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ABSTRACT

Transfer learning aims to facilitate the learning of a target domain by transferring
knowledge from a source domain. The source domain typically contains semanti-
cally meaningful samples (e.g., images) to facilitate effective knowledge transfer.
However, a recent study observes that the noise domain constructed from simple
distributions (e.g., Gaussian distributions) can serve as a surrogate source domain
in the semi-supervised setting, where only a small proportion of target samples
are labeled while most remain unlabeled. Based on this surprising observation,
we formulate a novel problem termed Semi-Supervised Noise Adaptation (SSNA),
which aims to leverage a synthetic noise domain to improve the generalization
of the target domain. To address this problem, we first establish a generalization
bound characterizing the effect of the noise domain on generalization, based on
which we propose a Noise Adaptation Framework (NAF). Extensive experiments
demonstrate that NAF effectively utilizes the noise domain to tighten the general-
ization bound of the target domain, thereby achieving improved performance. The
codes are available at https://anonymous.4open.science/r/SSNA.

1 INTRODUCTION

Transfer Learning (TL) (Pan & Yang, 2010; Yang et al., 2020) aims to transfer knowledge from a
label-rich source domain to a related but label-scarce target domain. Most TL approaches have been
proposed (Pan & Yang, 2010; Day & Khoshgoftaar, 2017; Jiang et al., 2022; Yang et al., 2020; Bao
et al., 2023), demonstrating substantial progress in various practical applications (Gu et al., 2022;
Yao et al., 2019; Meegahapola et al., 2024; Ren et al., 2024). While the source and target domains
often exhibit distributional divergence, the source domain typically contains semantically meaningful
samples (e.g., images, text, or audio) that provide a crucial foundation for effective knowledge
transfer. However, a recent study (Yao et al., 2025) has made a surprising finding: Noise drawn from
simple distributions (e.g., Gaussian distributions), can also serve as a viable source domain, provided
that its discriminability and transferability are preserved. Although noise is generally viewed as
semantically meaningless and even detrimental, empirical evidence has demonstrated that knowledge
can be transferred from the noise domain to the target domain in the Semi-Supervised Learning (SSL)
setting, where most target samples are unlabeled and only a small subset is labeled. This observation
is particularly valuable, as concerns related to privacy, confidentiality, and copyright often hinder
the acquisition of feasible source samples. However, this study has two key limitations: (i) it lacks a
generalization bound analysis explaining why the noise domain improves generalization; and (ii) its
experiments omit standard benchmark datasets such as CIFAR-10/100 (Krizhevsky et al., 2009) and
ImageNet-1K (Deng et al., 2009), limiting the generalizability of its findings.

Motivated by those limitations, we formalize a novel problem termed Semi-Supervised Noise Adap-
tation (SSNA), as illustrated in Figure 1. Under the SSNA setting, we define a target domain and
a noise domain. The target domain comprises a small proportion of labeled samples, with most
remaining unlabeled. In contrast, the noise domain is generated from random distributions and serves
as a surrogate source domain. Since noise inherently lacks semantic meanings, we follow (Yao et al.,
2025) and randomly and uniquely assign the class indices from the target domain to each noise
class in a one-to-one manner (see solid arrow in Figure 1). Accordingly, the learning tasks in both
domains are aligned. The objective of SSNA is to enhance the generalization of the target domain by
leveraging both labeled and unlabeled target samples, as well as noise.
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Figure 1: SSNA: The target domain includes a
limited number of labeled samples, with most
remaining unlabeled, while the noise domain
is generated from random distributions. Noise
classes, lacking semantic meaning, are mapped
one-to-one to target classes (see solid arrows).
The goal is to improve the generalization of the
target domain by utilizing the noise domain.
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Figure 2: Accuracy (%) of NAF and ERM on
five benchmark datasets, i.e., CIFAR-10, CIFAR-
100, DTD-47, Caltech-101, and ImageNet-1K,
using ResNet-18 (He et al., 2016). NAF consis-
tently outperforms ERM across all the datasets,
demonstrating the effectiveness of NAF in trans-
ferring knowledge from the noise domain to the
target domain.

To address this problem, we first establish a generalization bound characterizing the effect of the
noise domain on generalization. Based on this theoretical insight, we propose a Noise Adaptation
Framework (NAF) that projects target samples and noise into a domain-invariant representation
space by minimizing the empirical risks of both domains and reducing their distributional divergence.
Optimizing NAF’s objective effectively tightens the target domain’s generalization bound, thereby
improving its generalization performance. Experimental results on benchmark datasets demonstrate
the effectiveness of NAF compared with Empirical Risk Minimization (ERM), a standard supervised
learning baseline. As shown in Figure 2, NAF consistently outperforms ERM by up to 12.35%,
7.61%, 4.38%, and 2.74% on CIFAR-10, CIFAR-100, DTD-47, and Caltech-101, respectively, with
4 labeled samples per class. Moreover, on the more challenging ImageNet-1K dataset with 1000
classes and 100 labeled samples per class, NAF achieves an improvement of up to 0.99% over ERM.

The main contributions of this paper are summarized as follows. (1) We introduce the SSNA problem,
providing a fresh perspective on the utilization of noise. (2) We provide a generalization bound of
SSNA that characterizes the impact of the noise domain on generalization, based on which we propose
the NAF. (3) Extensive experiments demonstrate that NAF can effectively tighten the generalization
bound of the target domain, leading to better generalization performance.

2 RELATED WORK

Our work is closely related to TL (Pan & Yang, 2010; Yang et al., 2020) and semi-supervised learning
(SSL) (Van Engelen & Hoos, 2020; Gui et al., 2024), both of which aim to leverage unlabeled
samples to improve the generalization of the target domain.

TL enhances generalization by leveraging abundant labeled source samples to guide the learning
of unlabeled target samples. Ben-David et al. (2006; 2010) introduce the theoretical foundations
for TL by establishing a generalization bound for the target domain. Based on this theoretical
bound, a key objective in TL is to minimize the distributional discrepancy between the source and
target domains. To this end, various distribution alignment methods have been proposed, primarily
leveraging Maximum Mean Discrepancy (MMD) (Gretton et al., 2006) and Adversarial Domain
Alignment (ADA) (Ganin et al., 2016). For instance, several studies (Long et al., 2013; 2015; 2019;
Yao et al., 2019; Cheng et al., 2024) propose MMD variants to quantify the distributional divergence
between the source and target domains. Another line of research (Ganin et al., 2016; Long et al.,
2018; Liu et al., 2021; Gao et al., 2021; Shi & Liu, 2023; Meegahapola et al., 2024) explores diverse
forms of ADA, which mitigate this divergence via a min-max game between a feature extractor and
a domain discriminator. Furthermore, several studies (Gu et al., 2022; Bai et al., 2024; Liu et al.,
2024; Ren et al., 2024) utilize other distributional alignment mechanisms to facilitate cross-domain
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knowledge transfer. Note that most of the above studies, the source domain consists of semantically
meaningful samples (e.g., images, text, or audio).

SSL utilizes a few labeled target samples to guide the learning of unlabeled target samples. Many
methods (Xie et al., 2020; Sohn et al., 2020; Zhang et al., 2021; Chen et al., 2022; Wang et al., 2022)
utilize data augmentation and pseudo-label refinement mechanisms, where the former improves
sample diversity and the latter mitigates pseudo-label bias. For instance, UDA (Xie et al., 2020)
strengthens consistency training by replacing simple noise injection with strong data augmentation.
FixMatch (Sohn et al., 2020) generates pseudo-labels from weakly augmented samples and enforces
consistency with their strongly augmented counterparts. FlexMatch (Zhang et al., 2021) further
refines this method by dynamically adjusting class-specific confidence thresholds. To alleviate
pseudo-label bias, DST (Chen et al., 2022) decouples pseudo-label generation and utilization with
two independent classifiers while adversarially optimizing the representation extractor. DebiasMatch
(Wang et al., 2022) uses causal inference to adjust decision margins based on pseudo-label imbalance.
Another line of research (Grandvalet & Bengio, 2004; Cui et al., 2020; Zhang et al., 2024) focuses on
directly guiding the learning of unlabeled samples. A recent example is LERM (Zhang et al., 2024),
which utilizes class-specific label-encodings to guide the learning of unlabeled samples.

Our work is primarily motivated by (Yao et al., 2025), which reveals that noise drawn from simple
distributions (e.g., Gaussian distributions) contains transferable knowledge, as long as its discrim-
inability and transferability are preserved. This may initially appear counter-intuitive, as noise is
typically viewed as semantically meaningless and potentially harmful. In practice, however, several
studies (Baradad Jurjo et al., 2021; Li, 2022; Huang et al., 2025; Wang et al., 2025; Tang et al., 2022;
Luo et al., 2021) have explored the potential of noise in addressing diverse machine learning tasks.
For example, Baradad Jurjo et al. (2021) leverage noise to pre-train a visual representation model
using a contrastive loss, resulting in better downstream performance. Another line of research (Huang
et al., 2025; Wang et al., 2025) builds on the concept of positive-incentive noise introduced by (Li,
2022), leveraging it to augment original samples or representations, aiming to enhance generalization
performance. Moreover, Luo et al. (2021); Tang et al. (2022) propose utilizing noise to tackle the
distribution heterogeneity issue across clients in federated learning.

In summary, unlike the aforementioned studies, our work explores how the noise domain can be
leveraged to facilitate the learning of unlabeled target samples in SSL within a TL framework.

3 PROBLEM FORMULATION

In this section, we formulate the SSNA problem. Let C = {0, . . . , C−1} be the class index set, where
C denotes the total number of classes. Let E and X denote the noise space (e.g., a p-dimensional
space) and the sample space (e.g., a pixel-level image space), respectively.

Definition 1. (Target Domain). The target domain is defined as Dt = Dl ∪ Du ∪ De, where all
samples lie in the sample space X . Specifically, Dl = {(xl

i, y
l
i)}

nl
i=1 consists of labeled target samples,

where each sample xl
i is associated with a semantic class (e.g., “dog”) that is mapped to an integer

label yli ∈ C. Du = {xu
i }

nu
i=1 and De = {xe

i}
ne
i=1 include the unlabeled and test target samples,

respectively. Furthermore, the number of labeled target samples is much smaller than that of the
unlabeled target samples, i.e., nl ≪ nu.

Definition 2. (Noise Domain). The noise domain is defined as Dn = {(ni, yi)}ni=1, where each
noise ni is drawn from a random distribution over E . The corresponding label yi ∈ C serves purely
as an integer identifier without any semantic information.

Definition 3. (SSNA). Given a target domain Dt, the objective of SSNA is to train a high-quality
model hθ∗ using samples from Dl, Du, and noise from Dn, and then apply hθ∗ to classify the samples
in De for evaluation.

4 GENERALIZATION BOUND ANALYSIS AND EMPIRICAL VERIFICATION

In this section, we first present a generalization bound analysis for SSNA, from which NAF is derived
and empirically shown to tighten the bound by leveraging the noise domain.
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4.1 GENERALIZATION BOUND ANALYSIS

Before presenting the generalization bound for SSNA, we first address two fundamental questions
based on the findings in (Yao et al., 2025):

(i) What knowledge is contained in the noise domain that can benefit the target domain?

(ii) Is the semi-supervised setting in the target domain necessary?

Regarding question (i), although the noise domain is constructed by random sampling from a noise
space, it shares the same class index set with the target domain (see Figure 3), thereby aligning
their learning tasks. Concretely, the target domain contains C classes indexed by {0, . . . , C − 1}.
Accordingly, we set the number of noise classes to C and sample noise for each class from a distinct
Gaussian distribution. All noise drawn from each Gaussian distribution is assigned a distinct class
index in {0, . . . , C − 1} prior to training, establishing a fixed one-to-one correspondence between
noise and target classes. Classifying noise into distinct class indices induces a discriminative structure
in the representation space, i.e., noise with the same class index forms compact clusters, whereas
those with different class indices are separated. Although the noise domain itself lacks semantic
meaning, this induced structure provides valuable knowledge for transfer. For example, in Figure 3,
class “0” in the noise domain carries no semantics, yet it corresponds to “cat” in the target domain.
During distribution alignment, noise from class “0” is aligned with “cat” representations, enforcing
structural alignment across domains. Consequently, the discriminative structure of the noise domain
serves as guidance, facilitating clearer class separation in the target domain.

As for question (ii), without labeled target samples to align the class indices between the noise
and target domains, a classifier trained solely on the noise domain cannot effectively classify target
samples. This is because the noise is randomly generated and does not originate from the same sample
space as the target domain, lacking any inherent relationship with the target samples. Consequently,
a few labeled target samples are needed to bridge the two domains by aligning their class indices,
enabling the effective transfer of discriminative structure from the noise domain to the target domain
(see Q5 in Section 5.3 for a detailed analysis).

Target DomainRepresentation Space

1
0

Class Index Set

Noise Domain

!𝒫! ≈ !𝒫"

!𝒫": Target Distribution in the Representation Space !𝒫!: Noise Distribution in the Representation Space

𝑓

Representation Extractor𝑔": Noise Projector𝑔!:

𝑔&

𝑓: Classifier

𝑔(

Figure 3: Under the SSNA setting, although the noise domain is generated from a random distribution,
it shares a common set of class indices with the target domain. By classifying noise into distinct class
indices in the representation space, a discriminative structure is formed that guides the alignment
with the target domain and enhances the separability of target representations.

Next, we apply the theoretical framework of semi-supervised TL in (Ben-David et al., 2010) to
analyze the generalization bound of SSNA. Since the noise does not originate from the same sample
space as the target domain, it is infeasible to directly measure the distributional discrepancy between
them. To address this issue, we project both domains into a domain-shared representation space Z
and derive the generalization bound for the target domain within this space. Specifically, let F be a
hypothesis space over Z , consisting of functions f : Z → {0, 1} with VC dimension d. Denote by
P̃t and P̃n the target and noise distributions over Z , respectively. Let Ut, Un be unlabeled samples of
size m′ each, drawn i.i.d. from P̃t and P̃n, respectively. Let Lt and Ln be labeled samples of sizes
βm and (1−β)m, drawn i.i.d. from P̃t and P̃n, respectively. Define ϵ̂α(f) = αϵ̂t(f)+(1−α)ϵ̂n(f)
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(α ∈ [0, 1]) as the convex combination of the empirical target error ϵ̂t(f) and empirical noise error
ϵ̂n(f), measured on Lt and Ln, respectively. Based on those notations summarized in Table 9 of
Appendix C.1, we present the generalization bound of SSNA in a two-domain setting in Theorem 1.

Theorem 1. (Generalization Bound of SSNA) Let f̂ = argminf∈F ϵ̂α(f) be the empirical minimizer
of ϵ̂α(f), and let f∗

t = argminf∈F ϵt(f) be the target error minimizer. Then, for any δ ∈ (0, 1),
with probability at least 1− δ (over the choice of the samples), we have:

ϵt(f̂) ≤ ϵt(f
∗
t )+O

γ

√
d logm+log( 1δ )

m

+2(1−α)

[
1

2
d̂H∆H(Un,Ut)+O

√d logm′+log( 1δ )

m′


+ϵ̂n(f̂)+ϵ̂t(f̂)+O

√d log( (1−β)m
d )+log( 1δ )

(1− β)m

+O

√d log(βmd )+log( 1δ )

βm

],
where γ =

√
α2

β + (1−α)2

1−β , and d̂H∆H(Un,Ut) is the empirical H-divergence estimated from noise
and target samples in Z .

The proof is provided in Appendix C.2. Theorem 1 builds upon Theorem 3 in (Ben-David et al.,
2010) and incorporates key insights from (Li et al., 2021). The resulting bound explicitly accounts for
three key terms: (i) the empirical noise error ϵ̂n(f̂); (ii) the empirical target error ϵ̂t(f̂); and (iii) the
empirical distributional discrepancy d̂H∆H(Un,Ut), without involving the joint optimal error term λ.
Theorem 1 suggests that, regardless of the origin of the source domain (e.g., images, text, or synthetic
noise), the generalization bound on the expected target error can be tightened when those three terms
are effectively reduced in Z . Moreover, it relaxes the common semi-supervised TL assumption that
source and target domains must be related, explaining why even a synthetic noise domain can serve
as an effective surrogate. Next, we empirically verify this theoretical insight.

4.2 EMPIRICAL VERIFICATION OF THEOREM 1

To empirically verify Theorem 1, we first present the proposed NAF based on this theorem, and then
report several key results.

Building on Theorem 1, the generalization bound on the expected target error ϵt(f̂) can be minimized
by jointly reducing ϵ̂t(f̂), ϵ̂n(f̂), and d̂H∆H(Un,Ut) in Z . Accordingly, we design NAF to project
target samples and noise into Z by minimizing three components: (i) Lt: the empirical risk of
labeled target samples, corresponding to ϵ̂t(f̂); (ii) Ln: the empirical risk of noise, corresponding to
ϵ̂n(f̂); and (iii) Ln,t: the distributional discrepancy between projected domains, whose minimization
implicitly reduces d̂H∆H(Un,Ut). Thus, the optimization objective of the NAF is formulated by

min
gt,gn,f

Lt(Dl; gt, f) + αLn(Dn; gn, f) + βLn,t(Dl,Du,Dn; gt, gn, f), (1)

where gt(·) is a representation extractor projecting target samples from X to Z , gn(·) is a noise
projector mapping noise from E to Z , f(·) is a classifier (see Figure 3), and α, β are two positive
trade-off parameters to control the importance of Ln and Ln,t, respectively. By optimizing the
problem (1), the generalization bound of the target domain can be effectively tightened, thereby
improving the generalization performance.

NAF is formulated as a general framework with flexible instantiations for its components. In the
implementation, Lt and Ln are instantiated with the cross-entropy loss, and Ln,t can be realized
through various distribution alignment mechanisms. In practice, we design five mechanisms and
empirically adopt the Negative Domain Similarity (NDS) mechanism, while detailed analyses of
alternative designs are provided in Q7 of Section 5.3. NDS measures the discrepancy between
the projected target and noise domains by computing the cosine similarities between their global
means and class-wise means, averaging those similarities, and then negating the result (see details in
Appendix A). Moreover, we use the classifier f(·) to assign pseudo-labels to unlabeled target samples
and iteratively update them to estimate class means.

Next, we present empirical results showing that NAF achieves a tighter generalization bound on
the target domain compared to the supervised learning baseline, i.e., ERM, which uses only Lt. To
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Figure 4: (a) Training loss and accuracy curves for NAF and ERM on CIFAR-10 with ResNet-18.
Lt denotes the empirical risk of labeled target samples, Ln is the empirical risk of noise, and Ln,t

measures the distributional discrepancy between domains. (b) Representations learned by NAF on
CIFAR-10 with ResNet-18, where ■’ indicates noise representation; •’ and ‘◦’ represent labeled and
unlabeled target representations, respectively. (c) Representations learned by ERM on CIFAR-10
with ResNet-18, with the same symbol scheme as in (b). Colors correspond to different classes.

construct a noise domain, we first sample C class means from a standard Gaussian distribution in a
1024-dimensional space. For each class, we then assign an identity covariance matrix. Based on each
class mean and its corresponding covariance matrix, we then sample 50 noise from the associated
Gaussian distribution to form the noise domain. Figure 4a plots the training trajectories of Lt, Ln,
and Ln,t, along with the test accuracy curves for NAF and ERM on CIFAR-10 using ResNet-18, with
4 labeled samples per class. Several insightful observations can be drawn.

• Both methods demonstrate notable reductions in Lt, as it is explicitly minimized in their respective
objective functions.

• The values of Ln and Ln,t in ERM are consistently higher than those in NAF, which is reasonable
since ERM does not explicitly minimize them.

• When Lt is jointly minimized with Ln and Ln,t in NAF, the accuracy significantly improves over
ERM. Since Ln and Ln,t are derived from the noise domain, this improvement indicates that
incorporating the noise domain tightens the target generalization bound, producing positive
transfer. This observation aligns with the theoretical result in Theorem 1.

Furthermore, we visualize the representations learned by NAF and ERM in the above experiment
using t-SNE (Van der Maaten & Hinton, 2008). As shown in Figure 4b, NAF produces a clear
discriminative structure, where noise representations from different classes form well-separated
clusters and align closely with the corresponding target representations. Notably, because the noise is
fed into gn(·) solely to generate its representations, the discriminative structure observed in the noise
domain arises from the predefined noise distributions and from the supervised training applied to
noise representations in the representation space. In contrast, ERM, as plotted in Figure 4c, exhibits
less discriminable target representations. This difference can be attributed to the joint minimization
of Ln and Ln,t: minimizing Ln enforces noise representations to form compact and well-separated
clusters across classes, and minimizing Ln,t aligns all target representations with those clusters,
thus producing more discriminative target representations.

5 EXPERIMENTS

5.1 SETUP

Datasets. We use the following benchmark datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009), DTD (Cimpoi et al., 2014), Caltech-101 (Fei-Fei et al., 2004), CUB-200-
2011 (Wah et al., 2011), Oxford Flowers-102 (Nilsback & Zisserman, 2008), Stanford Cars-196
(Krause et al., 2013), ImageNet-1K (Deng et al., 2009), and AG News-4 (Zhang et al., 2015). For
the first seven vision datasets, we randomly select four labeled samples per class from the original
training set, treating the remaining samples as unlabeled; for ImageNet-1K, we sample 100 labeled
examples per class due to its large scale, with the rest used as unlabeled data. AG News-4 is a text
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classification dataset consisting of news articles from four categories, for which we randomly draw
four labeled samples and 1,000 unlabeled samples. Further details are provided in Appendix B.1.

Noise Domain Construction. For consistency and simplicity across tasks, we construct the noise
domain using the produce described in Section 4.2, unless otherwise stated.

Evaluation Metric. We evaluate performance using the classification accuracy in De. For a fair
comparison, we report the accuracy of the last epoch. In most cases, results are averaged over three
independent runs, while single-run accuracy is reported in certain settings (e.g., ImageNet-1K).

5.2 MAIN EXPERIMENTS

Q1. How does NAF perform compared to ERM on standard classification benchmarks? Table 1
lists the results on CIFAR-10, CIFAR-100, DTD-47 and Caltech-101 using ResNet-18 and ResNet-50.
As shown, NAF consistently outperforms ERM, which represents the standard supervised baseline,
across all datasets. In particular, NAF yields notable Top-1 accuracy improvements of 12.35% and
15.15% over ERM on CIFAR-10 with ResNet-18 and ResNet-50, respectively. This consistent
advantage over ERM confirms that NAF achieves positive transfer from the noise domain to the target
domain. The reason is that NAF introduces the noise domain with class-discriminative structure and
enforces distributional alignment between the noise and target domains. This process encourages all
target representations to form more separable clusters, which enhances class discriminability and
thereby improves the generalization of the target domain.
Table 1: Accuracy (%) comparison on CIFAR-10 and CIFAR-100, DTD-47, and Caltech-101 using
ResNet-18 and ResNet-50, respectively. Here, ∆ indicates the performance gain introduced by NAF.

Datasets CIFAR-10 CIFAR-100 DTD-47 Caltech-101

ResNet-18 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ERM 55.55 92.85 41.43 71.40 45.80 74.26 79.20 93.29
NAF 67.90 96.38 49.04 80.56 50.18 77.98 81.94 95.01
∆ +12.35 +3.53 +7.61 +9.16 +4.38 +3.72 +2.74 +1.72

ResNet-50 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
ERM 58.83 94.25 46.71 76.53 49.56 76.65 81.99 94.70
NAF 73.98 97.01 52.82 82.16 53.97 79.68 84.41 96.14
∆ +15.15 +2.76 +6.11 +5.63 +4.41 +3.03 +2.42 +1.44

Q2. Can NAF achieve improvements over ERM on fine-grained classification tasks? Table 2
presents the results on three fine-grained classification datasets, including CUB-200, OxfordFlowers-
102, and StanfordCars-196, using ResNet-18. As observed, NAF consistently outperforms ERM by
a large margin across all datasets. Those results demonstrate that NAF can effectively leverage the
noise domain to achieve positive transfer in fine-grained classification tasks.

Table 2: Accuracy (%) comparison on fine-grained classification datasets using ResNet-18.

Datasets CUB-200 OxfordFlowers-102 StanfordCars-196

ERM 41.92 81.07 28.01
NAF 50.86 86.58 35.75
∆ +8.94 +5.51 +7.74

Q3. Does NAF scale to large-scale datasets such as ImageNet? We evaluate NAF on TinyImageNet-
200 and ImageNet-1K with 100 labeled samples per class using ResNet-18 to assess its performance
on medium- and large-scale datasets. NAF achieves an accuracy of 37.10%, outperforming ERM
(36.11%) by 0.99%. This result further highlights NAF’s effectiveness, even on large-scale datasets
with 1,000 classes, demonstrating its potential for addressing complex real-world challenges.

Q4. Is NAF effective on text categorization tasks? To assess the applicability of NAF beyond
visual classification, we conduct experiments on AG News-4 (Zhang et al., 2015). Here, texts are
encoded using a pre-trained BERT model, and noise is mapped through a nonlinear projector with
ReLU activation. NAF achieves an accuracy of 82.82%, outperforming ERM, which achieves 78.64%.
The results suggest that NAF could potentially facilitate knowledge transfer in non-visual tasks.

Q5. Is NAF effective as a plug-in when combined with existing SSL methods? To investigate this
question, we conduct experiments using six state-of-the-art (SOTA) SSL methods: UDA (Xie et al.,
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2020), FixMatch (Sohn et al., 2020), FlexMatch (Zhang et al., 2021), DebiasMatch (Wang et al.,
2022), DST (Chen et al., 2022), and LERM (Zhang et al., 2024). NAF can be seamlessly integrated
as a plugin into those SOTA SSL methods by incorporating Ln and Ln,t into their objective functions.
Table 3 reports the results at the 5th, 10th, 15th, and 20th epochs on CIFAR-10 and CIFAR-100 using
ResNet-18. We observe that incorporating NAF leads to consistent performance gains across all
SSL methods. Specifically, NAF improves accuracy by 20.83% and 9.91% over UDA and FixMatch,
respectively, at the 20th epoch on CIFAR-10. Those results indicate that NAF effectively enhances
the generalization of SOTA methods by transferring knowledge from the noise domain. Additional
results on DTD-47 and Caltech-101 are offered in Appendix D.
Table 3: Accuracy (%) comparison on CIFAR-10 and CIFAR-100 using ResNet-18. Here, ∆ indicates
the performance gain introduced by NAF.

Datasets CIFAR-10 CIFAR-100

Epoch 5 10 15 20 Average 5 10 15 20 Average

UDA (Xie et al., 2020) 51.67 55.37 56.03 56.11 54.80 38.30 42.99 45.93 47.41 43.66
UDA + NAF 73.55 76.16 76.52 76.94 75.79 40.37 45.44 47.82 48.80 45.61

∆ +21.88 +20.79 +20.49 +20.83 +20.99 +2.07 +2.45 +1.89 +1.39 +1.95
FixMatch (Sohn et al., 2020) 66.41 68.41 69.01 69.40 68.31 39.38 40.78 41.98 42.45 41.15

FixMatch + NAF 75.51 77.89 79.00 79.31 77.93 40.97 43.28 44.06 44.93 43.31
∆ +9.10 +9.48 +9.99 +9.91 +9.62 +1.59 +2.50 +2.08 +2.48 +2.16

FlexMatch (Zhang et al., 2021) 73.61 79.85 83.46 84.53 80.36 45.41 50.28 51.91 54.30 50.48
FlexMatch + NAF 79.22 82.72 84.32 84.90 82.79 48.10 52.91 54.97 55.73 52.93

∆ +5.61 +2.87 +0.86 +0.37 +2.43 +2.69 +2.63 +3.06 +1.43 +2.45
DebiasMatch (Wang et al., 2022) 68.71 77.68 79.86 82.04 77.07 46.71 51.97 54.73 56.30 52.43

DebiasMatch + NAF 76.12 80.89 82.54 83.05 80.65 49.57 54.02 56.36 57.45 54.35
∆ +7.41 +3.21 +2.68 +1.01 +3.58 +2.86 +2.05 +1.63 +1.15 +1.92

DST (Chen et al., 2022) 78.40 82.84 84.48 85.47 82.80 45.40 49.74 51.68 53.17 50.00
DST + NAF 80.70 83.46 84.87 85.53 83.64 48.73 52.28 54.10 54.93 52.51

∆ +2.30 +0.62 +0.39 +0.06 +0.84 +3.33 +2.54 +2.42 +1.76 +2.51
LERM (Zhang et al., 2024) 60.03 62.42 63.81 64.77 62.76 48.10 50.13 50.83 51.66 50.18

LERM + NAF 66.01 67.34 67.83 68.00 67.30 49.42 51.06 51.65 51.97 51.03
∆ +5.98 +4.92 +4.02 +3.23 +4.54 +1.32 +0.93 +0.82 +0.31 +0.85

5.3 ANALYSIS

Q6. How does the impact of NAF change as the number of labeled target samples varies?
Table 4 reports the results on CIFAR-10 using ResNet-18 with different numbers of labeled samples
per class. We have several insightful observations. (1) When the number of labeled target samples is
zero, both ERM and NAF perform poorly. For ERM, the absence of labeled target samples hinders
the effective learning of unlabeled samples, resulting in significant performance degradation. In NAF,
the noise comes from a space different from that of the target domain, and the target samples are
unlabeled. As a result, the class-discriminative structure of the noise cannot be effectively aligned
with the target domain. (2) When the number of labeled target samples is non-zero, NAF outperforms
ERM across all scenarios. Those results indicate that NAF effectively leverages both labeled target
samples and noise to guide the learning of unlabeled target samples, enhancing the generalization of
the target domain.

Table 4: Accuracy (%) comparison on CIFAR-100 using ResNet-18 with different numbers of labeled
target samples per class.

# Labeled target samples per class 0 4 8 12 16 20

ERM 0.97 42.24 54.11 58.27 61.64 63.85
NAF 1.34 49.98 59.51 62.21 64.23 66.45

Q7. How do Ln and Ln,t influence the performance of NAF? We examine two NAF variants:
(1) NAF (w/o Ln), which ablates Ln; and (2) NAF (w/o Ln,t), which removes Ln,t. Additionally,
ERM can be seen as a NAF variant that eliminates both Ln and Ln,t. The results on CIFAR-100
using ResNet-18 are shown in Table 5. We observe that NAF outperforms all variants, indicating that
both losses are beneficial. Moreover, NAF (w/o Ln) outperforms NAF (w/o Ln,t), suggesting that
reducing distributional divergence between domains is more crucial.
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Table 5: Accuracy (%) of NAF variants on CIFAR-100 using ResNet-18.

ERM NAF (w/o Ln) NAF (w/o Ln,t) NAF

42.24 47.33 40.64 49.98

Q8. How does NAF perform under different distribution alignment mechanisms? NAF is
a general framework that can incorporate various distribution alignment mechanisms, with NDS
employed in our implementation. To verify the generality of NAF, we consider several alternative
alignment strategies: (1) Negative Sample Similarity (NSS): It calculates the negative average cosine
similarities between all noise-target pairs from the same class. (2) Negative Contrastive Domain
Similarity (NCDS): It computes a contrastive loss (Radford et al., 2021) over class-wise means
across the noise and target domains. (3) Negative Contrastive Sample Similarity (NCSS): It defines
a regression loss that aligns the cosine similarity of each noise–target pair to a target value: +1
for same-class pairs and −1 for different-class pairs. (4) Euclidean Domain Distance (EDD): It
computes the average Euclidean distance between the global and class-wise means of the noise and
target domains. Their specific formulations are defined in Appendix A. Table 6 lists the results on
CIFAR-100 using ResNet-18. NAF (NDS) achieves the highest performance, verifying that NDS
effectively captures distributional divergence across domains. In contrast, NAF (EDD) performs
the worst, suggesting that Euclidean distance may be less suitable than cosine-based measures in
this context. NAF (NSS), NAF (NCDS), and NAF (NCSS) also outperform ERM, confirming the
generality of NAF in accommodating different alignment mechanisms.

Table 6: Accuracy (%) of NAF with various distributional alignment mechanisms on CIFAR-100
using ResNet-18.

NAF (NDS) NAF (NSS) NAF (NCDS) NAF (NCSS) NAF (EDD) ERM

49.98 48.65 47.20 44.27 20.03 42.24

Q9. What happens when the noise domain loses its discriminative structure? To verify the role
of the discriminative structure of the noise domain, we evaluate a variant of NAF termed NAF with
Single Point, i.e., NAF (SP). In NAF (SP), a single noise vector is sampled from a standard Gaussian
distribution and assigned to all classes, with each class receiving 50 identical copies, effectively
removing any class-discriminative structure. On CIFAR-10, NAF (SP) achieves 33.34% accuracy,
substantially lower than ERM’s 58.15%. On CIFAR-100, the gap is even larger, with NAF (SP) at
6.79% versus ERM at 42.24%. The dramatic performance drop indicates that collapsing all noise to a
single point causes negative transfer, as the noise domain no longer provides class-discriminative
structure for domain alignment. This suggests that NAF leverages the class-discriminative structure in
the noise domain to facilitate better generalization in the target domain, highlighting the importance
of preserving class-discriminative structure in the noise domain.

Q10. How does NAF perform under distinct noise generation strategies? We conduct experiments
by varying the noise generation strategies across three dimensions. (1) Covariance Scale: In the
original setup, we first sample a mean for each class from a standard Gaussian distribution. Next,
for each class, we generate individual noise from a Gaussian distribution with the corresponding
mean and identity covariance I. We additionally evaluate two configurations in which all class
covariances are scaled to 0.1 · I and 10 · I. (2) Noise Dimensionality: In the original setup, the noise
dimensionality is set to 1024. We additionally evaluate two configurations with noise dimensionalities
of 512 and 2048. (3) Distribution Type: In the original setup, the noise is drawn from a Gaussian
distribution. We additionally test the log-normal distribution and the Laplace distribution. The
results, listed in Table 7, indicate that NAF achieves comparable performance across a variety of
noise settings, including variations in covariance scale, noise dimensionality, and distribution type.
Those observations suggest that NAF can accommodate different noise configurations, highlighting
its potential flexibility.

Q11. Is NAF still effective when the target domain exhibits class imbalance? We conduct an
experiment on CIFAR-10 using ResNet-18 with a long-tailed setup. In this configuration, the labeled
and unlabeled sets have per-class sample counts of [50, 30, 20, 10, 6, 4, 3, 2, 2, 1] and [1000, 600,
200, 100, 60, 40, 20, 10, 6, 4], respectively. NAF achieves an accuracy of 56.38% and a macro
F1-score of 53.22%, outperforming ERM, which attains 51.19% accuracy and a macro F1-score of
45.73%. The results suggest that NAF remains effective even under such a class imbalance scenario.

9
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Table 7: Accuracy (%) comparison on CIFAR-100 using ResNet-18 with noise drawn from various
noise generation strategies. Here, µc is the class mean belonging to class c, and d is the dimensionality
of the noise.

Noise Configuration Noise Distribution Accuracy

Baseline Gaussian: N (µc, I), d = 1024 49.98

Covariance Scale Gaussian: N (µc, 0.1 · I), d = 1024 50.38
Gaussian: N (µc, 10 · I), d = 1024 47.64

Noise Dimensionality Gaussian: N (µc, I), d = 512 49.44
Gaussian: N (µc, I), d = 2048 51.04

Distribution Type Log-normal: logN (µc, I), d = 1024 48.31
Laplace: L((µc)d, 1/

√
2), d = 1024 49.99

Q12. Is there another method to learn the noise domain in the representation space? In the
above experiments, we use a noise projector gn to learn an optimal noise domain in the representation
space. As an alternative, we explore constructing an optimal noise domain by learning its mean
µ and standard deviation σ, and apply the reparameterization trick (Kingma & Welling, 2014)
to map samples from a standard normal distribution to a Gaussian distribution N (µ, σ2I) in the
representation space. We evaluate this method on CIFAR-10 using ResNet-18, achieving an accuracy
of 70.60%, which is comparable to the performance of NAF of 71.83%, and exceeds ERM by 12.45%.
Those results suggest that modeling a parametric noise distribution via the reparameterization trick is
also a feasible and effective strategy.

We conduct additional analyses in Appendix E: (1) the effectiveness of using noise as a surrogate
source domain compared to real samples; (2) the influence of the amount of noise; (3) the analysis of
hyperparameter sensitivity; (4) the impact of constructing the noise domain solely with class means;
(5) the effect of inter-class distances within the noise domain; (6) NAF vs. plug-in SSL modules;
and (7) NAF vs. contrastive learning methods. Those analyses provide a deeper understanding of the
underlying principles of NAF and further validate its effectiveness.

6 DISCUSSION

While SSNA introduces additional noise, it fundamentally differs from data augmentation. Data
augmentation typically enriches the target distribution via interpolation (e.g., mixup (Zhang et al.,
2018)), transformations (e.g., rotations (Zhang et al., 2021)), or generative models (e.g., diffusion
(Ho et al., 2020)). In contrast, SSNA first generates noise from simple distributions (e.g., Gaussian
distributions), which may differ substantially from the target distribution. The noise and target
domains are then aligned in a shared representation space, allowing the discriminative structure of
the noise domain to guide the learning of target representations. Hence, SSNA is a domain-level
adaptation problem rather than a data-level augmentation problem.

7 CONCLUSION

In this paper, we formulate the SSNA problem, which leverages a synthetic noise domain to facilitate
the learning task in the target domain. To address this problem, we first derive a generalization
bound for the target domain that offers a theoretical understanding of how incorporating a noise
domain can influence generalization performance. Building on this bound, we propose the NAF,
which jointly minimizes the empirical risks on both the noise and target domains while reducing
their distributional divergence within a domain-shared representation space. Extensive experiments
demonstrate that NAF effectively tightens the generalization bound of the target domain, resulting in
improved performance. Our work explores the use of synthetic noise domains as surrogate source
domains to enhance the generalization of the target domain. A promising direction for future work is
to extend SSNA to broader real-world scenarios.
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contributions lie in formulating the SSNA problem and developing the NAF to address it, without
raising concerns related to privacy, fairness, security, or other ethical issues.
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We are committed to ensuring the reproducibility of our work. To this end, we make our source
code available at https://anonymous.4open.science/r/SSNA . The implementation
details, including datasets, model architectures, and hyperparameters, are described in Section 5.1 and
Appendix B. With the released code and documentation, all reported results can be readily reproduced
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The appendices provide additional details and results, covering the following contents.

• Appendix A: Mathematical details of distribution alignment mechanisms.
• Appendix B: Additional experimental settings.
• Appendix C: Notation and Proof of Theorem 1.
• Appendix D: Supplementary experimental results.
• Appendix E: Additional analysis experiments.
• Appendix F: Declaration of use of large language models.

A MATHEMATICAL DETAILS OF DISTRIBUTION ALIGNMENT MECHANISMS

NAF is a general framework that supports various instantiations of the loss term Ln,t. In this paper,
we consider five distinct instantiations: (1) Negative Domain Similarity (NDS), (2) Negative Sample
Similarity (NSS), (3) Negative Contrastive Domain Similarity (NCDS), (4) Negative Contrastive
Sample Similarity (NCSS), and (5) Euclidean Domain Distance (EDD). Their specific formulations
are defined below.

(1) NDS computes the cosine similarities between their global means and class-wise means, averages
those similarities, and then negates the result, defined by

LNDS
n,t = − 1

C + 1

C∑
c=0

⟨m̃c
n, m̃

c
t⟩, (2)

where C is the number of classes, and ⟨·, ·⟩ denotes the inner product. The case c = 0 corresponds
to the global mean calculated across all classes. m̃c

n and m̃c
t denote the l2-normalized class-wise

means of the noise and target domains for class c, respectively. m̃c
t is calculated using both labeled

and unlabeled target samples, with class assignments for unlabeled samples inferred via hard pseudo-
labels predicted by the classifier and iteratively updated during training. This pseudo-labeling strategy
is consistently applied across all mechanisms.

(2) NSS calculates the negative average cosine similarities between all noise-target pairs from the
same class:

LNSS
n,t = − 1∑C

c=1 ncnt,c

C∑
c=1

nc∑
i=1

nt,c∑
j=1

⟨ñi,c, x̃
t
j,c⟩, (3)

where nc and nt,c denote the numbers of noise and target samples in class c, and ñi,c and x̃t
j,c are the

l2-normalized representations of the i-th noise and j-th target samples in class c.

(3) NCDS computes a contrastive loss over class-wise means across the noise and target domains,
which is formulated as

LNCDS
n,t = − 1

2C

C∑
c=1

[
ln

exp (⟨m̃c
n, m̃

c
t⟩)∑C

c′=1 exp
(〈
m̃c

n, m̃
c′
t

〉) + ln
exp (⟨m̃c

t , m̃
c
n⟩)∑C

c′=1 exp (⟨m̃c
t , m̃

c′
n ⟩)

]
. (4)

(4) NCSS defines a regression loss that aligns the cosine similarity of each noise–target pair to a
target value: +1 for same-class pairs and −1 for different-class pairs:

LNCSS
n,t =

1

C

[ 1

ntn

nt∑
j=1

n∑
i=1

(
⟨x̃t

j , ñi⟩ − yj,i
)2]

, (5)

where n and nt denote the numbers of noise and target samples, respectively. ñi and x̃t
j represent

the l2-normalized representations of the i-th noise and j-th target samples. yi,j is set to 1 if the two
samples share the same class, and −1 otherwise.

(5) EDD computes the average Euclidean distance between the global and class-wise means of the
noise and target domains, defined as

LEDD
n,t =

1

C + 1

C∑
c=0

∥mc
n −mc

t∥2. (6)
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B ADDITIONAL EXPERIMENTAL SETTINGS

B.1 DATASET DETAILS

In the experiments, we adopt the following datasets:

• CIFAR-10 (Krizhevsky et al., 2009): 60,000 natural images across 10 classes, with 50,000
training images and 10,000 test images.

• CIFAR-100 (Krizhevsky et al., 2009): 60,000 natural images from 100 classes, split into
50,000 training and 10,000 test images.

• DTD-47 (Cimpoi et al., 2014): 5,640 texture images from 47 classes, used for texture
classification tasks.

• Caltech-101 (Fei-Fei et al., 2004): 9,146 images from 101 object classes plus a background
class, with varying numbers of images per class.

• CUB-200 (Wah et al., 2011): 11,788 bird images from 200 species, with standard splits for
training and testing.

• Oxford Flowers-102 (Nilsback & Zisserman, 2008): 8,189 images from 102 flower classes,
with 6,149 training images, 1,020 validation images, and 1,020 test images.

• Stanford Cars-196 (Krause et al., 2013): 16,185 car images from 196 models, split into
8,144 training images and 8,041 test images.

• ImageNet-1K (Deng et al., 2009): 1.28 million training images and 50,000 validation
images across 1,000 classes, following standard splits for large-scale image classification.

• AG News-4 (Zhang et al., 2015): a text classification dataset containing 120,000 training
and 7,600 test samples across 4 news classes.

B.2 IMPLEMENTATION DETAILS

We implement the proposed NAF using the TLlib library (Jiang et al., 2022) and apply weak and
strong augmentation techniques (Cubuk et al., 2020) in the target domain. All experiments are
conducted on NVIDIA V100 series GPUs. For image classification, we implement the representation
extractor gt using ResNet (He et al., 2016) backbones pre-trained on ImageNet-1K for all datasets
(except for ImageNet-1K itself, where the backbone is trained from scratch). As for text classification,
we employ the pre-trained BERT model (Devlin et al., 2019) as the text encoder. The noise projector
gn is a non-linear layer with ReLU activation (Nair & Hinton, 2010), and the classifier f is a single
linear layer. Furthermore, we utilize mini-batch SGD with a momentum of 0.9 as the optimizer,
setting batch sizes to 32 for CIFAR-10, CIFAR-100, DTD-47, Caltech-101, CUB-200, Oxford
Flowers-102, and Standard Cars-196, and 128 for ImageNet-1K.

In NAF, it is necessary to calculate the class mean for each class. To address the mini-batch issue, we
follow (Xie et al., 2018) and employ an exponential moving average to update the class means as
follows: mc

n = (1− λ) ·mc
o + λ ·mc

b, where mc
o and mc

n denote the previous and updated c-th class
means, respectively, and mc

b is the c-th class mean calculated from the current mini-batch. Table 8
summarizes the detailed parameter configurations used in this paper.

Table 8: Detailed parameter configuration used in this paper.

Method Dataset Backbone α β λ learning rate iterations

NAF

CIFAR-10 / DTD-47 ResNet-50 / ResNet-18 1 1

0.7

0.03
10,000CIFAR-100 ResNet-50 / ResNet-18 10 10 0.01

Caltech-101 ResNet-50 / ResNet-18 1 10 0.003
CUB-200 ResNet-18 1 50 0.003 8,000

Oxford Flowers-102 / Stanford Cars-196 ResNet-18 1 50 0.03 4,000 / 6,000
ImageNet-1K ResNet-18 0.110 0.01 80,000

LERM + NAF CIFAR-10

ResNet-18

1 1 0.99 0.03

10,000Others + NA
CIFAR-10 / CIFAR-100 10 100.99 / 0.7 0.03 / 0.01

DTD-47 1 5 0.7 0.03
Caltech-101 1 10 0.7 0.003
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C NOTATION AND PROOF OF THEOREM 1

C.1 NOTATION

For clarity, Table 9 summarizes the notations used in this paper.

Table 9: A summary of the notations used in this paper.

Notation Description

C Total number of classes
C Class index set {0, . . . , C − 1}
Dl, Du Labeled and unlabeled target sample sets
De Test target sample set (used only for evaluation)
Dt Target domain: Dl ∪ Du ∪ De

Dn Noise domain
xl
i,x

u
i ,x

e
i i-th sample from Dl, Du, and De, respectively

yli Label of xl
i, y

l
i ∈ C

ni i-th noise in Dn

yi Label of ni, yi ∈ C
X Sample space (e.g., a pixel-level image space)
E Noise space (e.g., a p-dimensional space)
Z Domain-shared representation space
F Hypothesis space over Z
P̃t Target distribution over Z
P̃n Noise distribution over Z
Un, Ut Unlabeled sample sets drawn from P̃n and P̃t, respectively
Ln, Lt Labeled sample sets drawn from P̃n and P̃t, respectively
gt(·) Representation extractor for target samples
gn(·) Noise projector for noise
f(·) Domain-shared classifier
nl, nu Number of labeled and unlabeled target samples
n Number of noise

C.2 PROOF OF THEOREM 1

Theorem 1. (Generalization Bound of SSNA) Let f̂ = argminf∈F ϵ̂α(f) be the empirical minimizer
of ϵ̂α(f), and let f∗

t = argminf∈F ϵt(f) be the target error minimizer. Then, for any δ ∈ (0, 1),
with probability at least 1− δ (over the choice of the samples), we have:

ϵt(f̂) ≤ ϵt(f
∗
t )+O

γ

√
d logm+log( 1δ )

m

+2(1−α)

[
1

2
d̂H∆H(Un,Ut)+O

√d logm′+log( 1δ )

m′


+ϵ̂n(f̂)+ϵ̂t(f̂)+O

√d log( (1−β)m
d )+log( 1δ )

(1− β)m

+O

√d log(βmd )+log( 1δ )

βm

],
where γ =

√
α2

β + (1−α)2

1−β , and d̂H∆H(Un,Ut) is the empirical H-divergence estimated from noise
and target samples in Z .

We now outline the main steps of the proof, based on (Ben-David et al., 2010), beginning with
Lemmas 1 and 2, which correspond to Lemmas 4 and 5 in (Ben-David et al., 2010).
Lemma 1. Let f be a hypothesis in hypothesis space F . Then |ϵα(f) − ϵt(f)| ≤ (1 −
α)
(

1
2dH∆H(P̃n, P̃t) + λ

)
, where λ := minf∈F ϵn(f) + ϵt(f).

Lemma 2. For a fixed hypothesis f , if m random labeled samples are drawn, with βm from P̃t

and (1− β)m from P̃n, then for any δ ∈ (0, 1), with probability at least 1− δ (over the choice of
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samples), we have:

Pr [|ϵ̂α(f)− ϵα(f)| ≥ ϵ] ≤ 2 exp

(
−2mϵ2

α2

β + (1−α)2

1−β

)
. (7)

For brevity, we omit the proofs of Lemmas 1 and 2 here, which are available in (Ben-David et al.,
2010). Next, we provide a detailed proof for Theorem 1.

Proof. In the proof below, steps labeled L1 and L2 correspond to applications of Lemma 1 and Lemma
2, respectively, with L2 additionally employing standard techniques of sample symmetrization and
VC-dimension–based growth-function bounds (Anthony & Bartlett, 1999).

ϵt(f̂) ≤ ϵα(f̂) + (1− α)

(
1

2
dH∆H(P̃n, P̃t) + λ

)
(L1) (8)

≤ ϵ̂α(f̂) + 2γ

√
2d log(2(m+ 1)) + 2 log( 16δ )

m
+(1−α)

(
1

2
dH∆H(P̃n,P̃t)+λ

)
(L2) (9)

≤ ϵ̂α(f
∗
t ) + 2γ

√
2d log(2(m+ 1)) + 2 log( 16δ )

m
+(1−α)

(
1

2
dH∆H(P̃n,P̃t)+λ

)
(10)

≤ ϵα(f
∗
t ) + 4γ

√
2d log(2(m+ 1)) + 2 log( 16δ )

m
+(1−α)

(
1

2
dH∆H(P̃n,P̃t)+λ

)
(L2) (11)

≤ ϵt(f
∗
t ) + 4γ

√
2d log(2(m+ 1)) + 2 log( 16δ )

m
+2(1−α)

(
1

2
dH∆H(P̃n,P̃t)+λ

)
(L1) (12)

≤ ϵt(f
∗
t ) + 4γ

√
2d log(2(m+ 1)) + 2 log( 16δ )

m

+ 2(1− α)

1

2
d̂H∆H(Un,Ut) + 4

√
2d log(2m′) + log

(
8
δ

)
m′ + λ

 (13)

≤ ϵt(f
∗
t ) + 4γ

√
2d log(2(m+ 1)) + 2 log( 16δ )

m

+ 2(1− α)

1

2
d̂H∆H(Un,Ut) + 4

√
2d log(2m′) + log

(
8
δ

)
m′ + ϵn(f̂) + ϵt(f̂)

 (14)

≤ ϵt(f
∗
t ) + 4γ

√
2d log(2(m+ 1)) + 2 log( 16δ )

m

+2(1− α)

(
1

2
d̂H∆H(Un,Ut) + 4

√
2d log(2m′) + log

(
8
δ

)
m′

+ϵ̂n(f̂)+ϵ̂t(f̂)+

√
8d log(2e(1−β)m

d )+8 log( 16δ )

(1− β)m
+

√
8d log(2eβmd )+8 log( 16δ )

βm

)
. (15)

Accordingly, we have:

ϵt(f̂) ≤ ϵt(f
∗
t )+O

γ

√
d logm+log( 1δ )

m

+2(1−α)

[
1

2
d̂H∆H(Un,Ut)+O

√d logm′+log( 1δ )

m′


+ϵ̂n(f̂)+ϵ̂t(f̂)+O

√d log( (1−β)m
d )+log( 1δ )

(1− β)m

+O

√d log(βmd )+log( 1δ )

βm

]. (16)
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Eq. (10) holds due to f̂ = argminf∈F ϵ̂α(f), Eq. (13) is established using the bound proposed in
(Ben-David et al., 2010), Eq. (14) holds because λ := minf∈F ϵn(f) + ϵt(f) ≤ ϵn(f̂) + ϵt(f̂), and
Eq. (15) uses the bound from (Mohri et al., 2018).

D SUPPLEMENTARY EXPERIMENTAL RESULTS

We provide additional results for SOTA + NAF on DTD-47 and Caltech-101 using ResNet-18. As
shown in Table 10, SOTA + NAF consistently outperforms the standalone SOTA methods across
most scenarios, further demonstrating the effectiveness of NAF in leveraging the noise domain to
enhance the performance of the target domain.

Table 10: Accuracy (%) comparison on DTD-47 and Caltech-101 using ResNet-18. Here, ∆ indicates
the performance gain introduced by NAF.

Datasets DTD-47 Caltech-101

Epoch 5 10 15 20 Average 5 10 15 20 Average

UDA (Xie et al., 2020) 46.28 46.81 46.90 47.32 46.83 79.20 79.61 80.00 80.28 79.77
UDA + NAF 46.88 47.89 49.10 49.22 48.27 80.98 81.40 81.21 81.43 81.26

∆ +0.60 +1.08 +2.20 +1.90 +1.44 +1.78 +1.79 +1.21 +1.15 +1.49
FixMatch (Sohn et al., 2020) 46.51 47.78 48.09 48.23 47.65 80.13 80.27 80.28 79.99 80.17

FixMatch + NAF 48.85 49.57 50.12 49.86 49.60 80.96 80.96 80.42 80.42 80.69
∆ +2.34 +1.79 +2.03 +1.63 +1.95 +0.83 +0.69 +0.14 +0.43 +0.52

FlexMatch (Zhang et al., 2021) 50.66 51.29 50.94 50.69 50.90 82.74 83.83 83.61 83.70 83.47
FlexMatch + NAF 50.51 50.87 51.03 51.35 50.94 83.22 84.08 83.74 83.77 83.70

∆ -0.15 -0.42 +0.09 +0.66 +0.04 +0.48 +0.25 +0.13 +0.07 +0.23
DebiasMatch (Wang et al., 2022) 45.67 45.99 45.46 46.42 45.89 80.87 81.09 81.29 81.60 81.21

DebiasMatch + NAF 49.01 49.79 50.02 50.09 49.73 82.46 82.62 82.77 82.60 82.61
∆ +3.34 +3.80 +4.56 +3.67 +3.84 +1.59 +1.53 +1.48 +1.00 +1.40

DST (Chen et al., 2022) 49.84 51.68 52.27 51.93 51.43 80.75 81.85 82.19 82.16 81.74
DST + NAF 51.08 52.00 52.54 52.55 52.04 81.70 82.72 82.85 82.87 82.54

∆ +1.24 +0.32 +0.27 +0.62 +0.61 +0.95 +0.87 +0.66 +0.71 +0.80
LERM (Zhang et al., 2024) 47.20 47.50 48.03 48.42 47.79 82.36 83.06 82.98 83.13 82.88

LERM + NAF 48.85 48.83 48.87 48.92 48.87 83.14 83.59 83.23 83.06 83.26
∆ +1.65 +1.33 +0.84 +0.50 +1.08 +0.78 +0.53 +0.25 -0.07 +0.38

E ADDITIONAL ANALYSIS EXPERIMENTS

Q13. How does the performance of using noise as a source domain compare to that of using real
samples? We investigate this question on the Office-Caltech-10 dataset, which is a transfer learning
benchmark containing 10 shared object classes from Office-31 (Saenko et al., 2010) and Caltech-256
(Griffin et al., 2007). Caltech is used as the target domain, where 4 labeled samples per class are
randomly selected and the rest are treated as unlabeled. For the source domain, we consider two
settings: a synthetic noise domain (denoted as NAF (Noise)) and the Amazon domain (denoted as
NAF (Real)). For each source domain, we vary the number of labeled samples per class among 10, 20,
30, 40, and 50. Table 11 reports the results, from which we make the following observations. (1) Both
NAF (Noise) and NAF (Real) outperform ERM, and NAF (Real) performs slightly better, indicating
that even synthetic noise can effectively guide the learning of the target samples without access to
real samples. (2) Even a limited number of source samples significantly improves performance, as
they can form a class-discriminative structure that achieves positive transfer regardless of whether the
samples are real or synthetic. Those findings together support the conclusion that synthetic noise can
serve as a practical substitute when real out-of-domain samples are unavailable.

Q14. How does the amount of noise impact NAF? We vary the amount of noise per class (i.e.,
0, 10, 50, 100, 200) to evaluate its impact on NAF. The results on CIFAR-100 using ResNet-18 are
shown in Figure 5a. As can be observed, when the amount of noise is zero, NAF degenerates to ERM,
resulting in poor performance. As the noise increases from 10 to 100, performance remains relatively
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Table 11: Accuracy (%) comparison on Amazon-to-Caltech-10 transfer task using ResNet-18 with
different number of source samples.

# source samples per class 10 20 30 40 50

ERM 83.51 83.51 83.51 83.51 83.51
NAF (Noise) 89.89 88.65 88.83 88.12 89.36
NAF (Real) 90.25 90.07 90.96 92.20 91.14

stable, indicating that the presence of a class-discriminative structure in the noise domain is more
important than the total amount of noise. Even a small number of noise samples can form separable
patterns in the shared representation space and guide the alignment of target representations. When
the noise per class reaches 200, performance slightly declines, suggesting that excessive noise may
increase learning difficulty and provide limited additional benefit.
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Figure 5: Accuracy (%) comparison on CIFAR-100 using ResNet-18 with varying (a) amounts of
noise, (b) values of α, and (c) values of β.

Q15. How do the hyperparameters α and β influence NAF? We analyze the sensitivity of α and β
on CIFAR-100 using ResNet-18. Figures 5b and 5c present the performance of NAF under varying
values of α and β, respectively. The results show that NAF performs well and remains relatively
stable when α and β are close to the default value of 10. However, when either parameter increases to
100, a significant performance drop is observed, suggesting that excessive focus on the noise domain
hurts the performance of the target domain.

Q16. What is the impact of using class means for noise construction on model performance?
Using class means as the noise domain represents a special case of noise construction, where all
noise within a class collapses to a single class mean. To investigate its effect, we consider two
variants: NAF with Fixed Class Means, i.e., NAF (FCM), and NAF with Learned Class Means,
i.e., NAF (LCM). In NAF (FCM), class means in the noise domain are initialized as orthogonal
vectors and remain fixed during training. In NAF (LCM), class means are similarly initialized but
updated during training through the noise projector. Table 12 reports the results on CIFAR-100 with
4 labeled samples using ResNet-18. We have several insightful observations. (1) Both NAF (FCM)
and NAF (LCM) outperform ERM, indicating that positive transfer can still occur even when the
noise domain is simplified to class means. The reason is that class means retain the separability
among categories, thereby preserving a discriminative structure that provides useful guidance for
aligning target representations. (2) NAF (LCM) achieves an accuracy of 47.72%, outperforming NAF
(FCM) (46.68%) by 1.04%, demonstrating that using learnable noise may be more effective than
using fixed noise. (3) NAF achieves 49.98% accuracy, surpassing NAF (LCM), highlighting that
different noise construction strategies lead to varying levels of discriminative structure, which in turn
critically influences alignment and overall performance.

Table 12: Accuracy (%) comparison of different noise construction strategies on CIFAR-100 using
ResNet-18.

ERM NAF (FCM) NAF (LCM) NAF

42.24 46.68 47.72 49.98
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Q17. How does NAF perform under varying inter-class distances in the noise domain? We per-
form ablation studies by constructing noise domains with controlled inter-class distances. Specifically,
we first sample a global mean µ and class-specific offsets ϵc from a standard Gaussian distribution,
and define class means as µc = µ+δϵc, where δ explicitly controls the distance between class means.
Then, we sample 50 noise per class from the Gaussian distribution N (µc, I). By varying δ over
the set {0, 0.1, 0.3, 0.5, 1}, we adjust the inter-class distances of the noise domain, corresponding to
Jensen–Shannon (JS) divergence values of 0, 2.57, 23.16, 64.33, and 257.33, respectively. Higher JS
divergence values indicate larger inter-class distances. The results on CIFAR-100 using ResNet-18
are reported in Table 13. We can see that when δ = 0, NAF performs comparably to ERM. As the
value of δ increases, the performance improves accordingly, indicating that larger inter-class distances
in the noise domain lead to enhanced generalization performance.

Table 13: Accuracy (%) comparison on CIFAR-100 using ResNet-18 with varying inter-class
distances of the noise domain.

δ 0 0.1 0.3 0.5 1

ERM 42.24 42.24 42.24 42.24 42.24
NAF 43.80 43.78 46.57 49.57 49.78

Q18. How does NAF compare with plug-in modules for SSL? LERM (Zhang et al., 2024) is
an effective plug-in module for SSL. We compare NAF and LERM under both ERM and DST on
CIFAR-10 using ResNet-18. As shown in Table 14, NAF provides a larger improvement than LERM
when combined with ERM. On DST, both methods yield modest improvements, with NAF showing
comparable performance to LERM. Those results suggest that NAF may serve as a competitive
plug-in module for SSL.

Table 14: Accuracy (%) comparison of ERM and DST combined with either LERM or NAF on
CIFAR-10 using ResNet-18.

Method Base +LERM +NAF

ERM 58.15 64.90 71.83
DST 84.96 86.82 86.58

Q19. How does NAF compare with contrastive learning methods? We compare NAF with a
contrastive learning method inspired by CLIP (Radford et al., 2021), referred to as CL. CL applies
a contrastive loss between weakly-augmented and strongly-augmented unlabeled target samples to
encourage consistent representations for different augmentations of the same sample. On CIFAR-100
using ResNet-18, ERM + CL achieves an accuracy of 44.15%, improving over ERM alone (42.24%)
but remaining lower than ERM + NAF (49.98%). One potential reason is that CL only uses the
unlabeled target samples for contrastive learning but does not leverage their pseudo-labels.

F DECLARATION OF USE OF LARGE LANGUAGE MODELS

In this paper, large language models are used solely to assist with writing, improving clarity, phrasing,
and presentation.
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