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ABSTRACT

This paper presents a spectral framework for quantifying the differentiation be-
tween graph data samples by introducing a novel metric named Graph Geodesic
Distance (GGD). For two different graphs with the same number of nodes, our
framework leverages a spectral graph matching procedure to find node correspon-
dence so that the geodesic distance between them can be subsequently computed by
solving a generalized eigenvalue problem associated with their Laplacian matrices.
For graphs of different sizes, a resistance-based spectral graph coarsening scheme
is introduced to reduce the size of the larger graph while preserving the original
spectral properties. We show that the proposed GGD metric can effectively quan-
tify dissimilarities between two graphs by encapsulating their differences in key
structural (spectral) properties, such as effective resistances between nodes, cuts,
the mixing time of random walks, etc. Through extensive experiments comparing
with the state-of-the-art metrics, such as the latest Tree-Mover’s Distance (TMD)
metric, the proposed GGD metric shows significantly improved performance for
graph classification and stability evaluation of GNNs, especially when only partial
node features are available.

1 INTRODUCTION

In the era of big data, comparison and distinction between data points are important tasks. A graph
is a specific type of data structure that represents the connections between a group of nodes or
agents. Comparing two graphs often involves using a pairwise distance measure, where a small
distance indicates a high structural similarity and vice versa. To understand the generalization
between distribution shifts, it is important to use an appropriate measure of divergence between
data distributions, both theoretically and experimentally (Chuang et al., 2020). Determining suitable
distance metrics for non-Euclidean data entities, like graphs with or without node attributes, which
are fundamental to many graph learning methods such as graph neural networks (GNNs), remains
a significant challenge, even though distance metrics for data points in Euclidean space are readily
available. The need to develop new analytical techniques that allow the visualization, comparison,
and understanding of different graphs has led to a rich field of research study (Haslbeck & Waldorp,
2018). This study dives into the exploration of a novel framework for computing geometric distances
between graphs, which can be immediately leveraged for many graph-based machine learning (ML)
tasks, such as graph classification or the stability evaluation of GNNs.

Many distance metrics for comparing graphs have previously been proposed (Borgwardt et al., 2020).
Some of them are merely based on graph local structures (Tam & Dunson, 2022; Haussler et al., 1999;
Xu et al., 2013; Zhu et al., 2020; Fernández & Valiente, 2001; Bunke & Shearer, 1998), whereas
others exploit both graph structural properties and node attributes (Shervashidze et al., 2011; Morris
et al., 2019). For example, the Graph Edit Distance (GED) has been proposed to measure the distance
between graphs considering the number of changes needed to match one graph to another (Sanfeliu
& Fu, 1983; Gao et al., 2010; Li et al., 2017); Distance metrics based on the graph kernel have also
been investigated (Shervashidze et al., 2011; Vishwanathan et al., 2010), such as the Wasserstein
Weisfeiler-Leman metric (WWL) (Morris et al., 2019) and the Gromov–Wasserstein metric (Mémoli,
2011), which allow computing graph distances based on low-dimensional graph representations or
optimal transport (OT) (Titouan et al., 2019; Chapel et al., 2020), leading to the development of the
state-of-the-art graph distance metric called TMD (Chuang & Jegelka, 2022).
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However, the existing graph distance metrics have distinct limitations. For example, the GED metric
can capture local node or edge changes but struggles with global perturbations (Sanfeliu & Fu, 1983;
Gao et al., 2010; Li et al., 2017); the WWL and TMD metrics heavily rely on node features (attributes)
for calculating the distance between graphs, leading to degraded performance when only partial node
features are available (Rossi et al., 2022; Chen et al., 2022).

To address these limitations of prior methods, we propose the Graph Geodesic Distance (GGD) metric,
a novel approach that leverages spectral graph theory and Riemannian geometry to effectively quatify
topological distance between graphs. This framework handles graphs of the same size by using
spectral graph matching to determine node correspondence and computes distances on a Riemannian
manifold of modified Laplacian matrices. We show that the proposed GGD metric can theoretically
capture key structural (spectral) dissimilarities between two graphs, such as mismatches in Laplacian
eigenvalues/eigenvectors, cuts, effective-resistance distances, etc.

One distinct advantage of the proposed GGD metric is its capability to compute distances between
graphs based on their spectral (structural) properties, while including node feature information into
our framework can further improve the accuracy. Therefore, GGD is suitable for analyzing many
real-world graphs that may only have partial or even no node features. Moreover, the proposed
framework for computing GGDs is more computationally efficient than existing OT-based metrics,
such as the TMD metric.

Our empirical results show that GGD can effectively measure the dissimilarities between graphs:
(1) support vector classifiers (SVC) using GGDs perform competitively with state-of-the-art GNN
models and graph kernels on graph classification benchmarks; (2) we demonstrate that the GGD
metric allows us to quantify the stability of GNN models for graph classification tasks by checking
whether two graphs with a small GGD will lead to a significant dissimilarity in the GNN output
embeddings. We also show that the GGD metric has a better correlation with established GNN
outputs compared to the state-of-the-art TMD metric (Chuang & Jegelka, 2022) when only partial
node features are available: up to a 10% accuracy gain and a 9× runtime speedup have been achieved
in various graph classification tasks.

2 EXISTING GRAPH DISTANCE METRICS

Graph Edit Distance (GED) For non-attributed graph data, a common and simple distance metric
is GED. (Sanfeliu & Fu, 1983; Gao et al., 2010). Given a set of graph edit operations, also known as
elementary graph operations, the GED between two graphs G1 and G2, written as GED(G1, G2),
can be defined as:

GED(G1, G2) = min
(e1,...,ek)∈P(G1,G2)

k∑
i=1

c(ei), (1)

where P (G1, G2) denotes the set of edit operations transforming G1 into a graph isomorphism of
G2, c(ei) is the cost of edit operation ei. The set of elementary graph edit operators typically includes
node insertion, node deletion, node substitution, edge insertion, edge deletion, and edge substitution.

Tree Mover’s Distance (TMD) TMD is a pseudometric for measuring distances between simple
graphs, extending the concept of WWL to multisets of tree structures (Chuang & Jegelka, 2022). By
progressively adding neighboring nodes to the previous node at each level, we obtain the computation
tree of a node. These tree structures are crucial in graph analysis (Weisfeiler & Leman, 1968;
Pearson, 1905) and graph kernels (Ramon & Gärtner, 2003; Shervashidze et al., 2011). TMD uses
hierarchical optimal transport (HOT) to analyze these computational trees from input graphs. For a
graph G = (V,E) with node features fv ∈ Rs for node v ∈ V , let T 1

v = v, and TL
v be the depth-L

computation tree of node v. The multiset of these trees for G is TL
G = {TL

v }v∈V . The number and
shape of trees must match to calculate optimal transport between two multisets of trees. If multisets
are uneven, they are augmented with blank nodes. For multisets Tp and Tq , the augmenting function
σ adds blank trees to equalize their sizes. A blank tree TO has a single node with a zero vector feature
Op ∈ Rs:

σ : (Tp, Tq) →
(
Tp ∪ T

max(|Tq|−|Tp|,0)
O , Tq ∪ T

max(|Tp|−|Tq|,0)
O

)
. (2)
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Let X = {xi}ki=1 and Y = {yi}kj=1 be two data multisets and C ∈ Rk×k be the transportation cost
for each data pair: Cij = d (xi, yj), where d is the distance between xi and yj . The unnormalized
Optimal Transport between X and Y can be defined as:

OTd(X,Y ) := min
γ∈Γ(X,Y )

⟨C, γ⟩, Γ(X,Y ) =
{
γ ∈ Rm×m

+ | γ1m = γ⊤1m = 1m

}
. (3)

Here Γ is the set of transportation plans that satisfies the flow constrain γ1m = γ⊤1m = 1m.
(Chuang & Jegelka, 2022).

The distance between two trees Tp and Tq with roots rp and rq is defined recursively:

TDw (Tp, Tq) :=

{∥∥frp − frq
∥∥+ w(L) ·OTTDw

(
σ
(
Trp , Trq

))
, if L > 1∥∥frp − frq

∥∥ , otherwise
(4)

where L is the maximum depth of Tp and Tq , and w is a depth-dependent weighting function.
Subsequently, the concept of distance from individual trees is enlarged to entire graphs. For graphs
G1 and G2, with multisets TL

G1
and TL

G2
of depth-L computation trees, the Tree Mover’s Distance is:

TMDL
w(G1, G2) = OTTDw

(σ(TL
G1

,TL
G2

)). (5)

3 GGD: A GEODESIC DISTANCE METRIC FOR GRAPHS

Modified Laplacian matrices on the Riemannian manifold One way to represent a simple
connected graph is through its Laplacian matrix, which is a Symmetric Positive Semidefinite (SPSD)
matrix. Graph representation using adjacency and Laplacian matrices is briefly discussed in Appendix
A.2. Adding a small positive value to each diagonal element allows us to transform the original
Laplacian matrix into a Symmetric Positive Definite (SPD) matrix, which is referred to as the
Modified Laplacian Matrix in this work. In Appendix A.8, we describe the effect of this small value
on the GGD calculation. We can then consider the cone of such modified Laplacian matrices as a
natural Riemannian manifold (Lim et al., 2019), where each modified Laplacian, having the same
dimensions (same number of rows/columns), can be regarded as a data point on this Riemannian
manifold (Vemulapalli & Jacobs, 2015; Pennec et al., 2006). Details about the Riemannian manifold
are provided in Appendix A.3. Finally, the geodesic distance between two graphs can be defined as
the shortest path distance on the Riemannian manifold, assuming their node correspondence is known
in advance. This approach is more appropriate than directly comparing the graphs in Euclidean space
(Lim et al., 2019; Crane et al., 2020; Huang et al., 2015). We will later demonstrate (Section 4.3)
that such a geodesic distance metric can effectively capture structural (spectral) mismatches between
graphs.

A two-phase spectral framework for computing GGDs Before computing GGDs, it is necessary
to establish the node-to-node correspondence between two graphs. This can be achieved by leveraging
existing graph-matching techniques (Livi & Rizzi, 2013; Emmert-Streib et al., 2016; Caetano et al.,
2009). The proposed GGD metric can be computed in the following two phases. Phase 1 consists of
a spectral graph matching step, using combinatorial optimization with the eigenvalues/eigenvectors
of the graph adjacency matrices to identify the approximate node-to-node correspondence. Phase 2
computes the GGD between the modified Laplacian matrices of the matched graphs by exploiting
generalized eigenvalues. An algorithmic flow is provided in Appendix A.1 to ensure a clear under-
standing of the process. The proposed GGD metric differs from previous OT-based graph distance
metrics in its ability to accurately represent structural discrepancies between graphs, enabling us to
uncover the topological variations between them more effectively. Since only the graph Laplacian
(adjacency) matrix is required to calculate the GGD, our metric can even work effectively for graphs
without node feature information.

A motivating example Let’s consider a simple graph G1, characterized by an almost ring-like
topology, as shown in Figure 1. We also create two other graphs G2 and G3 by inserting an extra
edge into G1 in different ways. Note that the additional edge in G3 will have a greater impact on
G1’s global structure since it connects two further nodes.

We compute the normalized distances (the largest distance always equals one) between the aforemen-
tioned three graphs using different metrics (GED, TMD, and GGD) and report the results in Table 1.
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Table 1: Distance between graphs with simple perturbations.

Graph pairs
Distance metrics (Normalized)

GGD TMD with NF, L = 4 TMD without NF, L = 4 GED

G1, G2 0.623 0.689 0.970 1
G1, G3 0.855 0.711 1 1
G2, G3 1 1 0.333 1

As observed, G2 and G3 have distances similar to G1 when the TMD metric is adopted without using
node features (NFs). On the other hand, the TMD metric can produce similar results as the proposed
GGD metric when node features are fully utilized. Not surprisingly, the GED always produces the
same distances since only one edge has been added. The above results imply that the GED and TMD
(without using NFs) metrics may not properly capture the dissimilarities in the structural (spectral)
properties of the graphs.

4 COMPUTING GGDS BETWEEN GRAPHS OF THE SAME SIZE

4.1 PHASE 1: SPECTRAL GRAPH MATCHING FOR FINDING NODE CORRESPONDENCE

Computing the GGD metric between two input graphs requires solving a graph-matching problem in
advance. Without knowing the node-to-node correspondence that can be achieved through a graph-
matching step, the distance between modified Laplacian matrices may be significantly higher than
the minimum possible distance. In this work, we aim to find the infimum between two SPD matrices
on the Riemannian manifold formed by modified Laplacian matrices, which can be accomplished
through a graph-matching phase. Graph matching techniques can be used to establish node-to-node
correspondence by seeking a bijection between node sets to maximize the alignment of edge sets (Livi
& Rizzi, 2013; Emmert-Streib et al., 2016; Caetano et al., 2009). This combinatorial optimization
problem can be cast into a Quadratic Assignment Problem, which is NP-hard to solve or approximate
(Fan et al., 2020; Wang et al., 2020).

Figure 1: Graphs with simple perturbations.

In this study, we will exploit a spectral graph
matching method called GRAMPA (GRAph
Matching by Pairwise eigen-Alignments) (Fan
et al., 2020) to find the approximate node cor-
respondence between two graphs. GRAMPA
starts with comparing the eigenvectors of the
adjacency matrices of the input graphs. Instead
of comparing only the eigenvectors responding
to the largest eigenvalues, it considers all pairs
of eigenvectors/eigenvalues to generate a similarity matrix. This similarity matrix can be constructed
by summing up the outer products of eigenvector pairs, weighted by a Cauchy kernel (Fan et al., 2020).
Subsequently, a rounding procedure will be performed to determine the optimal match between nodes
employing the similarity matrix.

Definition 4.1 (Similarity Matrix). Let G1 and G2 be two undirected graphs with n nodes, and
let their weighted adjacency matrices be A1 and A2, respectively. The spectral decompositions
of A1 and A2 are expressed as follows: A1 =

∑n
i=1 ζiuiu

⊤
i and A2 =

∑n
j=1 µjvjv

⊤
j , where

the eigenvalues are ordered such that ζ1 ≥ . . . ≥ ζn and µ1 ≥ . . . ≥ µn. The similarity matrix
X̂ ∈ Rn×n is defined as:

X̂ =

n∑
i,j=1

w (ζi, µj) · uiu
⊤
i Jvjv

⊤
j ,where w(x, y) =

1

(x− y)2 + η2
. (6)

Here, J ∈ Rn×n denotes an all-one matrix and w is the Cauchy kernel of bandwidth η.
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The permutation estimate matrix π̂ can be obtained by rounding X̂ , typically achieved by solving the
Linear Assignment Problem (LAP):

π̂ = argmax

n∑
i=1

X̂i,π(i), (7)

which can be efficiently solved using the Hungarian algorithm (Fan et al., 2020). However, one
simpler rounding procedure was advocated in (Fan et al., 2020) with theoretical results supporting
the rounding procedure, which is given by the following equation:

π̂(i) = argmax
j

X̂ij , (8)

here the permutation estimate matrix is constructed by selecting the largest index from each row.
While LAP provides optimal matching, its computational complexity can become expensive for very
large graphs. By carefully choosing η, the same match recovery holds if rounding is performed using
equation 7 instead of solving the LAP in equation 8 (Fan et al., 2020).
Lemma 4.1 (Graph Matching Recovery). Given symmetric matrices A1, A2 and Z from the Gaussian
Wigner model, where A2π∗ = A1 + σZ, there exist constants c, c′ > 0 such that if 1/n0.1 ≤ η ≤
c/ log n and σ ≤ c′η, then with probability at least 1− n−4, GRAMPA Algorithm correctly recovers
the permutation matrix π∗ from the Similarity matrix X̂ (Fan et al., 2020). Its proof can be found in
the supporting documents A.6.

Once π̂ is obtained, the best-matched mirrors of the input graphs are:

Best Match to A2 = π̂A1π̂
⊤, Best Match to A1 = π̂⊤A2π̂. (9)

In practice, the graph matching performance is not too sensitive to the choice of tuning parameter
η. For small-sized graphs, such as the MUTAG dataset(Morris et al., 2020), setting η = 0.5 yields
satisfactory results in matching. In Appendix A.11, the effect of η for computing GGDs has been
comprehensively analyzed.

4.2 PHASE 2: COMPUTING GEODESIC DISTANCES BETWEEN GRAPH LAPLACIANS

The GGD metric can be formally defined as the infimum length of geodesics connecting two data
points in the Riemannian manifold formed by the cone of the modified graph Laplacian matrices
(Lim et al., 2019). This distance metric can be imagined as a matrix representation of the geometric
distance | log(a/b)| between two positive numbers a, b (Bonnabel & Sepulchre, 2010; Shamai &
Kimmel, 2017; Owen & Provan, 2010).
Definition 4.2 (Graph Geodesic Distance). Let L1 and L2 ∈ Sn

++ denote two modified Laplacian
matrices corresponding to two matched graphs G1 and G2 both having n nodes, then their Graph
Geodesic Distance denoted by GGD(G1, G2) : Sn

++ × Sn
++ → R+, is defined as:

GGD(G1, G2) =

[
n∑

i=1

log2(λi(L−1
1 L2))

]1/2

, (10)

where λi are the generalized eigenvalues computed with the matrix pencil (L1, L2).

The above GGD formulation for computing distances between SPD matrices is based on an Affine-
Invariant Riemannian Metric (AIRM) (Lim et al., 2019), while another well-known metric, the
Log-Euclidean Riemannian Metric (LERM) (Ilea et al., 2018; Thanwerdas & Pennec, 2023; Chen
et al., 2024) is also discussed in Appendix A.9 of the supplementary section.

4.3 CONNECTION BETWEEN GGD AND GRAPH STRUCTURAL MISMATCHES

Consider two graphs, G1 and G2, that have the same node set V , with a known correspondence
between their nodes. Let L1 and L2 be the Laplacian matrices of these graphs, respectively. Suppose
we take a subset of nodes, denoted by S and its complement, S′. We assign the value 1 to the nodes
in S and the value 0 to those in S′. This defines the set S as:

S
def
= {v ∈ V : x(v) = 1}.

5
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Figure 2: The cut mismatch (for the node set S) between
two simple graphs is 6

2 = 3.

For graph G1, the cut for the node subset
S (which is the number of edges that cross
between S and S′) can be computed as:

cutG1
(S, S′) = xTL1x.

As shown in Figure 2, for node subset
S six edges cross between S and S′ in
graph G1, whereas only two edges cross in
graph G2. This difference in edge counts
between the two graphs is referred to as a
cut mismatch. The relationship between
this cut mismatch and the generalized eigenvalue problem for the matrix pair (L1, L2) can be
formalized using the Generalized Courant-Fischer Minimax Theorem (Golub & Van Loan, 2013;
Feng, 2020).
Lemma 4.2 (The Generalized Courant-Fischer Minimax Theorem). Given two Laplacian matrices
L1, L2 ∈ Rn×n such that null (L2) ⊆ null (L1), the k-th largest generalized eigenvalue of L1 and
L2 can be computed as follows for 1 ≤ k ≤ rank (L2):

λk = min
dim(U)=k
U⊥null(L2)

max
x∈U

x⊤L1x

x⊤L2x
. (11)

This theorem provides a method to bound the maximum cut mismatch between two graphs by
calculating the largest generalized eigenvalue. Specifically, we can use the following optimization
problem to compute the dominant eigenvalue λmax (Feng, 2020):

λmax = max
|x|≠0

x⊤1=0

x⊤L1x

x⊤L2x
≥ max

|x|≠0
x(v)∈{0,1}

x⊤L1x

x⊤L2x
= max

cutG1
(S, S′)

cutG2
(S, S′)

. (12)

From equation (12), we can see that the dominant generalized eigenvalue λmax corresponds to the
most significant cut mismatch between G1 and G2. In particular, λ1 = λmax sets an upper bound on
the cut mismatch between G1 and G2, while λn = λmin defines the upper bound of the mismatch in
the reverse direction, between G2 and G1. Appendix A.7 illustrates this relationship with practical
examples.

5 COMPUTING GGDS FOR GRAPHS WITH DIFFERENT SIZES

Submatrix selection methods To calculate geodesic distances between SPD matrices of different
sizes, prior studies have proposed a submatrix adaptation method (Lim et al., 2019). In this approach,
a principle submatrix with the same size as the smaller matrix is obtained from the larger matrix
(Ye & Lim, 2016), and subsequently used to calculate the GGD. Furthermore, this method can be
extended to project the smaller matrix into a larger one with the same size as the larger matrix (Lim
et al., 2019). While these methods are efficient for handling SPD matrices, for our application taking
the submatrix of the modified Laplacian can lose important nodes/edges, compromising critical graph
structural properties.

Graph coarsening methods In this work, we will leverage spectral graph coarsening to address
the issue. Spectral graph coarsening is a widely adopted process (Loukas, 2019; Aghdaei & Feng,
2022) for reducing graph sizes while preserving key spectral (structural) properties, such as the
Laplacian eigenvalues/eigenvectors. Recent spectral graph coarsening methods aim to decompose an
input graph into many distinct node clusters, so that a reduced graph can be formed by treating each
node cluster as a new node, with a goal of assuring that the reduced graph will approximately retain
the original graph’s structure (Loukas, 2019; Han et al., 2024; Aghdaei & Feng, 2022). Therefore,
when computing GGDs for graphs of different sizes, we can first adopt spectral graph coarsening to
transform the bigger graph into a smaller one, so that our framework in Section 4 can be subsequently
utilized. However, existing state-of-the-art graph coarsening methods do not allow us to precisely
control the size of the reduced graphs.

6
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5.1 OUR APPROACH: SPECTRAL GRAPH COARSENING BY EFFECTIVE RESISTANCES

In this work, we introduce a spectral graph coarsening method using effective-resistance clustering
(Aghdaei & Feng, 2022). Our approach starts with estimating the effective resistances of all edges in
the original graph. We can also incorporate the difference between node features (if available) as an
additional parameter. In the graph coarsening phase, our method will rank edges according to their
resistance distances and only the top few edges with the smallest resistances will be coarsened into
new nodes. This approach enables precise control over the size of the reduced graphs while preserving
crucial structural properties, such as the eigenvalues/eigenvectors of the adjacency matrices, which
are essential for the subsequent spectral graph matching step (Phase 1 in Section 4.1).

Consider a connected, weighted, undirected graph G = (V,E,w) with |V | = n. The effective
resistance between nodes (p, q) ∈ V plays a crucial role in various graph analysis tasks including
spectral sparsification algorithms (Spielman & Teng, 2011). The effective resistance distances can be
accurately computed using the equation:

Reff (p, q) =

n∑
i=2

(u⊤
i bpq)

2

σi
, (13)

where bp ∈ Rn denote the standard basis vector with all zero entries except for the p-th entry
being 1, and bpq = bp − bq. ui ∈ Rn for i = 1, . . . , n denote the unit-length, mutually-orthogonal
eigenvectors corresponding to Laplacian eigenvalues σi for i = 1, . . . , n. A brief background on
effective resistance is provided in Appendix A.4.
Scalable estimation of effective resistances To address the computational complexity associated
with directly computing eigenvalues and eigenvectors required for estimating edge effective resis-
tances, we leverage a scalable framework for approximating the eigenvectors of the graph Laplacian
matrix using the Krylov subspace (Saad, 2011). Let A denote the adjacency matrix of a graph
G, consider its order-m Krylov subspace Km(A, x) that is a vector space spanned by the vectors
computed through power iterations x,Ax,A2x, . . . , Am−1x (Liesen & Strakoš, 2012). By enforcing
orthogonality among the above vectors in the Krylov subspace, a new set of mutually orthogonal
vectors of unit lengths can be constructed for approximating the original Laplacian eigenvectors in
13, which are denoted as ũ1, ũ2, . . ., ũm. To estimate the effective resistance between two nodes p
and q, we can exploit the approximated eigenvectors:

Reff (p, q) ≈
m∑
i=1

(ũ⊤
i bpq)

2

ũ⊤
i Lũi

, (14)

where ũi represents the approximated eigenvector corresponding to the i-th eigenvalue of L.

Graph coarsening with node features In order to account for the variation in node features along
with edge resistive distance, we can use the following modified effective resistance formulation:

R∗
eff (p, q) = Reff (p, q) + α∥fp − fq∥, (15)

where fp and fq are node feature vectors of nodes p and q, respectively, while α is a weighting factor
that determines the effect of node feature information in the graph coarsening process. For instance, if
the weight is sufficiently large, the modified effective resistance between nodes with different features
will always exceed that of nodes with similar features, effectively preventing their coarsening.

6 GGD AS A DISTANCE METRIC

Assuming the graph matching problem can always find the exact correspondence between nodes,
we prove that the GGD metric (based on AIRM) between any two nonempty graphs is a metric that
satisfies the following conditions:

• The distance between a graph and itself or between two isomorphic graphs is zero:
GGD(G,G) = 0.

• (Positivity) The distance between two distinct graphs is positive: GGD(G1, G2) ≥ 0.
• (Symmetry) The distance between G1 and G2 is the same of the one between G2 and G1:
GGD(G1, G2) = GGD(G2, G1).

• The triangle inequality: GGD(G1, G3) ≤ GGD(G1, G2) +GGD(G2, G3).

Detailed proofs of the above four properties are provided in Appendix A.5.
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Figure 3: Correlation between graph distance metrics and GNN model outputs.

7 EXPERIMENTS

7.1 APPLICATION OF GGDS IN GNN STABILITY ANALYSIS

To analyze the stability of GNN models (Bronstein et al., 2017; Garg et al., 2020; Duvenaud et al.,
2015), we conducted multiple experiments with the GGD and TMD metrics. GNNs typically operate
by a message-passing mechanism (Gilmer et al., 2017), where at each layer, nodes send their feature
representations to their neighbors. The feature representation of each node is initialized to its
original features and is updated by repeatedly aggregating incoming messages from neighbors. In
our experiment, we relate GGD to the Graph Isomorphism Networks (GIN) (Xu et al., 2019), one of
the most widely applied and powerful GNNs, utilizing the MUTAG dataset (Morris et al., 2020) as
our reference graph dataset. The objective is to analyze the relationship between the input distance
GGD(G1, G2) and the distance between the output GIN vectors, ∥h(G1)− h(G2)∥ for randomly
selected pairs of graphs.

We employed a three-layer GIN network as described in (Xu et al., 2019). This network uses GIN
convolutional layers to update tensors of nodes based on their neighboring nodes and then aggregates
those outputs in a vector representation, followed by linear layers for classification tasks. Thus it
outputs a single vector h(G) for the entire graph G. The result is illustrated in Figure 3.

We observe a strong correlation between GGD and the output distance, as indicated by a high
Pearson correlation coefficient. This finding implies the effectiveness of the proposed GGD metric for
analyzing the stability of GNN models (Chuang & Jegelka, 2022). To compare GGD with existing
metrics, we repeat this experiment using TMD without considering node attributes (features). As
shown in Figure 3, GGD demonstrates a better correlation with GIN outputs than the TMD metric
across different levels. These findings indicate that when dealing with graphs without node features,
GGD should be adopted for the stability analysis of graph learning models.

7.2 APPLICATION OF GGDS IN GRAPH CLASSIFICATION TASKS

We evaluate whether the GGD metric aligns with graph labels in graph classification tasks using
datasets from TUDatasets (Morris et al., 2020). We employ a Support Vector Classifier (SVC)
(C = 1) with an indefinite kernel e−γ∗GGD(G1,G2), which can be viewed as a noisy observation
of the true positive semidefinite kernel (Luss & d’Aspremont, 2007). The parameter γ is selected
through cross-validation from the set {0.01, 0.05, 0.1}. For comparative analysis with existing
methods, we include graph kernels based on graph subtrees: the WL subtree kernel (Shervashidze
et al., 2011); and two widely adopted GNNs: graph isomorphism network (GIN) (Xu et al., 2019)
and graph convolutional networks (GCN) (Kipf & Welling, 2017).

Table 2 presents the mean and standard deviation over five independent trials with a 90%-10%
train-test split. For most cases, GGD consistently outperforms the performance of state-of-the-art
GNNs, graph kernels, and metrics when node attributes are missing. Additionally, we observe that
GGD allows us to obtain better results for larger datasets than smaller ones.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Classification accuracies for various models on graph datasets.

Dataset
Accuracy in percentage

MUTAG PC-3H SW-620H BZR

GGD 86.24±7.89 78.34±1.60 77.6±3.50 83.23±6.25
TMD, L = 2 76.19±5.26
TMD, L = 3 77.34±5.26 71.24±2.45 70.22±2.29 73.43±2.44
TMD, L = 4 78.20±5.26 71.37±1.42 70.84±2.29 73.96±4.88
TMD, L = 5 71.89±2.40 71.20±1.88 75.13±2.44
GCN(Kipf & Welling, 2017) 77.37±3.95 70.56±1.66 69.44±0.94 72.56±3.66
GIN(Xu et al., 2019) 82.60±4.60 75.34±1.10 73.36±2.32 77.09±3.66
WWL(Togninalli et al., 2019) 72.39±2.63 65.46±1.11 68.06±0.86 72.37±1.22
WL Subtree(Shervashidze et al., 2011) 76.81±6.30 68.43±0.76 69.36±1.20 N/A
FGW(Titouan et al., 2019) 88.33±5.26 61.77±1.11 58.28±1.02 51.03±2.63

Table 3: Runtime comparison for different distance metrics on graph datasets.

MUTAG PC-3H SW-620H BZR

GGD 4.87 s 31.89 s 45.37 s 5.80 s
TMD, L = 3 5.30 s 88.60 s 98.70 s 7.22 s
TMD, L = 4 7.89 s 111.98 s 134.38 s 10.34 s
TMD, L = 6 11.27 s 272.50 s 288.12 s 14.98 s

7.3 RUNTIME COMPLEXITY ANALYSIS AND COMPARISON

When comparing various graph distance metrics, a primary consideration is their computational
complexity. Conventional approaches usually require intricate computations that frequently have
cubic time or higher complexities. For our problem, the spectral graph matching step requires the
eigenvalue decomposition of adjacency matrices and solving the linear assignment problem (LAP).
Eigenvalue decomposition of an n× n matrix has a complexity of O(n3) (Borodin & Munro, 1975;
Flamary et al., 2021), while solving the LAP using the Hungarian algorithm also has a runtime
complexity of O(n3). Similarly, calculating the generalized eigenvalue of two SPD matrices entails a
cubic complexity. Consequently, the overall complexity of GGD calculation is O(n3). On the other
hand, TMD is an OT-based distance metric with a complexity of O(n3 log(n)) (Chuang & Jegelka,
2022; Flamary et al., 2021). Therefore, GGD exhibits slightly better (lower) runtime complexity than
the TMD metric.

To evaluate runtime performance, we conduct extensive experiments to compare the runtime of
computing TMD at various levels with GGD on both small graphs (MUTAG, BZR) and large graphs
(PC-3H, SW-620H) collected from the TUDataset (Morris et al., 2020). Table 3 presents the average
runtime (in seconds) for computing 100 distances between different graphs obtained by repeating the
experiment five times. The results demonstrate that GGD consistently outperforms TMD in terms of
runtime across all datasets and scenarios, particularly when dealing with larger graphs that contain
more nodes. The TMD metric computation usually requires more levels to effectively capture the
entire graph structure. In such cases, GGD exhibits runtime performance approximately 6− 9 times
faster than of TMD. Hence, we conclude that GGD is significantly more computationally efficient
than TMD, especially when working with large graphs. More details about our experimental setup
can be found in Appendix A.12.

7.4 PARTIAL NODE FEATURES

Cutting-edge graph distance metrics like TMD, rely on node attributes to compute the dissimilarity
between graphs, resulting in more accurate outcomes when all attributes are available. However,
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Table 4: Comparison of correlation with GNN outputs and distance metrics with partial node features.

Distance
metric

Node features missing in percentage

0% 20% 50% 80% 100%

TMD, L = 3 0.84 0.78 0.72 0.63 0.61
TMD, L = 4 0.81 0.77 0.62 0.58 0.57
TMD, L = 5 0.80 0.75 0.65 0.58 0.53

GGD 0.78 0.78 0.77 0.77 0.77

Figure 4: Percentage of the original GGD using numbers of extreme eigenvalues.

acquiring datasets with complete node attributes is often unattainable in real-world scenarios, leading
to situations where certain features are partially missing. In such scenarios when only partial node
features are available, we compare TMD with GGD to better understand their differences. Table
4 shows that the TMD metric outperforms GGD at various levels when node features are fully
accessible. However, when node features are randomly removed from the MUTAG dataset, the
accuracy of TMD degrades substantially.

7.5 GGD APPROXIMATION USING EXTREME EIGENVALUES

The largest and the smallest eigenvalues correspond to the most dominant mismatches in graph
cuts and effective resistance distances, contributing the most to the total GGD value. Similarly, the
second largest and smallest eigenvalues correspond to the next significant mismatched cuts. In our
experiment, we obtain approximate GGDs using a few extreme eigenvalue pairs and compare them
with the ground truth. Figure 4 illustrates the relative accuracy of the approximate GGDs, in which
we observe that the top four pairs of extreme eigenvalues contribute 80% of the total GGD values. In
addition, we conduct the SVC classification task and GNN correlation study using GGD with only 2
and 4 extreme eigenvalue pairs, respectively, and present the associated findings in Table 5.

8 CONCLUSION

In this work, we introduce Graph Geodesic Distance (GGD), a novel spectral graph distance metric
based on graph matching and the infimum on a Riemannian manifold. GGD captures the essential
structural mismatches of graphs vital for graph classification tasks. Additionally, we show that GGD
can serve as an effective metric for analyzing the stability of GNN models and graph classification
tasks, achieving superior performance when only partial node features are available.

Table 5: Performance of GGD using extreme eigenvalues only.

Task
Number of extreme eigenvalues

2 4 All

Correlation with GNN 0.74 0.76 0.77
Classification accuracy 81.50± 6.85 83.87± 7.56 86.00± 7.50
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A APPENDIX

A.1 ALGORITHM FLOW

Algorithm 1 GGD: Geodesic Graph Distance

1: Input: Graphs G1 = (V1, E1, w1), G2 = (V2, E2, w2), tuning parameter η > 0, small diagonal value
0 < ϵ ≪ 1, node feature weight α

2: Output: GGD Value
3: Compute the adjacency matrices A1, A2

4: if shape(A1) ̸= shape(A2) then
5: Assign the larger graph to G1, and the smaller graph to G2

6: while shape(A1) > shape(A2) do
7: Compute the effective resistance Reff (p, q) of each edge (p, q) ∈ E1

8: Compute the modified effective resistance R∗
eff (p, q) = Reff (p, q) + α||NFp −NFq||

9: Coarsen the edge with the lowest R∗
eff (p, q)

10: Update A1

11: end while
12: end if
13: Compute eigenvectors ui, vi and eigenvalues ζi, µi of A1 and A2, respectively
14: Compute the similarity matrix X̂ ∈ Rn×n

15: Solve Linear Assignment Problem to compute the permutation estimate matrix π̂
16: Update A2 by multiplying with π̂ to get best match with A1

17: Derive L1 and L2 from A1 and A2

18: Add ϵ to diagonal values of L1 and L2

19: Compute GGD value using the generalized eigenvalues
20: return GGD

A.2 GRAPH ADJACENCY AND LAPLACIAN MATRICES

For an undirected graph G = (V,E,w), where V represents the set of nodes (vertices), E represents
the set of edges, and w denotes the associated edge weights, the adjacency matrix A is defined as
follows:

A(i, j) =

{
w(i, j), if (i, j) ∈ E.

0, otherwise.
(16)

Let D denote the diagonal matrix where D(i, i) is equal to the (weighted) degree of node i. The
graph Laplacian matrix is then given by L = D −A. The rank of the Laplacian matrix of a graph G
is n− c(G), where n is the number of nodes and c(G) is the number of connected components in the
graph. For a connected graph, this implies that the rank of the Laplacian matrix is n− 1, meaning
Laplacian matrices are not full-rank (Bondy et al., 1976).

A.3 RIEMANNIAN MANIFOLD

A manifold is a type of topological space that resembles Euclidean space in small, local regions
around each point. In other words, for every point on a manifold, there is a neighborhood that is
similar to a flat multidimensional space. A Riemannian manifold is a type of manifold equipped
with a smoothly varying inner product on the tangent spaces at each point. This means that for every
point on the manifold, the tangent space has a way of measuring distances and angles, and these
measurements change smoothly from point to point (Lee, 2018). In simpler terms, a Riemannian
manifold is a smooth, curved space that locally behaves like Euclidean space but has its own geometric
properties, such as how distances, angles, and volumes are defined. These properties are determined
by a Riemannian metric, which generalizes the concept of measuring lengths and angles in flat space
to curved spaces (Lee, 2018).

A Riemannian manifold can have curvature, unlike a flat space. This curvature allows the study of
geometric shapes ranging from spheres and cylinders to more abstract surfaces. The Riemannian
structure enables us to compute geodesics, volumes, and various types of curvature. This makes
Riemannian manifolds fundamental in fields like differential geometry and physics, and increasingly
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important in data science, where curved spaces are used to model complex datasets (You & Park,
2021).

A.4 EFFECTIVE RESISTANCE IN GRAPH THEORY

Effective resistance, also known as resistance distance, is a concept in graph theory that measures the
electrical resistance between two nodes in a weighted or unweighted graph represented as a network
of resistors (Ghosh et al., 2008). It draws an analogy between electrical networks and graphs, helping
to quantify how easily current can flow between two nodes, where the edges are treated as resistors.
The effective resistance between nodes provides insight into the connectivity between the network.
This means two nodes with lower effective resistance values have higher connectivity (Ellens et al.,
2011).

A.5 DETAILED PROOFS SHOWING GGD IS A METRIC

A.5.1 IDENTITY PROPERTY

Proof. Let the corresponding SPD matrix of the graph G be L ∈ Sn
++. From Equation 10, we have:

GGD(G,G) =

[
n∑

i=1

log2(λi(L−1L))

]1/2

=

[
n∑

i=1

log2(λi(I))

]1/2

.

The identity matrix has only one eigenvalue, which is 1. So, GGD(G,G) =
[
log2(1)

]1/2
= 0.

A.5.2 POSITIVITY PROPERTY

Proof. Let the corresponding SPD matrices of the graphs G1 and G2 be L1, L2 ∈ Sn
++. Let the

generalized eigenvalues of (L−1
1 L2) be λ1, λ2, λ3, . . . , λn. From Equation 10, we get:

GGD(G1, G2) =
[
log2(λ1) + log2(λ2) + log2(λ3) + . . .+ log2(λn)

]1/2
.

Now, log2(λ1) + log2(λ2) + log2(λ3) + . . .+ log2(λn) ≥ 0, for any values of λi.

We can conclude, GGD(G1, G2) ≥ 0.

A.5.3 SYMMETRY PROPERTY

Proof. Let the corresponding SPD matrices of the graphs G1 and G2 be L1, L2 ∈ Sn
++. Let the

generalized eigenvalues of (L−1
1 L2) be λ1, λ2, λ3, . . . , λn. From Equation 10, we get:

GGD(G1, G2) =

[
n∑

i=1

log2(λi)

]1/2

.

Given that the inverse of a symmetric matrix is also symmetric, and the product of two symmetric
matrices is symmetric, it follows that (L−1

1 L2) is a symmetric tensor. Furthermore, the eigenvalues
of a symmetric matrix and the eigenvalues of its inverse matrix are inversely related.

So, the eigenvalues of (L−1
2 L1) will be 1

λ1
, 1
λ2
, 1
λ3
, . . . , 1

λn
.

GGD(G2, G1) =

[
n∑

i=1

log2(
1

λi
)

]1/2

.

Now, log
(

1
λi

)
= − log(λi); so, log2

(
1
λi

)
= log2(λi).

So, we can conclude GGD(G1, G2) = GGD(G2, G1).
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A.5.4 TRIANGLE INEQUALITY

Proof. Let, L1,L2,L3 ∈ Sn
++ are three SPD matrices corresponding to graphs G1, G2, G3.

Now, The Frobenius norm ∥X∥F is the geodesic length at d(expX, I) = ∥X∥F (Bonnabel &
Sepulchre, 2010). Hence at identity, d(L, I) = ∥ logL∥F .

From (Bonnabel & Sepulchre, 2010; You & Park, 2021) we get,

GGD(G1, G2) = GGD
(
G

−1/2
1 G2G

−1/2
1 , I

)
=

∥∥∥log (L−1/2
1 L2L−1/2

1

)∥∥∥
F
=

∥∥log (L−1
1 L2

)∥∥
F
.

(17)
We know,

L−1
1 L3 = L−1

1 (L2L−1
2 )L3 = (L−1

1 L2)(L−1
2 L3).

Now using the Frobenius norm inequality, we get:

∥L−1
1 L3∥ = ∥(L−1

1 L2)(L−1
2 L3)∥ ≤ ∥L−1

1 L2∥∥L−1
2 L3∥.

Now taking logarithms on both sides:

∥ log(L−1
1 L3)∥ ≤ ∥ log(L−1

1 L2)∥+ ∥ log(L−1
2 L3)∥.

Using Equation 10, we conclude:

GGD(G1, G3) ≤ GGD(G1, G2) +GGD(G2, G3).

A.6 GRAPH MATCHING RECOVERY

Given symmetric matrices A1, A2 and Z from the Gaussian Wigner model, where A2π∗ = A1 + σZ,
there exist constants c, c′ > 0 such that if 1/n0.1 ≤ η ≤ c/ log n and σ ≤ c′η, then with probability
at least 1− n−4 for all large n, the matrix X̂ in equation 6 satisfies,

min
i∈[n]

X̂i,π∗(i) > max
i,j∈[n]:j ̸=π∗(i)

X̂ij (18)

and hence, the GRAMPA algorithm correctly recovers the permutation estimation matrix π∗.

Now, this proof is divided into two parts:

Lemma A.1 (Noiseless Setting Diagonal Dominance). In a noiseless situation, means replacing A2

with A1, similarity matrix X̂∗ is defined as:

X̂∗ = X̂(A1, A1) =

n∑
i,j=1

uiu
T
i Juju

T
j

(ζi − ζj)2 + η2
. (19)

For some constants C, c > 0, if 1/n0.1 < η < c/ log n, then with probability at least 1− 5n−5 for
large n, it can be proved that the diagonal components of X̂∗ are dominant by showing (Fan et al.,
2019):

min
i∈[n]

(X̂∗)ii >
1

3η2
(20)

and

max
i,j∈[n]:i̸=j

(X̂∗)ij < C

(√
log n

η3/2
+

log n

η

)
. (21)

Lemma A.2 (Bounding the Noise Impact). The difference between the similarity matrix X in the
presence of noise and the noiseless situation is bounded. If η > 1/n0.1, then for a constant C > 0,
with probability at least 1− 2n−5 for large n, it can be shown (Fan et al., 2019):

max
i,j∈[n]

|X̂ij − (X̂∗)ij | < Cσ

(
1

η3
+

log n

η2

(
1 +

σ

η

))
. (22)
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Figure 5: Generalized eigenvalues and their corresponding cut mismatches

Assuming lemma A.1 and A.2, for some c, c′ > 0 sufficiently small, and by setting η < c/ log n and
σ < c′η, the algorithm ensures that the right sides of both equations 21 and 22 are at most 1/(12η2).
Then when π∗ = id (the identity permutation), these lemmas combine to imply:

min
i∈[n]

X̂ii >
1

4η2
>

1

6η2
> max

i,j∈[n]:i ̸=j
X̂ij (23)

with probability at least 1− n−4. So, all diagonal entries of X̂ are larger than all off-diagonal entries,
thereby achieving exact recovery (Fan et al., 2019).

A.7 RELATION BETWEEN GENERALIZED EIGENVALUES WITH CUT MISMATCH

We selected two graphs from the MUTAG dataset and computed their generalized eigenvalues
following the procedure for calculating the Generalized Graph Distance (GGD), which involves
determining the node-to-node correspondence. Subsequently, we considerd all possible subsets of
nodes and evaluate their corresponding cut mismatches. As shown in Figure 5, each generalized
eigenvalue is closely associated with a cut mismatch. This empirical observation supports our
hypothesis that the GGD between two input graphs is strongly correlated with structural mismatches
in graphs.

A.8 CHOOSING ϵ FOR CONVERTING LAPLACIANS TO SPD MATRICES

Laplacian matrices are symmetric positive semi-definite (SPSD) matrices. To convert these to
symmetric positive definite (SPD) matrices, we added a diagonal matrix with very small values (ϵ).
We used 0.0001 as the small value (ϵ) in our experiments. When working with Laplacian matrices
of a weighted or unweighted graph, values significantly smaller than the edge weights of that graph
have a minimal effect on the transformation. We conducted additional experiments with different
small values and included the results in Tables 6 and 7. In Table 6, we observed that in our specific
case with the MUTAG graph dataset (Morris et al., 2020), where all graphs are unweighted, any value
less than 0.001 has an almost negligible influence on the performance of the graph classification task.
Additionally, when using values equal to or less than 0.001, the GGD value remains almost the same,
as shown in Table 7.

A.9 COMPARISON OF TWO DIFFERENT RIEMANNIAN METRICS FOR SPD MATRICES

The two most commonly used Riemannian metrics on the SPD manifold are the Affine Invariant
Riemannian Metric (AIRM) and the Log-Euclidean Riemannian Metric (LERM) (Ilea et al., 2018;
Thanwerdas & Pennec, 2023; Chen et al., 2024). AIRM is a Riemannian metric that remains invariant
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Table 6: Classification accuracy using MUTAG dataset with different values of ϵ.

Value of ϵ Classification accuracy Value of ϵ Classification accuracy
0.1 76.38 ± 7.89 1e-4 85.96 ± 5.26
5e-2 79.02 ± 6.58 1e-5 84.21 ± 5.26
1e-2 79.02 ± 5.26 1e-6 85.96 ± 5.26
5e-3 81.57 ± 7.89 1e-7 85.96 ± 7.89
1e-3 81.57 ± 7.89

Table 7: GGD values using MUTAG dataset for different values of ϵ.

Value of Normalized GGD of a random Average normalized
ϵ graph pair (MUTAG[85], MUTAG[103]) GGD of 1000 pairs

0.1 0.712 0.727
5e-2 0.827 0.834
1e-2 0.952 0.959
5e-3 0.978 0.979
1e-3 0.996 0.995
1e-4 0.9996 0.9995
1e-5 0.99995 0.99996
1e-6 0.999996 0.999996
1e-7 1 1

under affine transformations, meaning the metric is unaffected when matrices are transformed by any
invertible operation. The geodesic distance between two SPD matrices, A and B, using AIRM is
given by (You & Park, 2021; Moakher, 2005):

dAIRM(A,B) = ∥ log(A−1B)∥F =

[
n∑

i=1

log2(λi(A
−1B))

]1/2

. (24)

On the other hand, LERM addresses some of the computational complexity challenges associated
with AIRM by mapping SPD matrices to an Euclidean space through the matrix logarithm operation.
In this Euclidean space, computations are simplified. The geodesic distance between two SPD
matrices, A and B, using LERM is defined as (Huang et al., 2014):

dLERM(A,B) = ∥ log(A)− log(B)∥F . (25)

In this paper, we primarily used AIRM to compute geodesics because of its stronger theoretical
foundation and its ability to better explain graph cut mismatches. However, for comparison, we also
conducted experiments using LERM. Figure 6 shows that the Graph Geodesic Distances computed
using the LERM metric are highly correlated with those obtained using AIRM, though the GGD
using AIRM demonstrates better performance overall. A detailed performance comparison of these
two metrics is provided in Table 8.

A.10 USING NORMALIZED LAPLACIANS FOR GGD CALCULATION

In many existing studies, the normalized Laplacian matrix is commonly used to study spectral
graph properties (Chung, 1997). The normalized Laplacian matrix of a graph G is defined as:
Lnorm = I −Anorm, where Anorm is the normalized adjacency matrix. The normalized adjacency
matrix is expressed as (Chung, 1997):

Table 8: Comparison between Riemannian metrics for GGD calculation.

Riemannian metric Correlation with GNN output Classification accuracy
Affine-Invariant 0.7786 86±7.5%
Log-Euclidean 0.7634 84.38%
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Figure 6: GGD between graph pairs using AI and LE Riemannian metric.

Table 9: Effect of epsilon in the calculation of GGD using normalized Laplacian matrices.

Value of ϵ 0.01 0.001 0.0001 0.00001
GGD using Laplacian matrices 16.235 16.775 16.832 16.838
GGD using normalized Laplacian matrices 384.097 254.440 188.345 165.332

Anorm = D−1/2AD−1/2, (26)

where D represents the diagonal degree matrix, and A denotes the adjacency matrix of the graph.

Form equation 26, we can derive:

Lnorm = I −D−1/2AD−1/2 = D−1/2(D −A)D−1/2 = D−1/2LD−1/2. (27)

Similar to the Laplacian matrices of graphs, normalized graph Laplacian matrices are also symmetric
and positive semi-definite. Therefore, it is necessary to add small values to the diagonal elements of
these matrices. However, our experiments reveal that the GGD calculation is highly sensitive to this
small value (ϵ), resulting in significant fluctuations across different values, as demonstrated in Table
9. Additionally, the geodesic distances computed with the modified normalized Laplacian matrices
exhibit poor accuracy in both classification tasks and their correlation with GNN outputs.

A.11 EFFECT OF TUNING PARAMETER η ON GRAPH MATCHING

In the original work, it was suggested that the regularization parameter η needs to be chosen so that
σ ∨ n−0.1 ≲ η ≲ 1/ log n (Fan et al., 2020). It is also mentioned that for practical cases, computing
permutation matrix for different values of η in an iterative way can result in better accuracy. The
GRAMPA uses η = 0.2 for all their experiments (Fan et al., 2020).
We used a few values of η in the classification problem using the MUTAG dataset and got that
the best accuracy is obtained at η = 0.5. In Figure 7, the performance of the tuning parameter is
demonstrated.

A.12 EXPERIMENTAL SETUP

To evaluate the performance of the Graph Geodesic Distance (GGD) metric, we utilized graph
datasets from the TUDataset collection (Morris et al., 2020). For small graphs, we used datasets like
MUTAG and BZR, and for larger graphs, we selected PC-3H and SW-620H, which present more
sizable networks. Detailed information about the datasets used is provided in Table 10.

While Classification tasks, each dataset was split into 90% training and 10% testing sets to ensure
an unbiased evaluation process. When assessing the correlation with GNN, we trained a three-layer
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Figure 7: Classification accuracy vs GRAMPA tuning parameter.

Table 10: Brief description of graph datasets used.

Dataset name Number of graphs Average number of nodes Average number of edges
MUTAG 188 17.93 19.79
PC-3H 27509 47.20 49.33
SW-620H 40532 26.06 28.09
BZR 405 35.75 38.36

GIN with 90% of all graphs from MUTAG and validated with the rest 10%. For the performance
evaluation using graphs with partial node features, we took each dataset with node features and
randomly removed a certain portion of features.

All experiments have been evaluated on a laptop with an Apple M1 chipset, featuring an eight-core
CPU and a seven-core GPU.
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