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Abstract

Compactness in deep learning can be critical to
amodel’s viability in low-resource applications,
and a common approach to extreme model com-
pression is quantization. We consider Iterative
Product Quantization (iPQ) with Quant-Noise
(Fan et al., 2020) to be state-of-the-art in Quan-
tization Aware Training (QAT), but this quan-
tization framework suffers from preventable
inference quality degradation due to prevalent
empty clusters in bi-directional language mod-
eling tasks. In this paper, we propose several
novel enhancements aiming to improve the ac-
curacy of iPQ with Quant-Noise by focusing
on resolving empty clusters. Our contribution,
which we call Partitioning-Guided k-means
(PG k-means), is a heavily augmented k-means
implementation composed of three main com-
ponents. First, we propose a partitioning-based
pre-assignment strategy that minimizes initial
empty clusters and encourages an even weight-
to-cluster distribution. Second, we propose an
empirically superior empty cluster resolution
heuristic executed via cautious partitioning of
large clusters. Finally, we construct an optional
optimization step that consolidates intuitively
dense clusters of weights to ensure shared repre-
sentation. The proposed approach consistently
reduces the number of empty clusters in iPQ
with Quant-Noise by 100x on average, uses 8x
fewer iterations during empty cluster resolution,
and improves overall model accuracy by up to
12%, when applied to RoOBERTa on a variety of
tasks in the GLUE benchmark.

1 Introduction

There is a more critical need than ever for com-
pact, but effective, deep learning models in an age
where even minimal models may have hundreds
of millions of parameters. With the recently ex-
plosive popularity of truly large language mod-
els (LLMs), achieved primarily through scaling
compute resources, the constraints of low-resource

deployment environments must be freshly consid-
ered and addressed. Given that, effective model
compression is a research area of significant inter-
est. A number of simple and popular compression
methodologies exist, such as weight sharing (De-
hghani et al., 2018), weight pruning (LeCun et al.,
1989), or knowledge distillation via teacher-student
relationships during training (Hinton et al., 2014;
Sanh et al., 2019; Jiao et al., 2019), but many of
these are most applicable for models that are over-
parameterized.

Quantization is an alternative approach, and it re-
duces the memory footprint of weights for a model
by generally reducing the number of bits per weight
for that weight’s representation. Various quantiza-
tion methodologies exist (Gupta et al., 2015; Cour-
bariaux et al., 2015; Stock et al., 2020), but Iterative
Product Quantization (iPQ) with Quant-Noise (Fan
et al., 2020) enabled during training and/or fine-
tuning has cemented itself as the state-of-the-art for
non-post hoc quantization. iPQ with Quant-Noise
improves on the performance of several competi-
tive predecessors (Stock et al., 2020; Jacob et al.,
2017) for extreme compression (referring to com-
pression ratios of 10x or more), but issues still
remain.

A notable problem for many quantization meth-
ods is empty cluster resolution, which is ultimately
a NP-hard problem for modern clustering algo-
rithms. We posit that the presence of empty clusters
often leads to noteworthy losses in inference qual-
ity, so we consider their minimization a priority.
Generally, we find that iPQ with Quant-Noise suf-
fers from a significant number of unresolved empty
clusters (e.g., over a hundred empty clusters for a
linear layer; more details later) and that there is
considerable performance degradation associated
with this (e.g., observing a 2.7% difference in ac-
curacy between models featuring an empty cluster
resolution heuristic and models without one). In
this paper, we start by going over the empty clus-



ter problem in detail, analyzing the number and
distribution of empty clusters across compression
ratios and layers for models quantized with iPQ
with Quant-Noise, and providing a brief, intuitive
explanation as to how empty clusters lead to per-
formance degradation.

To better address the empty cluster problem
for extreme model compression, we propose
Fartitioning-Guided k-means (PG k-means), which
is composed of several novel and effective tech-
niques to improve the clustering algorithm typically
employed by iPQ with Quant-Noise in extreme
compression applications. The proposed scheme
includes three major contributions. First, we pro-
pose a replacement for the typically random (or
influenced random) placement of initial centroids
with a pre-assignment strategy that minimizes ini-
tial empty clusters and guides k-means towards a
roughly even distribution of weight assignments
to clusters. Second, we propose an empirically su-
perior empty cluster resolution heuristic executed
via cautious partitioning of populous clusters into
new sub-clusters. Finally, we construct an optional
optimization step that consolidates dense clusters
of weights to ensure that they map to a single cen-
troid after quantization completes and are not erro-
neously/unintentionally separated.

To validate the viability of this approach, we
test our complete method on RoOBERTa (Liu et al.,
2019) fine-tuned for several tasks in the GLUE
benchmark. When compared directly to the state-
of-the-art in iPQ with Quant-Noise, our method
reduces the average number of empty clusters on a
layer-by-layer basis by 100x on average, reduces
the number of layers with empty clusters consis-
tently by at least 25x, and typically undergoes 8x
fewer iterations for empty cluster resolution. More-
over, the proposed PG k-means consistently super-
sedes the accuracy scores of iPQ with Quant-Noise
by up to 2.4% for MNLI, up to 12% for RTE, and
up to 4.2% for QNLI, all on extremely compressed
models.

2 Background

We focus our brief review of existing literature on
popular methods of quantization with a focus on
extreme compression. Weight-sharing (Dehghani
et al., 2018), weight-pruning (LeCun et al., 1989),
and knowledge distillation (Hinton et al., 2014;
Sanh et al., 2019; Jiao et al., 2019) are useful com-
pression methods, but are not our focus and are syn-

ergistic to our method. Fixed-point scalar quantiza-
tion (Gupta et al., 2015; Courbariaux et al., 2015)
is also a popular quantization method, but tends
to be unsuitable for high compression ratios when
employed alone, and as such is not covered here.

2.1 Popular Quantization Methodologies

Product quantization (PQ) is a long-time solution
for extreme compression applications. PQ is a
subset of the more general form of vector quan-
tization (VQ) that, for a given set of weights in
a matrix for a layer W, learns a codebook filled
with code-words for each column of that weight
matrix. Compression with PQ is accomplished via
the division of each column of W, into some m
vectors per column ¢, with m X c total vectors. All
of these vectors share the same layer-wide code-
book instead of one per column. Codebooks are
typically determined via several iterations of a clas-
sical k-means algorithm (Lloyd, 1957) with a fixed
number of k centroids such that the reconstruction
error is minimized, although this is customizable
to any clustering algorithm.

Iterative product quantization (iPQ) was pro-
posed by Stock et al. 2020 to minimize the sig-
nificant performance degradation that often occurs
in vanilla PQ in two ways: by focusing on minimiz-
ing the error of the reconstructed output of a given
layer as opposed to the reconstructed weights and
by doing so in an iterative manner from layer to
layer. Intuitively, quantizing online while training
or fine-tuning and layer-by-layer allows later layers
to adjust as they examine the quantized output of
previous layers, conditioning reconstruction error
robustness. iPQ remains a state-of-the-art quantiza-
tion method for generalizable extreme compression,
although enhancements have been proposed (Fan
et al., 2020).

2.2 Quantization Aware Training and
Quant-Noise

Expanding on these previous methods, Fan et al.
focus on their application during training, ensuring
that challenges such as null gradients during back-
ward passes for quantized weights and widespread
drift in network output are met with capable so-
lutions. Straight-through estimators (STEs) are
commonly used to deal with gradient issues for
Quantization Aware Training (QAT) (Jacob et al.,
2017; Bengio et al., 2013; Courbariaux and Bengio,
2016), but significant bias can still be introduced.
In response, Quant-Noise (Fan et al., 2020) is pro-



Compression Ratio of 11.81

Compression Ratio of 15.9

Layer Type MNLI RTE QNLI Layer Type MNLI RTE QNLI
Embedding 0.0 0.0 0.0 Embedding 0.0 0.0 0.0
q_proj 285 315 323 q_proj 121.7 1142 1221
k_proj 30,6 305 303 k_proj 1193 1190 1153
V_proj 258 28.8 275 V_proj 108.3 111.2 114.8
out_proj 286 277 264 out_proj 89.1 952 93.1

FC1 6.4 6.2 6.0 FC1 6.9 8.3 7.4
FC2 4.8 4.2 4.9 FC2 0.1 0.3 0.0

Table 1: Average number of empty clusters (lower is better) per layer type in RoOBERTa quantized with typical iPQ
with Quant-Noise and fine-tuned for MNLI, RTE, and QNLI. All results are derived from quantized models with
compression ratios of 11.81 (left) and 15.9 (right). The total number of clusters for linear layers was 3072 and for

embedding layers was 768.

posed as a methodology that quantizes only a ran-
domly selected portion of the weights of a given
layer during training and fine-tuning, mitigating the
bias introduced by STEs and still conditioning the
network for reconstruction error robustness. iPQ
with Quant-Noise during training and fine-tuning
forms the current state-of-the-art for highly gener-
alizable and extreme model compression.

3 Empty Clusters Issue in Extreme Model
Compression

3.1 Heuristics for Empty Cluster Resolution

Empty clusters are a classical problem in k-means
algorithms. Depending on the application, unre-
solved empty clusters can be numerous and may
cause considerable performance loss. Most k-
means implementations host some empty cluster
resolution heuristics to mitigate the number of de-
generate solutions (Aloise et al., 2017; Torrente
and Romo, 2020; Chun, 2021; Feiping et al., 2022).
However, there is no theoretical guarantee that all
empty clusters are resolved within reasonable run-
time and these heuristics are not always widely
applicable. Fairseq’s (Ott et al., 2019) iPQ with
Quant-Noise implementation hosts a computation-
ally efficient mixture of two popular heuristics, e-
greedy and e-random (Aloise et al., 2017). Upon
encountering an empty cluster, their mixed strat-
egy greedily chooses the most populous non-empty
cluster, bases a new centroid off of the one of the
populous cluster, and randomly perturbs both.

3.2 Increased Empty Cluster Occurrence in
Extreme Model Compression

While efficient, we find that the popular empty
cluster resolution heuristic employed by iPQ with

Quant-Noise struggles to completely resolve empty
clusters for quantized RoBERTa models fine-tuned
for tasks on the GLUE benchmark, and the issue
generally aggravates when the model is compressed
more. Table 1 demonstrates the average number
of empty clusters per type of layer produced by
iPQ with Quant-Noise on various tasks within the
GLUE benchmark for compression ratios of 11.81
and 15.9. We note that for many layer types, deeper
quantization tends to produce more empty clus-
ters, aligning with inference quality degradation for
deeper compression ratios. Clearly, empty clusters
are prevalent and need to be addressed for extreme
model compression.

3.3 Quality Degradation from Empty Clusters
in Model Quantization

Loss of prediction quality is often observed in the
presence of empty clusters. Part of this is due to
a corresponding loss in model expressivity. For a
layer in a poorly quantized model with dozens of
empty clusters, its range of outputs is artificially
limited. As a trivial example, if those dozens of
empty clusters were to be filled with just a sin-
gle weight each such that the centroids of those
clusters corresponded directly to each weight, the
expressivity of the layer necessarily improves (as-
suming non-trivial weight distributions). Given
that, the presence of empty clusters is necessarily
sub-optimal and their minimization should be a
priority, although heuristics that attempt to resolve
empty clusters need to be cautious to avoid drift-
ing from locally optimal solutions. In practice, we
find that for iPQ with Quant-Noise, a significant
loss in quality occurs when no empty cluster reso-
lution heuristic is applied for quantizing RoBERTa
fine-tuned for MNLI, producing a model with an



accuracy of 76.2% versus a model with an accu-
racy 79.0% with the mixed heuristic this baseline
natively employs.

3.4 Effects of Codebook Pruning for Empty
Clusters

It is worth noting that a natural counterpoint to the
issues with empty clusters would be to propose
pruning of the PQ codebook for those useless cen-
troids to improve a given quantized model’s com-
pression ratio. While this can be done, in practice,
we found that for most applications this would only
improve the compression ratio by less than one
percent (e.g. a compression ratio of 15.29 would
shift to 15.31 for MNLI results for iPQ with Quant-
Noise). Given that, we do not consider this moving
forward for our tests. If empty cluster pruning
would have a significant effect on the compression
ratio of a model, it is likely that the model is poorly
quantized to begin with and its performance for
that compression ratio would be compromised.

4 Proposed: Partitioning-Guided
K-Means (PG k-means)

To better address problems associated with empty
clusters and improve overall prediction quality,
we propose Partitioning-Guided k-means (PG k-
means), a novel k-means implementation loosely
inspired by binary-space partitioning applied to-
wards an empirically superior pre-assignment strat-
egy and empty cluster resolution. Our scheme fo-
cuses on encouraging an initially even distribution
of weights to clusters and guarantees zero empty
clusters for the initial state of k-means. Addition-
ally, our method seeks to resolve empty clusters
during k-means iterations by splitting up popu-
lous clusters into new, smaller sub-clusters. While
our method does not provide theoretical guaran-
tees for reducing the number of empty clusters,
in all target applications our tests showed a mini-
mized number of empty clusters when compared to
the state-of-the-art iPQ with Quant-Noise, and for
many applications all empty clusters were resolved.
Our proposed algorithm, PG k-means, consists of
three primary steps that heavily augment a typi-
cal k-means implementation: Partitioning-Guided
Pre-assignment, Partitioning-Guided Cluster Fine-
tuning, and an optional optimization called Dense
Weights Consolidation. Detailed pseudo-code for
PG k-means can be found in our supplementary
materials.
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Figure 1: [Illustration of Partitioning-Guided Pre-
assignment across two partitioning time-steps when ap-
plied to a synthetic distribution. Tentative clustering
is decided via n-dimensional, spherical partitions cen-
tered on the farthest point within the cluster of a given
tentative centroid. The radius of the spherical partition
targets a dynamically determined number of weights
that would be assigned to the new clusters.

4.1 Partitioning-Guided Pre-assignment

The performance of k-means implementations de-
pends heavily on the pre-assignment strategy defin-
ing the initial placement of centroids. While ran-
dom placement, or influenced random placement,
is somewhat popular and is employed for k-means
in iPQ with Quant-Noise, such strategies can result
in significant variation in final cluster assignments.
Moreover, such pre-assignment strategies com-
monly lead to numerous empty clusters that need
resolution. In response, we propose an alternative
that we call Partitioning-Guided Pre-assignment.

Our pre-assignment strategy focuses on guaran-
teeing that no empty clusters are present initially
for non-trivial weight distributions, without relying
on an empty cluster resolution heuristic. Here, we
use the term “weight distribution” to refer to the
distribution of the weights (i.e., data points) that
are being quantized in the n-dimensional space. In
order to accomplish this, our method constructs
initial clusters by recursively bisecting the over-
all weight distribution, guiding k-means towards
roughly even assignments of weights to each clus-
ter and minimizing initial empty clusters. Specifi-
cally, Partitioning-Guided Pre-assignment begins
by assigning a temporary centroid for the entire
set of weights in a layer, labelled as “Centroid 17
in Figure 1. An n-dimensional sphere is then con-
structed to roughly bisect the overall weight distri-
bution into two clusters. This sphere is centered on
the weight that has the furthest Euclidean distance
from the temporary centroid (e.g., top-right point in

Farthest weight to



Figure 1), intuitively the data point with the worst
representation in the temporary cluster. Upon the
temporary cluster being bisected, the temporary
centroid is removed and replaced by two new cen-
troids that are generated for the two new clusters,
corresponding to "Centroid 2" and "Centroid 3"
in the figure. This strategy is executed recursively
on the new clusters until the desired number of
centroids have been determined.

While Partitioning-Guided Pre-assignment bi-
sects temporary clusters at every time-step, we
note that the method for determining the radius
of the partitioning sphere is customizable. Our pro-
posed method focuses on enforcing a roughly even
distribution of assigned weights to clusters, but
alternatives with different goals could improve per-
formance. We leave it to future work to investigate
the potential of these alternatives.

4.2 Partitioning-Guided Cluster Fine-tuning

While a more even distribution of assignments
via the execution of Partitioning-Guided Pre-
assignment already minimizes the initial occur-
rence of empty clusters, they can still arise during
k-means iterations. As k-means settles in a local
optimum durings its iterations, the solution repre-
sented by that local optimum may call for fewer in-
tuitive, or natural, clusters than prescribed at a high
level. This produces a perceived overestimation of
the number of clusters, where k-means can repre-
sent the same locally optimum solution with fewer
centroids than are provided. However, as we have
already covered, the presence of empty clusters is
necessarily sub-optimal and their resolution is im-
portant to model performance. To enable extreme
empty cluster resolution towards that end and seek-
ing to push k-means out of these erroneous local
optima, we propose Partitioning-Guided Cluster
Fine-tuning.

At a high level, our method for empty cluster
resolution seeks out populous clusters and attempts
to split them into multiple smaller clusters. In order
to split clusters efficiently, instead of bisecting each
populous cluster until its size reaches the average
cluster size of the entire weight distribution, we
propose guiding splits by providing a target post-
split cluster size that scales dynamically across
iterations.

Intuitively, we could set the target cluster size
simply as the average cluster size of all clusters
larger than the layer-wide average. In practice,
however, we have observed that this is too aggres-

sive and can potentially split large, dense clusters
into too many sub-clusters. Nevertheless, explic-
itly avoiding splitting dense clusters is difficult,
as calculating the accurate cluster density can be
computationally expensive. We propose a more
efficient solution, detailed in Equation 1, that cau-
tiously splits extremely large clusters by scaling
the target cluster size alongside the size of the non-
empty cluster. For Equation 1, we denote n;. as
the number of weights in the non-empty cluster
being split, S,y as the aforementioned adjusted
average, and S as the scaling target cluster size.
\/Nic/Savg i the number of small clusters that a
large cluster would be split into assuming using
Savg as the target, and the square root of that scales
down the speed, preventing a large cluster from
being partitioned into too many small clusters.

Sscl = max(\/ Nic/ Savg; Savg) (1)
4.3 Dense Weights Consolidation

This optional optimization is propelled by the obser-
vation that typical k-means and PG k-means with-
out this augmentation will occasionally split up a
dense cluster of weights such that those weights are
mapped to separate, sometimes far-away, centroids.
To address this issue, we propose Dense Weights
Consolidation to ensure that a dense cluster, which
should intuitively be represented by the same cen-
troid, is preserved. To achieve that, assuming a
dense cluster can be identified, we first use a single
representative centroid to replace all the weights
in the cluster. This representative centroid is used
throughout later k-means iterations as if the cluster
just has one weight. The cluster is mapped back
to its original weights at the very end of k-means
clustering.

A critical step in this optimization is to identify
a dense cluster efficiently. We identify a dense
cluster as a set of weights that fulfill two criteria.
First, weights are identified as being potentially
within a dense cluster, if the difference between
their Euclidean distance to a randomly chosen an-
chor weight (e.g., the top-left weight in Figure 2
left) is less than a fine-tunable value . This cor-
responds to the rings of distance demonstrated in
the figure. Second, the potential dense cluster is
confirmed as a dense cluster if the distance be-
tween a random weight in that cluster to every other
weight is less than e, which corresponds to the
dense weight confirmation via a centered weight
observed in Figure 2 right. Perfectly determining
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Figure 2: Illustration of Dense Weights Consolidation
when applied to a synthetic distribution. Dense clusters
are identified via a Euclidean distance-based criteria.
Upon dense clusters being identified, they are replaced
by a centroid representing that dense cluster and treated
as a normal, singular weight for later clustering steps.

sets of dense clusters is not feasible and is a subset
of the well-studied NP-hard MIS problem. We pro-
pose our own heuristic to tackle this problem that
performs well in our experiments, striking a bal-
ance between computational efficiency and dense
cluster identification quality.

The first step of our implementation chooses a
random weight in our weight distribution as a focal
point to construct a Euclidean distance map to every
other weight. That distance map is subsequently
sorted and iterated through to search for potential
dense clusters, stopping whenever the difference
between the distances of a set of weights fit our
first established criteria. Upon establishing a set
of weights that could form a dense cluster, that
set is iterated through with an identified candidate
weight W,,,,q. All other weights not fitting the first
criteria are independent weights (i.e., not part of a
dense cluster). For each potential dense cluster, the
weights that fulfill the second identified criteria are
paired with W,,,4 and consolidated into a dense
cluster and removed from the set of potential dense
clusters. The rest of the weights in these potential
dense clusters are considered independent weights
and are not considered for other possible dense
cluster sets. This process is repeated across the
original distance map until all weights have been
consolidated or classified as independent weights.

While ¢ is a fine-tunable parameter, we found
in our experiments that it was difficult to estimate
good values of ¢, and we suppose that ideal values
for this parameter are likely layer-specific. Overes-
timation of ¢, in particular, can cause degradation in
quantization quality. In response, we propose scal-
ing € dynamically to avoid over-identifying dense

clusters. Equation 2 describes our update criteria,
with n, corresponding to the number of centroids
for the layer being quantized, n.,, corresponding to
the number of weights after consolidation, which
is the sum of the number of dense clusters and in-
dependent weights, cyg corresponding to a scaling
factor that reduces €, ¢, corresponding to the fac-
tor of multiple of n. that serve as a threshold for the
minimum number of consolidated weights 71.y,. Csq
and ¢, values of 0.8 and 2 respectively worked
well in practice, indicating that if the number of
weights after consolidation is less than twice the
number of centroids, ¢ is scaled by 0.8.

€ X Cgd if
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)
5 Results

For our set of experiments, we employ Fairseq (Ott
et al., 2019), a language and sequence modeling
toolkit written in PyTorch that is fast, easily ex-
tendable, and hosts a Quant-Noise implementation.
We make use of the provided Quant-Noise frame-
work and Fairseq’s iPQ implementation to apply
our novel scheme to RoBERTa for several tasks
within the GLUE benchmark. All cluster assign-
ments were finished within 15 iterations of both
respective k-means algorithms for each layer. Dur-
ing each k-means iteration, up to 100 iterations
of typical iPQ with Quant-Noise’s empty cluster
resolution were allowed while up to 15 iterations
of Partitioning-Guided Cluster Fine-tuning were
allowed. Fine-tuning, quantization, and evalua-
tion were performed on four NVIDIA Tesla V100s
across all models.

5.1 PG k-means for RoBERTa on GLUE
Tasks

All RoBERTa models were initially pre-trained
checkpoints provided by Fairseq without quantiza-
tion. These checkpoints were fine-tuned for MNLI,
RTE, and QNLI tasks with Quant-Noise, using rec-
ommended noise factors between 0.05 and 0.2 and
block sizes of 8. These baseline checkpoints were
subsequently quantized either with typical iPQ or
with our proposed method. Out of the available
quantizable layers, we quantized the input embed-
ding layer, all input and output projection layers



RoBERTa base

Compr. MNLI RTE QNLI
Original Model
1.00 878 76.7 92.1
iPQ with Quant-Noise Compression Ratio Size (MB)

11.81 83.1 58.8 903 1.00 477.94
14.05 81.8 57.8 885 11.81 40.47
15.29 80.7 55.6 87.8 14.05 34.01
15.90 79.0 556 774 15.29 31.26
PG k-means 15.90 30.05

11.81 839 70.8 90.5

14.05 833 59.6 88.9

15.29 82.0 56.7 879

15.90 814 563 81.6

Table 2: Complete validation set results of quantization implementations for ROBERTa fine-tuned for MNLI, RTE,
and QNLI. The leftmost column contains compression ratios and the right columns contains accuracy scores in
percentages. Best accuracy scores for a given compression ratio are bolded. The right table provides mappings
between compression ratios to model size as a quick reference. All results were generated and are not reused from
literature.

Compr. iPQ with Quant-Noise Baseline PG k-means Full PG k-means
11.81 83.1 83.5 83.9
14.05 81.8 82.6 83.3
15.29 80.7 81.7 82.0
15.90 79.0 80.6 814

Table 3: Results for ablation study to demonstrate the isolated improvements of applying our optional Dense Weights
Consolidation step to PG k-means to RoOBERTa fine-tuned for MNLI. Best accuracy scores for a given compression

ratio are bolded.

related to encoder self-attention, and all fully con-
nected layers, totaling to 73 layers overall. Exact
quantization parameters can be found in our sup-
plementary materials.

The results highlighted in Table 2 demonstrate
a clear advantage for PG k-means compared to
1iPQ with Quant-Noise for MNLLI, a task that was
explored and used to validate the viability of iPQ
with Quant-Noise. Concerning MNLI, our method
demonstrates up to a 2.4% inference quality in-
crease and consistently improves upon iPQ with
Quant-Noise by at least 0.8% in the worst case.
The difference between iPQ with Quant-Noise and
our method grows for other tasks, with one exam-
ple for RTE exhibiting a 12% accuracy increase
from its iPQ with Quant-Noise baseline and QNLI
demonstrating up to a 4.2% accuracy increase.
Clearly, PG k-means consistently beats typical iPQ
with Quant-Noise by a notable margin for several
tasks in the GLUE benchmark when applied to
RoBERTa4, establishing its viability for extreme

model quantization.

5.2 Ablation Study of PG k-means on MNLI

As PG k-means is composed of an optional opti-
mization in the form of Dense Weights Consol-
idation, it is critical to isolate its effect on our
performance. To do so, we provide an ablation
study for these methods applied towards quantizing
RoBERTa fine-tuned for MNLI in Table 3. While
the Baseline PG k-means still exhibits consistent
improvements on typical iPQ with Quant-Noise,
the addition of Dense Weights Consolidation for
superior initialization (Full PG k-means) notice-
ably improves on our proposed baseline, nearly
doubling the accuracy increase from comparable
compression configurations for IPQ with Quant-
noise.

5.3 Empty Cluster Resolution via PG k-means

To demonstrate the capability of our proposed
method in terms of resolving empty clusters, we
gather similar statistics to our brief analysis of typ-



Compression Ratio

iPQ with Quant-Noise

PG k-means

MNLI RTE OQNLI MNLI RTE OQNLI
11.81 945 945 932 4.1 2.7 0.0
14.05 795 781  78.1 2.7 4.1 0.0
15.29 822 7677 795 0.0 1.4 2.7
15.90 76.7 795  78.1 0.0 2.7 0.0

Table 4: Percentages of layers with empty clusters (lower is better) for ROBERTa quantized with PG k-means and
fine-tuned for MNLI, RTE, and QNLI. Compression ratios are on the left and proportions of layers with empty
clusters to total layers quantized are on the right. The total number of quantized layers for ROBERTa, including

sub-layers, total to 73.

Compression Ratio of 11.81

Compression Ratio of 15.9

Layer Type MNLI RTE QNLI Layer Type MNLI RTE QNLI
Embedding 0.0 0.0 0.0 Embedding 0.0 0.0 0.0
q_proj 0.0 0.0 0.0 q_proj 0.0 0.0 0.0
k_proj 0.7 0.2 0.0 k_proj 0.0 0.0 0.0
V_proj 0.0 0.0 0.0 V_proj 0.0 0.0 0.0
out_proj 0.0 0.0 0.0 out_proj 0.0 0.3 0.0
FCl 0.3 0.2 0.0 FCl 0.0 0.0 0.0
FC2 0.0 0.0 0.0 FC2 0.0 0.1 0.0

Table 5: Average number of empty clusters (lower is better) per layer type in ROBERTa quantized with PG k-means
and fine-tuned for MNLI, RTE, and QNLI. All results are derived from quantized models with compression ratios
of 11.81 (left) and 15.9 (right). The total number of clusters for linear layers was 3072 and for embedding layers
was 768. Direct comparisons can be made to iPQ with Quant-Noise results in Table 1.

ical iPQ with Quant-Noise (Section 3, Table 1) and
compile them in Table 4 and Table 5. Across all
relevant metrics, empty clusters are extremely re-
duced compared to typical iPQ with Quant-Noise,
in the worst case boasting around a 20x reduction
in the proportion of layers with empty clusters and
around a 100x reduction for the average number of
empty clusters in the most problematic layers.

5.4 Efficiency of Empty Cluster Resolution

Comparing typical iPQ with Quant-Noise’s mixed
heuristic and Partitioning-Guided Cluster Fine-
tuning, we find that in the best case for iPQ with
Quant-Noise requires 40 or more iterations of their
heuristic to completely resolve empty clusters. In
contrast, Partitioning-Guided Cluster Fine-tuning
requires 5 to 10 iterations on average for such cases,
but its iterations are more computationally expen-
sive. To characterize efficiency, we analyze average
run-times for both methods in our evaluation envi-
ronment and find that in spite of more expensive
iterations, Partitioning-Guided Cluster Fine-tuning
exhibits around a 3.8x speedup at worst for empty
cluster resolution while on average requiring 8x
fewer iterations.

6 Conclusion

In this paper, we presented partitioning-guided k-
means as a competitive quantization methodology
targeting extreme model compression. We com-
pared this methodology to iPQ with Quant-Noise,
the state-of-the-art scheme for quantizaion aware
training and demonstrated consistently superior re-
sults for several tasks on the GLUE benchmark,
producing accuracy increases of up to 2.4% for
MNLI, up to 12% for RTE, and consistent increases
for QNLI. Given these results, Partitioning-Guided
k-means has clearly cemented itself as a strong
competitor to other options for extreme model
compression. Future work will involve expand-
ing the number of applications for which we com-
pare PG k-means to its competitors, gathering ad-
ditional data to validate this approach for causal
language modeling (e.g. GPT-based approaches)
and encoder-decoder architectures in other NLP
tasks.

7 Limitations

While our approach is applied only to and intended
for language modeling tasks in this paper, we note
that it can be applied generally to any architec-



ture and target application while likely remaining
effective. No assumptions were made that are bi-
directional language modeling specific and that
would affect PG k-means’ generalizability. We
leave the validation of this approach’s viability for
extreme compression outside of NLP tasks to later
work.
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A Appendix

A.1 Fine-tuning and Quantization Details

All models were fine-tuned with iPQ with Quant-
Noise enabled with recommended settings as pro-
vided by (Fan et al., 2020) within Fairseq’s frame-
work, keeping in line with RoBERTa’s character-
istics as a 12-layer model with an embedding size
of 768 and an FFN hidden size of 3072. These
models were fine-tuned with Adam with weight de-
cay as an optimizer, defining 31 and 32 as 0.9 and
0.98, respectively, with an € of 1e-6. A polynomial
decay-based learning rate was applied. Dropouts
were specified by LayerDrop and set to a value of
0.2. Precision for these models, by default, was
16-bit floating point. All models were evaluated via
the validation split for corpora MNLI, RTE, and
QNLI. All models were fine-tuned, quantized, and
evaluated on four Tesla V100 SXM3s.

Compression settings were kept consistent
across ratios. 768 embedding layer centroids were
allocated and 3072 linear layer centroids were al-
located. The quantization block sizes for product
quantization of each compression ratio are shown
in Table 6.

A.2 GPU Hours and Required Computation

This work required heavy experimentation and
plenty of compute during inference. In total, we es-
timate approximately 48 GPU days were required
for MNLI-related efforts in terms of final data col-
lection, 30 GPU days were required for QNLI-
related data collection, and 12 GPU days were re-
quired for RTE-related data collection. Regarding
GPU hours dedicated to experimentation, we esti-
mate that around 30 GPU days were required for
experimentation. Such values are normalized for a
single GPU (i.e. fine-tuning and quantization was
executed via 4 GPUs, we multiply run-time by 4x
in this case).

A.3 Anecdotal Notes Related to Other Target
Applications and Efficiency

Simultaneous speech-to-text translation (SimulST)
(Ma et al., 2020) was briefly explored as an applica-
tion to assess the viability of iPQ with Quant-Noise.
It was quickly observed that degenerate solutions
were very common, with nearly 70% of total clus-
ters being empty in the absolute worst case and
around 48.8% in more typical cases for iPQ with
Quant-Noise. We leave it to future work to explore
improvements in this area.
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Regarding the efficiency of our method aside
from the empty cluster resolution results that were
provided in the main body of this paper, there is
no additional overhead in terms of test-time effi-
ciency. This is because our method is identical
to iPQ with Quant-Noise during inference. Addi-
tionally, basic k-means clustering behavior beyond
pre-assignment strategies and empty cluster reso-
lution is likewise identical, resulting in no changes
to efficiency from that perspective.

A.4 Relevant Licensing Information

Fairseq (Ott et al., 2019) and any pre-trained mod-
els made available through it are MIT-licensed.

A.5 Other Specialized Quantization
Methodologies

We acknowledge that for specific applications,
many quantization methodologies exist that have
been specially customized (e.g. ScaNN for vector
similarity search (Guo et al., 2020), VG-GNN for
graphical neural network applications (Ding et al.,
2021)), and it is likely that such methodologies
would perform extremely well for non-language
modeling tasks. Validating our method against all
of them, or even many of them, is largely an ex-
ercise in futility, especially because most of them
have not been applied in a QAT-based manner be-
fore. We leave it to future work to continue to
explore the application of PG k-means beyond the
language modeling tasks in this paper.

A.6 Additional Visual Aids

A handful of additional visual aids were con-
structed to aid readers, but were removed due to a
lack of space and redundancy with illustrations al-
ready provided within this paper. We provide them
below to enable readers to engage further with this
material, should they choose to do so. Figure 3 is
an expansion upon what is demonstrated in Figure
1, showcasing some additional steps. Figure 4 pro-
vides an illustration of Partitioning Cluster Fine-
tuning that we felt was unnecessary in the main
body of this paper. Figure 5 provides an expansion
upon Figure 2, showing an alternate view of its
functionality and completing the demonstration of
the replacement of dense clusters. As shown in Fig-
ure 6, compared with the baseline PG k-means
in Figure 4, applying the optional Partitioning-
Guided Cluster Fine-tuning step to PG k-means
tends to generate the centroid distribution more
faithfully to the weight distribution.



Compression Ratio Block Sizes for Product Quantization

Compr. Linear.fc Linearattn Linearemb Embedding.emb
11.81 4 4 4 16
14.05 8 4 4 8
15.29 8 4 4 16
15.90 8 16 4 8

Table 6: Quantization block sizes for four compression ratios.

A.7 Pseudocode

The pseudocode for the procedures and sub-
procedures of the Partitioning-Guided Pre-
assignment, Partitioning-Guided Cluster Fine-
tuning, and Dense Weights Consolidation algo-
rithms are defined below.

Let us denote W € R™*? as the weight ma-
trix before quantizing, where n is the number of
weights, and b is the block size of the product quan-
tization. Alternative notation is provided in our
pseudocode.
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Figure 3: Illustration of Partitioning-Guided Pre-assignment across two partitioning time-steps when applied to a
synthetic distribution. Tentative clustering is decided via n-dimensional, spherical partitions centered on the furthest
point within the cluster of a given tentative centroid. The radius of the spherical partition targets a dynamically
determined number of weights that would be assigned to the new clusters.
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Figure 4: Illustration of Partitioning-Guided Cluster Fine-tuning during empty cluster resolution. For each k-means
iteration, to resolve empty clusters after the k-means assignment step, Partitioning-Guided Cluster Fine-tuning
splits large clusters into multiple smaller clusters.
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A A A A
A A A A A
A A A A Ao A A
A » A A . A
A A A A
A
o W
A A
A A
A A 4
@ A A
A A } .
A A A A Assigned centroids of the nearest
A A A { weights with the same color J
A
A
A

Figure 6: Illustration of complete PG k-means method during k-means iterations. With the optional Dense Weights
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Algorithm 1 Partitioning-Guided Pre-assignment

Input: Weight Matrix W, Centoid Matrix C, Average Cluster Size for each Centroid S, 4, If Reverse
Last Centroid B,;
Output: Centoid Matrix C

1:
2
3
4
S:
6
7
8
9

10:
11:
12:
13:

procedure CENTROIDPARTITIONING(W, C, Suvg, Bri)

B,; decide if generate the last centroid or not

return when achieved the last index of C' or W is empty

cy < the centroid of (W)

Ny — the number of weights in (W)

C < ¢y when ny, < Sgyg + 1, the index of C' add 1, then return

M. <+ the sorted Euclidean distance map from W to C

W} < the weight with the furthest distance to C'in M,

M < the sorted Euclidean distance map from W to W

ny, < the closest integral multiple of S, 4 to the half number of weights

CENTROIDPARTITIONING(the first n, weights in My, C, Squg, Byy)

CENTROIDPARTITIONING(the rest weights in My, C, Sqvg, Bri)
end procedure

Algorithm 2 Partitioning-Guided Cluster Fine-tuning

Input: Weight Matrix W, Centoid Matrix C, Average Cluster Size for each Centroid S
Output: Centoid Matrix C

1:
2
3
4
S:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

18:

19:
20:
21:
22:
23:
24:

procedure CLUSTERFINETUNING(W, C, S.)
Ce < centroids with empty clusters in C' from the assignment
while C, is not empty do
break early when the number of empty clusters stops decreasing in a limited number
Crq + C, > (', denotes centroids needed to be reassigned
M, < the sorted centroid map based on the cluster size
for centroid c in M, do
if cluser_size(c) < S, then break > Get the number of large clusters
end if
Cirq.append(c)
Ny — N+ weight_num(c)
end for
Savg — Max(ny/ num(C,,) , 1) > Average cluster size for reassigned weights
for centroid ¢;.. of large cluster in M. do
W, < the weights for ¢, in the assighment
nye < weight_num(c;.)
Ssel < Max(nic/\/Nic/Savg, Savg) > Ssci denotes scaling sub-cluster size for splitting
the large cluster
CENTROIDPARTITIONING(W,., C, S, True) > Reserve the last centroid ¢, for the
later calculation
end for
Clast < the centroid of all rest weights needed to be reassigned
C'append(clast)
Recalculate empty clusters C, by updating the assignment.
end while
end procedure
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Algorithm 3 Dense Weights Consolidation
Input: Original Weight Matrix W, Finetunable Value €, Centroid Number n,
Output: Consolidated Weight Matrix W,

1: while True do
2: potential dense clusters Cy,4, independent weights /T <— IDENTIFYPOTENTIALDENSECLUS-
TER(e, W)

3: GENERATEDENSECLUSTERS(¢, 0, W, Cpq, Caq, IW)
4: New < num(determined dense clusters Cyy) + num(/ W)
5: if ney < ne X e then
6: E4— € X cgg
7: continue
8: else
9: W..append(centroid for each dense cluster in Cy)
10: W..append(J W)
11: end if

12: end while
13: return W,

Algorithm 4 Recursively Generate Dense Clusters

Input: Finetunable Value ¢, Anchor Weight Index I,, Weight Matrix W, Potential Dense Clusters Cpg,
Determined Dense Clusters C'yq, Independent Weights IV

Output: Determined Dense Clusters Cz4, Independent Weights W

1: procedure GENERATEDENSECLUSTERS(e, 1o, W, Cpq, Caq, IW)

2 > A dense cluster is determined by if the anchor weight is in the first potential dense cluster
3 if then/, in Cp,[0]

4: Cqa-append(Cyg[0)), skip the first potential dense cluster in the following loop

5: end if

6 for ¢, in C)q do

7 Csubpd> IWsyp < IDENTIFYPOTENTIALDENSECLUSTER(e, weights in ¢,)

8

9

ITW .append({ Wgyp)

if Cgyppq 1s not empty then
10 GENERATEDENSECLUSTERS(¢, ¢, (0], W, Csyppd, Caa, IW)
11: end if
12: end for

13: end procedure
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Algorithm 5 Identify Potential Dense Clusters
Input: Finetunable Value e, Weight Matrix W
Output: Potential Dense Clusters C)4, Independent Weights 1T/

1: function IDENTIFYPOTENTIALDENSECLUSTER(e, W)

2 M,, < the sorted Euclidean distance map from W to W|0]

3 50

4 for index ¢ of distance in M, do

5: if M [i] — My[s] > ¢ then

6: ifi —s > 1 then

7 Chpq.append(My, s : i]) > Append weights in M,, between indices s and i
8 else

9: IW .append(M,,[s]) > Append the weight in M,, on index s
10: end if
11: S 1
12: end if
13: end for

14: return Cpg, IW
15: end function

16



	Introduction
	Background
	Popular Quantization Methodologies
	Quantization Aware Training and Quant-Noise

	Empty Clusters Issue in Extreme Model Compression
	Heuristics for Empty Cluster Resolution
	Increased Empty Cluster Occurrence in Extreme Model Compression
	Quality Degradation from Empty Clusters in Model Quantization
	Effects of Codebook Pruning for Empty Clusters

	Proposed: Partitioning-Guided K-Means (PG k-means)
	Partitioning-Guided Pre-assignment
	Partitioning-Guided Cluster Fine-tuning
	Dense Weights Consolidation

	Results
	PG k-means for RoBERTa on GLUE Tasks
	Ablation Study of PG k-means on MNLI
	Empty Cluster Resolution via PG k-means
	Efficiency of Empty Cluster Resolution

	Conclusion
	Limitations
	Appendix
	Fine-tuning and Quantization Details
	GPU Hours and Required Computation
	Anecdotal Notes Related to Other Target Applications and Efficiency
	Relevant Licensing Information
	Other Specialized Quantization Methodologies
	Additional Visual Aids
	Pseudocode


