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Abstract 

 
Recent advances in human-machine systems have renewed a commonly-held 

expectation that Machine Learning (ML) may be most effectively used in conjunction 

with human intervention. This expectation is built on the assumption that synthesized 

human-machine systems which bring humans in the loop by allowing them to provide 

input, oversight, or supervision outperform humans or machines alone and create a 

whole that is superior to the sum of its parts. Despite the appeal of such an expectation, 

what we know about the technical and practical requirements of effective ML 

utilization has not been applied to carefully consider when human-machine systems 

might deliver on such expectations: i.e., outperform humans or machines alone. In 

this paper, we showcase the importance of the recognition and quantification of the 

false alarms in any technically sound and practically interpretable analysis of the 

effectiveness of ML systems. Specifically, we propose that the quantification of the 

costs and risks of the ML-generated false alarms is directly tied to tuning the 

regularization hyper-parameters, and consequently reducing the complexity and 

improving the effectiveness of ML systems. Using a series of A/B experiments and 

simulations, we demonstrate the application of our theory to tease out the 

effectiveness of two popular human-centric product recommendation engines: 

Assessment Based Recommendation (ABR) where the customers are primarily 

filtered by human assessment; and Broad-Spectrum Recommendation (BSR) where 

the new product or service is introduced to all possible customers. We show that non-

existent recognition or incorrect quantification of the false alarms undermines the 

measurability and interpretability of the economic value of using ML (absent or in 

conjunction with humans) to the extent that it might render it practically unjustifiable, 

and postulate conditions under which human-machine systems outperform humans or 

machines alone. By doing so, we call for researchers to transform how they 

conceptualize and utilize ML from one that is primarily concerned with accuracy-

consistency trade-offs to one that also incorporates the costs and risks of the false 

alarms in the ML objective function to enhance its interpretability.   

1 The Promise of Human-in-the-Loop ML 

We examine the assumption that synthesized human-machine systems which bring humans in the 

loop outperform humans or machines alone [67, 22]. In such systems, “the machine provides 

“best actions” or “recommended actions” and the human can choose whether to take the actions 

or not” [85] where the “synthesis of human and machine will provide benefits beyond those 

achieved by humans or machines alone” and produces a “whole [which] is far greater than the 

sum of the parts” [74]. We apply what we know about the technical and practical requirements 
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of effective ML utilization [82, 63] to carefully consider when human-machine systems might 

deliver on such expectations. 

2 What Does an Efficient and Effective ML Utilization Require? 

The benefits of ML structural estimation techniques and general business applications can only 

be realized if their underlying ML models perform well. Traditionally, the power of a ML model 

is considered to depend on how well it can predict or “fit” the unseen data––in addition to the 

seen data––with a high level of accuracy and consistency. The learning theory suggests that 

improving the power of a ML model demands achieving an optimal accuracy-consistency trade-

off (i.e., bias-variance trade-off) [36]. In this context, though, on the one hand, on average, less 

complex linear or parametric models (i.e., underfit models) are consistent (i.e., low variance) but 

are inaccurate (i.e., high bias). On the other hand, on average, more complex non-linear or non-

parametric models (i.e., overfit models) are accurate (i.e., low bias) but are inconsistent (i.e., high 

variance) [36]. Approaching optimal bias-variance trade-offs in ML models demands reducing 

underfitting and overfitting at the same time. A technical strategy that is often used to achieve an 

optimal bias-variance trade-off is regularization [93, 39].  

In practice, regularization and false alarm quantification are closely related because the lack of 

knowledge about the cost or risk of false alarms can lead to an incorrect bias-variance trade-off. 

The key metrics for measuring the economic value of ML projects include cost savings, revenue 

growth, efficiency gains, improved decision making and customer experiences, and risk 

mitigation. Regardless of whether the application aims for top-line growth or bottom-line 

improvements, estimating the economic value of ML projects requires understanding the impact 

of false alarms on this value. For instance, if we overlook the effects of false alarms but find that 

personalized product suggestions boost revenue, we might misjudge the true impact of a project 

without considering lost opportunities or incorrect recommendations. Hence, an important 

practical question is: if false alarms were to have a negligible impact, would a costly ML pipeline 

be still beneficial?    

3 A Practical Reinterpretation of The Hyper-Parameters 

In this article, we offer a new practical interpretation for the regularization hyper-parameter 𝜆 to 

address the conundrum of hyper-parameter optimization; one that does not need determining 

additional quantities on ad-hoc bases and that has important implications for the performance of 

human-machine systems. We do so by using a mathematical transformation to transform how 

ML is conceptualized and used from one that mainly focuses on accuracy-consistency trade-offs 

to one that captures the costs and risks of the false alarms in the ML loss function. To explain our 

interpretation, consider a generic supervised model 𝑌 = 𝑓(𝑋; 𝑊) where 𝑊 represents the vector 

of learning coefficients and where 𝛤 = {(𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑡 , 𝑌𝑡), … (𝑋𝑇 , 𝑌𝑇)} represents the 

historical observations with 𝑋 as independent variable set (i.e., feature set) and 𝑌 as dependent 

variable set (i.e., label set). Regularization is applied using the penalty function 𝑔(𝑊) and the 

regularization hyper-parameter 𝜆. 

Since the regularization hyper-parameter 𝜆 is a positive constant, without loss of generality, we 

rewrite the learning objective function as 𝑚𝑖𝑛 𝛾ℓ(𝑓(𝑋; 𝑊), 𝑌) + 𝑔(𝑊), where 𝛾 =
1

𝜆
. We define 

𝛾 as the unit cost or risk of a model’s error or false alarm [47, 64, 26]. In other words, 𝛾 is the 

unit cost or risk of a misclassification, a wrong prediction, or an incorrect decision [67, 66]. We 

define 𝛾 in this way as prior research on the theory of the optimal classifier in decision-making 

in the fields of economic control chart design and optimal Bayesian risks suggests that a careful 

consideration of the “parameter that specifies how “dangerous” it is to misclassify” is important 

in using ML. One illustrative example would be misclassifying important emails in an ML-based 

spam filtering [81]. 
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In this context, 𝛾 may represent a single entity or a matrix of false components. In fact, hyper-

parameter optimization represents a conundrum because at its core it involves quantifying a 

matrix of more than one false component [48, 40, 62, 17, 88]. For example, in a binary 

classification setting, 𝛾 = (𝛾𝐹𝑃 , 𝛾𝐹𝑁) represents the unit cost or risk of both false positive (i.e., 

FP or Type I error) [84, 91, 77, 28, 33) and false negative (i.e., FN or Type II error) [10, 67] 

components. In a multi-class classification setting, however, 𝛾 can be represented in matrix form 

[𝛾𝑖𝑗]––similar to the confusion matrix––such that the entity 𝛾𝑖𝑗 is the unit cost or risk when an 

observation known to be in group 𝑖 is predicted to be in group 𝑗 where  𝛾𝑖𝑖 = 0 ∀𝑖. We propose 

extending classification models’ loss function as the following generic form 

∑ 𝛾𝑖𝑗ℓ𝑖𝑗(𝑓(𝑋; 𝑊), 𝑌)𝑖,𝑗 , subject to 𝑔(𝑊) ≤ 𝑐, 

to be able to measure the economic value of ML projects. ℓ𝑖𝑗 counts the number of observations 

labelled to be in group 𝑖 but predicted to be in group 𝑗 and 𝑐 is a complexity control parameter.     

To conceptually illustrate our proposed reinterpretation, let 𝑌 = 𝑓(𝑋, 𝑌; 𝑊) represent a 

recommendation engine that is designed to determine a set of targeted customers to whom a new 

product should be recommended [32]. In this context, then, the unit cost of a false positive 𝛾𝐹𝑃 is 

the operational and dissatisfaction costs associated with a customer declination even though the 

trained model classified that target as a potential customer, and the unit cost of a false negative 

𝛾𝐹𝑁 is the opportunity costs of missing a potential customer. In this context, 𝛾𝐹𝑃 and 𝛾𝐹𝑁 capture 

the unit cost of incorrect detection because of the gap between the training and implementation 

phases of ML modeling; a gap that is often caused by the ignorance on prior knowledge and/or 

potential missing features. This example, and its underlying reinterpretation, can be extended to 

other settings beyond recommendation engines.  

4 When Does ML Practically Require Human Intervention? 

With our proposed interpretation, we argue that ML alone is not particularly useful for 

applications where either the unit cost or risk of error cannot be practically quantified (i.e., 𝛾 →
∞ 𝑜𝑟 𝜆 → 0) or the unit cost or risk of error is negligible (i.e., 𝛾 → 0 𝑜𝑟 𝜆 → ∞). In the former, 

the risk or cost is practically intolerable (i.e., reaching infinity), and in the latter the risk or cost 

is irrelevant (i.e., so small that makes no difference). As an example of a case where 𝛾 → ∞, 

consider an unsupervised ML model responsible for detecting the potential failures in aircraft 

engines [21]. Even though such model’s accurate performance is highly desirable, it comes with 

a high risk of false alarms. In particular, any false positive is very costly due the consequences 

associated with aircraft downtime [72]. In addition, the risk of false negatives is extremely high 

due to any likely catastrophic failures or fatal crashes resulting in loss of life [73]. In such a 

scenario, decision makers cannot solely rely on the performance of ML models, and instead must 

consult with expert humans to ensure that the model outcomes are consistent with safety and 

reliability standards and regulations. In fact, in scenarios like this, where 𝛾 → ∞, there is often 

no real practical opportunities for reducing human intervention and speeding up the decision-

making processes using current ML techniques and applications. Where the unit cost or risk of 

false alarms is small for practical purposes (i.e., 𝛾 → 0), it is often not useful to use ML at all, 

with or without human intervention. As an example of such a case, consider movie suggestion 

platforms (e.g., used in Netflix and Hulu). In applications like this, the least complex approach 

will prove to be more practically useful; that is, recommend the new product (e.g., new movie) 

to all customers (i.e., do not use ML) rather than expending ML deployment resources to target 

specific customers.  

5 When Can ML Practically Go It Alone? 

We posit that ML alone (i.e., without human intervention) is particularly useful for applications 

where the unit cost or risk of error or false alarm is practically quantified and nonnegligible (i.e., 

0 < 𝛾 ≪ ∞). In the earlier scenario involving recommendation engines, suppose that 𝛾 =
($𝐴, $𝐵) where $A is the unit opportunity cost of each false negative per customer and $B is the 
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unit cost of each false positive per customer (i.e., fixed cost for personalized advertisement, 

marketing campaign, skilled labor, and information technology infrastructure). After training a 

hypothetical ML model given in-sample training and labelled data, the probability of a false 

positive (i.e., probability of targeting the wrong customer) is 𝛼M% and the probability of a false 

negative (i.e., probability of ignoring a potential customer) is 𝛽M%. Further suppose that the 

product selling price (i.e., revenue earned per acquired customer) is $C where $A = $C - $B. 

Absent ML, various strategies could be applied to make the recommendation decisions. These 

strategies highly rely on human assessment and expertise (human-centric). To investigate when 

ML alone can practically be useful, we try to examine profitability, with ML versus absent ML. 

To do so, we examine two major common practices: (1) Assessment-based Recommendation and 

(2) Broad-Spectrum Recommendation. While in the former strategy, the customers will be 

primarily filtered by human assessment, in the latter strategy the new product/service will be 

introduced to all possible customers. 

5.1 Assessment Based Recommendation (AbR) 

This strategy relies on the human domain knowledge – including non-ML tools/methods – to 

make an initial assessment based on the customer’s available information. Figure 1 summarized 

this process.       

 
Figure 1 Assessment-based Recommendation 

 

Similar to the ML scenario, assume a FP rate of 𝛼H% and FN rate of 𝛽H% associated with the 

process shown in Figure 1. In practice, the probability of a lost opportunity, 𝛽H, cannot be easily 

estimated due to the lack of information when the customer is ignored because of the initial 

assessment. Some external knowledge such as having similar products from competitors might 

be useful to estimate 𝛽H. The expected net profit that the AbR strategy generates, then, is: 

(1 − 𝛽H)(𝐶 − 𝐵) − 𝛼H𝐵 − 𝛽H(𝐶 − 𝐵)          (1.1) 

The above term consists of the expected net profit of a TP decision minus the expected loss of a 

FP decision and the expected opportunity cost of a FN decision. Notice that 1 − 𝛽H is the 

probability of true guess (or true positive) which is also known as Precision in the ML field. It is 

the probability that the approached customer is successfully acquired. The expected net profit 

that the AbR strategy generates can be rewritten in terms of accuracy as: 

(1 − 𝛽H)𝐶 − 𝜗H𝐵 − 𝛽H(𝐶 − 𝐵)  (1.2) 

where  𝜗𝐻 = 1 − (𝛼H + 𝛽H) is the accuracy of the AbR strategy extracted from the confusion 

matrix.  

Similar to term (1.2), the expected net profit associate to the ML scenario would be:  
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   (1 − 𝛽M)𝐶 − 𝜗M𝐵 − 𝛽M(𝐶 − 𝐵)  (2) 

where  𝜗𝑀 = 1 − (𝛼M + 𝛽M) is the machine accuracy. Having the alternative of an AbR strategy, 

a ML model alone would be useful (i.e., it is economically justifiable for practical purposes) only 

if the expected net profit earned because of using ML, term (1.2), is greater than the expected net 

profit earned absent ML, term (2). That is: 

𝐶−𝐵

𝐶
>

(𝜗𝑀−𝜗𝐻 )+(𝛽𝑀−𝛽𝐻 )

(𝜗𝑀−𝜗𝐻 )−(𝛽𝑀−𝛽𝐻 )
 (3) 

The left-hand side of Inequality (3) represents the Net Profit Margin (NPM) in a percentage form. 

The net profit margin provides insights into how effectively a business is managing costs relative 

to its selling prices. For context, companies with a NPM of 20% generally show strong financial 

health. If this metric drops to around 5% or lower, most businesses will need to make changes to 

remain sustainable [45]. Note that the significance of the NPM value can vary depending on the 

industry and the specific circumstances of the business. The right-hand side of Inequality (3) 

provides a lower bound on NPM (LB-NPM) beyond which the ML would not be economically 

profitable. In fact, the bigger the LB-NPM, the harder would be the case where the ML becomes 

profitable. For example, assuming that 𝜗𝑀 and 𝜗𝐻 are given, the possibility of ML profitability 

grows by decreasing the difference 𝛽𝑀 − 𝛽𝐻.  

For numerical illustration, we consider a major electronics retailer in the U.S which posted an 

average quarterly net profit margin of 5%. Figure 2 shows the scatter plots per pair values of 

𝜗𝑀and 𝜗𝐻 where 𝜗𝑀, 𝜗𝐻 ∈ {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}. Each scatter plot represents the 

standardized LB-NPM values under various 𝛽𝑀 and 𝛽𝐻 where 𝛽𝑀 ∈ (0.01, 1 − 𝜗𝑀] and 𝛽𝐻 ∈
(0.01, 1 − 𝜗𝐻]. While green areas represent ML profitability, the red points represent the areas 

where ML is not economically justifiable. The size of each point represents the magnitude of LB-

NPM. The size of red points is in fact the expected loss per customer. Figure 2 provides valuable 

insights on ML profitability. For instance, when ML’s accuracy is significantly higher than AbR’s 

accuracy (i.e., the far right-top plot), ML would be profitable only if the greatest portion of AbR’s 

inaccuracy, 1 − 𝜗𝐻, is because of the false negative, i.e., 𝛽𝐻 (not false positive), regardless of the 

value of 𝛽𝑀. For another instance, when ML and AbR have nearly same accuracy (i.e., diagonal 

plots in Figure 2), ML is profitable everywhere except where 𝛽𝐻 ≈ 𝛽𝑀.     
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Figure 2: LB-NPM scatter plots assuming the AbR strategy and NPM = 5% 

5.2 Broad-Spectrum Recommendation (BSR) 

In this strategy the new product/service will be introduced to all existing customers without initial 

assessment. The expected net profit for BSR would be (1 − 𝛽H)𝐶 −  𝐵 where 1 − 𝛽H is same as 

precision or equivalently the success rate for the customer acquisition. Having this strategy as an 

alternative, a ML model alone would be economically justifiable, only if Term (2) is strictly 

greater than (1 − 𝛽H)𝐶 −  𝐵, i.e.:  

(1 − 𝛽M)𝐶 − 𝜗M𝐵 − 𝛽M(𝐶 − 𝐵) > (1 − 𝛽H)𝐶 −  𝐵, 

or equivalently    
𝐶−𝐵

𝐶
>

𝜗𝑀+𝛽𝑀−𝛽𝐻−1

𝜗𝑀−𝛽𝑀−1
  (4) 

Inequality (4) reveals that under the BSR strategy, a ML could be justifiable only if the company 

has a significant high NPM (i.e., a strong financial situation). The comparison among Figures 3a 

(i.e., a weak financial condition) and 5b (i.e., a strong financial condition) reveals that the higher 

the NPM, the larger the possibility of ML justifiability (i.e., larger green areas) assuming 

parameter settings 𝜗𝑀 ∈ {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, 𝛽𝑀 ∈ (0.01, 1 − 𝜗𝑀] and 𝛽𝐻 ∈
(0.01, 0.3].    

 It is worthwhile to highlight an important assumption here. In practice, the quality of labelled 

data for the ML models may depend on the human performance metrices such as 𝜗𝐻 or 𝜇H. 

However, this dependency is beyond the scope of this research and is ignored for the sake of 

simplicity. Future work can consider this possibility.         

Taken together, we argue that analysis of this kind using our proposed reinterpretation of 𝛾 that 

involves a careful quantification of the false alarms has the potential to uncover when using a ML 

technique or application alone is economically justifiable for practical purposes.     

 
Figure 3a: LB-NPM scatter plots assuming the BSR strategy and NPM = 5% 

 

 
Figure 3b: LB-NPM scatter plots assuming the BSR strategy and NPM = 30% 
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6 Conclusion 

Much of ML structural estimation techniques and applications in research and practice lack a 

meaningful cost-benefit analysis of their usefulness and interpretability. In this article, we identify 

the root cause of this limitation in the general lack of recognition and quantification of the false 

alarms [18, 70]. We particularly show that, at its core, the quantification of false alarms at the 

business level is directly tied to tuning the regularization hyper-parameters, reducing complexity, 

and enhancing the usefulness of ML. By offering a clear link between hyper-parameter 

regularization and false alarm quantification, we advance the theoretical and practical aspects of 

ML to highlight scenarios under which ML is practically useful versus not. In one concrete 

application, we specify conditions under which human-machine systems outperform humans. 
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Appendix 1: When Do Human-Machine Systems Outperform Humans? 

Artificial intelligence may be construed as a “social and cognitive phenomena that enable a 

machine to socially integrate with a society to perform competitive tasks requiring cognitive 

processes” [1]. This aspiration for integration has given rise to the popularity of human-machine 

interactions. Our proposed approach to assessing the usefulness of ML structural estimation 

techniques and general business applications has important implications for assessing the 

performance of human-machine systems––aka, human-in-the-loop or weak supervision systems 

[22]. In these systems, a ML model provides recommendations and a human chooses whether to 

go along with the recommendation or not [85]. For example, consider a ML-based predictive or 

proactive maintenance application in which a ML model––such as a supervised model SVM, 

logistic regression, deep model, or XGBoost––is employed. This ML application requires inputs 

such as vibration sensor data, environmental/climate information, maintenance data, system 

health condition, and historical failures, and subsequently predicts the failure risk in a binary or 

probabilistic form.  

In this example, and in many similar others, because of the high risk of the false alarms, the ML 

application alone is often not trusted to detect the potential faults of the mechanical equipment, 

but instead is designed to assist and complement humans’ expertise [22]. In other words, a 

human-machine combination is used to make the decisions, such that the predictions made by 

ML will be reviewed by expert humans for final decisions such as continuation, stoppage, 

maintenance, or replacement. The role of ML in this example is to remove the scenarios with low 

failure risks from human intervention and flag the scenarios with high failure risks for human 

consideration. However, depending on the ML model’s accuracy, some high-risk scenarios may 

be missed due to false negatives.      

In this context, a commonly held assumption in the field is that human-machine systems 

outperform humans. For instance, research recently argues for an intuitive reaction that human-

machine systems, what they coin as “Humachines,” can make use of “the strengths of humans 

and machines in a symbiotic relationship, which can achieve a “superintelligence” that outstrips 

performance achieved by either humans or machines alone” [74]. However, we argue that a 

systematic consideration and quantification of false alarms in human-machine systems may 

challenge this widely held assumption and in doing so offer important implications for assessing 

the performance and economic value of ML techniques and applications.  

To formally evaluate the economic usefulness of a mixed human-machine system, suppose that 

the performance of a human can be mapped into a confusion matrix similar to a binary 

classification model, as Figure 4 shows. In maintenance and reliability use cases, for example, 

this confusion matrix can be extracted from the historical failures and the computerized 

maintenance management system (CMMS) [73].  

1.1 A Real-World Application   

Similar to the application provided in Section 5, consider 𝛼M, 𝛽M, 𝛼H and 𝛽H with the same 

definitions associated to the entities in the ML’s and human’s confusion matrixes. The only 

difference is the interpretation of false negatives. In this application, 𝛽H and 𝛽M are the 

probability of missing the risky scenarios by human or machine.   

In this context, the probability of the human error is  𝐸H = 𝛼H + 𝛽H and the probability of a 

human-machine error is 𝐸HM = 𝛼M𝛼H + (1 − 𝛽M)𝛽H + 𝛽M. The latter probability of a human-

machine error, 𝐸HM, is calculated based on the decision tree depicted in Figure 5 to calculate the 

confusion matrix of a human-machine system. The key assumption is that the human expert is 

not biased to or influenced by the machine; that is, the human expert evaluates the machine 

flagged (i.e., true positives or false negatives) scenarios regardless of their falsity or truth because 

the machine cannot explain why such predictions are made (i.e., the machine explainability is 

low). Of course, a potential avenue for extension of our work involves examining the implications 

of cases where the machine provides some level of explainability, for example, through Shapley 
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values [76] or causality analysis, such that human expert could be biased to or influenced by the 

machine.  

 
 

Figure 4: Human-machine performance 

evaluation in terms of the confusion matrix 

Figure 5: Human-machine confusion matrix 

based on machine to human decision tree 

 

Our proposed approach on the quantification of the false alarms indicates that the commonly held 

assumption which asserts human-machine systems universally outperform humans in terms of 

the risk, that is, 𝐸HM < 𝐸H
 [74] may not always be true. Indeed, human-machine systems only 

outperform humans if the expected cost or risk associated with human-machine systems is lower 

than that of humans. After rewriting 𝐸H and 𝐸HM and adding the cost/risk coefficients, human-

machine systems only outperform humans if: 

                               𝐵𝛼H + 𝐴𝛽H > 𝐵𝛼M𝛼H + 𝐴(1 − 𝛽M)𝛽H + 𝐴𝛽M, 

 or equivalently: 

                                            𝝉 =
𝐴

𝐵
<

𝛼H−(𝛼M𝛼H)

(𝛽M−𝛽H)+(1−𝛽M)𝛽H  (5) 

where B is the opportunity cost of a false positive––e.g., unnecessary equipment downtime in 

reliability and maintenance fields––and A is the cost of a false negative in the form of ignored 

hazardous scenarios that may result in catastrophic or secondary failure in such applications. 𝝉 =
𝐴

𝐵
 represents the Risk Factor of the associated use case––the ratio of the cost of a FN to the cost 

of a FP. In the current ML field – except a few research works focusing on cost-sensitive learning 

allowing the model to be aware of costs [94, 95] – an untested assumption is that 𝝉 = 𝟏. However, 

for high-risk applications, 𝝉 could be large or even approach infinity.  

For numerical illustration, Inequality (5) is investigated under two scenarios: first, Conventional 

ML practice where there is no difference between risk/cost of FN versus FP (Risk Factor = 1), 

and, second, High-risk applications where the risk/cost of an FN is much higher than the risk/cost 

of an FP., e.g., Risk Factor = 10. These two scenarios are simulated in Figures 6a and 6b with 

parameter settings 𝜗𝑀 = 𝜗𝐻 = 0.8 , 𝛼𝑀 ∈ (0.01, 1 − 𝜗𝑀], 𝛼𝐻 ∈ (0.01, 1 − 𝜗𝐻], 𝛽𝑀 ∈
(0.01, 1 − 𝛼M − 𝜗M] and 𝛽H ∈ (0.01, 1 − 𝛼H − 𝜗H]. 
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Figure 6a: Human-machine justifiability under ML conventional practice (Risk Factor = 1) 

 
Figure 6b: Human-machine justifiability in High-risk applications (e.g., Risk Factor = 10) 
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1.2 Conceptual Interpretation 

The term  (1 − 𝛽M)𝛽H in Inequality (5) is the probability of a human-machine false negative 

(superintelligence) scenario where the machine can truly detect a positive scenario but the human 

cannot. One potential reason for this scenario would be the lack of explain-ability by ML model.  

Likewise, the term 𝛼M𝛼H is the probability of human-machine false positive (ignorance) scenario 

where neither of the machine or the human can truly detect a negative scenario. , Since 𝝉 cannot 

be negative, we should have 𝛽H < 𝛽M + (1 − 𝛽M)𝛽H  in the denominator where 𝛽M + (1 −
𝛽M)𝛽H  is the machine’s surprise probability––i.e., the probability that either the machine cannot 

detect a positive scenario or it outperforms the human. With these definitions, Inequality (5) can 

be rewritten as:   

                        𝝉 <
𝛼H−Pr(𝐼𝑔𝑛𝑜𝑟𝑎𝑛𝑐𝑒)

(𝛽M−𝛽H)+Pr(𝑆𝑢𝑝𝑒𝑟𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒)
≡

𝛼H−Pr(𝐼𝑔𝑛𝑜𝑟𝑎𝑛𝑐𝑒)

Pr(𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒)−𝛽H .  (6) 

Without the loss of generality, suppose that the probabilities of human false alarms (i.e., false 

positives and false negatives) are almost equal (𝛼H ≈ 𝛽H)––henceforth, the probability of human 

error. Likewise, suppose that (𝛼M ≈ 𝛽M)––henceforth, the probability of machine error. To held 

Inequality (6) and since 𝝉 cannot be negative, then we should have: 

                 Pr(𝐼𝑔𝑛𝑜𝑟𝑎𝑛𝑐𝑒) ≤ Pr(𝐻𝑢𝑚𝑎𝑛 𝑒𝑟𝑟𝑜𝑟)  ≤ Pr(𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒), (7.1) 

and 

Pr(𝐻𝑢𝑚𝑎𝑛 𝑒𝑟𝑟𝑜𝑟) − Pr(𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑒𝑟𝑟𝑜𝑟)  ≤ Pr(𝑆𝑢𝑝𝑒𝑟𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒);  (7.2) 

Otherwise, Inequality (6) will flip and thereby human-machine systems will not outperform 

humans. By considering the costs and risks of false alarms which is directly tied to tuning the 

regularization hyper-parameters, Inequality (7.1) states that ML is practically useful and that 

human-machine systems outperform humans if the human error rate is greater than human-

machine ignorance rate but smaller than the machine’s surprise rate. When these conditions are 

met, “defections” from machine recommendations would represent an irrationality because “if 

we have two strategies for solving a problem and one is more reliable, it is folly to use the less 

reliable strategy to correct the more reliable one” [11]. At the same time, Inequality (7.2) imposes 

that ML is practically useless if the delta between human and machine error rates is greater than 

the machine superintelligence rate.   

 
 


