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Abstract

Time series foundation models (TSFMs) demonstrate impressive zero-shot per-
formance for time series forecasting. However, an important yet underexplored
challenge is how to effectively finetune TSFMs on specific downstream tasks.
While naive finetuning can yield performance gains, we argue that it falls short
of fully leveraging TSFMs’ capabilities, often resulting in overfitting and subop-
timal performance. Given the diverse temporal patterns across sampling scales
and the inherent multi-scale forecasting capabilities of TSFMs, we adopt a causal
perspective to analyze finetuning process, through which we highlight the critical
importance of explicitly modeling multiple scales and reveal the shortcomings of
naive approaches. Focusing on encoder-based TSFMs, we propose MultiScale
FineTuning (MSFT), a simple yet general framework that explicitly integrates
multi-scale modeling into the finetuning process. Experimental results on three
different backbones (MOIRAI, MOMENT and UNITS) demonstrate that TSFMs
finetuned with MSFT not only outperform naive and typical parameter efficient
finetuning methods but also surpass state-of-the-art deep learning methods. Codes
are available at https://github.com/zqiao11/MSFT.

1 Introduction

Time series foundation models (TSFMs) have emerged as a transformative direction within the time
series forecasting (TSF) community [2, 43, 8]. By pretraining on extensive time series datasets, these
models possess universal knowledge, enabling them to achieve impressive zero-shot performance
on various forecasting tasks. Despite significant advancements in TSFM research, current studies
predominantly focus on model pretraining and zero-shot evaluation, while paying limited attention to
the critical challenge of effectively finetuning these universal models for specific downstream tasks.
In contrast, finetuning pretrained models has become the standard pipeline for real-world applications
in domains such as natural language processing (NLP) and computer vision (CV). Research in these
fields has revealed key challenges in finetuning foundation models, including preserving pretrained
knowledge [24], avoiding overfitting [15], and ensuring efficient adaptation [13, 48].

Existing finetuning strategies for TSFMs often rely on naive approaches, such as full finetuning or
linear probing [2, 12, 11]. While these methods may offer performance gains, we argue that naive
finetuning is suboptimal for TSFMs as it fails to account for the intrinsic multi-scale properties of
both time series data and TSFMs. As a data modality generated from continuous real-world processes,
time series are inherently entangled and can be decomposed across multiple scales [23, 18]. A time
series can exhibit distinct temporal patterns at different sampling scales. For instance, as shown in

1Nanyang Technological University. 2Institute for Infocomm Research, A*STAR. 3CNRS@CREATE.
4Salesforce AI Research. 5Griffith University. 6Squirrel Ai Learning. 7Qatar University. Mail to: Zhongzheng
Qiao <qiao0020@e.ntu.edu.sg>, Chenghao Liu <chenghao.liu@salesforce.com>.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/zqiao11/MSFT


Figure 1: (a) Multi-scale property in time series foundation model (TSFM) finetuning. Finetuning
TSFMs on the original scale may overlook potential temporal patterns in time series and underutilize
their multi-scale forecasting capabilities learned during pretraining. (b) Causal graph for forecasting
of TSFMs. Nodes denote the abstract data variables and directed edges denote the causality, i.e. cause
→ effect. Scale S acts as a confounder, influencing both input context series X and model’s activated
knowledge M (shown in red).

Figure 1 (a), energy consumption measured at the hour level shows micro-scopic local usage patterns,
whereas daily records suppress these finer details, highlighting macro-scopic consumption trends
instead. This multi-scale nature poses additional challenges, as naive finetuning tends to overfit the
model to patterns at the original scale, overlooking the latent dynamics that prevail at coarser scales.
From a modeling perspective, TSFMs pretrained on extensive, multi-scale datasets are inherently
equipped with robust multi-scale forecasting capabilities. However, naive finetuning fails to harness
this potential, as it restricts learning to the original scale. Consequently, it underutilizes the pretrained
knowledge of TSFMs, capturing only partial temporal patterns. Such failure not only limits the
generalizability of TSFMs across scales but also leads to suboptimal downstream performance.

To address the aforementioned challenge, we begin by analyzing the finetuning process of TSFMs
through a causal lens. The relationship among key variables is shown in Figure 1(b). Specifically, the
objective of finetuning is to adapt the model P (Y |X) to capture temporal patterns and better predict
the horizon Y given the context X . However, the presence of scale S as a confounder introduces
spurious correlations between context X and the knowledge M activated within TSFM, causing
the model to rely on correlations that lack causal grounding. Directly forecast with P (Y |X) would
mistakenly associate non-causal but positively correlated context X to horizon Y . To overcome this,
we propose using the interventional distribution P (Y |do(X)), which isolates the true causal effect of
X on Y by blocking the influence of the confounder S. We will elaborate on how this is achieved
through backdoor adjustment [27] in Section 3.

This causal perspective highlights the need for explicitly modeling multiple scales during TSFM fine-
tuning. However, integrating multi-scale modeling in this context remains underexplored and presents
several non-trivial challenges—despite its success in standard time series forecasting modeling
[34, 42, 41]. First, most TSFMs tokenize time series through patching [25], resulting in tokens at
different scales exhibiting varying resolutions and temporal dynamics. This discrepancy complicates
the finetuning of the unified input projection and attention weights. Second, applying attention across
multi-scale tokens can introduce spurious dependencies due to misaligned time indices, making it
difficult to capture true temporal relationships. Thus, the attention mechanism must account for or
bypass index-related biases. Finally, since the model produces separate predictions at each scale,
effectively aggregating these multi-scale outputs is essential for accurate and robust forecasting.

To close the gap, we propose a novel encoder-based TSFM finetuning framework using multi-scale
modeling, namely MSFT. Our contributions are summarized as follows:

1. Building on causal insights, we identify the limitations of naive finetuning for TSFMs and propose
a multi-scale modeling approach for TSFM finetuning. To the best of our knowledge, this is the
first work to introduce multi-scale modeling into TSFMs.

2. We propose MSFT, a simple yet effective finetuning framework for encoder-based TSFMs. MSFT
begins by downsampling time series into multiple scales and independently tokenizing each scale
at its own resolution. Scale-specific modules are applied to the input projection and attention
layers to activate scale-specific knowledge. Decoupled dependency modeling is then performed
on the concatenated multi-scale sequence, enabling the model to capture both within-scale (via
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in-scale attention) and cross-scale (via cross-scale aggregator) dependencies. Finally, a learnable
weighting strategy is employed to aggregate the multi-scale prediction results.

3. Our extensive evaluation on various datasets for Long Sequence Forecasting [44] and Probabilistic
Forecasting [43] demonstrates that MSFT not only significantly improves the fintuning results of
TSFMs but also surpasses other state-of-the-art models trained from scratch.

2 Preliminaries
Problem Formulation. We first define the TSF task, in which the model predicts a horizon window
given a context window. Let C denote the context length and H the horizon length. Context window
X ∈ RC×D and horizon window Y ∈ RH×D are consecutively extracted from the same time series
x1:T = (x1,x2, . . . ,xT ), where D is the feature dimension at each time step. The sample at time
step t is denoted as (Xt,Yt), where Xt = (xt−C , . . . ,xt−1) and Yt = (xt, . . . ,xt+H−1). Given a
model parameterized by θ and a training dataset Dtrain = {(Xt,Yt)}To

t=1, the objective is to learn the
model parameter θ∗ to achieve minimum error on the testing set Dtest = {(Xt,Yt)}Tt=To+1.

Multi-Scale Generation. In multi-scale modeling (see Appendix A.2 for the detailed definition of
this concept), the standard approach for generating multi-scale sequences is based on average pooling
[34, 42]. Given a training sample (X,Y), both context and horizon windows are downsampled
into multiple temporal scales using non-overlapping average pooling. Specifically, downsampling
factor is commonly set to 2, resulting in a set of scales defined by 1, 2, . . . , 2K , where K is the
number of downsampled scales. Let S denote the set of multi-scale time series as S = {S0, . . . ,SK},
where Si = (Xi,Yi) corresponds to the i-th scale series, formed by concatenating the downsampled
context Xi ∈ RCi×D and downsampled horizon Yi ∈ RHi×D. Here, Ci = ⌈C2i ⌉ and Hi = ⌈H2i ⌉.
Note that S0 represents the input series at the original scale.

Encoder-based TSFM. We outline the architectural framework of existing encoder-based
TSFMs [43, 12, 11] from a high-level perspective. These models adopt an encoder-only Trans-
former [39] architecture and segment univariate time series into a sequence of patch tokens [25].
While multivariate extensions are supported in some models [43, 11], we focus on the univariate
case for illustration (D = 1), without loss of generality. The pretraining is conducted by masked
reconstruction [9]. Given a time series (X,Y), the series is segmented into non-overlapping patch
tokens of size P , resulting in a sequence of patches x ∈ RN×P , where N = ⌈CP ⌉+ ⌈

H
P ⌉. The goal is

to forecast the predictive horizon by Ŷ = fθ(x), where fθ is a transformer with the block number L
and model dimension d. Specifically, Equation 1 represents the procedure of calculating Ŷ = fθ(x):

h0 = InProject(x); hl = AttnBlock(hl−1), l = 1, ..., L; Ŷ = OutProject(hL) (1)

Let hl ∈ RN×d represent the token embeddings produced by layer l. The input projection InProject
embeds patch tokens into input embeddings h0. Each AttnBlock consists of a multi-head self-
attention layer, followed by a feed-forward network (FFN) and normalization layers. The output
projection OutProject maps the output embeddings hL to the prediction Ŷ, either directly [12, 11] or
indirectly by first producing distributional parameters from which Ŷ is sampled [43]. We summarize
the architectural features and training losses of each model in Appendix B.3.

3 Multi-Scale Finetuning of TSFM

3.1 Multi-Scale Effect on TSFM: A Causal View

As we discussed in Section 1, both time series data and TSFMs exhibit multi-scale properties. We
take scale into account during TSFM finetuning and construct a Structural Causal Model (SCM)
[28] as illustrated Figure 1 (b). The nodes denote the abstract data variables, and the directed edges
denote the causality, i.e., cause→ effect. Denoting input context window data as X , scale as S, and
prediction horizon window data as Y , we discuss the rationale for each link as follows:
X ← S. Given an observed recording of the context period, the input context series X is directly
influenced by the scale S. Although corresponding to the same temporal range, X exhibits different
temporal patterns and resolutions at different sampling rates.
S →M ← X . We denote M as the activated knowledge within the pretrained TSFM’s knowledge
space, conditioned on input context. S →M indicates that the scale of data activates the correspond-
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Figure 2: (a): The intervened Structural Causal Models (SCM) and overall MultiScale FineTuning
(MSFT) framework, which directly model P (Y |do(X)); (b): Challenges in directly applying the
framework. Left: Downsampling and patching process for constructing multi-scale sequences. Patch
tokens at different scales have varying resolution and schematics. Right: Directly applying self-
attention over multi-scale embeddings leads to biased cross-scale attention due to misaligned time id.

ing scale-specific knowledge in the TSFM. Meanwhile, X → M reflects that the TSFM activates
context-specific knowledge with the input data X .
X → Y ←M . This link represents that the model utilizes the activated knowledge M to generate
predictions Y based on the lookback context data X .

It is evident that scale S is a confounder that induces spurious correlations between input context
series (via S → X) and activated knowledge of TSFM (via S → M ). The former captures the
multi-scale properties of time series, while the latter corresponds to the multi-scale capabilities of
TSFM. Scale S ultimately affects the forecasting of the prediction horizon via the backdoor path
X ← S →M → Y . Naive finetuned forecaster for P (Y |X) overlooks the impact of this backdoor
path, learning forecasting only at the original scale. This oversight would mistakenly associate
non-causal but positively correlated input context to forecast horizon in the original scale, resulting in
problematic forecasting. Further discussion can be found in Appendix C.

3.2 Causal Intervention via Backdoor Adjustment

Given this, we propose using P (Y |do(X)) as the new finetuned forecaster, which eliminates the
confounding effect of S and captures the true causal relationship from X to Y . As the “physical"
intervention is impossible, we apply the backdoor adjustment [27] to “virtually" realize P (Y |do(X))
by (1) blocking the link S → X and (2) S. As illustrated in Figure 2 (a, left), we have:

P (Y |do(X)) =
∑
s

P (Y |X,S = s,M = g(X, s))P (s) (2)

where g is a function to activate scale-specific knowledge of input. Grounded in this causal formula-
tion, we design the MultiScale FineTuning (MSFT) framework to instantiate the intervention-based
forecasting process shown in Equation 2. As shown in the right panel of Figure 2(a), the framework
stratifies the confounder S by down-sampling the original time series into multiple scales. Each scale
captures distinct statistical properties of the series and corresponds to a specific value s ∈ S.

Specifically, multi-scale series S = {S0, . . . ,SK} is generated through the process described in
Section 2. Each scale series Si is segmented into scale-specific patch tokens xi ∈ RNi×P , where
Ni is the number of patches for scale i. The scale-specific input embeddings are computed by
h0
i = InProject(xi). Following the design of masked encoder [9], the embeddings falling within the

forecast horizon are replaced with the learnable [mask] embedding. The input embeddings from all
scales are concatenated into a multi-scale sequence, h0 = Concat(h0

0,h
0
1, . . . ,h

0
K), which is then

passed to the Transformer for processing.

3.3 Challenges

Although the framework of Figure 2(a) can be directly applied without initiation of M = g(X, s),
we argue that it leaves following challenges unaddressed. First, the token schematics and intra-scale
dependencies vary significantly across scales. As shown in the left part of Figure 2(b), patch tokens
at different scales exhibit distinct resolution and temporal schematics. When directly finetuning the
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Figure 3: Complete design of MSFT based on the overall framework in Figure 2(a). 1 Linear
adapters are attached to the frozen input projection to learn scale-variant input embeddings. 2
Self-attention layers incorperate scale-specific Lora and decoupled dependency modeling. I In-scale
attention employs in-scale masking, ensuring tokens attend only to others within the same scale. II
Cross-scale aggregators progressively fuse tokens across scales in two directions, ensuring correct
temporal alignment between tokens. 3 Output projection generates separate predictions for each
scale, which are then mixed by up-sampling and learned weights.

input projection layer over all scales, each scale inherently tends to learn its own specific intra-token
patterns, which can lead to interference across scales and suboptimal performance. Moreover, the
resolution discrepancy induces scale-inequivalent inter-token correlation, requiring the attention
mechanism to capture scale-specific dynamics rather than assuming uniform interaction patterns.

Second, standard self-attention introduces misleading cross-scale dependencies due to mismatched
time (position) indices. Since time indices are independently generated within each scale, tokens with
the same index at different scales (shaded in gray in Figure 2(b)) correspond to different temporal
ranges. When self-attention is directly applied over over the concatenated multi-scale embedding
sequence, attention scores across scales become biased: tokens attend more to others with the same
time index, regardless of actual temporal relevance (see the right part of Figure 2(b)). This leads
attention to capture spurious temporal correlations and attend to semantically irrelevant tokens.

Finally, the model generates distinct predictions at each scale, and effectively mixing multi-scale
predictions remains a non-trivial challenge. Although cross-scale information is partially fused
through attention, prior studies [42] have shown that explicitly combining multi-scale predictions
improves forecasting performance. However, naively averaging predictions across scales fails to
account for their semantic and temporal heterogeneity, potentially leading to suboptimal results.

4 Methodology

To address the aforementioned challenges, we propose MSFT to realize the high-level framework
in Figure 2(a) as an effective multiscale finetuning strategy. Specifically, to activate scale-specific
knowledge, we freeze the pretrained parameters and introduce scale-specific, parameter-efficient
modules into the 1 input projection and 2 attention layers. To eliminate the cross-scale attention bias
and correctly capture temporal correlations, we propose a decoupled token dependency modeling
mechanism: I in-scale self-attention captures within-scale dependencies, while II cross-scale
aggregators explicitly fuse information across scales, ensuring correct temporal alignment between
tokens. Finally, we apply multi-scale mixing to the 3 output projection, combining scale-specific
predictions with learned weights. Figure 3 illustrates our MSFT method, with the detailed pseudo-
code provided in Appendix B.1.

Scale-specific Knowledge Activation. To address the problem of scale-variant token resolution,
instead of directly finetuning the unified input projection layer across all scales, we freeze the pre-
trained input projection and introduce a scale-specific adapter for each scale, implemented as a linear
layer Lineari. Now, the input embeddings of scale i is computed as h0

i = Lineari(InProject(xi)).
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Conditioned on the pretrained embeddings, these adapters independently learn specific representations
at variant resolutions, effectively avoiding interference across scales.

Similarly, to enhance the attention mechanism’s ability to capture scale-variant dynamics, we incorpo-
rate independent LoRA [13] modules for each scale. Specifically, we freeze the pretrained attention
weight matrices, and the FFN block, and introduce a set of LoRA modules for each scale. Since both
input embeddings and attention weights reflect scale-activated TSFM knowledge, this design serves
as the implementation of g in Equation 2, enabling the activation of scale-specific knowledge M .

Decoupled Token Dependency Modeling. To ensure attention blocks capture the multi-scale
embedding sequence’s correct dependencies, we decouple the token dependency modeling into two
parts: within-scale and across-scale dependencies. Specifically, for tokens within the same scale, if
they share the same resolution—dependencies, they can be directly learned via self-attention. Thus,
we only apply an in-scale attention mask Min to ensure that each token attends only to tokens from
the same scale.

To aggregate the knowledge between tokens from different scales, we add a cross-scale aggrega-
tor after the attention operation. The aggregator consists of two branches, namely coarse-to-fine
andfine-to-coarse, where temporal-aligned token-level information fusion is iteratively conducted
between consecutive scales in two directions. First, since tokens at different scales correspond to
varying resolutions, it is necessary to map embeddings to a shared space before fusion. To this
end, following [29, 30], we adopt a linear mapping ϕl

i,j to project token embeddings from scale i
to the embedding space of scale j in each layer l, where the mapped embeddings are defined as
h̃l
i,j = ϕl

i,j(h
l
i) = wl

i,jh
l
i + bli,j .

Based on this mapping, token embeddings from one scale are projected to the adjacent scale and
then fused according to their temporal alignment. We define the cross-scale token-wise fusion for the
coarse-to-fine (C2F) and fine-to-coarse (F2C) branches as follows:

C2F: hl
i−1 = hl

i−1 +Repeat(h̃l
i,i−1), for i ∈ {K, ..., 1} (3)

F2C: hl
i+1 = hl

i+1 +AvgPool(h̃l
i,i+1), for i ∈ {0, ...,K − 1} (4)

where Repeat(·) duplicates each coarse-scale token in h̃l
i,i−1 along the sequence dimension to

match the finer-scale resolution, based on their temporal correspondence. Conversely, AvgPool(·)
aggregates groups of fine-scale tokens in h̃l

i,i+1 by averaging them according to the downsampling
factor, thereby aligning them to the coarser-scale resolution. Finally, the outputs from the two
branches are combined by averaging their updated token embeddings. This decoupled two-stage
design enables the model to capture temporal dependencies within each scale while effectively fusing
complementary information across scales, leading to improved multi-scale temporal understanding.

Multi-scale Mixing. In the output projection, each scale independently predicts a forecasting
horizon Ŷi based on its scale-specific tokens hL

i from the final layer embedding hL. The training
objective is formulated as a weighted summation of the scale-wise forecasting lossesLpred,i (e.g., MSE
or NLL). Since different scales may exhibit varying forecasting abilities and contribute differently to
the final performance, we assign a learnable weight wi to each scale, corresponding to the prior P (s)
in Equation 2. The weights wi are obtained by applying a softmax function over a set of learnable
parameters during training: Lpred =

∑K+1
i=0 wiLpred,i. During inference, we upsample the forecasting

results from each new scale to the original temporal resolution. The final prediction Ŷ is computed
as the weighted sum of the upsampled forecasts, using the same learned weights wi. This weighted
mixing strategy can be seen as ensembling [26], which helps mitigate overfitting on the original scale.
Additional implementation details for different TSFM architectures are provided in Appendix B.3.

5 Related Work

5.1 Time Series Foundation Model

We focus our discussion solely on transformer-based TSFMs for TSF. Such TSFMs can be broadly
categorized according to the backbone architecture. Encoder-only models like Moirai [43], Mo-
ment [12] and UniTS [11] use masked reconstruction for pretraining. Decoder-only models, such
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as TimesFM [8], Lag-Llama [32], Timer [20], and Time-MoE [35] are pretrained by next-token
prediction in an auto-regressive manner. Chronos [2], an encoder-decoder model, quantizes scaled
time series values into discrete tokens and adopts the training objective originally developed for NLP.
Despite the advancement of the field, existing TSFM research predominantly emphasizes pretraining
and zero-shot performance. Although some studies [2, 12, 8, 20] mention naive finetuning methods,
these attempts are limited compared to the efforts devoted to pretraining and zero-shot evaluation.
We include a more detailed discussion in Appendix A.

5.2 Multi-scale modeling in time series forecasting

Multi-scale modeling has garnered growing attention in the TSF community. Existing works mostly
involves down-sampling, where coarser scales are derived from the original series using pooling or
convolution. Models are then designed to capture multi-scale characteristics from these different
views. Pyraformer [18] constructs a pyramidal graph of different scales and employs a pyramid
attention mechanism to extract multi-resolution representations. MICN [40] processes different scales
separately through multiple branches with distinct convolution kernels and subsequently merges the
outputs. Inspired by hierarchical forecasting, Scaleformer [34] and GPHT [21] iteratively refine the
outputs from coarser to finer scales. TimeMixer [42] and TimeMixer++ [41] decompose each scale
into seasonal and trend components, then integrate these components across multiple scales.

6 Experiments

We evaluate our proposed finetuning method, MSFT, on two prevalent TSF tasks: long sequence
forecasting (LSF) and probabilistic forecasting (PF). For LSF, we experiment with three TSFMs:
MOIRAI, MOMENT and UNITS. For PF, we focus solely on MOIRAI, as it is the only model capable
of probabilistic forecasting. Our evaluation includes comparisons with both deep learning-based
methods and other finetuning approaches applied to TSFMs. Detailed model configurations and
experimental setups are provided in the Appendix B.

Table 1: Long sequence forecasting results, which are averaged across prediction lengths
{96, 192, 336, 720}. Each TSFM shows its zero-shot performance (highlighted in gray ) and results
with different finetuning methods. The best finetuning results for each TSFM are highlighted in bold,
while the global best results across all models are highlighted in red.

Method
ETTm1 ETTm2 ETTh1 ETTh2 Electricity Weather

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DLinear[2023] 0.403 0.419 0.350 0.401 0.456 0.452 0.559 0.515 0.212 0.365 0.265 0.317
PatchTST[2023] 0.387 0.400 0.281 0.326 0.469 0.455 0.387 0.407 0.216 0.304 0.259 0.281
iTransformer[2024a] 0.407 0.410 0.288 0.332 0.454 0.448 0.383 0.407 0.178 0.270 0.258 0.278
TimeMixer[2024] 0.381 0.395 0.275 0.323 0.447 0.440 0.364 0.395 0.182 0.272 0.240 0.271
SimpleTM [2025] 0.381 0.396 0.275 0.322 0.422 0.428 0.353 0.391 0.166 0.260 0.243 0.271

MOIRAISmall 0.448 0.409 0.300 0.341 0.416 0.428 0.355 0.381 0.233 0.320 0.268 0.279
+ Full finetuning 0.367 0.382 0.273 0.316 0.415 0.429 0.352 0.378 0.193 0.279 0.228 0.254
+ Linear probing 0.388 0.392 0.295 0.337 0.414 0.427 0.354 0.380 0.212 0.299 0.237 0.260
+ Prompt tuning 0.384 0.391 0.292 0.334 0.414 0.428 0.354 0.381 0.217 0.304 0.235 0.258
+ LoRA 0.370 0.383 0.272 0.314 0.414 0.427 0.354 0.380 0.192 0.279 0.225 0.252
+ AdaLoRA 0.381 0.386 0.273 0.319 0.414 0.427 0.354 0.380 0.191 0.279 0.226 0.252
+ MSFT 0.353 0.377 0.250 0.301 0.412 0.426 0.349 0.375 0.187 0.275 0.216 0.248

MOIRAIBase 0.381 0.388 0.281 0.326 0.412 0.424 0.356 0.388 0.188 0.274 0.246 0.265
+ Full finetuning 0.368 0.371 0.258 0.307 0.409 0.424 0.357 0.384 0.173 0.263 0.232 0.258
+ Linear probing 0.388 0.387 0.277 0.319 0.409 0.424 0.356 0.387 0.182 0.269 0.229 0.253
+ Prompt tuning 0.378 0.386 0.280 0.325 0.412 0.423 0.360 0.387 0.183 0.271 0.230 0.255
+ LoRA 0.361 0.371 0.259 0.308 0.409 0.423 0.358 0.384 0.173 0.263 0.230 0.258
+ AdaLoRA 0.359 0.371 0.258 0.307 0.410 0.423 0.356 0.384 0.173 0.264 0.236 0.260
+ MSFT 0.332 0.369 0.247 0.305 0.407 0.422 0.352 0.383 0.169 0.260 0.213 0.245

MOMENT - - - - - - - - - - - -
+ Full finetuning 0.352 0.380 0.260 0.320 0.425 0.440 0.347 0.394 0.224 0.311 0.336 0.310
+ Linear probing 0.355 0.381 0.261 0.321 0.429 0.441 0.347 0.395 0.226 0.313 0.338 0.312
+ Prompt tuning 0.356 0.381 0.261 0.320 0.427 0.440 0.348 0.395 0.226 0.312 0.336 0.310
+ LoRA 0.356 0.381 0.260 0.320 0.425 0.439 0.347 0.395 0.225 0.312 0.335 0.309
+ AdaLoRA 0.355 0.381 0.259 0.319 0.426 0.440 0.347 0.394 0.224 0.311 0.336 0.311
+ MSFT 0.344 0.377 0.255 0.316 0.422 0.436 0.345 0.392 0.221 0.309 0.332 0.307

UNITS 0.713 0.553 0.321 0.355 0.527 0.491 0.406 0.418 0.432 0.488 0.291 0.313
+ Full finetuning 0.395 0.405 0.297 0.338 0.442 0.435 0.386 0.409 0.190 0.283 0.257 0.283
+ Linear probing 0.399 0.409 0.301 0.343 0.445 0.437 0.392 0.412 0.200 0.291 0.274 0.293
+ Prompt tuning 0.431 0.430 0.299 0.341 0.438 0.433 0.386 0.405 0.191 0.287 0.247 0.276
+ LoRA 0.393 0.405 0.296 0.338 0.437 0.434 0.384 0.407 0.188 0.282 0.250 0.279
+ MSFT 0.390 0.403 0.288 0.334 0.434 0.430 0.380 0.405 0.184 0.279 0.242 0.273
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Table 2: Probabilistic forecasting results. The best finetuning results for each TSFM are highlighted
in bold, while the global best results are highlighted in red. See Table 15 for full results.

Method
Electricity Solar Weather Istanbul Traffic Turkey Power

CRPS MSIS CRPS MSIS CRPS MSIS CRPS MSIS CRPS MSIS

DeepAR[2020] 0.065 6.893 0.431 11.181 0.132 21.651 0.108 4.094 0.066 13.520
TFT[2021] 0.050 6.278 0.446 8.057 0.043 7.791 0.110 4.057 0.039 7.943
PatchTST[2023] 0.052 5.744 0.518 8.447 0.059 7.759 0.112 3.813 0.054 8.978
TiDE[2023] 0.048 5.672 0.420 13.754 0.054 8.095 0.110 4.752 0.046 8.579

MOIRAISmall 0.072 7.999 0.471 8.425 0.049 5.236 0.173 5.937 0.048 7.127
+ Full finetuning 0.055 6.009 0.395 6.947 0.039 4.477 0.151 6.735 0.040 6.887
+ Linear probing 0.062 6.438 0.369 5.865 0.049 4.785 0.154 4.645 0.047 6.912
+ Prompt tuning 0.066 6.595 0.421 6.936 0.050 4.901 0.154 4.733 0.045 7.042
+ LoRA 0.064 6.753 0.372 6.582 0.039 4.386 0.154 4.753 0.042 7.051
+ AdaLoRA 0.064 6.892 0.366 8.015 0.040 4.496 0.152 4.670 0.041 7.127
+ MSFT 0.047 5.327 0.353 7.706 0.036 4.178 0.141 4.447 0.038 6.810

MOIRAIBase 0.055 6.172 0.419 7.011 0.041 5.136 0.116 4.461 0.040 6.766
+ Full finetuning 0.049 5.414 0.188 4.292 0.038 5.282 0.120 7.272 0.036 6.712
+ Linear probing 0.055 5.951 0.379 5.645 0.039 4.544 0.104 3.736 0.042 7.259
+ Prompt tuning 0.054 6.024 0.412 6.885 0.040 5.274 0.105 3.987 0.040 6.698
+ LoRA 0.051 5.651 0.382 6.745 0.037 4.904 0.113 4.752 0.036 6.744
+ AdaLoRA 0.054 5.937 0.383 8.825 0.038 4.802 0.110 3.895 0.037 6.762
+ MSFT 0.046 5.199 0.142 3.464 0.035 4.603 0.098 3.685 0.034 6.419

6.1 Long Sequence Forecasting

Setup. We conduct our experiments on a subset of the widely-used long sequence forecasting
benchmark [45]. This subset is identical to the one used in Moirai [43] for LSF experiments and is not
included in the pretraining data of TSFMs. Each dataset involves predictions at four different lengths,
with the model is finetuned separately for each prediction length. We evaluate the performance using
Mean Squared Error (MSE) and Mean Absolute Error (MAE).

Results. As shown in Table 1, MSFT consistently enhances the forecasting performance of TSFMs.
Across all models, MSFT outperforms other finetuning methods that use only the original scale,
consistently delivering the best finetuned results. For MOIRAISmall and MOIRAIBase, MSFT further
improves their forecasting accuracy over their solid zero-shot performance, achieving competitive
results across all datasets, with 10 out of 12 metrics showing the best performance. Notably, MSFT
substantially improves MOIRAI’s finetuned performance on minutely-level datasets. Compared to full
finetuning, it achieves 6.8% lower MSE in ETTm1, 6.3% lower MSE in ETTm2 and 6.7% lower MSE
in Weather. In contrast, the improvement brought by MSFT on hourly datasets are relatively smaller
compared to minute-level datasets. This discrepancy can be explained by the richer multi-scale
patterns present in minute-level data, which MSFT can effectively leverage. For MOMENT, the
improvements brought by MSFT are generally less pronounced compared to MOIRAI and UNITS.
This can be attributed its pretraining with fixed context lengths, which limits their ability to extract
information from new scales of varying lengths. Despite these differences, MSFT exhibit superior
finetuned performance across diverse models and datasets, demonstrating its generalizability.

6.2 Probabilistic Forecasting

Setup. We evaluate on six datasets spanning various domains, using the rolling evaluation setup
described in Moirai [43]. The test set comprises the final time steps, segmented into multiple
non-overlapping evaluation windows. The length of the prediction window and the number of
rolling evaluations are tailored for each dataset based on its frequency (see Table 5 for details). For
performance evaluation, we report the Continuous Ranked Probability Score (CRPS) and Mean
Scaled Interval Score (MSIS) metrics.

Results. Experimental results in Table 2 demonstrate that MSFT consistently delivers superior
performance across all datasets. Building upon the strong zero-shot performance, MOIRAIBase
achieves the best results for nearly all the datasets. MSFT provides consistent improvements over
other finetuning methods, achieving an additional 24.4 % CPRS relative reduction in Solar and 18.3
% CPRS relative reduction in Istanbul Traffic compared to full finetuning. A similar trend is also
observed in the small model, demonstrating that our multi-scale modeling method can effectively
enhance the fine-tuned performance of probabilistic forecasting.
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Table 3: Ablation study on three LSF datasets using MOIRAISmall.
InProject Attention In-scale Mask X-scale Aggre. Mixing ETTm1 ETTm2 Weather Avg Diff

Scale Shared Scale Shared C2F F2C Avg. Weighted MSE MAE MSE MAE MSE MAE MSE MAE

1 ✓ ✓ ✓ ✓ ✓ 0.362 0.380 0.253 0.305 0.219 0.252 0.005 0.003
2 ✓ ✓ ✓ ✓ ✓ ✓ 0.360 0.379 0.252 0.304 0.218 0.249 0.003 0.002
3 ✓ ✓ ✓ ✓ ✓ 0.374 0.385 0.256 0.308 0.224 0.256 0.011 0.007
4 ✓ ✓ ✓ ✓ ✓ ✓ 0.361 0.382 0.254 0.306 0.222 0.254 0.006 0.005

5 ✓ ✓ ✓ ✓ 0.371 0.384 0.256 0.307 0.223 0.255 0.010 0.006
6 ✓ ✓ ✓ ✓ ✓ 0.363 0.382 0.254 0.304 0.220 0.252 0.006 0.004
7 ✓ ✓ ✓ ✓ ✓ 0.357 0.379 0.252 0.304 0.218 0.251 0.002 0.002
8 ✓ ✓ ✓ 0.360 0.380 0.253 0.303 0.220 0.253 0.004 0.003

9 ✓ ✓ ✓ ✓ ✓ 0.359 0.379 0.269 0.313 0.226 0.252 0.011 0.006
10 ✓ ✓ ✓ ✓ ✓ ✓ 0.384 0.388 0.255 0.311 0.219 0.252 0.012 0.008

MSFT ✓ ✓ ✓ ✓ ✓ ✓ 0.354 0.378 0.250 0.301 0.216 0.248 - -

6.3 Model Analysis

To fully understand MSFT, we conduct model analysis using the MOIRAISmall model on three LSF
datasets, selected for its strong zero-shot performance and relatively low training cost. Due to
page limits, we present the analysis of down-sampling approaches, down-sampling factors, detailed
attention analysis, and visualizations in the Appendix D. We also discuss the potential application of
MSFT to decoder-based structures and its limitation in Appendix E.

Ablation Study. To ensure statistical robustness, we report mean results over three runs in Table 3,
with standard deviations provided in Table 11. Ablations 1 to 4 examine the effectiveness of
scale-specific knowledge activation. For both input projection and attention, either freezing ( 1 , 3 ) or
finetuning shared weights ( 2 , 4 ) yields inferior performance to using scale-specific modules, with
freezing causing larger performance drops. Among the two, attention has a greater impact than input
projection, highlighting its critical role in capturing temporal dependencies.

Ablations 5 to 8 evaluate the effect of each component in decoupled dependency modeling. In 5 ,
we remove cross-scale aggregators and only retain in-scale attention masking. Without cross-scale
modeling, the performance suffers a significant decline. In 6 and 7 , we ablate the coarse-to-fine and
fine-to-coarse branches, respectively. Both cases lead to performance drops, with the coarse-to-fine
branch showing a stronger impact. In 8 , we completely remove decoupled dependency modeling,
capturing dependency directly via attention on the concatenated multi-scale sequence. This approach
leads to misaligned cross-scale interactions and further degrades performance.

Finally, we assess the impact of multi-scale mixing. In 9 , we disable prediction mixing, only using
the original scale for prediction. In 10 , we aggregate the multi-scale predicitions by averaging. Both
approaches result in lower performance compared to our full model.

Effect of Number of New Scales. As shown in Figure 4, increasing the number of new scales K
initially reduces errors. However, beyond a certain point, performance plateaus or declines, likely due
to overly coarse predictions with few tokens disrupting multi-scale modeling. Our results indicate
that setting K to 2 or 3 achieves the best balance.

Attention Analysis. Figure 5 shows the attention score heatmaps of three attention strategies. In (a),
direct attention (Ablation 8 ) exhibits spurious temporal dependencies, with attention scores biased
toward tokens sharing the same time indices. In (b), we align time indices during attention, ensuring
that cross-scale tokens corresponding to the same temporal region share identical time indices. While
this approach produces "correct" attention patterns, it is limited to RoPE and performs worse than
our method (see Appendix D for details). In (c), our in-scale masking strategy eliminates misleading
cross-scale attention, focusing on accurate within-scale dependency modeling.

(a) ETTm1 (b) ETTm2 (c) Weather

Figure 4: LSF accuracy w.r.t. number of scales

(a) Naive (b) Aligned (c) Ours

Figure 5: Attention heatmaps of various methods
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7 Conclusion

We introduce MSFT, a multi-scale finetuning strategy for encoder-based TSFMs. From a causal view,
we highlight the limitations of naive finetuning and propose to use multi-scale modeling as backdoor
adjustment to mitigate the confounding effect of scale. By using concatenated multi-scale sequence
as input, applying simple scale-specific model modifications, and employing decoupled dependency
modeling, our method effectively aggregates multi-scale information and improves the forecasting
performance. Our experiments show that MSFT not only significantly enhances the performance of
the original foundation models but also surpasses other state-of-the-art models trained from scratch.
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made in the paper.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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to reproduce that algorithm.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Justification: The code and data will be accessed in the provided anonymous Github link.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setting/details can be found in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Since our models are based on foundation models and given the large number
of experiments, we do not have sufficient computational resources to conduct three or five
runs for reporting error bars. However, based on our experience, we note that the finetuning
results are quite stable, without a large deviation between several runs using different random
seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information on the computer resource in Appendix B.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics

Guidelines: The research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work focuses on a techinical problem of the finetuning of Time Series
Foundation Models for time series forecasting. There is no societal impacts on potential
malicious or unintended uses.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our data and models are sourced from publicly available popular datasets or
released pretrained time series models, which do not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers that produced the code package, models and
datasets. The version and url of models/datasets are stated in the Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets provided in the anonymized URL are well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLM for writing, editing or formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Related Works

A.1 Time Series Foundation Model

In this section, we further discuss related works involved TSFM finetuning. Some TSFMs conduct
basic experiments in their original papers to show the effect of naive finetuning. For instance, Moment
[12] applies linear probing and reports the corresponding results in their main experiments. Chronos
[2] and Timer [20] apply full finetuning, with improvements over zero-shot perofrmance on their
respective benchmarks. TimesFM [8] tunes the input and output residual blocks on ETT datasets.

Notably, some recent studies explore specialized finetuning methods for TSFMs. UniTS [11]
introduces a prompt tuning strategy, and [6] employs in-context tuning to TimesFM. However, both
methods are tailored to their own model architectures and rely on specialized pretraining designs,
which limits their generalizability and plug-and-play applicability. [3] inserts adapters on Moment
to adapt this univaraite TSFM for multivariate probabilistic forecasting. However, this approach is
restricted to this specific application, rather than serving as a general finetuning method applicable to
various models or forecasting tasks. This gap underscores the need for more general, effective, and
modular finetuning strategies for TSFMs.

A.2 Multi-scale modeling

The term multi-scale modeling has been used inconsistently in prior time series works. In our paper,
it specifically refers to constructing multiple downsampled versions of the same time series and
jointly leveraging them through cross-scale aggregation during prediction. This enables the model to
integrate temporal information from both coarse and fine resolutions within a single forward pass.

Several related terminologies exist in the literature. TTM[10] introduces multi-resolution pretraining
by downsampling high-frequency datasets into lower-frequency versions, which serves as a form
of data augmentation during pretraining. However, each time series sample is still processed in
a single scale/resolution during its prediction process. Thus, TTM does not perform multi-scale
modeling as defined in our work. Another similar strategy is multi-patch-size modeling, which applies
specifically to patch-based TSTs. Here, multiple patch sizes are used to segment the time series into
tokens in different resolutions. Pathformer [5] applies layer-by-layer routing to select patch sizes
and aggregate the outputs from multiple scales. MTST [49] proposes a multi-branch architecture
for modeling diverse temporal patterns at different resolutions. ElasTST [47] leverages a shared
transformer backbone with tunable RoPE for multi-scale patch assembly. Moirai [43] adopts multiple
patch-size projection layers, yet it does not downsample inputs into multiple temporal scales. In
summary, this line of methods requires the model to be compatible with multiple patch sizes, which
is not feasible for most TSFMs. Under this clarified definition, our work is the first to introduce
multi-scale modeling in TSFM finetuning.

B Implementation Details

B.1 Pseudo-code of MSFT

For clarity, we provide the Pytorch-like pseudo codes of MSFT in Algorithm 1 and Algorithm
2, , illustrating the overall training pipeline and the MSFT attention block described in Section 4.
Importantly, the method does not construct a new model from scratch, but enhances the pretrained
TSFM through additional plug-in modules.

B.2 Dataset details

For long sequence forecasting (LSF), we conduct experiments on six well-established datasets,
including the ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2) [51], Weather [45], and Electricity
[45]. We note that these datasets are not included in the pretraining datasets of the TSFMs we
evaluated. The key properties of these LSF datasets are detailed in Table 4.
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Algorithm 1 Overall Training Pipeline for MSFT: PyTorch-like Pseudo-code
class MSFTPipeline(nn.Module):

def __init__(self, pretrained_model, K, s=2, P=16):
self.K = K # number of new scales
self.s = s # downsample factor
self.P = P # patch size

# frozen input projection, scale-specific linear layers
self.in_proj = pretrained_model.in_proj
self.linears = [Linear_i() for i in range(K+1)]

# encoder layers with MSFT blocks
self.encoder = nn.ModuleList([

AttnBlock_with_MSFT(block, K=K, s=s)
for block in pretrained_model.encoder_layers

])

# frozen output projection
self.out_proj = pretrained_model.out_proj

def forward(self, X, Y):
# Step 1: Multi-Scale Generation
S = []
for i in range(self.K+1):

X_i = AvgPool(X, window_size=self.s**i) # pre-pad if needed
Y_i = AvgPool(Y, window_size=self.s**i) # post-pad if needed
S.append((X_i, Y_i))

# Step 2: Patching & Projection
H_0 = []
for i, (X_i, Y_i) in enumerate(S):

x_i = Patching((X_i, Y_i), patch_size=self.P)
h_i = self.linears[i](self.in_proj(x_i)) # frozen InProject
h_i = Masking(h_i) # mask prediction tokens
H_0.append(h_i)

h = Concat(H_0)
scale_index = GetScaleIndex(H_0)

# Step 3: Multi-Scale Attention Encoding
for l in range(self.L):

h = self.encoder[l](h, scale_index)

# Step 4: Output & Loss
H_L = Split(h, scale_index) # recover [h_0^L, ..., h_K^L]
losses, preds = [], []
for i, (_, Y_i) in enumerate(S):

Y_hat_i = self.out_proj(H_L[i])
L_i = Loss(Y_i, Y_hat_i)
losses.append(w_i * L_i) # weighted by learnable w_i

# upsample prediction back to original scale
Y_hat_up = Upsample(Y_hat_i, scale=self.s**i)
preds.append(w_i * Y_hat_up)

L_total = sum(losses)
Y_hat = sum(preds)
return L_total, Y_hat

Following Moirai [43], we use 5 out-of-distribution datasets for probabilistic forecasting: Electricity
[38], Solar-Power [16], Jena Weather, Istanbul Traffic2, and Turkey Power3. Detailed descriptions of
these datasets are provided in Table 5.

B.3 Encoder-based TSFMs

We describe the architectural details and training objectives of each encoder-based TSFM used in our
experiments. Table 6 summarizes the fundamental details of the models based on their origin setup.

2https://www.kaggle.com/datasets/leonardo00/istanbul-traffic-index
3https://www.kaggle.com/datasets/dharanikra/electrical-power-demand-in-turkey
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Algorithm 2 Multi-Scale Attention Block (AttnBlock_with_MSFT): PyTorch-like Pseudo-code
class AttnBlock_with_MSFT(PretrainedAttnBlock):

def __init__(self, K, s=2):
super().__init__()
self.K = K # number of new scales
self.s = s # downsample factor

# LoRA adapters for each scale
self.W_Q = [LoRA(self.W_Q) for _ in range(K+1)]
self.W_K = [LoRA(self.W_K) for _ in range(K+1)]
self.W_V = [LoRA(self.W_V) for _ in range(K+1)]

# cross-scale projections
self.F2CMap = [Linear() for i in range(K)] # fine -> coarse
self.C2FMap = [Linear() for i in range(K)] # coarse -> fine

def forward(self, h_in, scale_index):
# Step 1: Split input into scale-wise representation
H_in = [h_in[..., idx, :] for idx in scale_index]

# Step 2: Scale-specific Attention with LoRA
Q, K, V = [], [], []
for i in range(self.K+1):

Q.append(W_Q[i](H_in[i]))
K.append(W_K[i](H_in[i]))
V.append(W_V[i](H_in[i]))

Q, K, V = Concat(Q), Concat(K), Concat(V)

# Step 3: In-scale masked attention
h_attn = ScaledDotProductAttention(Q, K, V, mask=M_in)

# Step 4: Cross-scale Aggregation
H_attn = [h_attn[..., idx, :] for idx in scale_index]
# (a) Coarse-to-Fine (C2F)
H_c2f = H_attn.copy()
for i in range(self.K, 0, -1):

h_proj = self.C2FMap[i-1](H_attn[i])
H_c2f[i-1] += Repeat(h_proj, repeat_factor=self.s)

# (b) Fine-to-Coarse (F2C)
H_f2c = H_attn.copy()
for i in range(self.K):

h_proj = self.F2CMap[i](H_attn[i])
H_f2c[i+1] += AvgPool(h_proj, pool_size=self.s)

# (c) Merge outputs from two branches
H_out = []
for i in range(self.K+1):

H_out.append(0.5 * (H_c2f[i] + H_f2c[i]))

# Step 5: Re-concatenate
h_out = Concat(H_out)

# W_o & Add & Norm & FeedForward omitted for brevity
return h_out

Moirai Moirai [43] is one of the pioneering TSFMs for universal time series forecasting based
on a masked encoder architecture. It segments single-dimensional time series (a variate) into patch
tokens and can be extended to multivariate setup by flattening multiple variate into a single sequence.
Moirai employs multi patch size projection layers in both input and output projections, allowing it
to effectively handle data with varying frequencies. In the attention blocks, it encodes the temporal
position of tokens using Rotary Positional Encoding (RoPE) [37], and encodes simple variate
correlation by using binary attention biases to indicate whether two tokens belong to the same variate
or not. The model produces distribution parameters for a mixture distribution over the predictive
horizon. The training objective is to minimize the negative log-likelihood (NLL). During inference,
predictions of horizon are obtained by sampling from the predictive distribution. Point forecasts can
be derived by taking the median from the samples. In our experiments, we use the univariate mode of
Moirai, encoding different scales using distinct variate indices.

Moment Moment [12] is a suite of open-source foundation models designed for versatile time-
series analysis tasks. Moment follows channel independence assumption and leverages a T5[31]
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Table 4: Summary of datasets used in the long sequence forecasting evaluation.

Task Dataset Variate Dataset Size Predict Length Frequency Information

ETTh1 7 17420 {96, 192, 336, 720} Hourly Temperature

ETTh2 7 17420 {96, 192, 336, 720} Hourly Temperature

Long Sequence ETTm1 7 69680 {96, 192, 336, 720} 15 min Temperature

Forecasting ETTm2 7 69680 {96, 192, 336, 720} 15 min Temperature

Electricity 321 26304 {96, 192, 336, 720} Hourly Electricity

Weather 21 52696 {96, 192, 336, 720} 10 min Weather

Table 5: Summary of datasets used in the probabilistic forecasting evaluation setting.

Task Dataset Variate Dataset Size Predict Length Rolling Evaluation Frequency Information

Electricity 321 26304 24 7 H Energy

Probabilistic Solar 137 8760 24 7 H Energy

Forecasting Weather 21 52696 144 7 10T Climate

Istanbul Traffic 3 14244 24 7 H Transport

Turkey Power 18 26304 24 7 H Energy

encoder architecture enhanced with sinusoidal positional encoding to effectively capture temporal
dependencies within time series. Distinctively, during the forecasting fine-tuning phase, MOMENT
utilizes the entire context series as input to directly get prediction results, diverging from traditional
masked reconstruction methods commonly employed in pretraining. The model’s forecasting head
comprises a flatten operation followed by a linear layer, and it is trained using the MSE loss function.
Due to the computational resource constraints associated with finetuning and the large scale of the
models, we employ Moment (Small) for our experiments.

UNITS UNITS is originally designed for multi-tasks learning with specific task prompts. The
transformer encoder is composed of multiple UNITS Blocks and ultimately processed through the
GEN Tower to generate the final predictions. Specifically, within each UNITS Block, the data
sequentially passes through Time Self-attention, Variable Self-attention, and Dynamic FFN. Each of
these modules is followed by a Gate Module, which enhances the model’s generalization capability
in multi-task learning by dynamically scaling the feature vectors. Time Self-attention and Variable
Self-attention compute attention scores along the time and variable dimensions, respectively, while
the Dynamic FFN dynamically adjusts the shape of the weight matrix through bilinear interpolation
to match the lengths of the input and output. The GEN Tower is designed to accommodate varying
input lengths for different tasks and to ultimately generate the output sequence. The model applies
learnable additive position encoding. For forecasting task, the training objective is MSE loss.

B.4 Finetuning baselines

Full Finetune and Linear Probe Full finetuning involves updating all parameters of the pretrained
model. We observe that using a small learning rate is crucial for stability and performance. In contrast,
linear probing only updates the output head while keeping the backbone frozen; a larger learning rate
is generally more effective in this case.

LoRA and AdaLoRA LoRA [13] introduces trainable rank-decomposition matrices into the
attention layers, enabling parameter-efficient finetuning by injecting updates into a low-rank subspace.
AdaLoRA [48] extends LoRA by dynamically allocating the rank during training based on parameter
importance, improving adaptation under a parameter budget. For Moirai and Moment, we directly
adopt the PEFT library [22] for both LoRA and AdaLoRA. We apply LoRA and AdaLoRA to the
query, key, and value projection layers. In addition to the LoRA modules, we also allow the output
prediction head to be trainable. The LoRA configuration follows standard settings with rank r = 16
and scaling factor α = 32. For AdaLoRA, we use the default configuration provided by the PEFT
library. Since the original attention implementation in the UNITS codebase uses a large shared weight
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Table 6: Summary of encoder-based time series foundation models.

Feature Moirai Moment UNITS
Citation Woo et al., 2024 Goswami et al., 2024 Gao et al., 2024
Base Architecture Naive Encoder T5 Encoder Modified Encoder
Params Small: 14M , Base: 91M 40M 3.4M
Open Source ✓ ✓ ✓

Evaluation Tasks Point Forecasting,
Probabilistic Forecasting

Point Forecasting, Classification,
Anomaly detection, Imputation

Point Forecasting, Classification,
Anomaly detection, Imputation

Layer Small: 6 , Base: 12 8 3
dmodel Small: 384, Base: 768 512 128
Patch Size [8, 16, 32, 64, 128] 8 16
Context Length 1000-5000 512 96
Position Embedding RoPE [37] Sinusoidal Learnable Additive PE

for query, key, and value, applying LoRA or AdaLoRA from PEFT is not feasible. Therefore, we
implement a custom LoRA for it and do not conduct AdaLoRA experiments on UNITS.

Prompt Finetuning For Moirai and Moment, we implement prompt fine-tuning by introducing
trainable soft prompt embeddings, which are prepended to the input tokens in the embedding space.
We avoid inserting them into the patch token space, as doing so can interfere with the statistical
computation of RevIN [14] and offers less expressive capacity compared to the high-dimensional
embedding space. During inference, we discard the prompt embeddings from the encoder output and
use only the time series embeddings as final representation for prediction. Similarly, only the output
head and the prompt embeddings are finetuned, while all other parameters remain frozen. Prompt
length is set to 2 by default. For UNITS, we directly use its original prompt tuning implementation.

B.5 Metric details

For long sequence forecasting, we follow the standard protocols to use mean square error (MSE) and
mean absolute error for evaluation. For probabilistic forecasting, we include Continuous Ranked
Probability Scoremean (CRPS), Mean Scaled Interval Score (MSIS), absolute percentage error
(MAPE), symmetric mean absolute percentage error (sMAPE), mean absolute scaled error (MASE),
normalized deviation (ND), and normalized root mean squared error (NRMSE) as metrics. The
definitions and calculations of probabilistic forecasting metrics are as follows. Note that the notations
used here are independent of those in the main text.

Continuous Ranked Probability Score Given a predicted distribution with c.d.f. F and ground
truth Y, the CRPS is defined as:

CRPS =

∫ 1

0

2Λα(F
−1(α),Y)dα

Λα(q,Y) = (α− 1Y<q)(Y − q),

where Λα is the α-quantile loss, also known as the pinball loss at quantile level α.

In practice, the CRPS is intractable or computationally expensive to compute, and we also want
to compute a normalized metric, thus we compute a normalized discrete approximation, the mean
weighted sum quantile loss, defined as the average of K quantiles:

CRPS ≈ 1

K

K∑
k=1

wQL[αk]

wQL[α] = 2

∑
i Λα(q̂i(α),Yi)∑

i |Yi|
,

where Yi is the ground truth at at time step i and q̂t(α) is the predicted α-quantile at time step i. We
take K = 9, α1 = 0.1, α2 = 0.2, . . . , α9 = 0.9 in practice.
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Mean Scaled Interval Score The MSIS is a metric to evaluate uncertainty around point forecasts.
Given an upper bound prediction, Ui, and lower bound prediction Li, the MSIS is defined as:

MSIS =
1

H ·
(

1
n−m

∑n
i=m+1 |Yi −Yi−m|

) · [ H∑
i=1

(Ui − Li)

+
2

a
(Li −Yi)1{Yi<Li} +

2

a
(Yi − Ui)1{Yi>Ui}

]
where a = 0.05 is the significance level for a 95% prediction interval, over a forecast horizon of
length H , and m is the seasonal factor.

symmetric Mean Absolute Percentage Error The sMAPE is a accuracy measure based on
percentage errors, treating over- and under-predictions symmetrically, commonly used in forecasting.

SMAPE =
200

H

H∑
i=1

|Yi − Ŷi|
|Yi|+ |Ŷi|

,

Mean Absolute Scaled Error The MASE is a metric for forecasting accuracy, scaling errors by
the in-sample mean absolute error of a naive forecast, ensuring interpretability and comparability.

MASE =
1

H

H∑
i=1

|Yi − Ŷi|
1

H−s

∑H
j=s+1 |Yj −Yj−s|

,

where s is the periodicity of the data. Y, Ŷ ∈ RH×D are the ground truth and prediction results of
the future with H time pints and D dimensions. Yi means the i-th future time point.

Normalized Deviation The ND measures prediction accuracy by standardizing deviations between
predicted and actual values, aiding model evaluation and optimization.

ND =
1

H

H∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣× 100%,

Normalized Root Mean Squared Error The NRMSE quantifies prediction error, enables model
comparison, aids optimization, and provides interpretable results in time series forecasting.

NRMSE =

√
1
H

∑H
i=1

(
Yi − Ŷi

)2

max(Y)−min(Y)
.

B.6 Experiment Details

Dataset Construction Unlike pretraining in Moirai, where samples are randomly cropped from
time series of varying lengths, we create the training, validation, and test datasets by cropping time
series windows with fixed sequence lengths. Given the context and prediction lengths, samples are
segmented using a sliding window, where the window size is C +H . The train-val-test split follows
the default LSF setup. Data are normalized for LSF but not for PF.

Training Setup Since there is no official fine-tuning implementation for Moirai, we configure
the training setup as follows. We use the AdamW optimizer with weight decay=0.1, β1 = 0.9, and
β2 = 0.98 for optimization. Specifically, unlike pretraining, which uses a learning rate of 1e-3, we
find that finetuning requires a much smaller learning rate. Based on validation performance, we
select a learning rate of either 5e-6 or 5e-7 for finetuning our models. The batch size is set to 512
by default for experiments using MOIRAISmall, and reduced to 256 on MOIRAIBase if GPU memory
reaches its limit. We adopt a constant learning rate scheduling, and early stopping is employed to
monitor training. The context lengths are used directly from the values in the original Moirai models,
which are tuned from a range of [1000, 2000, 3000, 4000, 5000]. The patch sizes are also taken from
their provided values, which are selected based on data frequency. Since all samples have the same
sequence length, sequence packing is not used during training. For Moment and UNITS, we directly
follow their provided their original finetuning configurations for experiments, with the learning rate
selected from 5e-5, 5e-6, or 5e-7.
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Evaluation Setup For Moirai, the evaluation is based on the GluonTS Library [1]. Predictions are
sampled 100 times from the learned predicitive distributions, and evaluation metrics are computed
over those samples. For Moment and UNITS, the LSF metrics are directly computed based on the
output predicted series.

Computational environment Our experiments are conducted on a server equipped with an AMD
EPYC 7763 CPU (64 cores, 128 threads) and four NVIDIA A40 GPUs, each with 40 GB of memory.

C Causal Analysis

C.1 Causal Modeling Motivation

Here we elaborate the motivation of our causal modeling in Figure 2. A time series can be viewed as a
discretized sequence of sampled observations derived from an underlying continuous process. Under
this perspective, the observed input window X corresponds to a discrete observation of the latent
process during a context period. The variable X arises from two factors: the latent continuous process
I (unobserved) and the scale parameter S, which governs the sampling resolution. The scale S
determines how densely the latent process is sampled, thereby shaping both the temporal granularity
and the length of the observed sequence X . While our formulation omits the latent process I for
tractability, the edge S → X in our causal graph reflects this observation mechanism. Importantly,
scale influences the form of the observed input series but not the latent process itself.

Formally, we treat both S and X as random variables. The scale S is a discrete variable that selects
the resolution level for downsampling the input context. It takes values from a finite index set
S = {s0, s1, . . . , sK}, where each sk corresponds to a specific downsampling factor or temporal
resolution. The observed input X is then a random variable whose sequence length depends on
the selected scale S. Thus, X ∈ X , where X =

⋃
s∈S RLs and Ls denotes the input length

corresponding to scale s. This formalization clarifies the role of scale in shaping observed input time
series, consistent with the causal edge S → X in our proposed graph.

C.2 Empirical Validation of the Causal Graph

To empirically validate the proposed causal graph, we perform causal structure learning and partial
correlation analysis on the ETTm1 dataset across multiple scales. Specifically, we extract context
windows from the training split, downsample each window into three additional resolutions, and
feed each scaled input into the pretrained Moirai model to obtain corresponding embeddings M.
For each sample at each scale, we form a triplet (S,X,M), where S is the scale index, X is the
autocorrelation (ACF) computed on the input, and M is the ℓ2 norm of the mean embedding. These
triplets enable graph-based causal discovery.

We first apply the PC algorithm [36, 50] with Fisher’s Z-test (α = 0.01). The learned graph includes
directed edges S → X and S →M , supporting our assumption that scale causally influences both the
input signal and the model representation. To further test whether S acts as a confounder between X
and M , we compare their raw correlation with the partial correlation conditioned on S. The Pearson
correlation between X and M is −0.732; conditioning on S reduces the partial correlation to −0.481
(p < 0.001). This reduction indicates that scale partially explains the dependency between X and M ,
consistent with its role as a confounder in our causal formulation. Together, these complementary
analyses quantitatively support the causal assumption proposed in Section 3, namely that the scale
variable S influences both the observed input X and the model knowledge M .

D More Experimental Results

D.1 Further Model Analysis

Effect of Down-Sampling Methods While average pooling is the most commonly used method
for generating down-sampled scales, we also investigate two alternative down-sampling techniques
to assess their impact. Specifically, we consider max pooling, which selects the maximum value
within each down-sample kernel, and the first-step method, which directly selects the first time step
of each kernel. We replace the original average pooling operation in MSFT with these alternatives

27



and evaluate their performance using MOIRAISmallon the ETTm1 and ETTm2 datasets. As shown
in Figure 6a, the results demonstrate that average pooling consistently outperforms the other two
approaches, serving as the most effective method for multi-scale generation.

(a) LSF accuracy for three down-
sampling methods.

(b) ETTm1 (c) ETTm2 (d) Weather

(e) LSF accuracy w.r.t down-sampling rate (with only 1 new scale).

Figure 6: Overview of LSF accuracy comparison.

Effect of Down-Sampling Rate We investigate the effect of down-sampling rate by using only one
new scale (K = 1) and comparing the results across different down-sampling factors (2, 4, 6, 8). As
shown in Figure 6e. the results reveal that the impact of down-sampling rate varies significantly across
datasets. For ETTm1 and Weather, the choice of down-sampling factor is relatively less important,
with no single down-sample factor is significantly better than the others. In contrast, ETTm2 exhibits
a clear pattern: down-sampling factors of 4 and 8 obviously yield better performance, indicating
that the periodic patterns in ETTm2 are better captured with these specific factors. These results
demonstrate that the effect of down-sampling is dataset-dependent. Furthermore, they indicate that
the performance improvement from using multiple scales is not merely due to adding one particularly
important scale but rather results from aggregating information across multiple scales.

Attention with Aligned Time Indices In this section, we provide a detailed discussion of the
attention misalignment problem and explore another potential solution. As illustrated in Figure 1 (b)
and Figure 5 (a), the problem of directly applying self-attention over the concatenated multi-scale
sequence is that cross-scale dependencies are biased to the tokens with the same time ID. However,
as tokens in different scales represent various resolution, their time indices do not represent the same
temporal location information. The tokens in different scales with the same time id do not correspond
to the same temporal range (See 1 (b), left part). Therefore, this time ID-induced bias causes attention
to learn misleading temporal correlations.

To address this problem, we test another method based on time id alignment during attention operation.
As illustrated in Figure 7, when performing attention between two scales, we map the time ID of
tokens in the finer scale to the other coarser scale before RoPE, ensuring that finer-scale tokens
from the same temporal range share the same time ID as the corresponding coarse-scale token.
Consequently, the resulting attention heatmap in Figure 5 (b) eliminates the cross-scale bias caused
by time ID, leading to more reasonable temporal correlations between cross-scale tokens.

Figure 7: Map the token indices of finer scale to
the coarser scale during cross-scale attention

ETTm1 ETTm2 Weather

MSE MAE MSE MAE MSE MAE

Naive 0.359 0.380 0.253 0.303 0.219 0.252
Aligned 0.356 0.378 0.250 0.302 0.222 0.254

Ours 0.353 0.377 0.250 0.301 0.216 0.248

Table 7: LSF results for MOIRAISmall using three
different attention strategies in MSFT

Table 7 presents the results of the three methods corresponding to the attention patterns in Figure 5.
Compared to the Naive method, the time ID alignment approach improves performance on ETTm1
and ETTm2 but shows a performance decline on the Weather dataset. In contrast, our decoupled
strategy consistently outperforms both methods. Apart from its inconsistent performance, another
limitation of this time ID alignment method is that it is only applicable to Moirai, which employs
RoPE for time ID encoding. RoPE allows direct modification of token time IDs during attention,
making this adjustment feasible. In contrast, for models using additive position encoding—where
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positional information is directly added to each token’s input embedding—it is impossible to alter
the time ID within the attention blocks. Our method, however, does not rely on modifying time IDs
during attention. Instead, it achieves cross-scale alignment through aggregators, making it universally
applicable to any model architecture.

Computation Efficiency We compare the memory footprint and training speed of our our methods
with the following models: PatchTST [25], iTranformer[19], TimesNet [44], and Scaleformer[34].
For Scaleformer, we follow their original implementation and test it on two backbones Autoformer[45]
and Informer[51], referred to as Scaleformer-A and Scaleformer-I, respectively. For MSFT, we test
its performance on MOIRAISmall and MOIRAIBase, referred to as MSFT-S and MSFT-B. To ensure a
fair comparison, we use a consistent batch size of 32 and a context length of 512 across all models,
with a prediction length set to 96. To eliminate external interference, the experiments in this section
are exclusively conducted on another server equipped with a 12 vCPU Intel(R) Xeon(R) Platinum
8352V CPU @ 2.10GHz and a single RTX 3080 GPU with 20GB of memory.

The results on ETTm1 and Weather datasets are shown in Table 8. The comparison shows that
fine-tuning with MSFT on Moirai does not demand more computational resources than other models.
Its GPU memory usage is lower than that of alternative methods. In terms of training speed, MSFT
achieves a moderate level among the compared methods. However, it significantly outperform
Scaleformer, which is also a multi-scale modeling approach.

Table 8: Quantitative comparison of computation efficiency across different methods.
Metric Dataset PatchTST TimesNet iTransformer Scaleformer-A Scaleformer-I MSFT-S MSFT-B

Training Speed (ms/iter) ETTm1 65.92 334.67 27.97 307.36 180.09 103.53 185.38
Weather 127.67 103.20 28.90 315.44 184.05 110.80 163.93

GPU Memory (MB) ETTm1 4198 2786 1952 11130 5104 808 1916
Weather 6866 2592 2110 11138 5106 808 1702

We also compare the computational and parameter efficiency of MSFT with several representative
fine-tuning strategies, including full finetuning, linear probing, LoRA, and AdaLoRA. Results on
MOIRAISmallwith the Weather LSF task are summarized in Table 9.

Table 9: Quantitative comparison of computation efficiency across finetuning methods.

Method Params (M) GPU Mem (MB) Train Speed (it/s) Test Speed (it/s) MSE / MAE

Full finetuning 13.8 2996 9.4 104.5 0.228 / 0.254
Linear probing 3.0 762 19.7 113.6 0.237 / 0.260
LoRA 3.4 2760 11.1 115.9 0.225 / 0.252
AdaLoRA 3.4 2756 10.0 102.4 0.226 / 0.252
MSFT (ours) 4.4 5616 4.6 102.5 0.216 / 0.248

As shown in Table 9, MSFT uses fewer trainable parameters than full finetuning and achieves the
best forecasting accuracy (lowest MSE/MAE). The cost is higher GPU memory usage and slower
training due to the expanded token length introduced by multi-scale inputs. Nevertheless, its test-time
speed remains comparable, offering a reasonable efficiency–performance trade-off compared to other
fine-tuning methods.

More Ablation Study To assess robustness, we conducted multiple runs (three seeds) for the ex-
periments in Table 3. Results in Table 11 show that the standard deviations are generally insignificant
across settings.

To further validate the role of in-scale masking, we conduct additional ablations where cross-scale
aggregators are retained even without masking. Results in Table 10 show that this setting yields worse
performance, as attention without in-scale masking learns misaligned cross-scale dependencies, and
subsequent aggregation amplifies these inconsistencies. This confirms that cross-scale aggregators
must operate jointly with in-scale masking to effectively fuse temporal correlations, while their
standalone use significantly compromises performance.
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Table 10: Ablation studies on in-scale masking, with mean ± standard deviation over 3 runs.

Config ETTm1 ETTm2 Weather

MSE MAE MSE MAE MSE MAE

8 0.360 ± 0.003 0.380 ± 0.002 0.253 ± 0.000 0.303 ± 0.000 0.220 ± 0.000 0.253 ± 0.001
8 + C2F 0.364 ± 0.004 0.383 ± 0.003 0.256 ± 0.002 0.307 ± 0.002 0.224 ± 0.000 0.256 ± 0.000
8 + F2C 0.365 ± 0.003 0.384 ± 0.002 0.253 ± 0.000 0.303 ± 0.001 0.225 ± 0.001 0.255 ± 0.001
8 + Both 0.365 ± 0.003 0.385 ± 0.003 0.255 ± 0.002 0.305 ± 0.001 0.226 ± 0.001 0.256 ± 0.001

MSFT 0.354 ± 0.003 0.378 ± 0.002 0.250 ± 0.000 0.301 ± 0.000 0.216 ± 0.000 0.248 ± 0.000

Table 11: Ablation study on three LSF datasets using MOIRAISmall. Mean ± standard deviation over
3 runs are reported. MSFT consistently outperforms all ablation variants.

Config ETTm1 ETTm2 Weather

MSE MAE MSE MAE MSE MAE

1 0.362 ± 0.003 0.380 ± 0.002 0.253 ± 0.001 0.305 ± 0.000 0.219 ± 0.000 0.252 ± 0.000
2 0.360 ± 0.002 0.379 ± 0.002 0.252 ± 0.000 0.304 ± 0.000 0.218 ± 0.000 0.249 ± 0.000
3 0.374 ± 0.004 0.385 ± 0.003 0.256 ± 0.001 0.308 ± 0.001 0.224 ± 0.002 0.256 ± 0.001
4 0.361 ± 0.002 0.382 ± 0.002 0.254 ± 0.000 0.306 ± 0.000 0.222 ± 0.001 0.254 ± 0.001
5 0.371 ± 0.003 0.384 ± 0.002 0.256 ± 0.000 0.307 ± 0.001 0.223 ± 0.001 0.255 ± 0.001
6 0.363 ± 0.003 0.382 ± 0.002 0.254 ± 0.000 0.304 ± 0.000 0.220 ± 0.000 0.252 ± 0.000
7 0.357 ± 0.002 0.379 ± 0.001 0.252 ± 0.000 0.304 ± 0.000 0.218 ± 0.000 0.251 ± 0.000
8 0.360 ± 0.003 0.380 ± 0.002 0.253 ± 0.000 0.303 ± 0.000 0.220 ± 0.001 0.253 ± 0.001
9 0.359 ± 0.003 0.379 ± 0.003 0.269 ± 0.003 0.313 ± 0.002 0.226 ± 0.003 0.252 ± 0.002
10 0.384 ± 0.007 0.388 ± 0.004 0.255 ± 0.003 0.311 ± 0.002 0.219 ± 0.001 0.252 ± 0.000

MSFT 0.354 ± 0.003 0.378 ± 0.002 0.250 ± 0.000 0.301 ± 0.000 0.216 ± 0.000 0.248 ± 0.000

D.2 Evaluation of knowledge forgetting

To further investigate the potential issue of knowledge forgetting, we conduct a simple zero-shot
transfer experiment following the setup of [41]. Specifically, we finetune the model on a source
dataset A and directly evaluate it on an unseen target dataset B, denoted as A→ B. Table 12 reports
MSE averaged over four prediction lengths for MOIRAISmall. The results reveal no consistent pattern
across transfer settings. In some cases (e.g., ETTm1→ ETTm2), fine-tuning leads to improved zero-
shot generalization, while in others (e.g., ETTm2→ ETTm1) the performance degrades, suggesting
that finetuning overrides certain pretrained knowledge. When comparing full finetuning and MSFT,
neither method consistently outperforms the other, indicating that both approaches are not explicitly
designed to mitigate catastrophic forgetting. Moreover, the multi-scale knowledge learned by MSFT
from dataset A may not always generalize to dataset B if their temporal structures differ significantly.

Table 12: Cross-dataset transfer performance (MSE) on MOIRAISmall. Each entry reports the per-
formance when the model is finetuned on dataset A and evaluated on an unseen dataset B (denoted
A→ B). The results are averaged over four prediction lengths. Best values are highlighted in bold.

Transfer Zero-shot Full FT MSFT

ETTm1→ ETTm2 0.300 0.293 0.288
ETTm2→ ETTm1 0.448 0.454 0.470
ETTm1→ ETTh1 0.416 0.410 0.420
ETTm2→ ETTh1 0.416 0.415 0.414
ETTm1→ ETTh2 0.355 0.350 0.363
ETTm2→ ETTh2 0.355 0.359 0.350

From another perspective, MSFT is inherently more conservative in overwriting pretrained repre-
sentations, due to its plug-in design. During finetuning, only lightweight adapters, normalization
layers, and the output head are updated, while the majority of pretrained weights remain frozen.
This design principle is consistent with common strategies in continual learning, where task-specific
modules are introduced to reduce forgetting [2]. Furthermore, if users wish to preserve the zero-shot
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performance on unseen datasets after finetuning, one can simply deactivate or remove the MSFT
modules, effectively reverting the model to its original pretrained TSFM with minimal performance
change.

D.3 Full results

We report the full LSF results on four different prediction lengths, with MSE are shown in Table 13
and MAE are shown in Table 14. Results of deep learning-based baselines are obtained from Liu
et al. [19] and Chen et al. [4].

Table 13: Full MSE results of long sequence forecasting experiments.

Method ETTm1 ETTm2 ETTh1 ETTh2 Electricity Weather
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

DLinear[2023] 0.345 0.380 0.413 0.474 0.193 0.284 0.369 0.554 0.386 0.437 0.481 0.519 0.333 0.477 0.594 0.831 0.197 0.196 0.209 0.245 0.196 0.237 0.283 0.345
PatchTST[2023] 0.329 0.367 0.399 0.454 0.175 0.241 0.305 0.402 0.414 0.460 0.501 0.500 0.302 0.388 0.426 0.431 0.195 0.199 0.215 0.256 0.177 0.225 0.278 0.354
iTransformer[2024a] 0.334 0.377 0.426 0.491 0.180 0.250 0.311 0.412 0.386 0.441 0.487 0.503 0.297 0.380 0.428 0.427 0.148 0.162 0.178 0.225 0.174 0.221 0.278 0.358
TimeMixer[2024] 0.320 0.361 0.390 0.454 0.175 0.237 0.298 0.391 0.375 0.429 0.484 0.498 0.289 0.372 0.386 0.412 0.153 0.166 0.185 0.225 0.163 0.208 0.251 0.339
SimpleTM [2025] 0.321 0.360 0.390 0.454 0.173 0.238 0.296 0.393 0.366 0.422 0.440 0.463 0.281 0.355 0.365 0.413 0.141 0.151 0.173 0.201 0.162 0.208 0.263 0.340

MOIRAISmall 0.404 0.435 0.462 0.490 0.205 0.261 0.319 0.415 0.387 0.418 0.431 0.427 0.287 0.350 0.378 0.403 0.205 0.220 0.236 0.270 0.183 0.229 0.288 0.371
+ Full finetuning 0.303 0.352 0.388 0.425 0.179 0.234 0.291 0.388 0.382 0.419 0.434 0.426 0.286 0.349 0.376 0.396 0.154 0.172 0.203 0.242 0.154 0.200 0.246 0.311
+ Linear probing 0.341 0.371 0.402 0.439 0.198 0.258 0.317 0.408 0.384 0.417 0.428 0.425 0.286 0.349 0.377 0.402 0.185 0.200 0.214 0.247 0.167 0.211 0.256 0.315
+ Prompt tuning 0.335 0.368 0.405 0.428 0.197 0.252 0.304 0.413 0.384 0.415 0.429 0.427 0.286 0.349 0.378 0.403 0.191 0.205 0.219 0.252 0.163 0.207 0.254 0.315
+ LoRA 0.302 0.357 0.389 0.431 0.179 0.234 0.288 0.387 0.382 0.418 0.431 0.426 0.286 0.349 0.377 0.402 0.152 0.176 0.197 0.243 0.153 0.197 0.243 0.305
+ AdaLoRA 0.301 0.374 0.406 0.441 0.180 0.234 0.291 0.388 0.381 0.416 0.430 0.427 0.286 0.350 0.378 0.402 0.151 0.175 0.196 0.242 0.154 0.198 0.245 0.305
+ MSFT 0.295 0.338 0.371 0.409 0.165 0.218 0.267 0.349 0.380 0.416 0.428 0.423 0.279 0.347 0.376 0.392 0.150 0.172 0.193 0.234 0.147 0.189 0.234 0.292

MOIRAIBase 0.335 0.366 0.391 0.434 0.197 0.250 0.301 0.375 0.375 0.406 0.426 0.440 0.284 0.350 0.378 0.412 0.158 0.174 0.191 0.229 0.163 0.207 0.264 0.350
+ Full finetuning 0.312 0.355 0.380 0.426 0.176 0.230 0.282 0.344 0.372 0.404 0.423 0.434 0.283 0.355 0.387 0.403 0.144 0.166 0.176 0.207 0.152 0.198 0.250 0.326
+ Linear probing 0.332 0.369 0.398 0.451 0.188 0.244 0.299 0.375 0.374 0.405 0.424 0.432 0.283 0.355 0.389 0.406 0.155 0.169 0.184 0.221 0.157 0.198 0.245 0.314
+ Prompt tuning 0.330 0.363 0.389 0.431 0.197 0.247 0.300 0.374 0.375 0.406 0.425 0.440 0.284 0.354 0.392 0.411 0.155 0.168 0.185 0.226 0.159 0.199 0.248 0.314
+ LoRA 0.311 0.345 0.373 0.414 0.177 0.230 0.280 0.347 0.373 0.404 0.423 0.434 0.284 0.351 0.379 0.411 0.142 0.160 0.178 0.210 0.151 0.198 0.249 0.322
+ AdaLoRA 0.310 0.346 0.371 0.410 0.175 0.229 0.278 0.351 0.375 0.406 0.424 0.434 0.282 0.352 0.386 0.403 0.142 0.163 0.178 0.207 0.151 0.198 0.253 0.340
+ MSFT 0.284 0.317 0.343 0.382 0.166 0.217 0.265 0.339 0.372 0.404 0.422 0.429 0.280 0.350 0.379 0.400 0.139 0.159 0.176 0.203 0.144 0.184 0.229 0.296

MOMENT - - - - - - - - - - - - - - - - - - - - - - - -
+ Full finetuning 0.297 0.335 0.362 0.412 0.173 0.227 0.277 0.361 0.383 0.413 0.429 0.475 0.288 0.344 0.359 0.397 0.170 0.193 0.227 0.304 0.243 0.299 0.359 0.441
+ Linear probing 0.304 0.336 0.363 0.417 0.177 0.229 0.277 0.359 0.385 0.418 0.429 0.482 0.290 0.344 0.358 0.397 0.172 0.195 0.229 0.306 0.247 0.303 0.361 0.442
+ Prompt tuning 0.302 0.339 0.366 0.415 0.176 0.229 0.279 0.359 0.386 0.416 0.429 0.478 0.289 0.345 0.361 0.398 0.172 0.194 0.228 0.304 0.244 0.299 0.360 0.441
+ LoRA 0.302 0.338 0.366 0.416 0.174 0.226 0.278 0.360 0.384 0.414 0.429 0.473 0.288 0.345 0.359 0.396 0.170 0.193 0.228 0.303 0.242 0.299 0.358 0.440
+ AdaLoRA 0.302 0.338 0.365 0.416 0.173 0.226 0.276 0.360 0.385 0.414 0.425 0.478 0.288 0.343 0.360 0.396 0.171 0.195 0.230 0.306 0.244 0.301 0.359 0.441
+ MSFT 0.289 0.327 0.354 0.404 0.170 0.222 0.273 0.356 0.381 0.410 0.426 0.469 0.286 0.341 0.358 0.394 0.166 0.190 0.226 0.300 0.237 0.297 0.356 0.438

UNITS 0.663 0.694 0.725 0.771 0.226 0.282 0.338 0.436 0.454 0.512 0.548 0.595 0.327 0.410 0.438 0.447 0.367 0.402 0.400 0.559 0.207 0.259 0.311 0.387
+ Full finetuning 0.338 0.371 0.397 0.472 0.182 0.255 0.316 0.433 0.396 0.428 0.473 0.469 0.302 0.377 0.421 0.442 0.162 0.178 0.290 0.228 0.172 0.221 0.282 0.352
+ Linear probing 0.342 0.376 0.399 0.477 0.192 0.259 0.317 0.434 0.399 0.439 0.471 0.469 0.306 0.381 0.434 0.445 0.171 0.184 0.202 0.242 0.190 0.247 0.297 0.363
+ Prompt tuning 0.359 0.399 0.439 0.526 0.184 0.259 0.326 0.444 0.382 0.428 0.467 0.474 0.306 0.378 0.424 0.436 0.159 0.179 0.193 0.231 0.159 0.212 0.269 0.346
+ LoRA 0.338 0.370 0.396 0.466 0.183 0.256 0.315 0.431 0.377 0.426 0.463 0.481 0.300 0.379 0.422 0.433 0.163 0.170 0.192 0.228 0.163 0.214 0.274 0.349
+ MSFT 0.336 0.366 0.396 0.461 0.179 0.248 0.313 0.405 0.376 0.428 0.463 0.469 0.302 0.375 0.416 0.425 0.154 0.169 0.186 0.227 0.158 0.204 0.261 0.342

Table 14: Full MAE results of long sequence forecasting experiments.

Method ETTm1 ETTm2 ETTh1 ETTh2 Electricity Weather
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

DLinear[2023] 0.372 0.389 0.413 0.453 0.292 0.362 0.427 0.522 0.400 0.432 0.459 0.516 0.387 0.476 0.541 0.657 0.282 0.285 0.301 0.333 0.255 0.296 0.335 0.381
PatchTST[2023] 0.367 0.385 0.410 0.439 0.259 0.302 0.343 0.400 0.419 0.445 0.466 0.488 0.348 0.400 0.433 0.446 0.285 0.289 0.305 0.337 0.218 0.260 0.297 0.348
iTransformer[2024a] 0.368 0.391 0.420 0.459 0.264 0.309 0.348 0.407 0.405 0.436 0.458 0.491 0.349 0.400 0.432 0.445 0.240 0.253 0.269 0.317 0.214 0.254 0.296 0.349
TimeMixer[2024] 0.357 0.381 0.404 0.441 0.258 0.299 0.340 0.396 0.400 0.421 0.458 0.482 0.341 0.392 0.414 0.434 0.247 0.256 0.277 0.310 0.209 0.250 0.287 0.341
SimpleTM [2025] 0.361 0.380 0.404 0.438 0.257 0.299 0.338 0.395 0.392 0.421 0.438 0.462 0.338 0.387 0.401 0.436 0.235 0.247 0.267 0.293 0.207 0.248 0.290 0.341

MOIRAISmall 0.383 0.402 0.416 0.437 0.282 0.318 0.355 0.410 0.402 0.423 0.435 0.450 0.334 0.374 0.395 0.421 0.299 0.310 0.323 0.347 0.216 0.258 0.297 0.346
+ Full finetuning 0.345 0.372 0.393 0.419 0.251 0.292 0.329 0.390 0.400 0.423 0.438 0.453 0.332 0.372 0.392 0.416 0.242 0.265 0.289 0.319 0.189 0.236 0.272 0.317
+ Linear probing 0.360 0.382 0.401 0.425 0.274 0.315 0.352 0.406 0.399 0.423 0.436 0.451 0.333 0.373 0.394 0.420 0.278 0.289 0.302 0.328 0.201 0.243 0.277 0.317
+ Prompt tuning 0.359 0.380 0.403 0.423 0.273 0.309 0.343 0.409 0.402 0.423 0.435 0.451 0.337 0.373 0.394 0.420 0.285 0.294 0.307 0.331 0.199 0.241 0.276 0.317
+ LoRA 0.344 0.374 0.394 0.421 0.250 0.290 0.327 0.390 0.399 0.423 0.435 0.450 0.333 0.373 0.394 0.420 0.244 0.266 0.285 0.321 0.189 0.233 0.271 0.315
+ AdaLoRA 0.342 0.381 0.399 0.423 0.255 0.294 0.332 0.393 0.399 0.422 0.435 0.450 0.334 0.373 0.394 0.420 0.244 0.265 0.285 0.321 0.189 0.233 0.271 0.315
+ MSFT 0.341 0.367 0.387 0.414 0.242 0.281 0.314 0.368 0.401 0.421 0.433 0.449 0.326 0.369 0.391 0.413 0.241 0.262 0.282 0.316 0.185 0.229 0.266 0.311

MOIRAIBase 0.360 0.379 0.394 0.419 0.271 0.306 0.339 0.388 0.398 0.417 0.429 0.452 0.334 0.380 0.405 0.432 0.248 0.263 0.278 0.307 0.198 0.240 0.282 0.338
+ Full finetuning 0.334 0.361 0.380 0.409 0.249 0.288 0.325 0.367 0.396 0.416 0.429 0.454 0.330 0.378 0.402 0.429 0.236 0.256 0.267 0.295 0.186 0.235 0.278 0.333
+ Linear probing 0.355 0.377 0.394 0.423 0.259 0.298 0.335 0.385 0.396 0.415 0.428 0.452 0.330 0.376 0.401 0.427 0.246 0.258 0.272 0.301 0.193 0.233 0.270 0.317
+ Prompt tuning 0.355 0.377 0.393 0.417 0.271 0.301 0.339 0.387 0.397 0.416 0.428 0.452 0.335 0.378 0.404 0.432 0.246 0.258 0.274 0.305 0.196 0.235 0.272 0.318
+ LoRA 0.337 0.359 0.379 0.407 0.248 0.289 0.327 0.366 0.397 0.416 0.429 0.451 0.334 0.378 0.405 0.431 0.234 0.252 0.269 0.296 0.186 0.235 0.278 0.342
+ AdaLoRA 0.336 0.361 0.379 0.407 0.251 0.286 0.321 0.368 0.397 0.416 0.429 0.450 0.331 0.376 0.401 0.427 0.235 0.256 0.267 0.296 0.186 0.235 0.278 0.342
+ MSFT 0.335 0.359 0.378 0.404 0.246 0.285 0.320 0.369 0.395 0.415 0.429 0.450 0.327 0.374 0.404 0.427 0.230 0.252 0.266 0.293 0.182 0.224 0.261 0.311

MOMENT - - - - - - - - - - - - - - - - - - - - - - - -
+ Full finetuning 0.348 0.369 0.386 0.415 0.262 0.299 0.332 0.386 0.406 0.424 0.445 0.485 0.348 0.386 0.404 0.437 0.276 0.292 0.313 0.363 0.240 0.287 0.328 0.384
+ Linear probing 0.353 0.370 0.385 0.414 0.265 0.300 0.333 0.385 0.406 0.429 0.445 0.490 0.350 0.387 0.404 0.437 0.278 0.294 0.314 0.364 0.246 0.290 0.330 0.386
+ Prompt tuning 0.350 0.371 0.387 0.416 0.264 0.299 0.332 0.385 0.406 0.426 0.443 0.486 0.349 0.388 0.406 0.438 0.278 0.293 0.314 0.362 0.243 0.284 0.330 0.384
+ LoRA 0.351 0.370 0.387 0.416 0.262 0.298 0.333 0.385 0.407 0.425 0.439 0.484 0.349 0.387 0.404 0.438 0.278 0.292 0.314 0.361 0.239 0.285 0.328 0.384
+ AdaLoRA 0.351 0.370 0.387 0.415 0.262 0.298 0.331 0.384 0.407 0.426 0.438 0.487 0.349 0.386 0.405 0.437 0.277 0.292 0.314 0.364 0.242 0.288 0.329 0.385
+ MSFT 0.345 0.366 0.383 0.412 0.259 0.295 0.328 0.381 0.404 0.422 0.436 0.481 0.347 0.384 0.403 0.435 0.274 0.290 0.311 0.360 0.233 0.284 0.328 0.383

UNITS 0.520 0.541 0.561 0.588 0.301 0.333 0.367 0.420 0.444 0.478 0.495 0.547 0.362 0.412 0.441 0.455 0.438 0.467 0.465 0.582 0.254 0.294 0.328 0.376
+ Full finetuning 0.373 0.390 0.409 0.447 0.265 0.314 0.352 0.419 0.408 0.421 0.450 0.461 0.353 0.397 0.433 0.451 0.259 0.273 0.285 0.316 0.219 0.259 0.304 0.348
+ Linear probing 0.375 0.393 0.411 0.455 0.275 0.316 0.354 0.428 0.409 0.430 0.449 0.461 0.358 0.399 0.437 0.454 0.264 0.280 0.294 0.326 0.231 0.276 0.310 0.354
+ Prompt tuning 0.391 0.411 0.436 0.482 0.270 0.318 0.359 0.431 0.399 0.427 0.447 0.460 0.347 0.395 0.430 0.446 0.259 0.277 0.290 0.321 0.206 0.254 0.295 0.347
+ LoRA 0.372 0.390 0.408 0.451 0.265 0.315 0.352 0.418 0.397 0.427 0.446 0.466 0.352 0.398 0.431 0.447 0.259 0.266 0.285 0.316 0.211 0.256 0.299 0.348
+ MSFT 0.372 0.388 0.408 0.445 0.267 0.311 0.349 0.403 0.392 0.421 0.446 0.461 0.353 0.395 0.427 0.444 0.252 0.266 0.282 0.315 0.208 0.249 0.290 0.342

In addition, for PF, apart from the two metrics we listed in the main text, we demonstrate the results
of four additional PF evaluation metrics in Table 15. The baseline results are obtained from Woo et al.
[43].

D.4 Forecast Visualizations

We visualize the forecasting predictions of MSFT using MOIRAISmall on ETTm1 and ETTm2, with
the models finetuned on the predict-96 setup. In addition to the point forecast, which is the median of
the samples, the 0.5 and 0.9 quantiles are also plotted for illustration. Only part of the context series
is included in the plots.
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Table 15: Full results for probabilistic forecasting experiments.

Method
Electricity Solar Weather Istanbul Traffic Turkey Power

sMAPE MASE ND NRMSE sMAPE MASE ND NRMSE sMAPE MASE ND NRMSE sMAPE MASE ND NRMSE sMAPE MASE ND NRMSE

DeepAR[2020] 0.118 0.844 0.080 0.704 1.385 1.222 0.520 1.033 0.776 3.170 0.163 0.486 0.249 0.613 0.139 0.181 0.404 1.395 0.083 0.181
TFT[2021] 0.106 0.747 0.063 0.511 1.391 1.399 0.594 1.236 0.672 0.692 0.051 0.211 0.287 0.620 0.141 0.185 0.383 0.890 0.049 0.104
PatchTST[2023] 0.107 0.753 0.065 0.506 1.501 1.607 0.685 1.408 0.668 0.844 0.072 0.260 0.287 0.653 0.148 0.190 0.416 1.234 0.071 0.158
TiDE[2023] 0.102 0.706 0.061 0.514 1.400 1.265 0.538 1.093 0.636 0.832 0.066 0.214 0.280 0.618 0.140 0.185 0.389 0.904 0.059 0.139

MOIRAISmall 0.134 0.981 0.092 0.840 1.445 1.465 0.624 1.135 0.686 0.521 0.063 0.229 0.359 0.990 0.224 0.294 0.389 0.948 0.061 0.149
+ Full finetuning 0.112 0.810 0.070 1.260 1.400 1.181 0.504 1.000 0.612 0.466 0.043 0.200 0.319 0.827 0.188 0.298 0.378 0.863 0.048 0.124
+ Linear probing 0.124 0.879 0.080 0.641 1.384 1.175 0.500 1.100 0.685 0.519 0.063 0.227 0.321 0.820 0.189 0.294 0.387 0.936 0.060 0.146
+ Prompt tuning 0.125 0.887 0.084 0.698 1.413 1.331 0.567 1.081 0.685 0.520 0.063 0.232 0.302 0.815 0.185 0.284 0.387 0.947 0.058 0.142
+ LoRA 0.123 0.872 0,079 0.650 1.391 1.160 0.495 0.953 0.617 0.472 0.043 0.197 0.327 0.907 0.206 0.282 0.382 0.887 0.055 0.131
+ AdaLoRA 0.124 0.913 0.083 0.686 1.374 1.115 0.476 0.940 0.615 0.468 0.043 0.201 0.312 0.819 0.173 0.266 0.387 0.894 0.052 0.126
+ MSFT 0.095 0.664 0.059 0.478 1.381 1.113 0.475 0.949 0.605 0.451 0.043 0.198 0.295 0.815 0.182 0.252 0.377 0.864 0.051 0.122

MOIRAIBase 0.111 0.792 0.069 0.551 1.410 1.292 0.551 1.034 0.623 0.487 0.048 0.417 0.284 0.644 0.146 0.194 0.378 0.888 0.051 0.118
+ Full finetuning 0.100 0.716 0.063 0.517 1.282 0.552 0.239 0.554 0.626 0.511 0.045 2.980 0.251 0.620 0.140 0.251 0.372 0.816 0.045 0.101
+ Linear probing 0.109 0.776 0.070 0.603 1.387 1.212 0.516 1.021 0.620 0.480 0.048 0.203 0.302 0.574 0.130 0.180 0.256 0.949 0.053 0.120
+ Prompt tuning 0.109 0.783 0.069 0.583 1.407 1.285 0.548 1.053 0.613 0.484 0.046 0.659 0.288 0.573 0.130 0.170 0.377 0.866 0.052 0.120
+ LoRA 0.103 0.746 0.064 0.508 1.387 1.184 0.505 0.967 0.610 0.465 0.043 0.717 0.263 0.621 0.141 0.219 0.371 0.825 0.045 0.101
+ AdaLoRA 0.108 0.779 0.068 0.561 1.405 1.186 0.506 1.010 0.613 0.456 0.044 0.417 0.281 0.660 0.149 0.194 0.376 0.875 0.047 0.102
+ MSFT 0.094 0.653 0.058 0.471 1.264 0.422 0.184 0.452 0.622 0.474 0.044 0.636 0.289 0.568 0.129 0.160 0.372 0.814 0.045 0.099

Figure 8: Visualization on ETTm1 (predict-96)

Figure 9: Visualization on ETTm2 (predict-96)

E Limitation and Future Work

As indicated in our experiments, MSFT consistently delivers outstanding finetuning results on
encoder-based TSFMs, validating the effectiveness of incorporation of multi-scale modeling into
TSFM finetuning. However, a natural question that one may be curious about is how to apply our
multi-scale finetuning method to TSFMs with other structures, such as decoder-based models.

Here, we first clarify why we focus solely on encoder-based TSFMs in this paper. First, encoder-based
models are more flexible to prediction length, making them more efficient to finetune on standard
LSF datasets. In contrast, decoder-based models, due to their auto-regressive nature, are significantly
slower when finetuning and predicting on long time series. Although some decoder-based models
provide finetuning examples, they are often applied to limited datasets without following the standard
LSF pipeline. For example, TimesFM are only finetuned on a subset of ETTm dataset for the predict-
96 setup. This limitation hinders comprehensive comparisons between our methods and existing
LSF baselines or other fine-tuning approaches. Secondly, decoder-based models inherently employ
causal masking in their attention mechanisms, which imposes a specific dependency structure. As a
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pioneering study, we choose to use encoder-based models without such constraints, providing greater
flexibility and generality.

Despite the aforementioned challenges, we provide a potential direction for applying MSFT to
decoder-based models. Due to their auto-regressive nature, the causal attention mechanism in
decoder-only models can only attend to preceding tokens in the sequence, rather than all tokens
simultaneously. Therefore, the creation of multi-scale embedding sequence needs to take the order of
scales into account. Similar to Scalerformer[34], we arrange the scales in a coarse-to-fine order and
sequentially using coarse information to refine the fine-grained predictions at subsequent levels. First,
we concatenate the multi-scale input embeddings as h0 = Concat(h0

K ,h0
K−1, . . . ,h

0
0), ensuring the

scales are in a coarse-to-fine order. Then, for the attention, we keep using the in-scale masking on
the original causal masking, ensuring that the tokens can only attend to the previous tokens from the
same scale. Regarding cross-scale aggregators, the original dual-branch design cannot be directly
applied due to the auto-regressive nature. Instead, we adopt a single coarse-to-fine branch to fuse the
token-level information. The multi-scale mixing remains unchanged, enabling the aggregation of
predictions across different scales. We leave the further exploration of this direction as a future work

Another potential limitation is that multi-scale modeling increases the number of input tokens due
to the introduction of new scales. Given the transformer’s O(N2) complexity with respect to input
sequence length, this inevitably increases the computational cost. On the other hand, finetuning
with new scales can exceed the upper bound of fine-tuning performance achieved on a single scale.
Consequently, a trade-off exists between computational cost and performance. Another future
direction is to further investigate this trade-off and develop a more efficient strategy to achieve an
optimal balance.
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