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ABSTRACT

Symbolic Regression (SR) is the well-studied problem of finding closed-form an-
alytical expressions that describe the relationship between variables in a measure-
ment dataset. In this paper, we rethink SR from two perspectives: morphology
and adaptability. Morphology: Current SR algorithms typically use several man-
made heuristics to influence the morphology (or structure) of the expressions in
the search space. These man-made heuristics may introduce unintentional bias
and data leakage, especially with the relatively few equation-recovery benchmark
problems available for evaluating SR approaches. To address this, we formulate a
novel minimalistic approach, based on constructing a depth-aware mathematical
language model trained on terminal walks of expression trees, as a replacement to
these heuristics. Adaptability: Current SR algorithms tend to select expressions
based on only a single fitness function (e.g., MSE on the training set). We promote
the use of an adaptability framework in evolutionary SR which uses fitness func-
tions that alternate across generations. This leads to robust expressions that per-
form well on the training set and are close to the true functional form. We demon-
strate this by alternating fitness functions that quantify faithfulness to values (via
MSE) and empirical derivatives (via a novel theoretically justified fitness metric
coined MSEDI). Proof-of-concept: We combine these ideas into a minimalistic
evolutionary SR algorithm that outperforms a suite of benchmark and state of-the-
art SR algorithms in problems with unknown constants added, which we claim are
more reflective of SR performance for real-world applications. Our claim is then
strengthened by reproducing the superior performance on real-world regression
datasets from SRBench. For researchers interested in equation-recovery prob-
lems, we also propose a set of conventions that can be used to promote fairness in
comparison across SR methods and to reduce unintentional bias.

1 INTRODUCTION

Important discoveries rarely come in the form of large black-box models; they often appear as sim-
ple, elegant, and concise expressions. The field of applying machine learning to generate such
mathematical expressions is known as Symbolic Regression (SR). The expressions obtained from
SR come in a compact and human-readable form that has fewer parameters than black-box models.
These expressions allow for useful scientific insights by mere inspection. This property has led SR
to be gradually recognized as a first-class algorithm in various scientific fields, including Physics
(Udrescu & Tegmark, 2020), Material Sciences (Wang et al., 2019; Sun et al., 2019) and Knowledge
Engineering (Martinez-Gil & Chaves-Gonzalez, 2020) in recent years. The most common technique
used in SR is genetic programming (GP) (Koza, 1992). GP generates populations of candidate ex-
pressions and evolves the best expressions (selected via fitness function) across generations through
evolutionary operations such as selection, crossover, and mutation. In this paper, we rethink GP-SR
from two evolutionary-inspired perspectives: morphology and adaptability.
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Morphology. SR algorithms have traditionally used several man-made heuristics to influence the
morphology of expressions. One method is to introduce rules (Worm & Chiu, 2013), constraints
(Petersen et al., 2019; Bladek & Krawiec, 2019) and rule-based simplifications (Zhang et al., 2006),
with the objective of removing redundant operations and author-defined senseless expression. An
example is disallowing nested trigonometric functions (e.g. sin(1+ cos(x))). Another method is to
assign complexity scores to each elementary operations (Loftis et al., 2020; Korns, 2013), intending
to suppress the appearance of rare operations that are given a high author-assigned complexity score.
However, these man-made heuristics may introduce unintentional bias and data leakage, exacerbated
by the small quantity of benchmark problems in SR (Orzechowski et al., 2018). With the success of
deep learning and its applications to SR, there exists substantial motivation to utilize deep learning
to generate potential morphologies of candidate expressions in SR (Petersen et al., 2019; Mundhenk
et al., 2021). Such a technique also comes with the benefit of being easily transferable to a problem
with a different set of elementary operations. In this regard, we first show how current SR methods
are reliant on these man-made heuristics and highlight the potential drawbacks. Then, in this paper,
we show how using our neural network pre-trained on Physics equations (which we later introduce
as TW-MLM) improves the performance of GP-SR even in the absence of such man-made heuristics.

Adaptability. SR algorithms tend to evaluate a candidate expression based on its faithfulness to
empirical values. Some common fitness functions are Mean Absolute Error (MAE), Mean Squared
Error (MSE) and Normalized Root Mean Square Error (NRMSE) (Mundhenk et al., 2021), among
other measurements. We propose that SR should create a variety of characterization measures be-
yond the existing ones that measure faithfulness to empirical values. While previous work have sug-
gested alternative characteristics in dealing with time-series data (Schmidt & Lipson, 2010; 2009),
it is not easily transferable to SR in general and was not theoretically derived. In this paper, we
propose to quantify the faithfulness of a candidate expression’s empirical derivative to the ground
truth. Motivated by evolutionary-theory (Bateson, 2017), we adopt an adaptability framework that
changes the fitness functions across generations. This process makes it harder for pseudo-equations
to survive through the different fitness functions and easier for a ground truth equation to survive
across the generations. The additional benefit of such a method lies in the increased utility of the
eventual expression. If the intention of the user is to take the derivative of the eventual equation, then
a measure of faithfulness to empirical derivatives as fitness would assist that objective. In this paper,
we alternate between different fitness functions to improve performance of GP-SR. Specifically, we
alternate between MSE and a newly defined fitness function we term MSEDI.

Proof-of-concept. We combine these ideas to demonstrate a proof-of-concept (foreshadowed in
Figure 1) through a minimalistic evolutionary SR algorithm that outperforms all methods (including
state-of-the-art SR) in problems with unknown constants (i.e., Jin* (Jin et al., 2019)) and outper-
forms many benchmark models in problems without unknown constants (i.e., Nguyen* (Uy et al.,
2011) and R* (Krawiec & Pawlak, 2013)). We contend that performance on datasets with unknown
constants are more indicative of SR performance in real-world applications that including naturally
occurring processes such as scaling. Our claim is then strengthened by reproducing this superior
performance on real-world regression datasets from SRBench (La Cava et al., 2021).

Figure 1: Integrated proof-of-concept schematic.

To accommodate future research in SR using
real-life datasets, we propose extra SR con-
ventions for synthetic datasets in line with the
“relevancy” criteria for results on benchmarks
problem to correlate well with results on real-
world applications (McDermott et al., 2012).

The remainder of this paper is organized as
follows: Section 2 explains related work and
mechanisms to improve SR, focusing on recent
deep learning work. Section 3 describes our
proposed methodology and mechanisms. Sec-
tion 4 combines all our proposed mechanisms with the vanilla GP approach and compares the per-
formance with state-of-the-art, commercial and traditional SR approaches. Reflections and future
work are given in Section 5.

The main contributions of this paper are as follows:
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1. We propose a set of conventions and best practices that reduce the risk of human bias in the
context of using SR on real-life datasets.

2. We develop a predictive model called TW-MLM that learns the morphology of expressions
through a mathematical language model, which is then used to generate candidate expressions
for SR. TW-MLM serves as an alternative to man-made heuristics that is less prone to human
bias and easily transferable to new problems.

3. We propose a method for alternating fitness functions inspired by adaptability in evolution theory
to tackle the problem of multi-objective optimization in SR. We do this by alternating between
MSE and our novel theoretically justified metric called MSEDI.

4. We develop an integrated proof-of-concept by combining our ideas and performed extensive
testing on both synthetic and real-world datasets (from SRBench).

2 RELATED WORK

Deep Learning for SR. Deep learning has seen much success in SR, including Deep Symbolic
Regression (DSR) (Petersen et al., 2019), which uses reinforcement learning to train a recurrent
neural network (RNN) to complete an expression tree. Deep Symbolic Optimization Neural-Guided
Genetic Programming (DSO-NGGP) is an improved method that combines a similar RNN trained by
reinforcement learning coupled with GP (Mundhenk et al., 2021). The authors suggest that GP helps
to produce large variations in the population of candidate equations when stuck at a local optimum.
However, these methods are used in conjunction with several man-made heuristics to be effective.
Other works include AI-Feynman, which utilizes neural networks to discover simplifying properties
such as symmetry and separability to reduce the number of variables (Udrescu & Tegmark, 2020).

Mathematical Language Model. Symbolic mathematics has been successfully addressed as both
a machine translation problem and a next word prediction problem (Lample & Charton, 2019; Kim
et al., 2021). In particular, it has been reported that by adding a pre-trained seq2seq model as a
supplementary mechanism to neural-guided SR, performance has improved (Kim et al., 2021). The
consensus is that mathematics should be viewed as a language with complex rules. Most useful
mathematical expressions are not only short and concise, they also tend to obey a variety of hidden
rules, such as avoiding nested trigonometric functions (e.g. sin(1 + cos(x)). In this context, a
mathematical language model can be developed to learn such rules implicitly.

Derivatives in SR. The usage of derivatives in SR has been hinted in previous works for time-
series data (Schmidt & Lipson, 2010; 2009). In their work, given N data samples from two time-
dependent variables, x(t) and y(t), the system’s derivatives are ∆x/∆y = x′/y′, where x′ and y′

represent the empirical derivatives of x and y with respect to time. These values are then compared
against the derivative obtained from the candidate expressions, δxi/δyi, through a mean logarithmic
error:− 1

N

∑N
i=1 log(1+ |∆xi/∆yi − δxi/δyi|). However, the theoretical derivation is not explored

in their paper. Recent works in SR also include model discrimination by incorporating prior infor-
mation on the sign of the first derivative based on physical knowledge (Engle & Sahinidis, 2021). In
our paper, we develop a theoretical basis in line with existing assumptions for modelling errors to
quantify faithfulness to derivatives for general equations which do not necessitate time-dependency.

Multi-Objective Genetic Programming (MOGP). Several general approaches exist for MOGP
(Konak et al., 2006). A possible approach is to set all but one objective as constraints. However,
the process of selecting values for constraints and which objectives to set as constraints is arbitrary.
Another approach is to output a Pareto optimal set instead of a single individual expression to reflect
the trade-offs between the different objectives. However, in the context of SR, the ground truth
expression would be the best performer for both objectives, rather than forming a trade-off.

Benchmarks Methods. For comparison, we include traditional SR, state-of-the-art (SOTA), com-
mercial algorithms, and random search. The methods selected report the lifetime population size of
expressions to enable fair comparison of recovery rates. The benchmark methods are: (i) DSR (Pe-
tersen et al., 2019): Previous SOTA method that pioneered usage of reinforcement learning in SR;
(ii) DSO-NGGP (Mundhenk et al., 2021): Current SOTA method in SR that is a hybrid of DSR and
GP; (iii) GPLearn (Stephens, 2016): Python framework for standard GP-SR (Koza, 1992), which
has seen wide usage as a generic SR method (Pankratius et al., 2018; Ferreira et al., 2019); (iv) Tur-
ingBot (TuringBot, 2020): Commercial SR product based on simulated annealing, which has been
shown to be competitive among top commercial SR algorithms (Ashok et al., 2021). (v) Random
Search: Generate expressions at random without evolution.
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3 METHODOLOGY AND MECHANISMS

Here, we first propose revised conventions to be used for SR experiments targeted at resolving the
flaws and criticism of current SR metrics, which are independent of our SR algorithm. We then
introduce our novel methods of controlling morphology of expressions and promoting adaptability
in evolution, and justify these methods individually through preliminary results and ablation studies.

3.1 PROPOSED CONVENTIONS AND BEST PRACTICES
We propose and justify conventions for SR experiments, adhering to the criteria discussed in the call
for better benchmarking to be done so that SR experiments can correlate better with results on real-
world applications (McDermott et al., 2012). In many recent papers, recovery rate has been utilized
as the primary metric for evaluating SR and is defined as “the fraction of independent training runs
in which an algorithm discovers an expression that is symbolically equivalent to the ground truth
expression within a maximum of 2 million candidate expressions” (Mundhenk et al., 2021; Petersen
et al., 2019; Kim et al., 2021; Larma et al., 2021). To this end, the conventions we propose will be
focused on improving the effectiveness of recovery rate as an evaluation metric for SR experiments.

Fixed set of primitive functions. In contrast to previous SR experiments that use a varying primitive
function set depending on the equation, we propose to use a fixed set of primitive functions across
all datasets and all methods. This is a necessary step towards using SR on real-life datasets since we
are blind to the underlying primitive functions in real-world scenarios. In our paper, we use a fixed
primitive function set {add, mul, sub, div, sin, cos, arcsin, log, exp, pow} for all datasets and
methods, selected from the dataset used to train our mathematical language model.

Top-1 Approximate Recovery. We also propose a new measure, top-1 approximate recovery rate,
that is more reflective of performance on real-life datasets compared to the exact recovery rate
defined in the first paragraph of Section 3.1. Top-1 means taking only the best scoring expression in
the strictest sense, as consistent with how SR is used for real-life data (Abdellaoui & Mehrkanoon,
2021; Phukoetphim et al., 2016; Barmpalexis et al., 2011). In other words, we only assess one best
equation per experimental run. We define an approximate recovery to be when the r-squared value
of an expression (touted as the best error measure for SR (Keijzer, 2004)) over the entire sampling
domain of the dataset is more than 99%. This is consistent with calls from the GP community to
discourage measuring exact recovery on synthetic datasets as they usually do not correlate well with
performance on real-life applications (McDermott et al., 2012). The most obvious drawback of an
exact recovery rate is that for real-life datasets, it is impossible to measure the true recovery rate by
checking mathematical equivalence since there will not be any accompanying ground truth equation
for comparison. In our paper, we present top-1 approximate recovery rate as our primary metric, but
we also include the results for top-1 exact recovery rate in brackets for comparison.

Selecting appropriate lifetime population size. To guard against setting a lifetime population that
is too high, we also propose to benchmark against a random method (generate the entire lifetime pop-
ulation in one generation without any genetic operation) and to ensure the metric across all methods
is not saturated at the selected population size. This is done to elicit meaningful conclusions from
the results. Previous works have used an arbitrary lifetime population size of 2 million (Mundhenk
et al., 2021; Petersen et al., 2019; Kim et al., 2021; Larma et al., 2021), but it is difficult to compare
results across the different methods since many equations have near 100% recovery, even for the
worst-performing methods. Additionally, using an arbitrary value may create unintended bias in
results (Bergstra & Bengio, 2012). To these ends, we reduce the lifetime population size to 10000
following 2 observations we made prior to our main experiments. First, at the new size, the top-1
approximate recovery rate is never saturated across all methods, allowing us to compare the perfor-
mance of each method across various equations. Second, we evaluate a fully random search, which
is implemented in practice by setting GP with only 1 generation at full population size, and find that
the performance across most of the equations is near 0. This gives us higher confidence to report
that SR methods with positive performance do recover equations by pure chance.

Datasets with unknown constants are more relevant. We also recommend testing on datasets
which include unknown constants, such as Jin* dataset, since we find that the performance of meth-
ods varies drastically with and without unknown constants. In addition, it is of practical interest
to consider datasets with unknown constants since it is common in real-life relations between vari-
ables, such as feature scaling (Udrescu & Tegmark, 2020). For example, we have f = e−θ2/2/

√
2π

a real-world physics equation from AI-Feynman database (see Appendix Table 7).
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Table 1: Top-1 Approximate / Top-1 Exact Recovery Rates (%) of current methods across Jin* (with
unknown constants) and Nguyen* datasets (without unknown constants). Results were averaged over
100 runs per equation per method.

DSO-NGGP GPLEARN TURINGBOT DSO-NGGP GPLEARN TURINGBOT

JIN*-1 47/0 29/0 1/0 NGUYEN*-1 95/75 3/1 59/5
JIN*-2 2/0 23/0 1/0 NGUYEN*-2 74/43 15/6 34/0
JIN*-3 12/0 16/0 0/0 NGUYEN*-3 81/12 15/2 28/0
JIN*-4 0/0 21/0 0/0 NGUYEN*-4 81/5 15/1 19/0
JIN*-5 7/5 14/3 1/0 NGUYEN*-5 10/3 0/0 8/0
JIN*-6 0/0 0/0 0/0 NGUYEN*-6 88/44 1/0 39/0

NGUYEN*-7 99/2 57/0 98/0
NGUYEN*-8 18/3 46/6 39/10

JIN*-AVERAGE 11.33/0.83 17.17/0.50 0.50/0.00 NGUYEN*-AVERAGE 68.25/23.38 19.00/2.00 40.50/1.88

In our experimental results recorded in Table 1, we observe that between TuringBot and GPLearn,
TuringBot has the poorer performance in Jin* dataset that has unknown constants. However, Tur-
ingBot has the superior performance in Nguyen* dataset that does not contain unknown constants.
A similar observation can be made between GPLearn and DSO-NGGP where the relative perfor-
mance is reversed depending on the presence of unknown constants. This phenomenon is due to the
difference in the frequency of appearance of constants and the presence and extent of constants op-
timization in each method. For datasets with no unknown constants, the more the algorithm utilizes
and optimizes constants, the more likely that equations with morphology that are dissimilar to the
true equation can become top candidates. This can be seen as inhibiting the evolutionary process,
where the spots for expressions to undergo evolution are instead taken up by these psuedo-equations
(expressions that perform well on the training set in terms of MSE but are not close to the ground
truth equation in its functional form).

In the context of real-life datasets, we argue that it is justifiable to assume that unknown constants
will appear frequently in naturally occurring processes such as scaling. The performance of methods
on datasets without unknown constants would then be less reflective of the performance on real-life
datasets. We thus recommend that SR experiments favor datasets with unknown constants and assert
that results obtained from such datasets are more reflective of real-life application.

3.2 MORPHOLOGY OF EXPRESSIONS

Previous works have been done to influence the morphology of candidate expressions using deep
learning methods (Petersen et al., 2019; Bladek & Krawiec, 2019; Udrescu & Tegmark, 2020).
However, these methods have never been fully independent, and have instead been an addition to
another method or utilize man-made heuristics such as those mentioned in earlier sections. We also
find that these methods can be heavily reliant on the heuristics. For instance, DSR performance
drops sharply with the removal of in-situ constraints and complexity scores, with top-1 approximate
recovery rate decreasing to 33% the original value and top-1 exact recovery rate decreasing to
10% the original value. Furthermore, these heuristics increase the likelihood for the algorithm to
be biased towards certain form of expressions, allowing for an implicit data leakage. Finally, it
is an extremely difficult task to form such man-made rules, and it is made even harder when the
discovery of such rules needs to be repeated from scratch when the primitive function space is
distinctively different, such as when changing from ordinary algebra to boolean algebra. Thus, we
aim to propose a method that is free of such man-made heuristics. Here, we outline a standalone
method of generating candidate expressions that can be used independently.

Terminal walks representation. Instead of using the prefix representation of expressions as in-
put to a seq2seq model as done in other SR methods, we take inspiration from random walks used
in node2vec (Grover & Leskovec, 2016) and generate terminal walks from expression trees to re-
flect the hierarchical nature of expressions. A single terminal walk refers to the collection of nodes
traversed from the root of the expression tree to either a variable node or a constant node. These
terminal walks will then be treated as sentences. The benefit of such a method over prefix repre-
sentation is that the distances between operations in terminal walks are reflective of the distances
between operations in expression tree. On the other hand, in prefix representation, the operations
that appear to be faraway may instead be near in the expression tree. For example, for the equation
sin(1 + cos(x)), the nested cos is 2 tokens away in both the terminal walk {sin, add, cos, x} and
in the expression tree form. However, it is 3 tokens away in the prefix notation.
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Table 2: Top-1 Approximate / Top-1 Exact Recovery Rates (in percentage) of GP and TW-MLM-GP
across Nguyen*, R* and Jin* dataset. Results were averaged over 100 runs per equation per method.

TW-MLM-GP (RNN) TW-MLM-GP (TRANSFORMER) GP

NGUYEN* 24.13/7.25 23.51/7.31 19.00/2.00
R* 19.33/0.00 18.67/0.00 9.67/0.00

JIN* 21.33/0.50 17.67/0.50 17.17/0.50

Building language model to replace heuristics. We then treat the collection of all terminal walks
as a corpus of sentences to train a RNN as commonly practiced in next-word-prediction natural
language processing tasks (Barman & Boruah, 2018). For our paper, we used an embedding layer, a
long short-term memory layer and a dense layer sequentially to train a lightweight RNN. This RNN
will be our mathematical language model for our GP algorithm, which we coin as terminal walks
mathematical language model (TW-MLM). Candidate expressions are then generated by randomly
selecting an operation from a uniform distribution, then for every incomplete link in the tree, an
incomplete terminal walk is generated and fed into the TW-MLM. The TW-MLM then outputs a
probability distribution that is used to select the next node to complete the tree. This process repeats
until the tree has no incomplete links.

Ablation: TW-MLM to improve recovery rates. In this ablation experiment, we use the baseline
GP algorithm (Koza, 1992) implemented in GPLearn for comparison since the other competitive SR
methods impose man-made heuristics which would complicate the insights drawn from experimen-
tal results. For training the TW-MLM, we use the set of 2023 terminal walks generated from 100
Physics equations (Udrescu & Tegmark, 2020). These equations are suitable as they contain widely
accepted expressions used in real-life scenarios, in contrast to the other SR datasets. When tokeniz-
ing the equations, variables are represented as a single “variable token”. When TW-MLM generates
a new equation for a numerical dataset, this token is replaced by a randomly selected variable.

Throughout this paper, we use a lightweight RNN, comprising of a single embedding layer, a single
long short-term memory layer and a single dense layer. We experiment with replacing the RNN
with a transformer, which we find to perform worse. As seen in Table 2, our experiments show
that with just the sole usage of our TW-MLM to generate candidate expressions, we can drastically
improve both top-1 exact recovery rate and top-1 approximate recovery rate across all 3 datasets.
The intuition for the improvement of results is that the TW-MLM learns the intrinsic patterns which
makes equations human-readable, which promotes the GP algorithm to explore a search space with
a high concentration of human-readable equations.

3.3 ADAPTABILITY IN EVOLUTION

Borrowing the idea of adaptability from the theory of evolution (Bateson, 2017), we argue that a
candidate expression close to the ground truth will survive through a multitude of fitness functions,
whereas a pseudo-expression may perform deceptively well for one but perform worse for the other
fitness measures. In this context, the challenge for SR is to find suitable secondary fitness functions
that measure characteristics beyond the primary fitness function, i.e., faithfulness to empirical values
via the MSE. One must also optimize for both fitness functions and we do this by alternating between
the primary and secondary fitness functions.

Additionally, we note that one benefit of the simple closed-form analytical expression found by SR is
that it allows the user to apply traditional mathematical tools on the expression, such as derivatives.
In this paper, we explore the derivative as part of the secondary fitness functions, e.g., faithfulness
to empirical derivatives. We describe two natural approaches to doing this, mean squared error of
derivatives and mean squared error of difference, and argue that the former is superior to the latter
for our application.

Mean Squared Error (MSE) of Derivative (MSEDE). MSE is commonly used as a fitness
and optimisation function, and yields the Maximum Likelihood Estimate (MLE): θMSE =

argminθ
∑N

i=1(yi − ŷi)
2. MSE rewards expressions that are faithful to the values in the datasets.

Likewise, we can reward expressions for being faithful to empirical derivatives. We can compute
the MSE of the empirical derivatives from the dataset and candidate expressions. Consider N pairs
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of values (xi, yi), where i = 1, 2, . . . , N , sorted based in ascending values of x. We define the
empirical derivative as ∆yi

∆xi
= yi+1−yi

xi+1−xi
. Then, θMSEDE = argminθ

∑N−1
i=1 (∆yi

∆xi
− ∆ŷi

∆xi
)2.

Mean Squared Error of Difference (MSEDI). Here, we develop a new fitness measure derived
from a theoretical basis that is consistent with the traditional error modelling framework used in
MSE: Given measurements y = f(x) +C + ϵ, where C is a an arbitrary constant and ϵ ∼ N (0, σ),
we aim to find ŷ = gθ(x), such that gθ(x) is a close approximation to f(x). We derive the MLE of
parameters θ by considering empirical derivatives.

When gθ(x) ≈ f(x) + C, ∆yi

∆xi
− ∆ŷi

∆xi
= ϵi+1−ϵi

∆xi
∼ N (0, 2σ2

(∆xi)2
). We note that the difference

between derivatives obtained from dataset and candidate expression follows a Gaussian distribution
as well, which are independent to each other under the set of odd-valued or even-valued i. The
total log likelihood across both sets should be similar by symmetry. We choose to evaluate the total
log likelihood across all i instead of picking one set. By letting σ

′

i =
√
2σ

∆xi
, the log likelihood of a

particular ∆yi

∆xi
is ln(Pr(∆yi

∆xi
|θ)) = − ln(

√
2πσ

′

i)− 1
2σ

′2
i

(∆yi

∆xi
− ∆ŷi

∆xi
)2.

The total log likelihood across all i is thus,
N−1∑
i=1

(
− ln(

√
2πσ

′

i)−
1

2σ
′2
i

(
∆yi
∆xi

− ∆ŷi
∆xi

)2)
. (1)

The parameters θ of gθ(x) are obtained by maximizing the total log likelihood in (1) to obtain:

θMSEDI = argmax
θ

N−1∑
i=1

(
− ln(

√
2πσ

′

i)−
1

2σ
′2
i

(
∆yi
∆xi

− ∆ŷi
∆xi

)2)
(2)

= argmax
θ

N−1∑
i=1

(
− 1

2σ
′2
i

(
∆yi
∆xi

− ∆ŷi
∆xi

)2)
(3)

= argmin
θ

N−1∑
i=1

(∆yi −∆ŷi)
2 (4)

MSEDI more relevant for real-world compared to MSEDE. However, we discover that MSEDE
is a potentially harmful fitness function when dealing real-life datasets since it overfits to a selected
set of noisy derivative values. Our experiments that include noise yield that using MSEDE led to no
recovery across 100 repetitions of experimentation, while MSEDI was successful. We observe that
random error, ϵ, contributes to large noise in empirical derivatives, especially when ∆xi is small.
In other words, MSEDE can be viewed as a weighted version of MSEDI, with the weights being

1
(∆xi)2

. The MSEDE function thus encourages over-fitting to values which are heavily weighted.
Additionally, MSEDE relies on the value 1

∆xi
, which is problematic when ∆xi is 0, which is com-

mon in real-world datasets with duplicated x values. Thus MSEDI better fulfills the criteria of
relevancy to real-life problem (White et al., 2013), providing an additional justification to choose
our theoretically derived MSEDI.

Multi-objective optimization using MSEDI and MSE. As discussed in Section 2, it is difficult
to create a general method to optimize for both fitness functions using traditional methods. For
instance, using a weighted combination do not work for some equations as one fitness will dominate,
effectively only optimizing for one fitness in those cases. Instead, using the idea of adaptability, we
utilize MSEDI as a secondary test with the intention to filter away pseudo-expressions as described
earlier in Section 3.3. Our experiments show the addition of this adaptability mechanism (using
MSEDI as fitness function) once every 5 generations improves the exact recovery by more than
double while maintaining a similar approximate recovery rate.

Ablation: Escaping local optima with and without MSEDI. In addition to acting as a secondary
fitness function to remove pseudo-expressions, we also find that MSEDI functions by helping GP
escape poor local optima. Among the experiments that do not recover the equation, we save the
state of the GP and run it for an additional 5 generations of MSE. If the top-1 equation remains the
same (which occurred for 72.82% of experiments), we rollback the state of the GP and run just 1
generation of MSEDI. The percentage of experiments in which this 1 generation of MSEDI helps
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to change the top equation are 19.82%, 15.58%, 44.33% for the Nguyen*, R* and Jin* datasets
respectively. Thus, from the results we know that MSEDI helps to escape poor local optima which
would have otherwise stagnated.

4 INTEGRATED PROOF-OF-CONCEPT

Combining the ideas described above, we added TW-MLM and the adaptability mechanism, that
alternates MSE and MSEDI as fitness function, to GP with constant optimization and using the
primitive function set {add, mul, sub, div, sin, cos, arcsin, log, exp, pow} as discussed in Section
3.1. The interfacing of each component can be visualized in a simple schematic (Figure 1).

Algorithm 1: Outline of our Integrated Proof-of-
Concept
while current generation < max generations do

Fill up population of equations by generating
equations from TW-MLM;

if current generation % 5 then
Evaluate fitness of equations using

MSEDI
else

Evaluate fitness of equations using MSE
end
Evolve and select equations based on

evolutionary operations in GP (e.g.,
crossover, subtree mutation, hoist mutation,
point mutation, reproduction)

end

Algorithm 1 outlines our proof-of-concept.
TW-MLM is trained once on a MLM dataset
and utilized to generate candidate expres-
sions at the start of every generation of GP.
GP then evaluates and filters from this set of
expressions together with candidates derived
from the previous generation through a fit-
ness functions that alternates between gen-
eration. In our method, we use MSE as our
base fitness function and switch to MSEDI
once every 5 generations (decided based on
hyper-parameter tuning on a smaller-sized
experiment). We then conduct a series of ex-
periments to test the proposed approach on
both synthetic and real-world datasets.

Synthetic Datasets Experiments. We com-
pare with the benchmarks methods and ran-
dom search outlined in Section 2. We choose

synthetic datasets with unknown constants (i.e., Jin*) and without unknown constants (i.e., Nguyen*
and R*). Each equation in Table 6 (Appendix) is used to conduct 100 experiments per method. In
Table 3 and Table 4, we tabulate the performance on the three synthetic datasets (which contain 17
equations to be recovered).

Synthetic Datasets Performance Comparison. Our method shows overall competitive perfor-
mance with state-of-the-art. On equations with unknown constants, shown in the Jin* dataset in
Table 3, our method outperforms all other methods by a large margin, in both top-1 approximate re-
covery rate and top-1 exact recovery rate. On equations without unknown constants (e.g., Nguyen*),
our method outperforms all except DSO-NGGP for almost all of the equations, as shown in Table
4. Since Jin* included unknown constants that allows for relations that are reflective of real-life

Table 3: Synthetic Dataset: Top-1 Approximate / Top-1 Exact Recovery Rates (%) of 6 methods for
Jin* dataset. Results were averaged over 100 experiments per equation per method.

OURS RANDOM SEARCH TURINGBOT GPLEARN DSR DSO-NGGP

JIN* JIN*-1 78/3 0/0 1/0 29/0 10/0 47/0
JIN*-2 58/25 0/0 1/0 23/0 0/0 2/0
JIN*-3 53/7 0/0 0/0 16/0 0/0 12/0
JIN*-4 31/10 0/0 0/0 21/0 0/0 0/0
JIN*-5 21/20 1/0 1/0 14/3 0/0 7/5
JIN*-6 0/0 0/0 0/0 0/0 0/0 0/0

AVERAGE 40.17/10.83 0.17/0.00 0.50/0.00 17.16/0.50 1.67/0.00 11.33/0.83

Table 4: Synthetic Dataset: Top-1 Approximate / Top-1 Exact Recovery Rates (%) of 6 methods for
Nguyen* and R* datasets. Results were averaged over 100 experiments per equation per method.

OURS RANDOM SEARCH TURINGBOT GPLEARN DSR DSO-NGGP

NGUYEN*-AVERAGE 42.13/18.38 17.63/0.00 40.50/1.88 19.00/2.00 30.63/7.13 68.25/23.38

R*-AVERAGE 21.00/0.00 0.67/0.00 6.00/0.00 5.33/0.00 0.67/0.00 23.67/0.00
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Table 5: Real-World Dataset (from SRBench): Percentage of experiments where our method outper-
forms DSO-NGGP in r-squared value. Results are shown for 100 experiments per dataset.

NAME OF DATASET 1027 ESL 1028 SWD 1029 LEV 1030 ERA STROGATZ SHEARFLOW1 192 VINEYARD SMALL

OUTPERFORMANCE 57% 66% 88% 94% 73% 78%

variables such as feature scaling (Udrescu & Tegmark, 2020), it can be argued that the results from
Jin* hold more practical value. In this sense, our model clearly outperformed all models as seen in
Table 3.

Real-World Datasets (SRBench) Evaluation. We then evaluated our method against DSO-NGGP
on 6 real-world datasets from SRBench (La Cava et al., 2021), with the results tabulated in Table 5.
Unlike traditional SR datasets, real-world datasets do not have an accompanying ground truth equa-
tion. We present the percentage of experiments in which our method outperformed DSO-NGGP in
terms of r-squared value. Our method consistently outperforms DSO-NGGP, further corroborating
our previous results and strengthening the claim that SR datasets with unknown constants are more
reflective of real-world dataset performance.

Intuition and Ablation. The function of TW-MLM in our method is to implicitly learn the rules and
constraints about the morphology of human-readable equations that are previously developed based
on human judgment. This increases the likelihood of our method to venture into the search space
containing expressions that are consistent with existing widely-accepted human-readable equations.
In this sense, TW-MLM acts as a guide in the vast search space of possible equations. Though man-
made heuristics such as rules and constraints exist to fulfill these roles, it is difficult to find, difficult
to express and not easily transferable to new problems. On the other hand, TW-MLM finds these
rules and constraints implicitly and the method can be easily transferred to a new problem. The
adaptability mechanism (by alternating between MSE and MSEDI fitness function) then synergizes
with TW-MLM and GP by increasing the difficulty for pseudo-equations to survive each generation,
as shown in the ablation study in Section 3.2. We also observed throught the ablation study in
Section 3.3 how MSEDI helps to escape from poor optima points in GP. These mechanisms added
to GP allow us to create a model that performs competitively with state-of-the-art.

5 REFLECTIONS

Summary. In this paper, we demonstrate an efficient proof-of-concept that incorporates two new
independent mechanisms into genetic programming-based SR: (a) Terminal walks mathematical lan-
guage model (TW-MLM) and (b) Adaptability via alternating fitness functions (i.e., between MSE
and our novel theoretically justified metric called MSEDI). Through these simple modifications, we
are able to obtain competitive results with respect to a diverse range of methods, outperforming all,
including state-of-the-art, when datasets with unknown constants are involved. We then reproduce
this outperformance on real-world datasets. We also state and justify the conventions we use that
can promote consistency, comparability and relevance to real-world problems. Ultimately, we hope
that SR can demonstrate more competitive real-world results among other machine learning meth-
ods, given its natural advantage in both interpretability and explainability. The code for this paper is
available at: https://github.com/kentridgeai/MorphologyAndAdaptabilitySR

Limitations. Our method performs much better on equations with unknown constants (Jin*), in
contrast to equations without unknown constants (Nguyen*). The reason behind this observation can
be attributed to the difference in frequency of unknown constants during the generation of candidate
expressions. Our TW-MLM is trained on 100 AI-Feynman equations which has the frequent use of
constants. This means that the TW-MLM has to learn to include constants into candidate expressions
frequently, increasing the chances of over-optimization of constants in candidate expressions.

Future Work. (i) The performance of our method on datasets without unknown constants may
suffer due to over-optimization of constants in candidate expressions. To reduce the chances of
this, SR can alternate between randomly generating constants and optimizing for constants. This
is similar to the way we alternate between fitness functions in this paper. (ii) The search space of
SR grows rapidly with an increasing number of variables, making real-world datasets with many
variables a difficult problem for SR. We are currently working on an iterative greedy approach to
multi-variable SR, dealing with one additional variable per SR-run to address the issues that SR
faces with time complexity.
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A APPENDIX

Table 6: Symbolic regression dataset specifications. Input variable is denoted by x. U (a, b, c)
denotes c random points uniformly sampled between a and b for x. Equations were selected or
modified to have the same number of variables throughout to maintain the same search space size to
allow for meaningful comparison.

NAME EXPRESSION SAMPLING RANGE

NGUYEN*-1 x3 + x2 + x U(−1, 1, 20)
NGUYEN*-2 x4 + x3 + x2 + x U(−1, 1, 20)
NGUYEN*-3 x5 + x4 + x3 + x2 + x U(−1, 1, 20)
NGUYEN*-4 x6 + x5 + x4 + x3 + x2 + x U(−1, 1, 20)
NGUYEN*-5 sin

(
x2

)
cos(x)− 1 U(−1, 1, 20)

NGUYEN*-6 sin(x) + sin
(
x+ x2

)
U(−1, 1, 20)

NGUYEN*-7 log(x+ 1) + log
(
x2 + 1

)
U(0, 2, 20)

NGUYEN*-8
√
x U(0, 4, 20)

R*-1 (x+1)3

x2−x+1
U(−1, 1, 20)

R*-2 x5−3x3+1
x2+1

U(−1, 1, 20)

R*-3 x6+x5

x4+x3+x2+x+1
U(−1, 1, 20)

JIN*-1 2.5x4 − 1.3x3 + 0.5x2 − 1.7x U(−3, 3, 100)
JIN*-2 8.0x3 + 8.0x2 − 15.0 U(−3, 3, 100)
JIN*-3 0.7x3 − 1.7x U(−3, 3, 100)
JIN*-4 1.5 exp(x) + 5.0 cos(x) U(−3, 3, 100)
JIN*-5 6.0 sin(x) cos(x) U(−3, 3, 100)
JIN*-6 1.35x2 + 5.5 sin

(
(x− 1.0)2

)
U(−3, 3, 100)
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Table 7: 100 AI-Feynman Physics Equations Udrescu & Tegmark (2020)

Feynman Equation
eq.

I.6.20a f = e−θ2/2/
√
2π

I.6.20 f = e−
θ2

2σ2 /
√
2πσ2

I.6.20b f = e−
(θ−θ1)2

2σ2 /
√
2πσ2

I.8.14 d =

√
(x2 − x1)

2
+ (y2 − y1)

2

I.9.18 F = Gm1m2

(x2−x1)
2+(y2−y1)

2+(z2−z1)
2

I.10.7 m = m0√
1− v2

c2

I.11.19 A = x1y1 + x2y2 + x3y3
I.12.1 F = µNn

I.12.2 F = q1q2
4πϵr2

I.12.4 Ef = m1

4πϵr2

I.12.5 F = q2Ef

I.12.11 F = q (Ef +Bv sin θ)
I.13.4 K = 1

2m
(
v2 + u2 + w2

)
I.13.12 U = Gm1m2

(
1
r2

− 1
r1

)
I.14.3 U = mgz

I.14.4 U =
kspringx

2

x
I.15.3x x1 = x−ut√

1−u2/c2

I.15.3t t1 = t−ux/c2√
1−u2/c2

I.15.10 p = m0v√
1−v2/c2

I.16.6 v1 = u+v
1+uv/c2

I.18.4 r = m1r1+m2r2
m1+m2

I.18.12 τ = rF sin θ
I.18.16 L = mrv sin θ
I.24.6 E = 1

4m
(
ω2 + ω2

0

)
x2

I.25.13 Ve =
q
C

I.26.2 θ1 = arcsin (n sin θ2)
I.27.6 ff = 1

1
d1

+ n
d2

I.29.4 k = ω
c

I.29.16 x =
√
x2
1 + x2

2 − 2x1x2 cos (θ1 − θ2)

I.30.3 I∗ = I∗0

sin2(nθ/2)
sin2(θ/2)

I.30.5 θ = arcsin
(

λ
nd

)
I.32.5 P = q2a2

6πϵc3

I.32.17 P =
(

1
2ϵcE

2
f

) (
8πr2/3

) (
ω4/

(
ω2 − ω2

0

)2)
I.34.8 ω = qvB

p

I.34.10 ω = ω0

1−v/c

I.34.14 ω = 1+v/c√
1−v2/c2

ω0

I.34.27 E = ℏω
I.37.4 I∗ = I1 + I2 + 2

√
I1I2 cos δ

I.38.12 r = 4πϵℏ2

mq2

I.39.10 E = 3
2pFV

I.39.11 E = 1
γ−1pFV

I.39.22 PF = nkbT
V

I.40.1 n = n0e
−mgx

kbT
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Feynman Equation
eq.

I.41.16 Lrad = ℏω3

π2c2
(
e

hω
kbT −1

)
I.43.16 v =

µdriftqVe

d
I.43.31 D = µekbT
I.43.43 κ = 1

γ−1
kbv
A

I.44.4 E = nkbT ln
(

V2

V1

)
I.47.23 c =

√
γpr
ρ

I.48.20 E = mc2√
1−v2/c2

I.50.26 x = x1

[
cos(ωt) + α cos(ωt)2

]
II.2.42 P = κ(T2−T1)A

d

II.3.24 FE = P
4πr2

II.4.23 Ve =
q

4πϵr

II.6.11 Ve =
1

4πϵ
pd cos θ

r2

II.6.15a Ef = 3
4πϵ

pdz
r5

√
x2 + y2

II.6.15b Ef = 3
4πϵd

pd

r3 cos θ sin θ

II.8.7 E = 3
5

q2

4πϵd

II.8.31 Eden =
ϵE2

f

2
II.10.9 Ef = σden

ϵ
1

1+χ

II.11.3 x =
qEf

m(ω2
0−ω2)

II.11.17 n = n0

(
1 +

pdEf cos θ
kbT

)
II.11.20 P∗ =

nρp
2
dEf

3kbT

II.11.27 P∗ = nα
1−nα/3ϵEf

II.11.28 θ = 1 + nα
1−(nα/3)

II.13.17 B = 1
4πϵc2I

ρc20

II.13.23 ρc =
1√

1−v2/c2

II.13.34 j =
ρc0

v√
1−v2/c2

II.15.4 E = −µMB cos θ
II.15.5 E = −pdEf cos θ

II.21.32 Ve =
q

4πϵr(1−v/c)

II.24.17 k =
√

ω2

c2 − π2

d2

II.27.16 FE = ϵcE2
f

II.27.18 Eden = ϵE2
f

II.34.2a I = qv
2πr

II.34.2 µM = qvr
2

II.34.11 ω = g−qB
2m

II.34.29a µM = qh
4πm

II.34.29b E = g−µMBJz

ℏ
II.35.18 n = n0

exp(µmB/(kbT ))+exp(−µmB/(kbT ))

II.35.21 M = nρµM tanh
(

µMB
kbT

)
II.36.38 f = µmB

kbT
+ µmαM

ϵc2kbT

II.37.1 E = µM (1 + χ)B
II.38.3 F = Y Ax

d
II.38.14 µS = Y

2(1+σ)

III.4.32 n = 1

e
ℏω
kbT −1
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Feynman Equation
eq.

III.4.33 E = ℏω
ℏω
kbT

−1

III.7.38 ω = 2µMB
ℏ

III.8.54 pγ = sin
(
Et
ℏ
)2

III.9.52 pγ =
pdEf t

ℏ
sin((ω−ω0)t/2)

2

((ω−ω0)t/2)
2

III.10.19 E = µM

√
B2

x +B2
y +B2

z

III.12.43 L = nℏ
III.13.18 v = 2Ed2k

ℏ
III.14.14 I = I0

(
e

qVe
kbT − 1

)
III.15.12 E = 2U(1− cos(kd))

III.15.14 m = ℏ2

2Ed2

III.15.27 k = 2πα
nd

III.17.37 f = β(1 + α cos θ)

III.19.51 E = −mq4

2(4πϵ)2ℏ2
1
n2

III.21.20 j = −ρ0qAvec
m
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