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ABSTRACT

Neural operator has been validated as a promising deep surrogate model for solv-
ing partial differential equations (PDEs). Based on the spectral operator learning
(SOL) architecture, an enhanced orthogonal polynomial neural operator that we
have developed significantly improved the method’s accuracy by precisely sat-
isfying the boundary conditions (BCs), but is associated with Gauss-type grids,
limiting comparisons on most public datasets. In this paper we introduce SPFNO,
a novel SOL method, to learn the target operators on uniform grid datasets for
PDEs with non-periodic BCs. Numerical results for various PDEs such as viscous
Burgers’ equation, Darcy flow and coupled Allen–Cahn equations demonstrate
the computational efficiency, resolution invariant property, and BC-satisfaction
behaviour of proposed model. An accuracy improvement of approximately 1.7X–
4.7X over the non-BC-satisfying baseline is also achieved. Furthermore, studies
on SOL emphasize the importance of satisfying BCs as a criterion for deep surro-
gate models of PDEs.

neural operator, deep learning-based PDE solver, AI4science, scientific machine learning, spectral
method

1 INTRODUCTION

Partial Differential Equations (PDEs) play a pivotal role in various scientific and engineering fields,
modeling phenomena such as heat conduction, fluid flow, electromagnetic waves, and quantum me-
chanics. Given that a substantial majority of PDEs lack analytical solutions, numerical methods,
such as spectral methods and finite difference methods, are the primary means of numerically solving
PDEs. Recently, researchers have discovered that deep-learning methods can serve as alternatives
to these traditional methods. At present, two primary deep learning methodologies are employed
for solving PDEs, including directly approximating of the solution using neural networks, e.g., the
deep Ritz methods (Yu et al., 2018) and physics informed neural networks (Raissi et al., 2019); or
approximating the nonlinear operator between the input and output functions, which is known as the
neural operator (Lu et al., 2021; Cai et al., 2021) and the focus of this paper.

The Fourier neural operator (FNO, Zongyi et al. (2021)) is a popular neural operator with applica-
tions various fields (Pathak et al., 2022; Zhang et al., 2022; Grady II et al., 2022), followed by many
derivative neural operators that adopted a similar spectral analysis backbone and replaced its Fourier
transform. We will introduce them in more detail in Sec. 2.1. Meanwhile, there have been multiple
studies on the application of the well-known transformer models in solving PDEs (Cao, 2021; Liu
et al., 2022a), among which the recently developed latent spectral model (LSM, Wu et al. (2023))
ranked 1st in solving multiple PDE datasets. Thus, the transformers are significant challengers to
neural operators in solving PDEs.

The boundary condition (BC) of PDE plays a crucial role in defining the behavior of the system and
the treatment of them is the most crucial issue for spectral methods. However, the majority neu-
ral operators with spectral structure cannot strictly satisfy BCs that are most commonly used, such
as the Dirichlet, Neumann, and Robin BCs (also known as the first-, second-, and third-type BCs,
respectively). By generalizing the backbone architecture of FNO using the technique of spectral
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methods with a suitable basis, Liu et al. (2022b) introduced a general framework named spectral
operator learning (SOL), in which the enhanced neural operators satisfy the BCs exactly. And as
the first SOL instance, the orthogonal polynomial neural operator (OPNO) showed state-of-the-art
performance on solving PDEs with non-periodic BCs. Moreover, when solving the heat transfer
equation with Robin BCs, it acheived an unprecedent relative L2 norm error of 1e− 6 in the imple-
mentation of all neural operators. In addition, based on similar ideas, Bonev et al. (2023) developed
developed a spherical fourier neural operators (SFNO) that strictly satisfies behavioral boundary
conditions on the sphere (Boyd, 2001); while the Boundary enforcing Operator Network (BOON,
Saad et al. (2023)) enforce the BCs to arbitrary neural operator using a refinement procedure.
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(c) 2D Burgers equation (d) 2D Darcy flow

(e) 2D reaction-diffusion

Figure 1: (a) Comparison between SPFNO and non-BC-satisfying baseline models. The lower, the
better. (b)–(e) Examples of numerical experiments.

Unfortunately, the fast transformation algorithm of OPNO depends on the Gaussian grids, while only
values on uniform grids are given in the majority of public datasets, limiting the comprehensive com-
parison between SOL architecture with non-BC-satisfying models. To address this technical issue,
we introduce a novel SOL method, named SPFNO, of which the fast transformation algorithm
with a time complexity of O(NlogN) is designed on a N -point uniform grid, to solve PDEs with
Dirichlet and Neumann BCs. The specified trigonometric bases allow the errors on the BCs to reach
machine precision. In addition, SPFNO also possesses the following appealing properties that are
expected from a neural operator.

• Invariance to discretization. Without the need for retraining, an SPFNO model trained on
a coarse grid can directly predict the solution on any fine grid. Detailed discussion on this
property is conducted in Sec. 3.5.2.
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• Efficient and accurate spatial differentiation. Differentiating the output function of
SPFNO requires operations of only O(NlogN) using the spectral method.

Comparisons of the performance and several examples are given in Fig. 1. All datasets used
are already public, and the code and pre-trained model are made publicly available at https:
//github.com/lab-nameless/sol.

2 METHODOLOGY

2.1 SPECTRAL OPERATOR LEARNING

The SOL is a kind of specifically designed neural architecture that consists of spectral analysis
and linear learnable transformation and, at the same time, it reveals the concept of strictly satisfying
boundary conditions in deep surrogate models for PDEs. It allows for the utilization of various spec-
tral methods techniques in deep learning methods and leads to improved accuracy and credibility of
the neural operator models.

We now briefly introduce the SOL architecture (Liu et al., 2022b) through the task of prediction
of time-dependent PDEs. Since its application is not limited to this scenario, other cases will be
discussed in the numerical experiments. Consider the following PDE

ut(x, t) +N (u(x, t)) = 0, x ∈ Ω, t ∈ (0, T ]

with inital–boundary conditions

u(x, 0) = u0(x), x ∈ Ω,

B(u(x, t)) = 0, x ∈ ∂Ω, (1)

where N is a continuous operator and B is an operator corresponding to specific BCs. The task is
to learn the solution operator Sτ which evolves the initial condition u0 to the solution at τ , namely,
Sτ (u0(x)) = u(x, τ). We let {uk(x)}k∈N and T be a set of basis functions verifying the BCs
(1) and the linear transform induced by such a basis, respectively. Then the SOL model for S(τ)
consists of a stack of neural spectral layers L(l) that are induced by {uk} and T , and are in the form
of

u(l+1) = σ(Wlu
(l) + L(l)u(l)) := σ(Wlu

(l) + T −1AlT u(l)),

where σ is the nonlinear activation function, Wl is an auxiliary pointwise shallow neural network,
and Al is a learnable spectrum-wise matrix. This architecture is first demonstrated in Zongyi et al.
(2021) for FNO, and then adopted by multiple neural operators, such as the multiwavelet-based neu-
ral operator (MWT-NO, Gupta et al. (2021)), wavelet neural operator (WNO, Tripura & Chakraborty
(2023)), spectral neural operator (SNO, Fanaskov & Oseledets (2022)), OPNO (Liu et al., 2022b),
multi-channel IAE-Net (Ong et al., 2022) and so on. Examples are listed in Tab. 1.

Table 1: The fundamental spectral bases, the specified BCs and the types of utilized grids of neural
operators that are based on spectral analysis. Only a subset of models are listed.

Model FNO MWT-NO WNO IAE-Net SFNO SOL
OPNO SPFNO

Basis Fourier multiwavelets wavelets integral spherical
harmonics

Shen
polynomials

trigonometric
polynomials

BCs periodic
(implicitly) −− spherical

Dirichlet
Neumann

Robin

Dirichlet
Neumann

Grid type uniform spherical coordinates Gaussian uniform

2.2 SPFNO

In this subsection, the domain Ω is limited to one dimensional interval [0, 1] for convenience, while
all the conclusions can be easily generalized to separable multi-dimensional domains. When we
focus the discussion on the cases of Dirichlet or Neumann BCs, one possible choice in the numerical
method is the basis of specified trigonometric polynomials with “semi-period” and corresponding
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Figure 2: Sketch map of SPFNO

transformations, i.e., uk(x) = sin kπx, x ∈ [0, 2] and (discrete) sine transform for Dirichlet BCs; or
the basis of uk(x) = cos kπx, x ∈ [0, 2] and (discrete) cosine transform for Neumann BCs. Such
neural operators are named SPFNO, which is short for the Semi-Periodic FNO and SPecified FNO
with non-periodic boundary conditions.

The spectral methods of the aforementioned specified trigonometric polynomials have been inves-
tigated in Bueno-Orovio et al. (2014). SPFNO is a natural derivative of these methods under the
framework of SOL. For convenience, the operators associated with the sine and cosine bases are
denoted by SinNO and CosNO, respectively.

The famous discrete sine/cosine transforms (DST/DCT) of the 1st kind are based on odd/even ex-
tensions, respectively,where the solutions are discretized at uniform grids and BCs are imposed the
on boundary points, see Fig 2 (b). With a slight abuse of notation, we denote f̂ as the odd extension
of function f if f satisfies Dirichlet BCs or the even extension if f satisfies Neumann BCs:

Odd: f̂(x) =
{
f(x), x ∈ [0, 1]

− f(2− x), x ∈ [1, 2] ;
Even: f̂(x) =

{
f(x), x ∈ [0, 1]

f(2− x), x ∈ [1, 2] .

Then, the specified trigonometric polynomials form a basis for
{
f̂ |f ∈ C(Ω)

}
.

Theorem 2.1. The extended function f̂ can be uniquely deconstructed by cosine polynomials
{cos kx}k∈N if and only if f ∈ C[0, 1] satisfies the Neumann BCs and can be uniquely decon-
structed by sine polynomials {sin kx}k∈N+ if and only if f satisfies the Dirichlet BCs.

The proof is provided in Sec. A.1. This theorem ensures the effectiveness of DST and DCT as
decomposition transforms in solving PDEs with corresponding specific BCs. Finally, the structure
of the SPFNO is given in Fig. 2. Theorem 2.1 also leads to the following conclusion:

Theorem 2.2. The outputs of SinNO and CosNO strictly satisfy the Dirichlet and Neumann BCs,
respectively.
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3 NUMERICAL EXPERIMENTS

In order to verify the accuracy and efficiency of the proposed SPFNO method and the importance
of BC-satisfying property for neural operators, we compare it with multiple popular but non-BC-
satisfying architectures by solving the following four PDEs on publicly available datasets: (1) 1-D
and 2-D Burgers’ equations with Neumann BCs; (2) Darcy flow problem with Dirichlet BCs; and
(3) the coupled reaction diffusion equations with Neumann BCs. The accuracy of the models is
measured by the average relative L2 norm error (also known as the relative mean square error,
or RMSE) between the predicted solution and the reference solutions and the L∞ norm error on
the corresponding BCs. The maximum L2 norm error on the test dataset, which represents the
empirical worst performance and is crucial for assessing the credibility of models, is also taken into
consideration. The baseline models are listed below.

1. FNO (Zongyi et al., 2021) is a state-of-the-art neural operator for parametric PDEs, espe-
cially those involving periodic BCs. FNOs have many applications and they have achieved
impressive accuracy in practical application due to its architecture being similar to that of
the spectral method.

2. OPNO (Liu et al., 2022b) is the first proposed SOL method for non-periodic BCs such as
Dirichlet, Neumann, and Robin BCs. It provided the first numerical example that verifies
the competitive accuracy of deep-learning-based surrogate model to the numerical method,
with the relative errors reaching the order of 10−6. The OPNO will be tested if and only if
the data on Chebyshev-Gauss-Lobatto grids are provided.

3. U-net (Ronneberger et al., 2015) is a popular autoencoding deep learning architecture that
combines the convolutional and deconvolutional layers. It has been proven to be a pow-
erful model for tackling image segmentation tasks. It is used as a baseline model in the
PDEBench datasets and demonstrates considerable accuracy in specific tasks.

4. LSM (Wu et al., 2023) is a cutting-edge transformer-based neural PDE solver that consists
of an autoencoding backbone and innovative neural spectral blocks. It successfully trained
a neural network with considerable depth and outperformed the performance of 14 existing
models, including neural operators, autoencoders, and transformers, across 7 PDE-solving
tasks. In this paper, the LSM model also serves as the most accurate non-neural-operator
model for PDEs known to us.

5. BOON (Saad et al., 2023) is a method that enforces the BCs on arbitrary neural operators by
making structural changes to the operator kernel. It proved that the BC-satisfying correction
significantly increase the accuracy of the neural operators.

The comparison, however, is not limited to the aforementioned models. Since the datasets utilized
in the experiments are publicly available, readers may refer to the corresponding papers and their
subsequent articles for the results of other models.

Except in Sec. 3.5.2, all models are evaluated at the same resolution as that used during the training
procedure. All experiments are performed on an Nvidia A100 GPU. For fairness, all models are
trained for the same number of epochs and with random seeds fixed to 0.

3.1 EXAMPLE 1: 1D VISCOUS BURGERS’ EQUATION WITH NEUMANN BCS

We first consider the one-dimensional viscous Burgers equation as follows

∂tu(x, t) +
1

2
∂x(u

2(x, t)) = ν∂xxu(x, t), x ∈ Ω (2)

subject to the initial-boundary conditions

u(x, 0) = u0(x, t), x ∈ Ω, (3)
∂u

∂n
(x, t) = 0, x ∈ ∂Ω, (4)

where Ω = [−1, 1]. We are interested in learning the solution operator S1 : u0(x) → u(x, 1).
Burgers’ equation is a fundamental PDE with applications in modeling turbulence, nonlinear acous-
tics, and traffic flow. The complexity of the dynamical system it describes poses challenges for the
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Table 2: Evaluation of the relative L2 norm error (×10−2), and worst error (×10−2), and the error
on the Neumann BC of 1D-Burgers’ equation with resolution N

(a) Relative L2 norm error and worst error

N = 256 N = 1024 N = 4096

L2 worst L2 worst L2 worst

FNO 1.57 14.9 1.68 14.1 1.69 16.6
Unet 6.27 56.9 27.6 126.3 33.0 146.3
LSM 4.87 47.2 21.1 108.6 38.7 167.7

BOON 1.20 10.1 1.28 10.2 1.42 10.0
OPNO 0.770 4 .63 0.781 4 .40 0.782 3 .86
CosNO 0 .868 3.58 0 .862 3.55 0 .873 3.65

(b) Error on the BC

N = 256 N = 1024 N = 4096

L∞
BC L∞

BC L∞
BC

FNO 2.9E-1 4.1E-1 5.5E-1
Unet 1.1E-2 5.7E-2 8.9E-2
LSM 4.8E-1 5.1E-1 9.8E-1

BOON 0 0 0
OPNO 6.0E-12 1.1E-10 1.9E-9
CosNO 0 0 0

learning of deep models, so it has been adopted as one of the most popular benchmark problems in
the field of AI4Science.

As Liu et al. (2022b) concluded, the BC-satisfying property is crucial for enhancing the accuracy
and credibility of surrogate models for PDEs. If the statement holds, the SPFNO should also ex-
hibit prominent superiority, even when employed on different grids, since the SOL architecture is
designed to learn the operator.

We adopt CosNO to match the Neumann BCs and the same quasi-diagonalizing techniques for
the learnable spectral matrix Al as in Liu et al. (2022b), i.e., for the 1D Burgers equation, we set
the bandwidth of Al to 4. Such a technique is not suitable for FNO, so the bandwidth of FNO is
maintained at 1, see Fig. 4. The results illustrated in Tab. 2 and Fig. 4 show that the SPFNO
can reach a comparable accuracy compared with the SOTA model OPNO, and thus remarkably
outperforms all non-BC-satisfactory models. The relative L2 errors are reduced by an approximately
45.0%, and the maximum errors are much lower, which suggests more reliable predictions.

3.2 EXAMPLE 2: 2D VISCOUS BURGERS’ EQUATION WITH NEUMANN BCS

With the computational domain set to Ω = [−1, 1]2, the 2-D Burgers’ equation (10) – (12) is consid-
ered in this experiment. Nevertheless, the output of the target operator consists of solutions at mul-
tiple fixed time instances, i.e. Sτ1,...,τn : u0 7→ {u(·, τ1), ..., u(·, τn)}, so that the time-dependent
PDEs can be efficiently solved by only one forward propagation. Moreover, both the operator and
the task can be more complicated compared with the 1-D case. We choose a subset of time dis-
cretization by fixing {τi}i≤n = {0.2, 0.6, 1.0}. During the training, the bandwidth of the learnable
matrix Al is set as 4. The results are illustrated in Tab. 3, where the results of different SOL models
are very close, and achieve the state-of-the-art performance among tested models.

Table 3: Evaluation of the relative L2 norm error (×10−2) and worst error (×10−2) of 2D-Burgers’
equation with resolution N ×N

N = 50 N = 100 N = 200

L2 worst L2 worst L2 worst

FNO 0.528 9.02 0.589 10.03 0.672 9.71
Unet 1.64 16.0 2.31 17.6 2.28 17.1
LSM 2.43 9.23 2.93 12.4 3.19 11.6

OPNO 0.371 3.37 0.336 3.68 0.335 3.68
CosNO 0 .386 4 .98 0 .378 5 .00 0 .378 5 .05

3.3 EXAMPLE 3: COUPLED 2D REACTION–DIFFUSION EQUATIONS WITH NEUMANN BCS

The coupled reaction–diffusion (Allen Cahn) equations are formulated as follows

∂u

∂t
= du

∂2u

∂x2
+ du

∂2u

∂y2
+Ru(u, v), x ∈ (−1, 1)2,

∂v

∂t
= dv

∂2v

∂x2
+ dv

∂2v

∂y2
+Rv(u, v). x ∈ (−1, 1)2,
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where
Ru(u, v) = u− u3 − k − v,

Rv(u, v) = u− v,

du = 0.001, dv = k = 0.005.

The nonlinearly coupled variables u and v represent the activator and inhibitor in the system, respec-
tively, to which the Neumann BCs are imposed. The dataset is provided by PDEBench (Takamoto
et al., 2022), a comprehensive set of benchmarks for scientific machine learning. Since the data are
given on a staggered uniform grid, directly sub-sampling would yields a non-uniform grid. So we
only perform the experiment with the original resolution of 128 × 128. The bandwidth of SPFNO
is fixed to 1.

According to the settings of the PDEBench dataset , models are trained using an autoregressive
approach. A similar approach is often applied in predicting weather with neural operators (Pathak
et al., 2022). The results are shown in Tab. 5, where SPFNO acheives the lowest errors.

Table 4: relative L2 norm error (×10−2) and worst error (×10−2) of 2D reaction diffusion equation

L2 error worst error #param #time(s)

FNO 5 .19 6 .37 1.3m 150
Unet 68.9 77.6 7.8m 217
LSM 7.20 13.7 1.2m 606

CosNO 1.13 1.60 1.4m 275

3.4 EXAMPLE 4: 2-D DARCY FLOW WITH DIRICHLET BCS

Darcy’s law describes the flow of fluid through a porous medium. It has been widely implemented
in various fields, including hydrogeology, petroleum engineering, and soil mechanics. In this ex-
periment, the 2-D steady-state Darcy flow equations in a unit box are formulated as the following
boundary value problem (BVP):

−∇ · (a(x)∇u(x)) = f, x ∈ [0, 1]2. (5)

Moreover, the homogeneous Dirichlet BCs are imposed. The task is to learn the operator G(a) = u
that maps the diffusion coefficient to the solution. This problem serves as another most commonly
used benchmark for deep PDE solvers since the dataset is provided in Zongyi et al. (2021). In this
dataset, the diffusion coefficient a(x) is taken as a piecewise constant, while the reference solution
is generated using a finite difference method. Under this premise, however, the nondifferentiable
variable coefficient makes the 2nd order finite difference method unsuitable for solving the problem.
So we utilize the 2D-Darcy dataset with f fixed as 100.0 in Takamoto et al. (2022) instead. Its
larger size (104 pieces of data compared to 103 in Zongyi et al. (2021)) also contributes to the model
achieving higher accuracy.

Compared to the Neumann BC, the Dirichlet BC is much easier to learn because it does not in-
volve any derivative. Additionally, the heterogeneity of the input and output functions leads to a
much more complicated spectral structure of the mapping operator. Actually, multiple non-neural-
operator method have been reported to surpass the performance of neural operators in solving Eq.
(5), especially the transformers, among which the LSM acheives the highest accuracy that is known
to us.

We adopt the ReduceLROnPlateau scheduler for SPFNO to accelerate the training. The results can
be found in Tab. 5, where the SinNO again obtains the lowest relative error, while the LSM notably
achieves the lowest maximum error.

3.5 ADDITIONAL EXPERIEMENTS

3.5.1 EVALUATION AND COMPARISON ON THE DATASET FROM BOON

We additionally compare our model with the BOON model on the Dirichlet and Neumann datasets
that the latter provided. For details on the generation of the dataset, please refer to Saad et al. (2023).
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Table 5: Evaluation relative L2 norm error (×10−2) and worst error (×10−2) for 2D Darcy flow
problem

L2 error worst error #param #time

FNO 0.688 6.04 2.4m 7.44
Unet 0.989 4.81 7.8m 6.53
LSM 0 .468 2.72 19.2m 62.7

SinNO 0.283 4.89 2.4m 32.9

To accelerate the training process, a ReduceLROnPlateau scheduler is adopted as in Example 4 for
the SPFNO model.

(1) 1D Burgers’ equation with Dirichlet BCs: In this problem and dataset, the following viscous
Burgers’ equation with Dirichlet BCs is consider:

ut + (u2/2)x = νuxx, x ∈ [0, 1], t ≥ 0,

u0(x) =

{
uL, if x ≤ 0.5,

uR, if x > 0.5,

u(0, t) = uexact(0, t), u(1, t) = uexact(1, t), t > 0.

The task is to learn the solution operator S : u0(x) → ut=1.2.

(2) 2D wave equation with Neumann BCs: In this problem and dataset, the following 2D wave
equation with Neumann BCs is consider:

utt = c2(uxx + uyy), x, y ∈ [0, 1]2, t ≥ 0,

subject to homogeneous Neumann BCs, to which the following analytical solution exists

uexact(x, t) = k cos(πx) cos(πy) cos(c
√
2πt).

The task is to learn the solution operator S : u0(x, y) → {u(x, y, t = tM )}.

The results are illstrated in Tab. 6 and 7, respectively, where the SPFNOs outperform BOONs in al-
most all of the cases. It is worth noting that, however, we believe that the primary factor contributing
to the extremely high accuracy of SPFNO is the dataset. The problem has an analytical solution, and
the generation of input functions involves only a limited number of degrees of freedom. This cir-
cumstance enables the model to easily fit a manifold of significantly reduced dimensionality while
learning the solution operator. Hence, the existing results sufficiently illustrate the approximation
capability of all tested model for the problems. However, the practical implications of further error
reduction remain limited.

Table 6: Single-step prediction for 1D Burgers’ with Dirichlet BC. Relative L2 test error(error on
BCs) for Burgers’ equation with varying viscosities ν at resolution N = 500

Model ν = 0.1 ν = 0.05 ν = 0.02 ν = 0.005 ν = 0.002 #Time

SinNO (ours) 1.12e − 5(0) 1.26e − 5(0) 5.95e − 5(0) 5.04e − 4(0) 7.28e − 4(0) 0.12s
BOON-FNO (Saad et al., 2023) 1.2e − 4(0) 1.0e − 4(0) 8.4e − 5(0) 1.0e − 4(0) 1.27e − 3(0) 1.3s
BOON-MWT (Saad et al., 2023) 2.0e − 4(0) 2.5e − 4(0) 2.2e − 4(0) 2.0e − 4(0) 3.4e − 4(0) −−

Table 7: Multi-step prediction for the 2D wave equation with Neumann BC. Relative L2 error (error
on BCs) for various benchmarks with varying resolutions N and M = 25.

Model N = 25 N = 50 N = 100

CosNO 1.14e − 4(0) 4.69e − 5(0) 1.93e − 4(0)
BOON (Saad et al., 2023) 9.7e − 4(0) 8.93e − 4(0) 9.6e − 4(0)
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3.5.2 THE EVALUATION OF THE PRE-TRAINED MODEL ON DIFFERENT GRID

We take the pre-trained model in Experiment 1 as an example. As a consequence of the spectral
structure of the SOL architecture, the model trained on the coarse grid (N = 256) can directly
predict on the fine grid without significant loss in accuracy, see Tab 8 and Fig. 3. The data from the
sub-scaled grid remains untouched during the training process.

Table 8: The evaluation relative L2 errors (L∞ errors on BCs) of SPFNO model for 1D Burgers’
equation. Model is trained on a N grid but evaluated on a grid with resolution N ′

N ′ = 256 N ′ = 512 N ′ = 1024 N ′ = 2048 N ′ = 4096

N = 256 0.0086766(0) 0.0086748(0) 0.0086737(0) 0.0086732(0) 0.0086729(0)
N = 4096 0.0087394(0) 0.0087364(0) 0.0087351(0) 0.0087344(0) 0.0087341(0)

(a) N = 256 (b) N = 512 (c) N = 1024 (d) N = 2048 (e) N = 4096

Figure 3: The prediction of SPFNO model that is trained on a N = 256 grid but evaluated on
different grids

4 DISCUSSION AND FUTURE WORK

We presented a novel spectral operator learning (SOL) architecture for PDEs with Dirichlet and
Neumann BCs. This method, named SPFNO, combines traditional spectral methods and the neural
operator architecture, so that it satisfies the corresponding BCs exactly. The BC-satisfying properties
were proved both theoretically and numerically. Numerical experiments also showed that the SOL
methods yield very close results regardless of the different types of grids they are associated with.
On the other hand, compared with models including non-BC-satisfying models and BC-satisfying
BOON model, state-of-the-art performance in solving a variety of widely adopted benchmark prob-
lems can be achieved with our proposed framework. From the perspective of machine learning, the
BC-satisfying spectral structure is an intuitive bias that effectively shrinks the hypothesis space.

Although the paper focuses on the data-driven training of neural operators, we can also directly learn
the target operator by utilizing the physics constraints and minimizing the residuals of equations,
which can reduce the dependence on datasets. Readers may find that the residuals of the BCs that
are usually difficult to handle will vanish for an SOL, making the training much easier. In addition,
developing other SOL instances for more complex BCs and geometries, e.g., the radiation BCs or
unbounded domains, is an important subject of future research.

REFERENCES

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dy-
namics on the sphere. arXiv preprint arXiv:2306.03838, 2023.

John P Boyd. The choice of spectral functions on a sphere for boundary and eigenvalue problems: A
comparison of chebyshev, fourier and associated legendre expansions. Monthly Weather Review,
106(8):1184–1191, 1978.

John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

Alfonso Bueno-Orovio, David Kay, and Kevin Burrage. Fourier spectral methods for fractional-in-
space reaction-diffusion equations. BIT Numerical mathematics, 54:937–954, 2014.

9



Under review as a conference paper at ICLR 2024

Shengze Cai, Zhicheng Wang, Lu Lu, Tamer A Zaki, and George Em Karniadakis. DeepM&Mnet:
Inferring the electroconvection multiphysics fields based on operator approximation by neural
networks. Journal of Computational Physics, 436:110296, 2021.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021.

Vladimir Fanaskov and Ivan Oseledets. Spectral Neural Operators. arXiv preprint
arXiv:2205.10573, 2022.

Thomas J Grady II, Rishi Khan, Mathias Louboutin, Ziyi Yin, Philipp A Witte, Ranveer Chandra,
Russell J Hewett, and Felix J Herrmann. Towards large-scale learned solvers for parametric pdes
with model-parallel fourier neural operators. arXiv preprint arXiv:2204.01205, 2022.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
tial equations. Advances in Neural Information Processing Systems, 34:24048–24062, 2021.

Xinliang Liu, Bo Xu, and Lei Zhang. Ht-net: Hierarchical transformer based operator learning
model for multiscale pdes. arXiv preprint arXiv:2210.10890, 2022a.

Ziyuan Liu, Haifeng Wang, Hong Zhang, Kaijuna Bao, Xu Qian, and Songhe Song. Render unto nu-
merics: Orthogonal polynomial neural operator for pdes with non-periodic boundary conditions.
arXiv preprint arXiv:2206.12698, 2022b.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Yong Zheng Ong, Zuowei Shen, and Haizhao Yang. Integral autoencoder network for discretization-
invariant learning. Journal of Machine Learning Research, 23(286):1–45, 2022.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
tors. arXiv preprint arXiv:2202.11214, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. arXiv preprint arXiv:1505.04597, 2015.

Nadim Saad, Gaurav Gupta, Shima Alizadeh, and Danielle C. Maddix. Guiding continuous opera-
tor learning through physics-based boundary constraints. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
gfWNItGOES6.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial differ-
ential equations in computational mechanics problems. Computer Methods in Applied Mechanics
and Engineering, 404:115783, 2023. ISSN 0045-7825.

Haixu Wu, Tengge Hu, Huakun Luo, Jianmin Wang, and Mingsheng Long. Solving high-
dimensional pdes with latent spectral models. In International Conference on Machine Learning,
2023.

Wei Xiong, Xiaomeng Huang, Ziyang Zhang, Ruixuan Deng, Pei Sun, and Yang Tian. Koopman
neural operator as a mesh-free solver of non-linear partial differential equations. arXiv preprint
arXiv:2301.10022, 2023.

10

https://openreview.net/forum?id=gfWNItGOES6
https://openreview.net/forum?id=gfWNItGOES6


Under review as a conference paper at ICLR 2024

Bing Yu et al. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving
Variational Problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Kai Zhang, Yuande Zuo, Hanjun Zhao, Xiaopeng Ma, Jianwei Gu, Jian Wang, Yongfei Yang, Chuan-
jin Yao, and Jun Yao. Fourier neural operator for solving subsurface oil/water two-phase flow
partial differential equation. SPE Journal, pp. 1–15, 2022.

Li Zongyi, Kovachki Nikola, Azizzadenesheli Kamyar, Liu Burigede, Bhattacharya Kaushik, Stuart
Andrew, and Anandkumar Anima. Fourier Neural Operator for Parametric Partial Differential
Equations. In International Conference on Learning Representations, 2021.

A APPENDIX

A.1 PROOF FOR THEOREM 2.1

Since f is usually a strong solution to some PDEs in the implementation of SPFNO, it is reasonable
to assume the smoothness so that at least f ∈ H1([0, 1]). But for now we only need f ∈ C[0, 1], or
the differentiability on the boundary additionally for the following proof of Neumann BCs.

A.1.1 CASE OF f SATISFYING DIRICHLET BCS AND f̂ BEING ITS ODD EXTENSION

First, we will prove that if the odd extension f̂ can be uniquely deconstructed by sine polynomials,
i.e.

f̂ =

∞∑
k=1

bk sin kπx, x ∈ [0, 2] ,

then f satisfies the Dirichlet BCs:
f(0) = f(1) = 0.

The proof is straightforward: substituting x = 0 and x = 1 give that
f(0) = f̂(0) = 0 = f̂(1) = f(1).

On the other hand, given f ∈ C [0, 1] as an arbitrary function that satisfies homogeneous Dirichlet
BCs, i.e.,

f(0) = f(1) = 0,
its odd extension being

f̂(x) =

{
f(x), x ∈ [0, 1] ,

− f(2− x), x ∈ [1, 2] ,

which means that f̂ is a continuous function on a closed interval. Consequently, it can be inferred
from the Weierstrass approximation theorem for trigonometric series that the (trigonometric) Fourier
series of f̂ converges to f̂ uniformly, and is of the form

f̂(x) =

∞∑
m=0

am cosmπx+

∞∑
n=1

bn sinnπx, x ∈ [0, 2] , (6)

where

am =

∫ 2

0

f̂(x) cosmπx dx, m ∈ N,

bn =

∫ 2

0

f̂(x) sinnπx dx, n ∈ N+.

(7)

Then it yeilds that

f̂(x)−
∞∑

n=1

bn sinnπx =

∞∑
m=0

am cosmπx, x ∈ [0, 2] . (8)

Noting that the left-hand side of Eq. (8) is an odd function while the right-hand side is even. The
only possibility is that it remains zero constantly. As a result,

f̂(x) =

∞∑
n=1

bn sinnπx,

where bn is determined by Eq. (7).
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A.1.2 CASE OF f SATISFYING NEUMANN BCS AND f̂ BEING ITS EVEN EXTENSION

The proof of this part is actually analogous to Sec. A.1.1. Assume that f ∈ C[0, 1] is differentiable
on x = 0 and 1. On the one hand, given that the even extension f̂ can be uniquely deconstructed by
cosine polynomials, i.e.

f̂ =

∞∑
k=0

ak cos kπx, x ∈ [0, 2] . (9)

Noting that f̂ is an even expansion. Consequently, we have

f ′(1) = (f̂)′(1)

= lim
h→0

f̂(1 + h)− f̂(1− h)

2h

= lim
h→0

f(1− h)− f(1− h)

2h
= 0.

Moreover, since Eq. (9) holds, we can further extend f̂ to R with a period of 2, which is denoted as
f̃ . The periodicity of f̃ yields that the following equation holds on x = 0:

f ′(0) = (f̃)′(0)

= lim
h→0

f̃(0 + h)− f̃(0− h)

2h
= lim

h→0

f(0 + h)− f̂(2− h)

2h

= lim
h→0

f(h)− f(h)

2h
= 0.

So the Neumann BCs are satisfied by f .

On the other hand, similar to Sec. A.1.1, the Fourier series of f̂ converges to f̂ uniformly, so Eqns.
(6)–(8) also hold for the even extension f̂ when f satisfies Neumann BCs. Then it yields that

f̂(x)−
∞∑

m=0

am cosmπx =

∞∑
n=1

bn sinnπx ≡ 0, x ∈ [0, 2]

As a result,

f̂(x) =

∞∑
m=0

am cosmπx,

where am is determined by Eq. (7).
Corollary A.1. The sets of specified trignometric functions

{√
2 cos kπx

}
k∈N

and{√
2 sin kπx

}
k∈N+ form the orthonormal bases for corresponding function spaces,

i.e. the even extension
{
f̂even|f ∈ C[0, 1], f ′(0) = f ′(1) = 0

}
and odd extension{

f̂odd|f ∈ C[0, 1], f(0) = f(1) = 0
}

, respectively.

Proof. As Theorem 2.1 has shown that the specified trignometic functions form a basis for corre-
sponding function space, all we need to do is to prove is the orthonormality of the normalized bases.
A simple calculation yields∫ 2

0

sin kπx sinmπx = −1

2

∫ 2

0

cosπ(k +m)x− cosπ(k −m)x = δk,m,∫ 2

0

cos kπx cosmπx =
1

2

∫ 2

0

cosπ(k +m)x+ cosπ(k −m)x = δk,m.∫ 2

0

sin kπx cosmπx =
1

2

∫ 2

0

sinπ(k +m)x+ sinπ(k −m)x = 0.

In fact, for the normalized trignometic functions
{√

2 cos kπx
}
k∈N

and
{√

2 sin kπx
}
k∈N+ and

unextended function f ∈ C[0, 1] with corresponding BCs, the same process also lead to a similar
conclusion.
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B DETAILS OF DATASETS AND NUMERICAL EXPERIMENTS

For neural operators possessing spectral structures, such as those listed in Table 1, the primary
parameters determining their approximation capabilities are the width of channels W , the depth of
the spectral layer L, and the number of modes truncated in the spectral operator (K). This criterion
can refer to the reference (Boyd, 1978), where the author used the number of modes required for
discretizing the same function as a decisive criterion for comparing spectral methods of different
bases, including Chebyshev, Fourier, and spherical harmonics. The bandwidth b of the learnable
matrix is generally considered to be determined by the orthogonality of the basis. For instance, it
does not directly affect the capability of FNO, as illustrated in Fig. 4. However, for SPFNO, a
suitable increase in b improves its approximation capability, for which the theoretical analysis is an
interesting topic for further research.

Given that all datasets are provided in the references, we adopt to the same parameters of neural
operator as stated in the original text for SPFNO. L is fixed to 4 for all experiments. And although
different models require significantly different GPU times for training of a single epoch, we train
them for the same number of epochs as in the references.

B.1 EXAMPLE 1: 1D VISCOUS BURGERS’ EQUATION WITH NEUMANN BCS

We consider the one-dimensional viscous Burgers equation with Neumann BCs

∂tu(x, t) +
1

2
∂x(u

2(x, t)) = ν∂xxu(x, t), x ∈ Ω (10)

subject to the initial-boundary conditions
u(x, 0) = u0(x, t), x ∈ Ω, (11)
∂u

∂n
(x, t) = 0, x ∈ ∂Ω, (12)

where Ω = [−1, 1]. We are interested in learning the solution operator S1 : u0(x) → u(x, 1). In the
dataset, the initial condition u0(x) is generated using a Gaussian random field according to u0 ∼ µ,
where µ = N (0, 625(−4∆ + 25I)−2) with Neumann BCs, and ν is fixed to 0.1/π. The dataset
consists of 1000 training instance and 100 test instance.

During the training, parameters for SPFNO are chosen as W = 50, K = 20 and b = 4, and all
models are trained for 5000 epochs to ensure they are well-trained, following the instruction of Liu
et al. (2022b). Besides, we compare the performance of the model width different bandwidth b, see
Fig. 4.

(a) relative L2 norm error (b) max error

Figure 4: Comparisons of the relative L2 errors and max errors on the testing data for different
Al bandwidth. While numerical experiment demonstate that the quasi-diagnolizing technique may
improve the performance of SPFNO, it cannot substitute the requirement of BC-satification property,
see the results of FNO.

B.2 EXAMPLE 2: 2D VISCOUS BURGERS’ EQUATION WITH NEUMANN BCS

We consider the two-dimensional viscous Burgers equation with Neumann BCs
∂tu(x, y, t) + (u · ∇)u(x, y, t) = ν∆u(x, y, t), (x, y) ∈ Ω,
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where Ω = [−1, 1]
2. We are interested in learning the solution operator Sτ1,...,τn : u0 7→

{u(·, τ1), ..., u(·, τn)}. In the dataset, the initial condition u0(x) is generated using a Gaussian
random field according to u0 ∼ N (0, 16(∆+ 16I)−2) with Neumann BCs, and ν is fixed to 0.001.
The dataset consists of 1000 training instance and 100 test instance.

During the training, parameters for SPFNO are chosen as W = 24 and K = 16, and all models are
trained for 3000 epochs, following the instruction of Liu et al. (2022b). The bandwidth b is fixed to
4.

B.3 EXAMPLE 3 AND 4: PDE PROBLEMS FROM PDEBENCH DATASET

We set the parameters for SPFNO and FNO as W = 24 and K = 24, and all models are trained for
500 epochs, following the instruction of Takamoto et al. (2022). The bandwidth b is fixed to 1.

B.4 ADDITIONAL EXAMPLE: PDE PROBLEMS FROM BOON DATASET

We choose the same parameters for both SPFNO and BOON models as those in the paper (Saad
et al., 2023): W = 64 and K = 32 for 1D problem, and W = 20 and K = 16 for 2D time-varying
problems. Note that each Fourier basis function is equivalent to two real function. The SPFNO is
trained for 500 epochs with b fixed to 1.
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