centroid to replace all the weights 414

in the cluster. This representative centroid is used 415

throughout later k-means iterations as if the cluster 416

just has one weight. The cluster is mapped back 417

to its original weights at the very end of k-means 418

clustering. 419

A critical step in this optimization is to identify 420

a dense cluster efficiently. We identify a dense 421

cluster as a set of weights that fulfill two criteria. 422

First, weights are identified as being potentially 423

within a dense cluster, if the difference between 424

their Euclidean distance to a randomly chosen an- 425

chor weight (e.g., the top-left weight in Figure 2 426

left) is less than a fine-tunable value ε. This cor- 427

responds to the rings of distance demonstrated in 428

the figure. Second, the potential dense cluster is 429

confirmed as a dense cluster if the distance be- 430

tween a random weight in that cluster to every other 431

weight is less than ε, which corresponds to the 432

dense weight confirmation via a centered weight 433

observed in Figure 2 right. Perfectly determining 434
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Figure 2: Illustration of Dense Weights Consolidation
when applied to a synthetic distribution. Dense clusters
are identified via a Euclidean distance-based criteria.
Upon dense clusters being identified, they are replaced
by a centroid representing that dense cluster and treated
as a normal, singular weight for later clustering steps.

sets of dense clusters is not feasible and is a subset435

of the well-studied NP-hard MIS problem. We pro-436

pose our own heuristic to tackle this problem that437

performs well in our experiments, striking a bal-438

ance between computational efficiency and dense439

cluster identification quality.440

The first step of our implementation chooses a441

random weight in our weight distribution as a focal442

point to construct a Euclidean distance map to every443

other weight. That distance map is subsequently444

sorted and iterated through to search for potential445

dense clusters, stopping whenever the difference446

between the distances of a set of weights fit our447

first established criteria. Upon establishing a set448

of weights that could form a dense cluster, that449

set is iterated through with an identified candidate450

weight Wcand. All other weights not fitting the first451

criteria are independent weights (i.e., not part of a452

dense cluster). For each potential dense cluster, the453

weights that fulfill the second identified criteria are454

paired with Wcand and consolidated into a dense455

cluster and removed from the set of potential dense456

clusters. The rest of the weights in these potential457

dense clusters are considered independent weights458

and are not considered for other possible dense459

cluster sets. This process is repeated across the460

original distance map until all weights have been461

consolidated or classified as independent weights.462

While ε is a fine-tunable parameter, we found463

in our experiments that it was difficult to estimate464

good values of ε, and we suppose that ideal values465

for this parameter are likely layer-specific. Overes-466

timation of ε, in particular, can cause degradation in467

quantization quality. In response, we propose scal-468

ing ε dynamically to avoid over-identifying dense469

clusters. Equation 2 describes our update criteria, 470

with nc corresponding to the number of centroids 471

for the layer being quantized, ncw corresponding to 472

the number of weights after consolidation, which 473

is the sum of the number of dense clusters and in- 474

dependent weights, csd corresponding to a scaling 475

factor that reduces ε, cmc corresponding to the fac- 476

tor of multiple of nc that serve as a threshold for the 477

minimum number of consolidated weights ncw. csd 478

and cmc values of 0.8 and 2 respectively worked 479

well in practice, indicating that if the number of 480

weights after consolidation is less than twice the 481

number of centroids, ε is scaled by 0.8. 482

εupd(ε, nc, ncw, csd, cmc) =


ε× csd if
ncw < nc ×cmc,

ε else
(2) 483

5 Results 484

For our set of experiments, we employ Fairseq (Ott 485

et al., 2019), a language and sequence modeling 486

toolkit written in PyTorch that is fast, easily ex- 487

tendable, and hosts a Quant-Noise implementation. 488

We make use of the provided Quant-Noise frame- 489

work and Fairseq’s iPQ implementation to apply 490

our novel scheme to RoBERTa for several tasks 491

within the GLUE benchmark. All cluster assign- 492

ments were finished within 15 iterations of both 493

respective k-means algorithms for each layer. Dur- 494

ing each k-means iteration, up to 100 iterations 495

of typical iPQ with Quant-Noise’s empty cluster 496

resolution were allowed while up to 15 iterations 497

of Partitioning-Guided Cluster Fine-tuning were 498

allowed. Fine-tuning, quantization, and evalua- 499

tion were performed on four NVIDIA Tesla V100s 500

across all models. 501

5.1 PG k-means for RoBERTa on GLUE 502

Tasks 503

All RoBERTa models were initially pre-trained 504

checkpoints provided by Fairseq without quantiza- 505

tion. These checkpoints were fine-tuned for MNLI, 506

RTE, and QNLI tasks with Quant-Noise, using rec- 507

ommended noise factors between 0.05 and 0.2 and 508

block sizes of 8. These baseline checkpoints were 509

subsequently quantized either with typical iPQ or 510

with our proposed method. Out of the available 511

quantizable layers, we quantized the input embed- 512

ding layer, all input and output projection layers 513
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RoBERTa base
Compr. MNLI RTE QNLI

Original Model
1.00 87.8 76.7 92.1

iPQ with Quant-Noise
11.81 83.1 58.8 90.3
14.05 81.8 57.8 88.5
15.29 80.7 55.6 87.8
15.90 79.0 55.6 77.4

PG k-means
11.81 83.9 70.8 90.5
14.05 83.3 59.6 88.9
15.29 82.0 56.7 87.9
15.90 81.4 56.3 81.6

Compression Ratio Size (MB)
1.00 477.94

11.81 40.47
14.05 34.01
15.29 31.26
15.90 30.05

Table 2: Complete validation set results of quantization implementations for RoBERTa fine-tuned for MNLI, RTE,
and QNLI. The leftmost column contains compression ratios and the right columns contains accuracy scores in
percentages. Best accuracy scores for a given compression ratio are bolded. The right table provides mappings
between compression ratios to model size as a quick reference. All results were generated and are not reused from
literature.

Compr. iPQ with Quant-Noise Baseline PG k-means Full PG k-means
11.81 83.1 83.5 83.9
14.05 81.8 82.6 83.3
15.29 80.7 81.7 82.0
15.90 79.0 80.6 81.4

Table 3: Results for ablation study to demonstrate the isolated improvements of applying our optional Dense Weights
Consolidation step to PG k-means to RoBERTa fine-tuned for MNLI. Best accuracy scores for a given compression
ratio are bolded.

related to encoder self-attention, and all fully con-514

nected layers, totaling to 73 layers overall. Exact515

quantization parameters can be found in our sup-516

plementary materials.517

The results highlighted in Table 2 demonstrate518

a clear advantage for PG k-means compared to519

iPQ with Quant-Noise for MNLI, a task that was520

explored and used to validate the viability of iPQ521

with Quant-Noise. Concerning MNLI, our method522

demonstrates up to a 2.4% inference quality in-523

crease and consistently improves upon iPQ with524

Quant-Noise by at least 0.8% in the worst case.525

The difference between iPQ with Quant-Noise and526

our method grows for other tasks, with one exam-527

ple for RTE exhibiting a 12% accuracy increase528

from its iPQ with Quant-Noise baseline and QNLI529

demonstrating up to a 4.2% accuracy increase.530

Clearly, PG k-means consistently beats typical iPQ531

with Quant-Noise by a notable margin for several532

tasks in the GLUE benchmark when applied to533

RoBERTa, establishing its viability for extreme534

model quantization. 535

5.2 Ablation Study of PG k-means on MNLI 536

As PG k-means is composed of an optional opti- 537

mization in the form of Dense Weights Consol- 538

idation, it is critical to isolate its effect on our 539

performance. To do so, we provide an ablation 540

study for these methods applied towards quantizing 541

RoBERTa fine-tuned for MNLI in Table 3. While 542

the Baseline PG k-means still exhibits consistent 543

improvements on typical iPQ with Quant-Noise, 544

the addition of Dense Weights Consolidation for 545

superior initialization (Full PG k-means) notice- 546

ably improves on our proposed baseline, nearly 547

doubling the accuracy increase from comparable 548

compression configurations for IPQ with Quant- 549

noise. 550

5.3 Empty Cluster Resolution via PG k-means 551

To demonstrate the capability of our proposed 552

method in terms of resolving empty clusters, we 553

gather similar statistics to our brief analysis of typ- 554
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Compression Ratio iPQ with Quant-Noise PG k-means
MNLI RTE QNLI MNLI RTE QNLI

11.81 94.5 94.5 93.2 4.1 2.7 0.0
14.05 79.5 78.1 78.1 2.7 4.1 0.0
15.29 82.2 76.7 79.5 0.0 1.4 2.7
15.90 76.7 79.5 78.1 0.0 2.7 0.0

Table 4: Percentages of layers with empty clusters (lower is better) for RoBERTa quantized with PG k-means and
fine-tuned for MNLI, RTE, and QNLI. Compression ratios are on the left and proportions of layers with empty
clusters to total layers quantized are on the right. The total number of quantized layers for RoBERTa, including
sub-layers, total to 73.

Compression Ratio of 11.81
Layer Type MNLI RTE QNLI
Embedding 0.0 0.0 0.0
q_proj 0.0 0.0 0.0
k_proj 0.7 0.2 0.0
v_proj 0.0 0.0 0.0
out_proj 0.0 0.0 0.0
FC1 0.3 0.2 0.0
FC2 0.0 0.0 0.0

Compression Ratio of 15.9
Layer Type MNLI RTE QNLI
Embedding 0.0 0.0 0.0
q_proj 0.0 0.0 0.0
k_proj 0.0 0.0 0.0
v_proj 0.0 0.0 0.0
out_proj 0.0 0.3 0.0
FC1 0.0 0.0 0.0
FC2 0.0 0.1 0.0

Table 5: Average number of empty clusters (lower is better) per layer type in RoBERTa quantized with PG k-means
and fine-tuned for MNLI, RTE, and QNLI. All results are derived from quantized models with compression ratios
of 11.81 (left) and 15.9 (right). The total number of clusters for linear layers was 3072 and for embedding layers
was 768. Direct comparisons can be made to iPQ with Quant-Noise results in Table 1.

ical iPQ with Quant-Noise (Section 3, Table 1) and555

compile them in Table 4 and Table 5. Across all556

relevant metrics, empty clusters are extremely re-557

duced compared to typical iPQ with Quant-Noise,558

in the worst case boasting around a 20x reduction559

in the proportion of layers with empty clusters and560

around a 100x reduction for the average number of561

empty clusters in the most problematic layers.562

5.4 Efficiency of Empty Cluster Resolution563

Comparing typical iPQ with Quant-Noise’s mixed564

heuristic and Partitioning-Guided Cluster Fine-565

tuning, we find that in the best case for iPQ with566

Quant-Noise requires 40 or more iterations of their567

heuristic to completely resolve empty clusters. In568

contrast, Partitioning-Guided Cluster Fine-tuning569

requires 5 to 10 iterations on average for such cases,570

but its iterations are more computationally expen-571

sive. To characterize efficiency, we analyze average572

run-times for both methods in our evaluation envi-573

ronment and find that in spite of more expensive574

iterations, Partitioning-Guided Cluster Fine-tuning575

exhibits around a 3.8x speedup at worst for empty576

cluster resolution while on average requiring 8x577

fewer iterations.578

6 Conclusion 579

In this paper, we presented partitioning-guided k- 580

means as a competitive quantization methodology 581

targeting extreme model compression. We com- 582

pared this methodology to iPQ with Quant-Noise, 583

the state-of-the-art scheme for quantizaion aware 584

training and demonstrated consistently superior re- 585

sults for several tasks on the GLUE benchmark, 586

producing accuracy increases of up to 2.4% for 587

MNLI, up to 12% for RTE, and consistent increases 588

for QNLI. Given these results, Partitioning-Guided 589

k-means has clearly cemented itself as a strong 590

competitor to other options for extreme model 591

compression. Future work will involve expand- 592

ing the number of applications for which we com- 593

pare PG k-means to its competitors, gathering ad- 594

ditional data to validate this approach for causal 595

language modeling (e.g. GPT-based approaches) 596

and encoder-decoder architectures in other NLP 597

tasks. 598

7 Limitations 599

While our approach is applied only to and intended 600

for language modeling tasks in this paper, we note 601

that it can be applied generally to any architec- 602
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ture and target application while likely remaining603

effective. No assumptions were made that are bi-604

directional language modeling specific and that605

would affect PG k-means’ generalizability. We606

leave the validation of this approach’s viability for607

extreme compression outside of NLP tasks to later608

work.609
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A Appendix708

A.1 Fine-tuning and Quantization Details709

All models were fine-tuned with iPQ with Quant-710

Noise enabled with recommended settings as pro-711

vided by (Fan et al., 2020) within Fairseq’s frame-712

work, keeping in line with RoBERTa’s character-713

istics as a 12-layer model with an embedding size714

of 768 and an FFN hidden size of 3072. These715

models were fine-tuned with Adam with weight de-716

cay as an optimizer, defining β1 and β2 as 0.9 and717

0.98, respectively, with an ϵ of 1e-6. A polynomial718

decay-based learning rate was applied. Dropouts719

were specified by LayerDrop and set to a value of720

0.2. Precision for these models, by default, was721

16-bit floating point. All models were evaluated via722

the validation split for corpora MNLI, RTE, and723

QNLI. All models were fine-tuned, quantized, and724

evaluated on four Tesla V100 SXM3s.725

Compression settings were kept consistent726

across ratios. 768 embedding layer centroids were727

allocated and 3072 linear layer centroids were al-728

located. The quantization block sizes for product729

quantization of each compression ratio are shown730

in Table 6.731

A.2 GPU Hours and Required Computation732

This work required heavy experimentation and733

plenty of compute during inference. In total, we es-734

timate approximately 48 GPU days were required735

for MNLI-related efforts in terms of final data col-736

lection, 30 GPU days were required for QNLI-737

related data collection, and 12 GPU days were re-738

quired for RTE-related data collection. Regarding739

GPU hours dedicated to experimentation, we esti-740

mate that around 30 GPU days were required for741

experimentation. Such values are normalized for a742

single GPU (i.e. fine-tuning and quantization was743

executed via 4 GPUs, we multiply run-time by 4x744

in this case).745

A.3 Anecdotal Notes Related to Other Target746

Applications and Efficiency747

Simultaneous speech-to-text translation (SimulST)748

(Ma et al., 2020) was briefly explored as an applica-749

tion to assess the viability of iPQ with Quant-Noise.750

It was quickly observed that degenerate solutions751

were very common, with nearly 70% of total clus-752

ters being empty in the absolute worst case and753

around 48.8% in more typical cases for iPQ with754

Quant-Noise. We leave it to future work to explore755

improvements in this area.756

Regarding the efficiency of our method aside 757

from the empty cluster resolution results that were 758

provided in the main body of this paper, there is 759

no additional overhead in terms of test-time effi- 760

ciency. This is because our method is identical 761

to iPQ with Quant-Noise during inference. Addi- 762

tionally, basic k-means clustering behavior beyond 763

pre-assignment strategies and empty cluster reso- 764

lution is likewise identical, resulting in no changes 765

to efficiency from that perspective. 766

A.4 Relevant Licensing Information 767

Fairseq (Ott et al., 2019) and any pre-trained mod- 768

els made available through it are MIT-licensed. 769

A.5 Other Specialized Quantization 770

Methodologies 771

We acknowledge that for specific applications, 772

many quantization methodologies exist that have 773

been specially customized (e.g. ScaNN for vector 774

similarity search (Guo et al., 2020), VG-GNN for 775

graphical neural network applications (Ding et al., 776

2021)), and it is likely that such methodologies 777

would perform extremely well for non-language 778

modeling tasks. Validating our method against all 779

of them, or even many of them, is largely an ex- 780

ercise in futility, especially because most of them 781

have not been applied in a QAT-based manner be- 782

fore. We leave it to future work to continue to 783

explore the application of PG k-means beyond the 784

language modeling tasks in this paper. 785

A.6 Additional Visual Aids 786

A handful of additional visual aids were con- 787

structed to aid readers, but were removed due to a 788

lack of space and redundancy with illustrations al- 789

ready provided within this paper. We provide them 790

below to enable readers to engage further with this 791

material, should they choose to do so. Figure 3 is 792

an expansion upon what is demonstrated in Figure 793

1, showcasing some additional steps. Figure 4 pro- 794

vides an illustration of Partitioning Cluster Fine- 795

tuning that we felt was unnecessary in the main 796

body of this paper. Figure 5 provides an expansion 797

upon Figure 2, showing an alternate view of its 798

functionality and completing the demonstration of 799

the replacement of dense clusters. As shown in Fig- 800

ure 6, compared with the baseline PG k-means 801

in Figure 4, applying the optional Partitioning- 802

Guided Cluster Fine-tuning step to PG k-means 803

tends to generate the centroid distribution more 804

faithfully to the weight distribution. 805
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Compression Ratio Block Sizes for Product Quantization
Compr. Linear.fc Linear.attn Linear.emb Embedding.emb
11.81 4 4 4 16
14.05 8 4 4 8
15.29 8 4 4 16
15.90 8 16 4 8

Table 6: Quantization block sizes for four compression ratios.

A.7 Pseudocode806

The pseudocode for the procedures and sub-807

procedures of the Partitioning-Guided Pre-808

assignment, Partitioning-Guided Cluster Fine-809

tuning, and Dense Weights Consolidation algo-810

rithms are defined below.811

Let us denote W ∈ Rn×b as the weight ma-812

trix before quantizing, where n is the number of813

weights, and b is the block size of the product quan-814

tization. Alternative notation is provided in our815

pseudocode.816
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Figure 3: Illustration of Partitioning-Guided Pre-assignment across two partitioning time-steps when applied to a
synthetic distribution. Tentative clustering is decided via n-dimensional, spherical partitions centered on the furthest
point within the cluster of a given tentative centroid. The radius of the spherical partition targets a dynamically
determined number of weights that would be assigned to the new clusters.

Figure 4: Illustration of Partitioning-Guided Cluster Fine-tuning during empty cluster resolution. For each k-means
iteration, to resolve empty clusters after the k-means assignment step, Partitioning-Guided Cluster Fine-tuning
splits large clusters into multiple smaller clusters.
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Figure 5: Illustration of Dense Weights Consolidation when applied to a synthetic distribution. Dense clusters are
identified via Euclidean distance-based criteria. Upon dense clusters being identified, they are replaced by a centroid
representing that dense cluster and treated as a normal, singular weight for later clustering steps.

Figure 6: Illustration of complete PG k-means method during k-means iterations. With the optional Dense Weights
Consolidation step, the number of weights was reduced from 50 to 47, improving our method’s ability to represent
isolated, small clusters while decreasing the probability of empty clusters.
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Algorithm 1 Partitioning-Guided Pre-assignment
Input: Weight Matrix W , Centoid Matrix C, Average Cluster Size for each Centroid Savg, If Reverse
Last Centroid Brl

Output: Centoid Matrix C

1: procedure CENTROIDPARTITIONING(W , C, Savg, Brl)
2: Brl decide if generate the last centroid or not
3: return when achieved the last index of C or W is empty
4: cw ← the centroid of (W )
5: nw ← the number of weights in (W )
6: C ← cw when nw ≤ Savg + 1, the index of C add 1, then return
7: Mc ← the sorted Euclidean distance map from W to C
8: Wf ← the weight with the furthest distance to C in Mc

9: Mf ← the sorted Euclidean distance map from W to Wf

10: nh ← the closest integral multiple of Savg to the half number of weights
11: CENTROIDPARTITIONING(the first nh weights in Mf , C, Savg, Brl)
12: CENTROIDPARTITIONING(the rest weights in Mf , C, Savg, Brl)
13: end procedure

Algorithm 2 Partitioning-Guided Cluster Fine-tuning
Input: Weight Matrix W , Centoid Matrix C, Average Cluster Size for each Centroid Savg

Output: Centoid Matrix C

1: procedure CLUSTERFINETUNING(W , C, Sc)
2: Ce ← centroids with empty clusters in C from the assignment
3: while Ce is not empty do
4: break early when the number of empty clusters stops decreasing in a limited number
5: Cra ← Ce ▷ Cra denotes centroids needed to be reassigned
6: Mc ← the sorted centroid map based on the cluster size
7: for centroid c in Mc do
8: if cluser_size(c) ≤ Sc then break ▷ Get the number of large clusters
9: end if

10: Cra.append(c)
11: nw ← nw+ weight_num(c)
12: end for
13: Savg ←Max(nw/ num(Cra) , 1) ▷ Average cluster size for reassigned weights
14: for centroid clc of large cluster in Mc do
15: Wc ← the weights for clc in the assignment
16: nlc ← weight_num(clc)
17: Sscl ←Max(nlc/

√
nlc/Savg, Savg) ▷ Sscl denotes scaling sub-cluster size for splitting

the large cluster
18: CENTROIDPARTITIONING(Wc, C, Sscl, True) ▷ Reserve the last centroid clast for the

later calculation
19: end for
20: clast ← the centroid of all rest weights needed to be reassigned
21: C.append(clast)
22: Recalculate empty clusters Ce by updating the assignment.
23: end while
24: end procedure

14



Algorithm 3 Dense Weights Consolidation
Input: Original Weight Matrix W , Finetunable Value ε, Centroid Number nc

Output: Consolidated Weight Matrix Wc

1: while True do
2: potential dense clusters Cpd, independent weights IW ← IDENTIFYPOTENTIALDENSECLUS-

TER(ε, W )
3: GENERATEDENSECLUSTERS(ε, 0, W , Cpd, Cdd, IW )
4: ncw ← num(determined dense clusters Cdd) + num(IW )
5: if ncw < nc × cmc then
6: ε← ε× csd
7: continue
8: else
9: Wc.append(centroid for each dense cluster in Cd)

10: Wc.append(IW )
11: end if
12: end while
13: return Wc

Algorithm 4 Recursively Generate Dense Clusters
Input: Finetunable Value ε, Anchor Weight Index Ia, Weight Matrix W , Potential Dense Clusters Cpd,
Determined Dense Clusters Cdd, Independent Weights IW
Output: Determined Dense Clusters Cdd, Independent Weights IW

1: procedure GENERATEDENSECLUSTERS(ε, Ia, W , Cpd, Cdd, IW )
2: ▷ A dense cluster is determined by if the anchor weight is in the first potential dense cluster
3: if thenIa in Cpd[0]
4: Cdd.append(Cpd[0]), skip the first potential dense cluster in the following loop
5: end if
6: for cp in Cpd do
7: Csubpd, IWsub ← IDENTIFYPOTENTIALDENSECLUSTER(ε, weights in cp)
8: IW .append(IWsub)
9: if Csubpd is not empty then

10: GENERATEDENSECLUSTERS(ε, cp[0], W , Csubpd, Cdd, IW )
11: end if
12: end for
13: end procedure
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Algorithm 5 Identify Potential Dense Clusters
Input: Finetunable Value ε, Weight Matrix W
Output: Potential Dense Clusters Cpd, Independent Weights IW

1: function IDENTIFYPOTENTIALDENSECLUSTER(ε, W )
2: Mw ← the sorted Euclidean distance map from W to W [0]
3: s← 0
4: for index i of distance in Mw do
5: if Mw[i]−Mw[s] > ε then
6: if i− s > 1 then
7: Cpd.append(Mw[s : i]) ▷ Append weights in Mw between indices s and i
8: else
9: IW .append(Mw[s]) ▷ Append the weight in Mw on index s

10: end if
11: s← i
12: end if
13: end for
14: return Cpd, IW
15: end function
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