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Abstract

Offline model-based optimization (MBO) aims to maximize a black-box objective function
using only an offline dataset of designs and scores. These tasks span various domains, such
as robotics, material design, and protein and molecular engineering. A common approach
involves training a surrogate model using existing designs and their corresponding scores, and
then generating new designs through gradient-based updates with respect to the surrogate
model. This method suffers from the out-of-distribution issue, where the surrogate model may
erroneously predict high scores for unseen designs. To address this challenge, we introduce
a novel method, Design Editing for Offline Model-based Optimization (DEMO), which
leverages a diffusion prior to calibrate overly optimized designs. DEMO first generates pseudo
design candidates by performing gradient ascent with respect to a surrogate model. While
these pseudo design candidates contain information beyond the offline dataset, they might be
invalid or have erroneously high predicted scores. Therefore, to address this challenge while
utilizing the information provided by pseudo design candidates, we propose an editing process
to refine these pseudo design candidates. We introduce noise to the pseudo design candidates
and subsequently denoise them with a diffusion prior trained on the offline dataset, ensuring
they align with the distribution of valid designs. Empirical evaluations on seven offline MBO
tasks show that, with properly tuned hyperparameters, DEMO’s score is competitive with
the best previously reported scores in the literature. The source code is provided here.

∗Equal contribution with random order.
†Corresponding author.
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Figure 1: Illustration of DEMO: A diffusion model, acting as the prior distribution, is trained on the
offline dataset. Pseudo design candidates are acquired by performing gradient ascent with respect to a
learned surrogate model. New designs are generated by modifying pseudo design candidates toward the valid
distribution captured by the diffusion prior.

1 Introduction

Designing objects with specific desired traits is a primary goal in many fields, spanning areas such as robotics,
material design, and protein and molecular engineering (Trabucco et al., 2022; Liao et al., 2019; Sarkisyan
et al., 2016; Angermüller et al., 2020; Hamidieh, 2018). Conventionally, this goal is pursued by iteratively
testing a black-box objective function that maps a design to its property score. However, this process can be
costly, time-consuming, or even hazardous (Sarkisyan et al., 2016; Angermüller et al., 2020; Hamidieh, 2018;
Barrera et al., 2016; Sample et al., 2019). Thus, it is more feasible to utilize an existing offline dataset of
designs and their scores to find optimal solutions without further real-world testing (Trabucco et al., 2022).
This approach is known as offline model-based optimization (MBO), where the objective is to identify a
design that optimizes the black-box function using only the offline dataset.

Gradient ascent is commonly used to address the offline MBO challenge. For instance, as shown in Figure 1 (a),
an offline dataset might consist of five pairs of superconductor materials and their corresponding critical
temperature, denoted as p1,2,3,4,5. A deep neural network (DNN) model, referred as the surrogate model
and represented by fθ(·), is trained to approximate the unknown objective function based on this dataset.
Gradient ascent is then applied to existing designs with respect to the surrogate model fθ(·) for generating a
new design that achieves a higher score. This approach, however, encounters an out-of-distribution (OOD)
problem, where the surrogate struggles to accurately predict data outside the training distribution. This
mismatch between the surrogate and the true objective function, as depicted in Figure 1 (a), can result in
overly optimistic scores for the new designs generated by gradient ascent (Yu et al., 2021).

To tackle this OOD issue, recent research has proposed the use of regularization techniques, either applied
directly to the surrogate model (Yu et al., 2021; Trabucco et al., 2021; Fu & Levine, 2021; Qi et al., 2022a;
Yuan et al., 2023; Chen et al., 2023a) or to the design under consideration (Chen et al., 2022; 2023b). These
strategies improve the surrogate’s robustness and generalization. However, calibrating design candidates
generated by gradient ascent remains unexplored. Instead of regularizing the surrogate models, we could
tailor these design candidates toward a prior distribution and avoid over optimization.

In this work, we introduce an innovative and effective approach, Design Editing for Offline Model-based
Optimization (DEMO) to fill this gap. Initially, a surrogate model, represented as fθ(·), is trained on the
offline dataset D, and gradient ascent is applied to existing designs with respect to the surrogate model.
This process generates several designs which may have wrongly high predicted scores but low ground-truth
scores due to the inaccuracies of the surrogate model, and we denote them as pseudo design candidates.
As illustrated in Figure 1 (a), the surrogate model fits the offline data p1 to p5, generating pseudo design
candidates pa and pb through gradient ascent. While these pseudo design candidates might be overly optimized,
they contain information beyond the offline dataset. We then propose the second phase to calibrate these
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pseudo design candidates and align them with the in-distribution area. Specifically, a conditional diffusion
model, denoted sϕ(·), is trained on all existing designs along their corresponding scores within the offline
dataset to characterize a manifold of valid designs, as all existing designs are valid. After that, we edit the
pseudo design candidates by introducing random noise to them and employing the diffusion prior to remove
the noise. Comparing to directly leveraging a generative model to craft new design candidates from pure
noise, our method benefits from the pseudo design candidates, which incorporate more information than
the generative model merely trained on the offline dataset. As illustrated in Figure 1 (b), after injecting
noise, the distribution of pseudo design candidates (represented by the orange contour) has more overlap
with the valid design distribution (represented by the purple contour). By progressively removing the noise,
we gradually project these pseudo design candidates to the manifold of valid designs, as demonstrated in
Figure 1 (b). A central assumption underlying our approach is that candidate designs located near the offline
data manifold are less prone to being “spurious optima” of the surrogate model. In regions far from the
observed data, the model must extrapolate, which often leads to unreliable predictions and artificially inflated
performance estimates. Essentially, the model may identify a high-scoring design that, in reality, is merely an
artifact of overfitting or model bias. By contrast, when candidate points remain close to the data manifold,
they are supported by the training data and the model’s predictions in these regions are more trustworthy.
Therefore, by guiding our search toward these well-supported regions, we reduce the risk of selecting designs
that appear optimal only due to the model’s extrapolative errors, and instead focus on candidates that are
both high-performing and realistically feasible. In essence, DEMO produces new designs which are first wildly
optimized and then calibrated under the constraints captured by the diffusion prior. We empirically validate
DEMO across different offline MBO tasks.

In summary, this paper makes three principal contributions:

• We introduce a novel method, Design Editing for Offline Model-based Optimization (DEMO).
DEMO first performs gradient ascent with respect to a learned surrogate model and share the
information to the second phase of DEMO through pseudo design candidates.

• The second phase trains a conditional diffusion model on the offline dataset as the in-distribution
prior and calibrate the pseudo design candidates with this diffusion prior to generate final designs.

• Experiments on the design-bench dataset show that, with properly tuned hyperparamters, DEMO’s
score is competitive with the best previously reported scores in the literature.

2 Preliminary

2.1 Offline Model-based Optimization

Offline model-based optimization (MBO) addresses a range of optimization challenges with the aim of
maximizing a black-box objective function based on an offline dataset. Mathematically, we define the valid
design space as X = Rd, with d representing the dimension of the design. Offline MBO is formulated as:

x∗ = arg max
x∈X

f(x), (1)

where f(·) is the black-box objective function, and x ∈ X is a potential design. For the optimization
process, we utilize an offline dataset D = {(xi, yi)}N

i=1, with xi representing an existing design, such as a
superconductor material, and yi representing the associated property score, such as the critical temperature.
Usually, this optimization process outputs K candidates for optimal designs, where K is a small budget to
test the black-box objective function. The offline MBO problem also finds applications in other areas, like
robot design, as well as protein and molecule engineering.

A prevalent approach to solving offline MBO involves approximating the unknown objective function f(·)
with a surrogate function, typically a deep neural network (DNN) fθ(·), trained on the offline dataset:

θ∗ = arg min
θ

1
N

N∑
i=1

(fθ(xi)− yi)2
. (2)
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Once the surrogate is trained, design optimization is performed using gradient ascent:

xt = xt−1 + η∇xfθ(x)
∣∣∣
x=xt−1

, for t ∈ [1, T ]. (3)

Here, T represents the number of steps, and η denotes the learning rate. The optimal design x∗ is identified
as xT . This gradient ascent method faces an out-of-distribution (OOD) issue, where the surrogate may fail
to accurately predict the scores of unseen designs, resulting in suboptimal solutions.

2.2 Diffusion Models

Diffusion models stand out in the family of generative models due to their unique approach involving forward
diffusion and backward denoising processes. The essence of diffusion models is to gradually add noise to a
sample, followed by training a neural network to reverse this noise addition, thus recovering the original
data distribution. In this work, we follow the formulation of diffusion models with continuous time (Song
et al., 2021b; Huang et al., 2021). Here, x(t) is a random variable denoting the state of a data point at time
t ∈ [0, T ]. The diffusion process is defined by a stochastic differential equation (SDE):

dx = f(x, t)dt + g(t)dw, (4)

where f(·, t) is the drift coefficient, g(·) is the diffusion coefficient, and w is a standard Wiener process. The
backward denoising process is given by the reverse time SDE:

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt + g(t) dw̄, (5)

where dt represents a negative infinitesimal step in time, and w̄ is a reverse time Wiener process. The gradient
of the log probability, ∇x log pt(x), is approximated by a neural network sϕ(x(t), t) with score-matching
objectives (Vincent, 2011; Song & Ermon, 2019).

Beyond basic diffusion models, our focus is to train a conditional diffusion model that learns the conditional
probability distribution of designs based on their associated property scores. To incorporate conditions
to diffusion models, Ho & Salimans (2022) achieve it by dividing the score function into a combination of
conditional and unconditional components, known as classifier-free diffusion models. Specifically, a single
neural network, sϕ(xt, t, y), is trained to handle both components by utilizing y as the condition or leaving it
empty for unconditional functions. Formally, we can write this combination as follows:

sϕ(xt, t, y) = (1 + ω)sϕ(xt, t, y)− ωsϕ(xt, t), (6)

where ω is a parameter that adjusts the influence of the conditions. A higher value of ω ensures that the
generation process adheres more closely to the specified conditions, while a lower ω value allows greater
flexibility in the outputs.

3 Related Works

3.1 Offline Model-based Optimization

Recent offline model-based optimization (MBO) techniques broadly fall into two categories: (i) those that
employ gradient-based optimizations and (ii) those that create new designs via generative models. Gradient-
based methods directly optimize the surrogate model’s predictions using gradient-based search. However,
straightforward gradient ascent can lead to candidate designs that are far from the observed data, where
the surrogate is prone to unreliable extrapolations. Therefore, to address this problem several works employ
regularization techniques that enhance either the surrogate model (Yu et al., 2021; Trabucco et al., 2021; Fu
& Levine, 2021; Qi et al., 2022a) or the design itself (Chen et al., 2023b; 2022), thus improving the model’s
robustness and generalization capacity. BOSS (Dao et al., 2024b) introduces a sensitivity-informed regularizer
to mitigate the overfitting and narrow prediction margins of offline surrogates. IGNITE (Dao et al., 2024a)
presents a model-agnostic sharpness regularization method that theoretically reduces the generalization
error of offline surrogate models. aSCR (Yao et al., 2024) constrains the optimization trajectory to regions
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where the surrogate is reliable by dynamically adjusting regularization strength. Some approaches involve
synthesizing new data with pseudo labels (Yuan et al., 2023; Chen et al., 2023a), where they aim to identify
useful information from these synthetic data to correct the surrogate model’s inaccuracies. Other approaches
like PGS (Chemingui et al., 2024) employs policy-guided gradient search approach that explicitly learns the
best policy for a given surrogate model. Match-OPT (Hoang et al., 2024) provides a theoretical framework
for offline black-box optimization by quantifying the performance gap due to surrogate inaccuracies and
introduces a black-box gradient matching algorithm to improve surrogate quality. The second category
encompasses methods that learn to replicate the conditional distribution of existing designs and their
scores, including approaches such as MIN (Kumar & Levine, 2020), CbAS (Brookes et al., 2019), Auto
CbAS (Fannjiang & Listgarten, 2020), DDOM (Krishnamoorthy et al., 2023), and BONET (Mashkaria et al.,
2023). ExPT (Nguyen et al., 2023) trains a foundation model for few-shot experimental design that leverages
unsupervised pretraining and in-context learning on unlabeled data to efficiently generate candidate optima
with minimal labeled examples. A concurrent work (Dao et al., 2025) unsurprisingly shares the core idea of
leveraging diffusion processes to bridge the gap between low-and-high performing designs. This work explicitly
trains a generalized diffusion process to map directly between the distributions of low- and high-value designs.
In contrast, we leverage a diffusion prior in a two-phase process by first generating pseudo design candidates
via surrogate-based gradient ascent, and then employing a diffusion model to edit these candidates so that
they remain on the valid design manifold. Our decoupled two optimization phases and modularity provide
enhanced stability and flexibility. These methods are known for their ability to generate designs by sampling
from learned distributions conditioned on higher target scores.

In DEMO, a candidate design is first generated via gradient-based optimization, ensuring that the candidate
is high-scoring according to the surrogate model. Recognizing that direct gradient-based updates can push
the candidate into regions where the model’s predictions are unreliable, we then employ a diffusion model
to “edit” the design, explicitly moving it closer to the data manifold. This two-stage process decouples
the search for high performance from the regularization required to maintain realism. While traditional
gradient-based methods embed regularization within the optimization loop and generative methods rely solely
on learned distributions, DEMO leverages the flexibility of gradient-based search alongside the robustness
of diffusion-based editing. This approach effectively reduces the risk of spurious optima-candidates that
appear optimal due to extrapolative errors, by ensuring that final designs remain in regions well-supported
by data. In summary, while existing offline MBO methods typically focus on either direct gradient-based
optimization with embedded regularization or on generative modeling of the design space, DEMO’s hybrid
approach offers a novel balance between performance and realism, thereby addressing key challenges inherent
in both paradigms.

3.2 Diffusion-Based Editing

Diffusion models have shown remarkable success in various generation tasks across multiple modalities,
especially for their ability to control the generation process based on given conditions. For instance, recent
advancements have utilized diffusion models for zero-shot, test-time editing in the domains of text-based
image and video generation. SDEdit (Meng et al., 2022) employs an editing strategy to balance realism
and faithfulness in image generation. To improve the reconstruction quality, methodologies such as DDIM
Inversion (Song et al., 2021a), Null-text Inversion (Mokady et al., 2023) and Negative-prompt Inversion (Miyake
et al., 2023) concentrate on deterministic mappings from source latents to initial noise, conditioned on source
text. Building on these, CycleDiffusion (Wu & la Torre, 2023) and Direct Inversion (Ju et al., 2023) leverage
source latents from each inversion step and further improve the faithfulness of the target image to the source
image. Following the image editing technique, several video editing methods (Qi et al., 2023; Ceylan et al.,
2023; Yang et al., 2023; Geyer et al., 2024; Cong et al., 2024; Zhang et al., 2024) adopt image diffusion models
and enforce temporal consistency across frames, offering practical and efficient solutions for video editing.
Inspired by the success of these editing techniques in the field of computer vision, DEMO distinguishes itself
in the context of offline MBO by first leveraging the surrogate model to craft pseudo design candidates and
then refining them toward the in-distribution area.
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4 Methodology

In this section, we elaborate on the details of our proposed Design Editing for Offline Model-based Optimization
(DEMO). Typically, the out-of-distribution (OOD) issue in offline MBO arises due to incomplete observation
of the entire distribution of designs and scores. During gradient ascent optimization, the pseudo design
candidates are optimized with respect to the surrogate model without constraints, which leads them into the
OOD region and causes overestimation of the scores. To address this, we introduce a design editing process
to calibrate the pseudo design candidates toward the in-distribution area, which mitigates the OOD problem
through the use of a learned diffusion prior. Algorithm 1 illustrates the complete process of DEMO.

4.1 Acquirement of Pseudo Design Candidates

Initially, a deep neural network (DNN), denoted as fθ(·) with parameters θ, is trained on the offline dataset
D = {(xi, yi)}N

i=1, where xi and yi denote a design and its associated score, respectively. The parameters θ
are optimized as shown in Eq. (2). The solution fθ∗(·) obtained from Eq. (2) serves as a surrogate for the
unknown black-box objective function f(·) in Eq. (1). New data are then generated by performing gradient
ascent on the existing designs with respect to the learned surrogate model fθ∗(·). The initial point x0 is an
existing design selected from D. We update it as shown in Eq. (3). The design xT acquired at step T is an
overly optimized design, as no constraints are applied during the optimization process. By iteratively using
the top K designs in the offline dataset D as the initial points, a batch of pseudo design candidates, denoted
as D′, is acquired. This process is outlined from line 2 to line 8 in Algorithm 1.

4.2 Training of Diffusion Prior

We employ a classifier-free conditional diffusion model (Ho & Salimans, 2022) to learn the conditional
probability distribution of existing designs and their scores in offline dataset D. Following the approach in
DDOM (Krishnamoorthy et al., 2023), we use the Variance Preserving (VP) stochastic differential equation
(SDE) for the forward diffusion process, as specified in Song et al. (2021b):

dx = −β(t)
2 xdt +

√
β(t)dw, (7)

where β(t) is a continuous time function for t ∈ [0, 1]. The forward process in DDPM (Ho et al., 2020) is
proved to be a discretization of Eq. (7) (Song et al., 2021b). To integrate conditions in the backward denoising
process, we need to train a DNN sϕ(xt, t, y) with parameters ϕ, conditioned on the time t and the score y
associated with the unperturbed design x0 corresponding to xt. The parameters ϕ are optimized as:

ϕ∗ = arg min
ϕ

Et

[
λ(t)Ex0,y

[
Ext|x0

[
∥sϕ(xt, t, y)−∇x log pt(xt|x0)∥2]]]

, (8)

where λ(t) is a positive weighting function depending on time. Since we train on the offline dataset D, the
model optimized according to Eq. (8) captures the manifold of valid designs. This part is described in Line
10 of Algorithm 1.

However, since the offline dataset may contain very low-score existing designs, naively applying the trained
model to the subsequent design editing process might be harmful for calibrating the pseudo design candidates.
Therefore, we propose to use the distribution conditioned on the maximum property score among the offline
dataset as the prior for later usage, which is a simple yet effective method for mitigating the negative impacts
of very low-score designs.

4.3 Design Editing Process

Due to potential inaccuracies of the surrogate model fθ∗(·) in representing the black-box objective function,
the set of pseudo design candidates D′ might include samples that have high predicted scores but low
ground-truth scores. Inspired by the success of editing techniques in image synthesis tasks (Meng et al., 2022;
Su et al., 2023), we explore the potential of calibrating these pseudo design candidates to obtain new designs
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with valid high scores. We perturb a pseudo design candidate x(p) ∈ D′ by introducing noise at a specific
time m out of {1, · · · , M} and auxiliary noise levels β1, · · · , βM :

x
(p)
perturb =

√
ᾱmx(p) +

√
1− ᾱmϵ, (9)

where αm = 1− βm, ᾱm =
∏m

s=1 αs, and ϵ ∼ N (0, I). This results in a closed-form expression that samples
x

(p)
perturb ∼ N (

√
ᾱmx(p), (1− ᾱm)I). The perturbed design is then used as the starting point. A final optimized

design is synthesized by using any numerical solver for the backward denoising process with the model
sϕ∗(·), conditioned on the maximum property score among the offline dataset, to remove the noise. In our
implementation, we follow existing studies (Krishnamoorthy et al., 2023) and use Heun’s method as the solver.
To yield K final optimized designs, we utilize all pseudo design candidates from D′, obtain various perturbed
designs, and denoise them, pushing them toward the prior distribution. Lines 12 to 17 of Algorithm 1 present
the process of this procedure.

Algorithm 1 Design Editing for Offline Model-based Optimization
Input: Offline dataset D = {(xi, yi)}N

i=1, and a time m.
Output: K candidate optimal designs.

1: /* Acquirement of Pseudo Design Candidates */
2: Initialize a surrogate model fθ(·) and optimize θ with Eq. (2) to obtain fθ∗(·).
3: D′ = {}
4: for i = 1, 2, · · · , K do
5: x0 ←− xi with the i-th best score within D.
6: for t = 1, 2, · · · , T do
7: Update xt with Eq. (3).
8: Append xT to D′.
9: /* Training of Diffusion Prior */

10: Initialize sϕ(·) and optimize ϕ with Eq. (8) on D to obtain sϕ∗(·).
11: /* Design Editing Process */
12: Candidates = {}
13: for i = 1, 2, · · · , K do
14: x(p) ←− xi ∈ D′

15: Perturb x(p) with Eq. (9) and the given time m.
16: Denoise x

(p)
perturb and generate xnew using the Heun’s method with sϕ∗(·) conditioned on max({yi}N

i=1).
17: Append xnew to Candidates.
18: return Candidates

5 Experiments

This section first describes the experiment setup, followed by the implementation details and results. We aim
to answer the following questions in this section: (Q1) Is our proposed DEMO more effective than baseline
methods in addressing the offline MBO problem? (Q2) One can alternatively generate new designs from the
diffusion prior or directly use the pseudo design candidates. Is DEMO better than these partial alternatives
by introducing the editing process?

5.1 Dataset and Tasks

We carry out experiments on 7 tasks selected from Design-Bench (Trabucco et al., 2022) and BayesO
Benchmarks (Kim, 2023), including 4 continuous tasks and 3 discrete tasks. The continuous tasks are as
follows: (i) Superconductor (SuperC) (Hamidieh, 2018), where the goal is to create a superconductor with
86 continuous components to maximize critical temperature, using 17, 014 designs; (ii) Ant Morphology
(Ant) (Trabucco et al., 2022; Brockman et al., 2016), where the objective is to design a four-legged ant with
60 continuous components to increase crawling speed, based on 10, 004 designs; (iii) D’Kitty Morphology
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(D’Kitty) (Trabucco et al., 2022; Ahn et al., 2020), where the focus is on designing a four-legged D’Kitty
with 56 continuous components to enhance crawling speed, using 10, 004 designs; (iv) Inverse Levy Function
(Levy) (Kim, 2023), where the aim is to maximize function values of the inverse black-box Levy function with
60 input dimensions, using 15, 000 designs. The discrete tasks include: (v) TF Bind 8 (TF8) (Barrera et al.,
2016), where the goal is to identify an 8-unit DNA sequence that maximizes binding activity score, with
32, 898 designs; (vi) TF Bind 10 (TF10) (Barrera et al., 2016), where the objective is to find a 10-unit DNA
sequence that optimizes binding activity score, using 30, 000 designs; (vii) NAS (Zoph & Le, 2017), where
the aim is to discover the optimal neural network architecture to improve test accuracy on the CIFAR-10
dataset (Hinton et al., 2012), using 1, 771 designs.

5.2 Evaluation and Metrics

Following the evaluation protocol used in previous studies (Trabucco et al., 2022), we assume the budget
K = 128 and generate 128 new designs for each method. The 100-th (max) percentile normalized ground-truth
score is reported in this section, and the 50-th (median) percentile score is provided in Appendix A.1. This
normalized score is calculated as yn = y−ymin

ymax−ymin
, where ymin and ymax are the minimum and maximum scores

in the entire offline dataset, respectively. For better comparison, we include the normalized score of the best
design in the offline dataset, denoted as D(best). Additionally, we provide mean and median rankings across
all 7 tasks for a comprehensive performance evaluation.

5.3 Comparison Methods

We benchmark DEMO against three groups of baseline approaches: (i) traditional methods, (ii) those
utilizing gradient optimizations from current designs, and (iii) those employing generative models for
sampling. Traditional methods include: (1) BO-qEI (Wilson et al., 2017): conducts Bayesian Optimization
to maximize the surrogate, proposes designs using the quasi-Expected-Improvement acquisition function,
and labels the designs using the surrogate model. (2) CMA-ES (Hansen, 2006): progressively adjusts the
distribution toward the optimal design by altering the covariance matrix. (3) REINFORCE (Williams, 1992):
optimizes the distribution over the input space using the learned surrogate. The second category includes:
(4) Mean: optimizes the average prediction of the ensemble of surrogate models. (5) Min: optimizes
the lowest prediction from a group of learned objective functions. (6) COMs (Trabucco et al., 2021):
applies regularization to assign lower scores to designs derived through gradient ascent. (7) ROMA (Yu
et al., 2021): introduces smoothness regularization to the DNN. (8) NEMO (Fu & Levine, 2021): limits
the discrepancy between the surrogate and the black-box objective function using normalized maximum
likelihood before performing gradient ascent. (9) BDI (Chen et al., 2022) employs forward and backward
mappings to transfer knowledge from the offline dataset to the design. (10) IOM (Qi et al., 2022b): ensures
representation consistency between the training dataset and the optimized designs. (11) ICT (Yuan et al.,
2023): identifies useful information from a pseudo-labeled dataset to improve the surrogate model. (12)
Tri-mentoring (Chen et al., 2023a): leverages information of pairwise comparison data to enhance ensemble
performance. (13) PGS (Chemingui et al., 2024): learns the best policy for a given surrogate model.
Generative model-based methods include: (14) CbAS (Brookes et al., 2019), which adapts a VAE model to
steer the design distribution toward areas with higher scores. (15) Auto CbAS (Fannjiang & Listgarten,
2020), which uses importance sampling to update a regression model based on CbAS. (16) MIN (Kumar &
Levine, 2020), which establishes a relationship between scores and designs and seeks optimal designs within
this framework. (17) DDOM (Krishnamoorthy et al., 2023), which learns a generative diffusion model
conditioned on the score values. (18) BONET (Mashkaria et al., 2023), which employs an autoregressive
model trained on the offline dataset.

5.4 Implementation Details

We follow the training protocols from Trabucco et al. (2021) for all comparative methods unless stated
otherwise. A 3-layer MLP with ReLU activation is used for both fθ(·) and sϕ(·), with a hidden layer size of
2048. In Algorithm 1, the iteration count, T , is established at 100 for both continuous and discrete tasks. The
Adam optimizer (Kingma & Ba, 2015) is utilized to train the surrogate models over 200 epochs with a batch

8



Published in Transactions on Machine Learning Research (04/2025)

Table 1: Experimental results on continuous tasks for comparison.

Method Superconductor Ant Morphology D’Kitty Morphology Levy
D(best) 0.399 0.565 0.884 0.613
BO-qEI 0.402± 0.034 0.819± 0.000 0.896± 0.000 0.810± 0.016

CMA-ES 0.465± 0.024 1.214± 0.732 0.724± 0.001 0.887± 0.025
REINFORCE 0.481± 0.013 0.266± 0.032 0.562± 0.196 0.564± 0.090

Mean 0.505± 0.013 0.940± 0.014 0.956± 0.014 0.984± 0.023
Min 0.501± 0.019 0.918± 0.034 0.942± 0.009 0.964± 0.023

COMs 0.481± 0.028 0.842± 0.037 0.926± 0.019 0.936± 0.025
ROMA 0.509± 0.015 0.916± 0.030 0.929± 0.013 0.976± 0.019
NEMO 0.502± 0.002 0.955± 0.006 0.952± 0.004 0.969± 0.019

BDI 0.513± 0.000 0.906± 0.000 0.919± 0.000 0.938± 0.000
IOM 0.518± 0.020 0.922± 0.030 0.944± 0.012 0.988± 0.021
ICT 0.503± 0.017 0.961± 0.007 0.968± 0.020 0.879± 0.018

Tri-mentoring 0.514± 0.018 0.948± 0.014 0.966± 0.010 0.924± 0.035
PGS 0.563± 0.058 0.949± 0.017 0.966± 0.013 0.963± 0.027

CbAS 0.503± 0.069 0.876± 0.031 0.892± 0.008 0.938± 0.037
Auto CbAS 0.421± 0.045 0.882± 0.045 0.906± 0.006 0.797± 0.033

MIN 0.499± 0.017 0.445± 0.080 0.892± 0.011 0.761± 0.037
DDOM 0.486± 0.013 0.952± 0.007 0.941± 0.006 0.927± 0.031
BONET 0.437± 0.022 0.976± 0.012 0.954± 0.012 0.918± 0.025

DEMO(ours) 0.525± 0.009 0.968± 0.009 0.970± 0.007 1.007± 0.015

size of 128, and a learning rate set at 10−1. The step size, η, in Eq. (3) is configured at 10−3 for continuous
tasks and 10−1 for discrete tasks. The diffusion model, sϕ(·), undergoes training for 200 epochs with a batch
size of 128. Previous works such as Krishnamoorthy et al. (2023) employ 1000 epochs for training diffusion
models, but we find 200 epochs is enough for the diffusion models to converge. For the design editing process,
following precedents set by previous studies (Krishnamoorthy et al., 2023), we set M at 1000. The selected
value of m is 600, with further elaboration provided in Appendix A.2. Results from traditional methodologies
are referenced from Trabucco et al. (2022), and we conduct 8 independent trials for other methods, reporting
the mean and standard error. All experiments are conducted on a workstation with a single Intel Xeon
Platinum 8160T CPU and a single NVIDIA Tesla V100 GPU, with execution times per trial ranging from 10
minutes to 20 hours (including evaluation time), depending on the specific tasks.

5.5 Results

Following existing studies (Trabucco et al., 2021; Yuan et al., 2023), in Table 1 and Table 2 we mark a method
in bold if its mean is at least as high as the highest mean minus one standard deviation of the corresponding
method. Alternatively, a method is also bolded if its mean plus one standard deviation reaches or exceeds
the method with the highest mean.

Performance in Continuous Tasks. Table 1 presents the results of the four continuous tasks. DEMO
achieves competitive performance to existing approaches across all of continuous tasks. DEMO outperforms
gradient-based methods, such as NEMO and ICT, by leveraging the design editing process to calibrate the
pseudo design candidates rather than performing unconstrained optimization against regularized surrogate
models. It is worth noting that some methods, such as COMs, employ a constrained optimization process
by penalizing the value at a lookahead gradient ascent optimization point. The superior performance of
DEMO compared to COMs indicates that the design editing process is a more effective method. Moreover,
when compared to other generative model-based approaches, such as MIN and DDOM, DEMO generally
outperforms them because these methods train models solely on the offline dataset and may not benefit from
the information provided by surrogate models. DEMO achieves better performance by effectively utilizing
the surrogate model to acquire a batch of pseudo design candidates. These results strongly support the
effectiveness of DEMO for continuous tasks.
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Table 2: Experimental results on discrete tasks, and ranking on all tasks for comparison.
Method TF Bind 8 TF Bind 10 NAS Rank Mean Rank Median
D(best) 0.439 0.467 0.436
BO-qEI 0.798± 0.083 0.652± 0.038 1.079± 0.059 13.9/19 16/19

CMA-ES 0.953± 0.022 0.670± 0.023 0.985± 0.079 9.1/19 7/19
REINFORCE 0.948± 0.028 0.663± 0.034 −1.895± 0.000 15.1/19 19/19

Mean 0.895± 0.020 0.654± 0.028 0.663± 0.058 9.3/19 9/19
Min 0.931± 0.036 0.634± 0.033 0.708± 0.027 10.7/19 11/19

COMs 0.474± 0.053 0.625± 0.010 0.796± 0.029 13.1/19 14/19
ROMA 0.921± 0.040 0.669± 0.035 0.934± 0.025 7.9/19 7/19
NEMO 0.942± 0.003 0.708± 0.010 0.735± 0.012 6.7/19 7/19

BDI 0.870± 0.000 0.605± 0.000 0.722± 0.000 12.1/19 13/19
IOM 0.870± 0.074 0.648± 0.025 0.411± 0.044 10.0/19 10/19
ICT 0.958± 0.008 0.691± 0.023 0.667± 0.091 7.7/19 6/19

Tri-mentoring 0.970± 0.001 0.722± 0.017 0.759± 0.102 5.4/19 4/19
PGS 0.981± 0.015 0.658± 0.021 0.727± 0.033 5.4/19 7/19

CbAS 0.927± 0.051 0.651± 0.060 0.683± 0.079 12.0/19 12/19
Auto CbAS 0.910± 0.044 0.630± 0.045 0.506± 0.074 15.6/19 16/19

MIN 0.905± 0.052 0.616± 0.021 0.717± 0.046 15.4/19 16/19
DDOM 0.961± 0.024 0.640± 0.029 0.737± 0.014 9.4/19 10/19
BONET 0.975± 0.004 0.681± 0.035 0.724± 0.008 8.0/19 6/19

DEMO(ours) 0.982± 0.016 0.762± 0.058 0.753± 0.017 2.1/19 1/19

Performance in Discrete Tasks. Table 2 displays the results of the three discrete tasks. DEMO achieves
top performance in TF Bind 8 and TF Bind 10, with the results on TF10 surpassing those of other methods
by a significant margin, suggesting DEMO’s capability in solving discrete offline MBO tasks. However,
DEMO underperforms on NAS, which may be due to two reasons. First, each neural network architecture
is encoded as a sequence of one-hot vectors, which has a length of 64. This encoding process might be
insufficient for precisely representing all features of a given architecture, leading to suboptimal performance
on NAS. Additionally, after examining the NAS offline dataset, we found that many existing designs share
commonalities. This redundancy means that the NAS dataset contains less useful information compared to
other tasks, which further explains why DEMO’s performance on NAS is not as strong.

Summary. These results on both continuous and discrete tasks provide a clear answer to Q1. DEMO attains
the highest rankings with a mean of 2.1/19 and a median of 1/19, as detailed in Table 2 and Figure 2b, and
secures top performance in all tasks. We perform Welch’s t-test across the seven tasks to compare DEMO
against all baseline methods. To account for multiple hypothesis tests, we apply the Bonferroni correction to
all reported p-values to control the family-wise error rate. The complete set of corrected p-values is provided
in Appendix A.3. In summary, at a significance level of α = 0.05, the results confirm that DEMO achieves
statistically significant improvements over 10 baseline methods in the Superconductor task, 14 in the Ant
task, 13 in the D’Kitty task, 16 in the Levy task, 11 in the TF8 task, 14 in the TF10 task, and 7 in the NAS
task. We further examine the reliability of DEMO in Appendix A.4. Additional quantitative analysis of the
predicted and ground-truth property scores of the pseudo design candidates and final candidates is provided
in Appendix A.5. We also study the influence of the number of gradient ascent steps in the convergence study
detailed in Appendix A.5.

5.6 Ablation Study

New designs can be alternatively generated from the prior distribution using the diffusion model or by directly
using the pseudo design candidates after the gradient ascent process. We refer to these two methods as
Diffusion-only and Grad-only, respectively. To rigorously assess whether the introduction of the editing phase
within our DEMO method is beneficial, ablation experiments are conducted by systematically comparing
the complete DEMO method with Diffusion-only and Grad-only. The results, summarized in Table 2a,
provide clear insights into the impact of our design editing process. For the four continuous tasks, DEMO
consistently achieves higher performance compared to its ablated versions. For instance, in the SuperC
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Task DEMO Grad-only Diffusion-only
SuperC 0.525± 0.009 0.482± 0.013 0.346± 0.011

Ant 0.968± 0.009 0.963± 0.008 0.377± 0.004
D’Kitty 0.970± 0.007 0.933± 0.002 0.762± 0.023

Levy 1.007± 0.015 0.990± 0.020 0.483± 0.015
TF8 0.980± 0.004 0.965± 0.008 0.420± 0.004
TF10 0.762± 0.058 0.638± 0.019 0.465± 0.006
NAS 0.753± 0.017 0.668± 0.084 0.274± 0.013

(a) Ablation studies of DEMO.
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(b) Comparison of ranks across methods.

Figure 2

Task Dimension Memory Training Optimization
SuperC (17014, 86) 1179 235.92 0.92

Ant (10004, 60) 1177 220.82 0.82
D’Kitty (10004, 56) 1177 222.68 0.68

Levy (15000, 60) 1177 227.80 0.80
TF8 (32898, 8) 1177 253.81 0.81
TF10 (30000, 10) 1177 311.73 0.73
NAS (1771, 64) 1201 233.81 0.81

(a) Dimension records the number of samples in the offline dataset
of each task and the corresponding input dimension. Memory
summarizes the GPU usage in MB for training the models, and the
last two columns demonstrate the time used for training models
and optimizing candidate designs in seconds, respectively.
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(b) Comparison of effectiveness-efficiency trade-
off with other representative methods. The left-
bottom corner represents that methods are both
effective (with higher mean ranking) and effi-
cient (less training and optimization latency).

Figure 3: Computational efficiency analysis.

task, DEMO achieves a score of 0.525± 0.009, significantly higher than both Grad-only (0.482± 0.013) and
Diffusion-only (0.346± 0.011). Unlike baseline methods of conditional generative models based on a target
score higher than all existing designs, such as Auto CbAS and DDOM, the Diffusion-only approach generates
new designs conditioned on the maximum score within the offline dataset for the ablation study purpose.
Similar improvements are observed in the Ant, D’Kitty, and Levy tasks, underscoring the effectiveness of
integrating the design editing process in continuous tasks. In the discrete tasks TF8, TF10, and NAS,
DEMO’s superior performance over both alternative solutions is evident, highlighting its comprehensive
effectiveness in managing discrete challenges. Overall, the ablation studies validate the importance of the
design editing process within the DEMO method, answering Q2 conclusively. The complete DEMO method
collectively contributes to enhancements across a range of both continuous and discrete tasks and various
input dimensions.

5.7 Computational Efficiency Analysis

To evaluate the computational efficiency and scalability of DEMO, we run additional experiments on our
workstation with a single Intel Xeon Platinum 8160T CPU and a single NVIDIA Tesla V100 GPU. The
results are summarized in Table 3a. The table reports the sizes of the offline dataset, the corresponding
input dimension, the GPU memory usage for training models in megabytes (MB), and the time for training
models and optimizing design candidates in seconds. Furthermore, we closely examine the time efficiency
for optimizing design candidates of another diffusion-based method, DDOM, on every task. DDOM takes
2.35 seconds in the Superconductor task, 2.21 seconds in the Ant task, 1.84 seconds in the D’Kitty task, 2.07
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seconds in the Levy task, 1.89 seconds in the TF Bind 8 task, 1.83 seconds in the TF Bind 10 task, and 1.85
seconds in the NAS task. This indicates that our DEMO is more time-efficient than DDOM in every task for
optimizing design candidates. In addition, Figure 3b illustrates the effectiveness-efficiency trade-off for DEMO
compared to DDOM and two representative surrogate-based methods, Mean Ensemble and Tri-mentoring.
Mean Ensemble is a widely used traditional method for offline MBO that aggregates predictions from an
ensemble of surrogate models to provide robust estimates, while Tri-mentoring is a more recent baseline
that has consistently achieved the best mean and median ranking among all surrogate-based methods in our
experiments. These two methods are chosen because they represent both the established and state-of-the-art
performance of surrogate-based approaches in offline optimization. As shown, although DEMO requires
slightly more runtime than other selected methods, it achieves significantly higher effectiveness within the
same time scale, as indicated by its superior mean ranking. It is noteworthy that Tri-mentoring exhibits
similar time efficiency to DEMO, which may be attributed to its use of pairwise ranking information and
bi-level optimization. These results demonstrate that DEMO not only mitigates the out-of-distribution
challenges in offline model-based optimization but does so with practical computational demands, making it
a viable solution for real-world applications.

6 Conclusion and Discussion

In this study, we introduce Design Editing for Offline Model-based Optimization (DEMO). DEMO begins
by training a surrogate model on the offline dataset as an estimate of the ground-truth black-box objective
function. A batch of pseudo design candidates is then generated by performing gradient ascent with respect
to the surrogate model. Subsequently, a diffusion model is trained on the offline dataset to capture the
distribution of all existing valid designs. The design editing process introduces random noise to the pseudo
design candidates and employs the learned diffusion model to denoise them, ensuring that the final optimized
designs are not far from the prior distribution and have valid high scores. In essence, DEMO generates new
designs by first extensively optimizing pseudo design candidates and then refining them with the diffusion
prior. Experiments on the design-bench dataset show that, with properly tuned hyperparamters, DEMO’s
score is competitive with the best previously reported scores in the literature. We further discuss the
connection between our method and Bayesian inference in Appendix A.6. One limitation of our proposed
DEMO method is that its performance depends on the tuning of the hyperparameter m, which controls the
amount of noise added during the design editing process, ensuring that the final design candidates are not
extremely influenced by the extrapolation error of the surrogate while also avoiding an overly conservative
edit that would revert them back to the low-scoring regime. It is important to note that such hyperparameter
tuning for regularizations to balance overestimation and overconservatism is not unique to our approach;
other methods in offline MBO may face similar challenges. Nonetheless, our experiments show that when m is
appropriately tuned, DEMO achieves a favorable trade-off and delivers competitive performance. We discuss
additional limitations and potential negative impacts in Appendix A.7 and Appendix A.8, respectively.
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Table 3: Experimental results on continuous tasks for comparison.

Method Superconductor Ant Morphology D’Kitty Morphology Levy
D(best) 0.399 0.565 0.884 0.613
BO-qEI 0.300± 0.015 0.567± 0.000 0.883± 0.000 0.643± 0.009

CMA-ES 0.379± 0.003 −0.045± 0.004 0.684± 0.016 0.410± 0.009
REINFORCE 0.463± 0.016 0.138± 0.032 0.356± 0.131 0.377± 0.065

Mean 0.334± 0.004 0.569± 0.011 0.876± 0.005 0.561± 0.007
Min 0.364± 0.030 0.569± 0.021 0.873± 0.009 0.537± 0.006

COMs 0.316± 0.024 0.564± 0.002 0.881± 0.002 0.511± 0.012
ROMA 0.370± 0.019 0.477± 0.038 0.854± 0.007 0.558± 0.003
NEMO 0.320± 0.008 0.592± 0.000 0.883± 0.000 0.538± 0.006

BDI 0.412± 0.000 0.474± 0.000 0.855± 0.000 0.534± 0.003
IOM 0.350± 0.023 0.513± 0.035 0.876± 0.006 0.562± 0.007
ICT 0.399± 0.012 0.592± 0.025 0.874± 0.005 0.691± 0.009

Tri-mentoring 0.355± 0.003 0.606± 0.007 0.866± 0.001 0.687± 0.012
PGS 0.379± 0.016 0.532± 0.016 0.941± 0.008 0.476± 0.014

CbAS 0.111± 0.017 0.384± 0.016 0.753± 0.008 0.479± 0.020
Auto CbAS 0.131± 0.010 0.364± 0.014 0.736± 0.025 0.499± 0.022

MIN 0.336± 0.016 0.618± 0.040 0.887± 0.004 0.681± 0.030
DDOM 0.346± 0.009 0.615± 0.007 0.861± 0.003 0.595± 0.012
BONET 0.369± 0.015 0.819± 0.032 0.907± 0.020 0.604± 0.008

DEMO(ours) 0.400± 0.007 0.604± 0.005 0.891± 0.002 0.762± 0.008

Table 4: Experimental results on discrete tasks, and ranking on all tasks for comparison.

Method TF Bind 8 TF Bind 10 NAS Rank Mean Rank Median
D(best) 0.439 0.467 0.436
BO-qEI 0.439± 0.000 0.467± 0.000 0.544± 0.099 9.4/19 10/19

CMA-ES 0.537± 0.014 0.484± 0.014 0.591± 0.102 10.6/19 7/19
REINFORCE 0.462± 0.021 0.475± 0.008 −1.895± 0.000 13.7/19 18/19

Mean 0.539± 0.030 0.539± 0.010 0.494± 0.077 8.3/19 8/19
Min 0.569± 0.050 0.485± 0.021 0.567± 0.006 7.3/19 8/19

COMs 0.439± 0.000 0.467± 0.002 0.525± 0.003 11.1/19 11/19
ROMA 0.555± 0.020 0.512± 0.020 0.525± 0.003 8.6/19 7/19
NEMO 0.438± 0.001 0.454± 0.001 0.564± 0.016 10.4/19 11/19

BDI 0.439± 0.000 0.476± 0.000 0.517± 0.000 10.4/19 10/19
IOM 0.439± 0.000 0.477± 0.010 −0.050± 0.011 11.0/19 10/19
ICT 0.551± 0.013 0.541± 0.004 0.494± 0.013 5.6/19 4/19

Tri-mentoring 0.609± 0.021 0.527± 0.008 0.516± 0.028 6.1/19 4/19
PGS 0.375± 0.014 0.443± 0.005 0.508± 0.017 12.0/19 12/19

CbAS 0.428± 0.010 0.463± 0.007 0.292± 0.027 16.3/19 16/19
Auto CbAS 0.419± 0.007 0.461± 0.007 0.217± 0.005 16.9/19 17/19

MIN 0.421± 0.015 0.468± 0.006 0.433± 0.000 9.3/19 12/19
DDOM 0.401± 0.008 0.464± 0.006 0.306± 0.017 11.9/19 13/19
BONET 0.505± 0.055 0.496± 0.037 0.571± 0.095 4.6/19 5/19

DEMO(ours) 0.533± 0.010 0.480± 0.003 0.564± 0.005 4.4/19 4/19

A Appendix

A.1 Median Normalized Scores

Performance in Continuous Tasks. Table 3 showcases the median normalized scores for various baseline
methods across 4 continuous tasks. DEMO, while not always topping the charts, demonstrates robust
performance across these tasks, consistently outperforming several baseline methods. For example, in the
Levy function task, DEMO’s score of 0.762± 0.008 is the highest one among all approaches. This highlights
DEMO’s capability to mitigate the OOD issue of surrogates based methods effectively. Notably, DEMO
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Figure 4: Selecting m near 0 results in generated designs that retains most properties of pseudo design
candidates. Conversely, setting m near 1000 generates designs that align closely with the distribution of
existing designs. Optimal designs are achieved by choosing m in the mid-range, effectively utilizing information
from both the pseudo design candidates and the diffusion prior.

outperforms traditional generative models like CbAS and Auto CbAS by significant margins across all tasks.
It also maintains a competitive edge against more recent generative methods like MIN and DDOM.

Performance in Discrete Tasks. Moving to discrete tasks, as detailed in Table 4, DEMO exhibits
performance on par with other baseline methods. This performance can be attributed to DEMO’s method-
ology which, although highly effective in calibrating the pseudo design candidates, might struggle in task
environments with redundancy in design features.

Summary. The results presented in Tables 3 and 4 collectively validate DEMO’s efficacy across both
continuous and discrete optimization tasks, providing further support for answering Q1 affirmatively. With a
mean rank of 4.4/19 and a median rank of 4/19 in terms of the median normalized scores, DEMO stands out
among 19 competing methods. This comprehensive performance underscores DEMO’s capacity to integrate
and leverage information from the distribution of existing designs and pseudo design candidates.

A.2 Sensitivity to the Choice of m

In Eq. (9), selecting a time m close to M results in xperturb resembling random Gaussian noise, which
introduces greater flexibility into the new design generation process. On the other hand, if m is closer to 0,
the resulting design retains more characteristics of the pseudo design candidates. Thus, m serves as a critical
hyperparameter in our methodology. This section explores the robustness of DEMO to various choices of m.
We perform experiments on one continuous task, SuperC, and one discrete task, TF8, with m ranging from 0
to 1000 in increments of 100. As illustrated in Figure 4, DEMO generally outperforms the Diffusion-only and
Grad-only methods. Nevertheless, overly extreme values of m, whether too high or too low, can diminish
performance. Selecting an excessively low m causes the model to adhere too closely to the pseudo design
candidates, while choosing an overly high m biases the model towards the distribution of existing designs,
neglecting the guidance of pseudo design candidates. Choosing m from a mid-range effectively balances the
influences from both the prior distribution and the pseudo design candidates, leading us to set m = 600 for
all tasks.

A.3 Details of Corrected P-Values

As mentioned in the main text, all reported p-values are adjusted using the Bonferroni correction to account
for multiple hypothesis testing. Specifically, each uncorrected p-value is multiplied by the total number of
null hypotheses, which corresponds to the number of baseline methods (18). Table 5 presents the corrected
p-values from comparisons between DEMO and other baseline methods. We bold the values where DEMO
demonstrates statistically significant improvement over the corresponding baseline method at a significance
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Table 5: Corrected p-values on all tasks.

Method Superconductor Ant D’Kitty Levy TF8 TF10 NAS
BO-qEI 0.000 0.000 0.000 0.000 0.003 0.007 0.000

CMA-ES 0.001 3.362 0.000 0.000 0.091 0.021 0.000
REINFORCE 0.000 0.000 0.005 0.000 0.111 0.013 0.000

Mean 0.032 0.004 0.264 0.319 0.000 0.007 0.025
Min 0.081 0.035 0.000 0.007 0.042 0.002 0.017

COMs 0.023 0.000 0.002 0.000 0.000 0.002 0.035
ROMA 0.221 0.013 0.000 0.027 0.027 0.021 0.000
NEMO 0.001 0.046 0.000 0.006 0.001 0.306 0.269

BDI 0.063 0.000 0.000 0.000 0.000 0.001 0.012
IOM 3.496 0.027 0.002 0.524 0.030 0.005 0.000
ICT 0.075 0.952 7.162 0.000 0.030 0.093 0.289

Tri-mentoring 1.370 0.048 3.344 0.001 0.645 0.875 7.866
PGS 0.970 0.162 4.140 0.018 8.093 0.010 0.670
CbAs 3.600 0.000 0.000 0.007 0.168 0.019 0.371

Auto CbAs 0.002 0.008 0.000 0.000 0.017 0.002 0.000
MIN 0.027 0.000 0.000 0.000 0.033 0.001 0.613

DDOM 0.000 0.014 0.000 0.001 0.553 0.003 0.538
BONET 0.000 1.398 0.067 0.000 2.383 0.052 0.013
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Figure 5: The proportion is calculated as the num-
ber of new designs which surpass D(best) divided
by the budget 128, indicating the reliability to
consistently generate new higher-scoring designs.
This figure demonstrates that DEMO is more reli-
able than Diffusion-only in all tasks.
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Figure 6: The proportion is calculated as the num-
ber of new designs which surpass D(best) divided
by the budget 128, indicating the reliability to
consistently generate new higher-scoring designs.
This figure demonstrates that DEMO is more reli-
able than Grad-only in 5/7 tasks.

level of α = 0.05. The last row summarizes the number of baseline methods for which DEMO achieves
statistically significant improvement in each task.

A.4 Reliability Study

In this subsection, we assess the ability of DEMO to reliably produce superior designs compared to selected
surrogate based methods and generative model based methods. To measure reliability, we compute the
proportion of new designs that exceed the best scores in the offline dataset D(best). The results are
depicted in Figure 5. DEMO consistently outperforms Diffusion-only across all tasks, achieving notable
improvements, particularly in the SuperC and NAS tasks. This confirms DEMO’s enhanced reliability over
the state-of-the-art generative model-based baseline in both continuous and discrete settings. We then extends
the reliability study to compare DEMO with a gradient-based approach. When compared to Grad-only,
DEMO demonstrates greater consistency in 5 out of 7 tasks. However, Grad-only outperforms DEMO in Levy
and TF10 tasks, which can be attributed to the gradient-based method’s tendency to generate new designs
within a narrower distribution. While Grad-only achieves a higher proportion of higher-scoring new designs
in these two tasks, DEMO generates new designs within a wider distribution and thus produces candidates
with higher maximum scores, as evidenced in Table 2.
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A.5 Quantitative Analysis and Convergence Study

Table 6: Quantitative Analysis and Convergence Study for Ant

Gradient Ascent Step 100 200 300
Predicted Score of Pseudo Design Candidates 0.950 1.210 1.340
Ground-truth Score of Pseudo Design Candidates 0.942 0.887 0.845
Ground-truth Score of Edited Final Design Candidates 0.968 0.935 0.928

Table 7: Quantitative Analysis and Convergence Study for TF8

Gradient Ascent Step 100 200 300
Predicted Score of Pseudo Design Candidates 2.916 5.570 8.311
Ground-truth Score of Pseudo Design Candidates 0.912 0.895 0.895
Ground-truth Score of Edited Final Design Candidates 0.982 0.958 0.914

We run additional experiments on one continuous task Ant and one discrete task TF8. As shown in Table 6
and Table 7, the pseudo design candidates usually have over optimistic predicted score, but their ground-truth
scores evaluated by the oracle are not such high. After editing the pseudo design candidates by our approach,
the ground-truth scores are effectively increased.

In our original setting, we run 100 gradient ascent steps to acquire the pseudo design candidates. 200 and
300 gradient ascent steps are considered in the additional experiments, where we can mimic the distribution
very far away from the training distribution. As we can see from Table 6 and Table 7, even though the
performance degrades as the number of gradient ascent steps increases, our proposed approach is still helpful
for editing the pseudo design candidates and thus improving the quality of the final candidates.

A.6 Connection to Bayesian Inference

From a Bayesian perspective, our objective is to find the design x that maximizes the posterior probability:

p(x|y) ∝ p(y|x)p(x), (10)

where p(y|x) is the likelihood of obtaining a property score y given a design x, and p(x) is the prior distribution
over designs learned from the offline dataset. Taking the logarithm, we have:

log p(x|y) = log p(y|x) + log p(x) + C, (11)

with C being a constant that does not affect the optimization. To find the design that maximizes the posterior,
we aim to solve:

x∗ = arg max
x∈X

[log p(y|x) + log p(x)]. (12)

In the offline model-based optimization (MBO), we typically do not have a direct expression for p(y|x).
Instead, we train a surrogate model fθ(x) to predict the property score y. By following Lee et al. (2023);
Yuan et al. (2024), we can model the probability density using the Boltzmann distribution as follows:

p(y|x) ≈ pθ(y|x) = eγfθ(x)

Z
, (13)

where γ is the scaling factor, and Z is the normalization constant. Taking the logarithm of this expression,
we obtain:

log p(y|x) ≈ γfθ(x)− log Z. (14)
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To maximize the posterior, we wish to solve Eq. 12. In practice, we can perform gradient ascent. By
differentiating the log-posterior, the update rule becomes:

xt+1 = xt + η∇x [log p(y|x) + log p(x)]
∣∣∣
x=xt

, (15)

where η is the learning rate. Since p(y|x) is approximated by the surrogate model as discussed above, we
have:

∇x log p(y|x) ≈ ∇xfθ(x), (16)
and the diffusion model is trained to capture the prior, yielding an approximation:

∇x log p(x) ≈ sϕ(x, 0), (17)

where sϕ(x, 0) is the score function learned by the diffusion model on the original data at time 0. At t = 0,
no noise has been added, so the score function ideally estimates the gradient of the log probability of the
original data distribution. It is worth noting that, in practice, diffusion models are trained to learn the
score function over a continuous range of time steps. Although t = 0 represents the ideal scenario, a small
nonzero t should be used for numerical stability. This update can be interpreted as performing approximate
maximum a posteriori (MAP) estimation, where the first term drives the design toward higher predicted
scores, namely maximizing the likelihood. The second term enforces that the design remains within the valid
design manifold, that is incorporating the prior.

In Bayesian perspective, DEMO can be seen as performing an approximate posterior inference in two steps:
(1) Posterior Approximation, that is the acquirement of pseudo design candidates, using the surrogate
to imagine where high-score probability mass might lie, and (2) Posterior Refinement, namely the design
editing process, using the diffusion prior to correct and refine those candidates. As detailed above, while a
single-phase Bayesian inference formulation offers an elegant theoretical framework by directly optimizing the
combined log-posterior, our two-phase approach in DEMO provides practical advantages. In the single-phase
formulation, the update rule simultaneously balances the gradient of the likelihood, derived from the surrogate
model, and the gradient of the prior, obtained via the diffusion model, within a single unified update. This
balance can be challenging to achieve in practice, which may require additional hyperparameters to trade-off.
More importantly, directly applying the diffusion prior in the update rule may not be enough to edit the
out-of-distribution candidates back to the valid range. In contrast, our two-phase method decouples these
tasks: the first phase focuses exclusively on generating high-scoring candidates via gradient ascent on the
surrogate model, while the second phase leverages the diffusion model to edit and refine these candidates,
ensuring they remain within the valid design manifold. This modular design simplifies the optimization
process by isolating each objective, achieving a more stable and effective balance between high performance
and design realism compared to a direct single-phase Bayesian optimization.

A.7 Limitations

We have demonstrated the effectiveness of DEMO across a wide range of tasks. However, some evaluation
methods may not fully capture real-world complexities. For example, in the superconductor task (Hamidieh,
2018), we follow traditional practice by using a random forest regression model as the oracle, as done in
prior studies (Trabucco et al., 2022). Unfortunately, this model might not entirely reflect the intricacies of
real-world situations, which could lead to discrepancies between our oracle and actual ground-truth outcomes.
Engaging with domain experts in the future could help enhance these evaluation approaches. Nevertheless,
given DEMO’s straightforward approach and the empirical evidence supporting its robustness and efficacy
across various tasks detailed in the Design-Bench (Trabucco et al., 2022) and BayesO Benchmarks (Kim,
2023), we remain confident in its ability to generalize effectively to different contexts.

A.8 Negative Impacts

This study seeks to advance the field of Machine Learning. However, it’s important to recognize that
advanced optimization techniques can be used for either beneficial or detrimental purposes, depending on their
application. For example, while these methods can contribute positively to society through the development
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of drugs and materials, they also have the potential to be misused to create harmful substances or products.
As researchers, we must stay aware and ensure that our contributions promote societal betterment, while also
carefully assessing potential risks and ethical concerns.
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