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ABSTRACT

Conformal prediction (CP) provides powerful, distribution-free prediction sets,
but its guarantees rely on the exchangeability of training and test data, which is
often violated in practice due to covariate shifts. While weighted conformal pre-
diction (WCP) is designed to handle such shifts, it can suffer from significant un-
dercoverage when the density ratio between the distributions is unbounded and/or
must be learned. This is because of both overfitting in learning the density ratio,
and high variance in estimating the nonconformity score threshold. To address
this, we introduce clipped least-squares importance fitting (CLISF) as a reduced-
variance method for density ratio estimation. Specifically, we show that density
ratios learned using CLISF, when plugged into WCP, have bounded expected un-
dercoverage. Furthermore, we show that the undercoverage can be corrected by
running WCP with a slightly inflated coverage target; crucially, we are able to
estimate the required level of inflation from the data. We provide the first theo-
retical guarantees for weight clipping in conformal inference, achieving dataset-
conditional coverage with a sample complexity that does not blow up with the
higher moments of the true density ratio—a key limitation of prior work. We
verify our results on real-world benchmarks and synthetic data.

1 INTRODUCTION

Predictive algorithms are essential tools in medicine, finance, and the sciences, used to forecast
outcomes and quantify uncertainty. Conformal prediction (CP) (Vovk et al., 2005) uses a calibration
set D = {(Xi, Yi)}mi=1 to construct prediction sets C(x) that contain the true outcome y with
a user-specified probability, 1 − α. A standard guarantee is expected marginal coverage, where
PrD,X,Y [Y ∈ C(X)] ≥ 1 − α, averaging over both the calibration and test data. A stronger
guarantee is dataset-conditional marginal coverage, which requires that for a given calibration set,
the coverage probability PrX,Y [Y ∈ C(X)] is at least 1− α, holding with high probability (1− δ)
over the draw of D. Split conformal prediction (Papadopoulos et al., 2002) is a straightforward
method to achieve these guarantees which requires exchangeability of calibration and test data.

However, the exchangeability assumption is often violated in practice due to covariate shifts, where
the marginal covariate distributions change between training and test sets (PX ̸= QX ), while the
conditional label distribution remains invariant (P (Y |X) = Q(Y |X)). A standard approach to
handle this is weighted conformal prediction (WCP) (Tibshirani et al., 2019), which reweights the
calibration samples according to an estimate of the density ratio w∗(x) = dQX/dPX . However,
WCP can fail dramatically when this density ratio is unbounded or must be learned. First, unbounded
ratios lead to high-variance estimates of the coverage threshold and greatly reduce the “effective
sample size” (Tibshirani et al., 2019). Second, for an estimated ratio ŵ, Lei & Candès (2021)
bound the (expected) undercoverage by EP [|ŵ(X)− w∗(X)|]. However, to guarantee this quantity
is small is challenging, as generalization bounds generally fail when the error functions have bad
higher moments. Consider the following motivating example:

Example 1. Fix a dimension d ∈ N, radius r ∈ (0, 1), and mixture weight θ ∈ (0, 1). Define the
input space X = [0, 1]d and label space Y = [0, 1]. Define B to be the ball {x ∈ X : ∥x∥∞ ≤ r}.
Define the train distribution P to be uniform over X × Y . Define the test distribution Q = (1 −
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θ)P + θS, where S is uniform over B × Y . Define the nonconformity score to be s(x, y) = ∥x∥∞.

It can be checked that TV(P,Q) = θ(1− rd) and w∗(x) =

{
1− θ + θ/rd, x ∈ B
1− θ, x ̸∈ B .

Figure 1: Visualization of Example 1. The
red region contributes to the large sec-
ond moment EP [w

∗(X)2]. By taking the
width of this region to zero, we drive
EP [w

∗(X)2]→∞.

Here, the total variation between P and Q is small,
yet the density ratio and its higher moments are un-
bounded as r → 0. Even when w∗ is known ex-
actly, the size of the calibration set needed to achieve
dataset-conditional guarantees will blow up as r →
0. This happens because the density ratio blows up,
allowing a few examples to wildly affect the score
threshold. Additionally, when w∗ is unknown, and
must be learned, the loss of coverage extends to ex-
pected guarantees, conditional on the dataset used
for the density ratio estimation. This happens when
Q contains many examples in B but P contains few
or none — in this case, unconstrained density ratio
estimation methods overestimate the density ratio on
B. We make these ideas formal in Appendix B.

Motivated by this example, we ask the following
question: Can we obtain reliable, dataset-conditional conformal coverage guarantees under co-
variate shift when the true density ratio is unbounded or must be learned from data?

We answer this question in the affirmative. We propose a simple yet effective technique: clip-
ping the class of density ratios. Instead of learning an unbounded density ratio, we propose clipped
least-squares importance fitting (CLISF) to learn a ratio that is clipped at a threshold B ≥ 1. This in-
troduces a small, controllable bias but significantly reduces variance. By simply running WCP with
ŵ at a slightly inflated target coverage level, we restore expected and dataset-conditional coverage
guarantees; we call this combined approach clipped weighted conformal prediction (CWCP).

Our main contributions are summarized below.

A novel approach to stable density-ratio estimation. We propose CLISF, which learns clipped
density ratios ŵ ∈ [0, B] via density ratio estimation on a clipped class, reducing variance and over-
fitting relative to unclipped estimators. This is a subtle but important distinction from the post-hoc
clipping heuristic used by Tibshirani et al. (2019) and leads to provable generalization guarantees
for the estimated density ratio. This is also distinct from methods which trim the dataset to exclude
high variance points (Liu et al., 2017; Ma & Wang, 2020). Additionally, we show that we can accu-
rately estimate the bias introduced by CLISF, which is necessary for downstream use in CP. To our
knowledge, this is the first finite-sample theory for weight clipping in conformal inference.

Finite-sample, dataset-conditional, two-sided guarantees. We prove dataset-conditional coverage
guarantees for CWCP with calibration size polynomial in (B, ϵ−1, log(1/δ)) and no dependence
on higher moments of w∗. Furthermore, unlike much prior work which provides only one-sided
coverage guarantees (Tibshirani et al., 2019; Joshi et al., 2025; Park et al., 2020) we provide stronger
two-sided guarantees. Thus, CWCP provably does not achieve the target coverage guarantee by
trivially overcovering. This result is a dataset-conditional analog to Proposition 1 of Lei & Candès
(2021), under less restrictive assumptions on the higher moments of w∗. Our bounds represent a
qualitative advancement for conformal prediction under realistic heavy-tailed shifts.

Empirical validation. We validate our algorithm on synthetic as well as real-world (iWildCam)
datasets. Our method obtains tighter, more stable coverage than WCP under heavy tails.

1.1 RELATED WORK

Reweighting methods for CP under covariate shift. Importance weighting is a classical solution
for covariate shift (Shimodaira, 2000). For conformal prediction, Tibshirani et al. (2019) proposed
WCP. Subsequent work analyzed the case of learned weights, showing that coverage guarantees
depend on the L1-error of the weight estimate (Lei & Candès, 2021). However, obtaining good L1

guarantees is challenging without assumptions like bounded density ratios or moments. This is also
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the case for other density ratio-based methods (Park et al., 2021; Pournaderi & Xiang, 2024; Cortes
et al., 2010; Joshi et al., 2025). Bhattacharyya & Barber (2024) assume subpopulation structure to
estimate piecewise constant weights. Our work avoids such assumptions by clipping the weights.

Alternative approaches to CP under distribution shift. A parallel line of work calibrates pre-
dictors against a distance or divergence between P and Q. Barber et al. (2023) prove that their
NexCP algorithm has coverage gap bounded by a TV-like quantity measuring the shift between train
and test points. Going beyond worst-case TV, Xu et al. (2025) bound the gap by the Wasserstein-1
distance between the score distributions under P and Q, yielding a tighter, shift-specific correction.
Cauchois et al. (2024) and Ai & Ren (2024) use a distributionally robust optimization approach to
guard against the worst-case shift in a ball centered at P .

Variance reduction for importance weighting. Sample trimming (Liu et al., 2017; Ma & Wang,
2020) is one approach to reduce the variance in importance weighting; this trims high-variance
examples corresponding to a high estimated ratio. These methods focus on asymptotic consistency,
whereas we are interested in a finite-sample L1-error guarantee for the estimated ratio. Importance
weight clipping is another approach (Ionides, 2008) and has been applied in CP as a heuristic to
alleviate numerical issues with density ratio estimation (Tibshirani et al., 2019). In contrast to these
methods, which apply clipping post-hoc, we integrate clipping directly in the density ratio estimation
step, which leads to stronger guarantees when the weights must be learned.

2 PRELIMINARIES

Density ratios and WCP. Given distributions Q ≪ P over some space Z , we define the density
ratio (also known as the Radon-Nikodym derivative or importance weights) as w∗ = dQ/dP . In
this work, we will assume that P and Q admit density functions p and q, so that w∗(z) = q(z)/p(z)
for all z ∈ Z . If Z = X × Y and P,Q satisfy the covariate shift assumption, then w∗ = dQ/dP =
dQX/dPX , that is, we can recover the importance weights between the P and Q from only their
marginals PX and QX . The importance weights are useful because of the change of measure iden-
tity, EP [w

∗(Z) · f(Z)] = EQ[f(Z)] for any measurable f , i.e., we can relate expectations under Q
to expectations under P . In particular, for a set of weights w : X → R+, we can define the weighted
score CDF under a distribution P over X × Y as

FP (t, w) :=
EP [w(X) · 1[s(X,Y ) ≤ t]]

EP [w(X)]
= EQ[1[s(X,Y ) ≤ t]] = FQ(t), (1)

where Q is the distribution satisfying dQX/dPX = w/EP [w(X)]. This is the motivation of WCP,
which replaces the empirical CDF of nonconformity scores by a weighted empirical CDF

F(Xcal,Ycal)(t, w) :=

∑m
i=1 w(Xi) · 1[s(Xi, Yi) ≤ t]∑m

i=1 w(Xi)
, (2)

where (Xcal, Ycal) = (X1, Y1), . . . , (Xm, Ym) is a calibration set, and chooses the data–dependent
cutoff τ := inf {t : Fm(t) ≥ 1− α} ∪ {∞}.
Density ratio estimation. In practice, w∗ is not known exactly and must be learned. Prior work
assumes access to some (typically parametric) class of density ratiosW ⊆ RX and aims to learn an
approximate ŵ using examples from PX and QX . A popular approach is least-squares importance
fitting (LSIF) (Kanamori et al., 2009), which solves

ŵ = arg min
w∈W

R̂(w), where R̂(w) =
1

2m

m∑
i=1

w(Xi)
2 − 1

n

n∑
i=1

w(X̃i). (3)

Here, XP = (X1, . . . , Xm) and XQ = (X̃1, . . . , X̃n) represent samples from PX and QX , respec-
tively. Other popular approaches include KLIEP (Sugiyama et al., 2008), Kernel Mean Matching
(Gretton et al., 2009), and source discriminators (Bickel et al., 2009). A key drawback, as mentioned
earlier, is that (3) varies greatly over the draw of the sample whenW is unbounded.

2.1 PROBLEM STATEMENT

Let P and Q be distributions over X × Y which are related by the covariate shift assumption. We
access i.i.d. examples from P and QX via oracles EX(P ), EX(PX), and EX(QX), from which we

3
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may obtain some dataset D. We do not assume access to w∗ = dQ/dP . Instead, we assume access
to some class of ratiosW , and assume w∗ ∈ W (or a good approximation). Given α ∈ [0, 1] and
confidence δ ∈ [0, 1] our goal is a threshold τ(D) satisfying the dataset-conditional guarantee

Pr
D

[
Pr
Q

[s(X,Y ) ≤ τ(D)] ≥ 1− α

]
≥ 1− δ, (4)

where s : X × Y → R is an arbitrary nonconformity score. Of course, this definition is too weak
currently as it can easily be satisfied by outputting Y everywhere. Thus, we will also require upper
bounds on the overcoverage, PrQ [s(X,Y ) ≤ τ(D)]− (1− α). For our results, these upper bounds
will be stated in terms of the bias ∆B and an additional error parameter ϵ.

3 CLIPPED LEAST-SQUARES IMPORTANCE FITTING

In this section, we formally introduce our algorithm for learning the clipped importance weights,
which we call clipped least-squares importance fitting (CLISF). In place of the classW , Algorithm 1
solves (3) over the clipped class

WB := {x 7→ min(w(x), B) : w ∈ W}, for some B ≥ 1. (5)

The advantage of this is two-fold. First, it requires fewer samples to obtain uniform convergence
guarantees for (3) overWB compared withW . Second, using clipped weights leads to a more stable
estimation of the population distribution of nonconformity scores when used downstream for WCP.
This reduces the variance of the estimate of the (1− α)-coverage nonconformity score threshold.

Of course, by clipping the classWB , we introduce bias: if supx∈X w∗(x) > B, we will not be able
to recover w∗ and so lose out on exact coverage guarantees. Assuming that w∗ ∈ W , We quantify
this by the L1-error between w∗ and the best approximation to w∗ inWB , the clipped true weights
w∗

B(x) = min(w∗(x), B). For B ≥ 1, this can be written as an f -divergence between P and Q:

∆B := EP [|w∗
B(X)− w∗(X)|] = EP [(w

∗(X)−B)+], where x+ := max(x, 0). (6)

The clipping parameter B allows us to toe this bias-variance tradeoff. When B = 1, then

∆1 = EP [(w
∗(X)− 1)+] = TV(P,Q), (7)

where TV is the total variation distance. When B ≥ supx∈X w∗(x), then clipping has no effect, so
∆B = 0 and we recover standard LSIF.

In the case that w∗ ̸∈ W , we additionally present our results in terms of the misspecification:

∆R = inf
w∈WB

R(w)−R(w∗
B), where R(w) = EP [w(X)2/2]− EQ[w(X)]. (8)

Note that w∗ ∈ W implies zero misspecification:

w∗ ∈ W =⇒ w∗
B ∈ WB =⇒ ∆R = 0. (9)

Algorithm 1 Clipped Least-Squares Importance Fitting (CLISF)
Input: Density ratiosW ⊆ RX

+ , coverage error ϵ ∈ (0, 1], confidence δ ∈ (0, 1], clipping parameter
B ∈ [1,∞), example oracles EX(PX) and EX(QX).

Output: Density ratio ŵ : X → [0, B].
1: Set Xtrain ← EX(PX)mtrain and Xtest ← EX(QX)mtest , with mtrain and mtest in Theorem 1.

2: Set ŵ ← argminw∈WB
R̂(w), withWB as (5) and R̂ as (3).

3: Return ŵ.

Our analysis relies on a standard assumption in statistical learning theory. Our guarantees are pre-
sented for Rademacher classes of density ratios. Assumption 1 posits that we have access to a
known upper bound on the complexity ofWB . We additionally assume that the Rademacher com-
plexity of the class decays at the standard 1/

√
m rate. This holds, for example, for linear classes

(Shalev-Shwartz & Ben-David, 2014) and neural networks (Neyshabur et al., 2015).
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Assumption 1 (Bounded complexity of WB). Let Xtrain = (X1, . . . , Xm) ∼ Pm and Xtest =

(X̃1, . . . , X̃n) ∼ Qn. For any B ∈ [1,∞), we assume universal constants CB and C̃B such that

EXtrain
[RadXtrain

(WB)] ≤ CB/
√
m and EXtest

[RadXtest
(WB)] ≤ C̃B/

√
n.

Remark 1. Note that for any B′ > B, WB can be written as the composition of WB′ and the 1-
Lipschitz clipping function x 7→ min(x,B). Thus, it follows from Talagrand’s contraction principle
that CB and C̃B are nondecreasing in B, i.e., more clipping will always result in a larger reduction
in the statistical complexity of the density ratio class.1

Our analysis begins by establishing a connection between the LSIF objective function and the L2-
error of the learned weights with respect to the true clipped weights w∗

B . The following lemma
provides an excess risk inequality tailored to our clipped setting. It shows that minimizing the
population LSIF risk over the clipped class WB is equivalent to finding the function in that class
with the minimum squared error with respect to w∗

B .

Lemma 1 (Excess risk transfer inequality for clipped ratios). Let P,Q and w∗ ∈ W be as defined in
Section 2.1. DefineWB as in (5). Define the clipped true weights w∗

B(x) = min(w∗(x), B). Then,
it holds that w∗

B ∈ argminw∈WB
R(w). Additionally, for any w ∈ WB , it holds that

EP

[
(w(X)− w∗

B(X))2
]
≤ 2 · (R(w)−R(w∗

B)).

We now provide a finite-sample generalization bound for the output of CLISF. By combining the
result of Lemma 1 with standard uniform convergence guarantees for empirical risk minimization,
the following theorem establishes that with high probability, CLISF returns a weight function ŵ with
low L2-error relative to w∗

B (the clipped true ratio). The sample complexity notably depends on the
clipping parameter B and the Rademacher complexity of the clipped function classWB .

Theorem 1 (L2-error generalization bound). Assume Assumption 1 holds. Suppose we run Algo-
rithm 1 with sample sizes mtrain,mtest, where

mtrain = O
(
B2C2

B +B4 log(1/δ)

ϵ2

)
, mtest = O

(
C̃2

B +B2 log(1/δ)

ϵ2

)
.

Let ŵ be the output of the call to Algorithm 1. Then, with probability at least 1− δ,

EP [(ŵ(X)− w∗
B(X))2] ≤ 2∆R + ϵ.

Remark 2. When P is known and w∗ ∈ W , we may without loss of generality remove any functions
fromW which integrate to more than 1 under P . This allows us to improve the dependence on B,
which we formalize in Appendix A.3.

Remark 3. By Jensen’s inequality, we can convert an L2-error guarantee to an L1-error guarantee,

EP [(ŵ(X)− w∗
B(X))2] ≤ 2∆R + ϵ

=⇒ EP [|ŵ(X)− w∗
B(X)|] ≤

√
2∆R + ϵ ≤

√
2∆R +

√
ϵ.

Remark 4. Theorem 1 does not say anything about the computational complexity of the clipped
least-squares minimization problem. For example, for linear-in-features classes, for which the un-
clipped problem is convex (Kanamori et al., 2009), the clipped problem is nonconvex, and similar to
ReLU regression, for which there are many hardness results (Goel et al., 2020). Thus, to guarantee
Algorithm 1 is computationally efficient, we must make additional assumptions onW . 2

3.1 ESTIMATING THE CLIPPING BIAS

The B-clipping bias defined in (6) can alternatively be written as

∆B := EP [(w
∗(X)−B)+] = EP [w

∗(X)− w∗
B(X)] = 1− EP [w

∗
B(X)]. (10)

1See Appendix C for sharper bounds on the complexity of the clipped class, under additional assumptions.
2For example, it is sufficient to assume a piecewise constant structure as in Bhattacharyya & Barber (2024)

or Park et al. (2021). We formalize this in Appendix D.
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Motivated by the results above, suppose we have a clipped ratio estimate ŵ : X → [0, B] such that
EP [|ŵ(X)− w∗

B(X)|] ≤ ϵ. We define the bias estimate

∆̂B := 1− 1

m

m∑
i=1

ŵ(Xi) (11)

where X1, . . . , Xm represent a bias estimation sample. Since ŵ is bounded, we may apply con-
centration inequalities to show that ∆̂B sharply concentrates around its expectation 1− EP [ŵ(X)].
Furthermore, EP [ŵ(X)] ≈ EP [w

∗
B(X)] due to the L1-error guarantee of ŵ. Thus, given a learned

clipped ratio, we are may obtain a tight estimate of ∆B . This is summarized in the following lemma.

Lemma 2. Suppose ŵ : X → [0, B] satisfies EP [|ŵ(X) − w∗
B(X)|] ≤ ϵ. Let X1, . . . , Xm ∼ PX

be an i.i.d. sample. Then, for any γ > 0,

Pr
[∣∣∣∆̂B −∆B

∣∣∣ > ϵ+ γ
]
≤ 2 exp

(
− γ2m

2B(1 + ϵ+ γ)

)
.

3.2 CHOOSING THE CLIPPING PARAMETER

In this section, we discuss strategies to select the clipping parameter B. A good choice of B is
critical to balance the bias-variance tradeoff inherent in clipped importance weighting. A small B
aggressively clips the weights, which reduces the variance of the conformal predictor but introduces
a potentially large clipping bias, leading to overcoverage. Conversely, a large B reduces this bias
but can lead to unstable predictors, especially when the true density ratio is unbounded.

Because the setting of B affects the variance of the CLISF objective, conventional model selection
techniques such as cross-validation can be unreliable. Cross-validation requires a stable estimate of
out-of-sample performance to choose a hyperparameter. However, the CLISF objective itself can be
a high-variance estimator, particularly for large values of B that permit large weights. The objective
contains a term quadratic in the weights, and when the true density ratio is heavy-tailed, this term
makes the empirical risk highly sensitive to the specific data sample. As a result, the value of B
chosen by cross-validation can vary significantly with different random splits of the data.

Choosing B via structural risk minimization. Structural risk minimization (SRM) (see Lugosi &
Zeger (1996) and Koltchinskii (2001)) offers a data-driven approach for selecting B. Clipping W
creates a hierarchy of increasingly complex function classes {WB : B ≥ 1}. SRM selects the class
from this hierarchy that minimizes an upper bound on the true risk. This involves choosing B∗ that
minimizes the sum of the empirical CLISF risk minimizer and a complexity penalty derived from
our uniform convergence bounds (Theorem 1), which depends on Rademacher complexity ofWB∗ .
We empirically validate this approach in Appendix F.2.

Other approaches. See Appendix E for additional exploration of this topic.

4 WEIGHTED CONFORMAL PREDICTION WITH CLIPPED WEIGHTS

In this section, we analyze the performance of WCP when run with a clipped density ratio ŵ learned
by CLISF. We broadly refer to this approach as clipped weighted conformal prediction (CWCP).

4.1 WARMUP: EXPECTED COVERAGE GUARANTEES

As a warmup, we show that CWCP can restore the expected marginal coverage guarantee. The
intuition is as follows: for a learned clipped density ratio ŵ satisfying EP [|ŵ(X) − w∗

B(X)|] ≤ ϵ,
the triangular inequality yields EP [|ŵ(X)−w∗(X)|] ≤ ∆B+ϵ. Thus, we can apply a similar result
to Proposition 1 of Lei & Candès (2021) (see Lemma 9 in the appendix) to bound the expected
undercoverage by ∆B + ϵ. Since we can accurately estimate ∆B (see Lemma 2), we can thus
precisely estimate the correction we need to account for the error in the learned density ratio ŵ.
Below, we make this intuition formal while also accounting for the misspecification ∆R.

Theorem 2 (CWCP achieves expected coverage). Suppose ŵ : X → [0, B] satisfies EP [|ŵ(X) −
w∗

B(X)|] ≤
√
2∆R + ϵ and ∆̂B ∈ R satisfies |∆̂B −∆B | ≤

√
2∆R + 2ϵ. Suppose we run WCP

6
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with weights ŵ at a coverage level of 1 − α + ∆̂B + 3ϵ, with an i.i.d. calibration set Xcal =
(X1, Y1), . . . , (Xm, Ym) ∼ P and obtain prediction sets Cτ (x) = {y ∈ Y : s(x, y) ≤ τ}. Then,

1− α− 2
√

2∆R ≤ Pr
Xcal,Q

[Y ∈ Cτ (X)].

To understand Theorem 2, let us first parse the conditions EP [|ŵ(X) − w∗
B(X)|] ≤

√
2∆R + ϵ

and |∆̂B −∆B | ≤
√
2∆R + 2ϵ. This separates the L1-error of ŵ and ∆̂B into two components: a

misspecification error
√
2∆R, and a “finite-sample” error which must be O(ϵ). Note that, by com-

bining Theorem 1, Remark 3, and Lemma 2, we may obtain ŵ and ∆̂B satisfying these conditions.
By following this approach, note that we will know (an upper bound) on the finite-sample error (as
the sample complexity bound of CLISF allows us to precisely control ϵ in terms of the sample size)
but we will not be able to estimate ∆R. Thus, Theorem 2 states by slightly inflating the coverage
by the term ∆̂B + 3ϵ, we are able to correct the undercoverage due to the clipping bias ∆B and the
finite-sample error — in other words, the only source of undercoverage will be due to misspecifica-
tion in the model class. This is to be expected: if there is misspecification inW , then in general no
algorithm can hope to exactly recover w∗ or w∗

B in a reasonable number of samples.

4.2 DATASET-CONDITIONAL COVERAGE GUARANTEES

Next, we show that CWCP restores the dataset-conditional marginal coverage guarantee (4). Similar
to the expected coverage setting, we run WCP with an inflated coverage level. Unlike Theorem 2,
which holds regardless of the calibration set size, we now enforce that our calibration set is large
enough to ensure that the weighted empirical CDF is a good approximation everywhere to the true
distribution of nonconformity scores under Q. This relies on a weighted DKW inequality (see
Pournaderi & Xiang (2024)), which is enabled by our use of clipped weights.

Our analysis relies on a standard assumption in conformal prediction for establishing upper bounds
on coverage, that the CDF of the nonconformity scores is continuous. This is a mild technical
condition that ensures quantiles are unique (see, e.g. Proposition 1 of Lei & Candès (2021) or
Theorem 34 of Roth (2022)).
Assumption 2. The cumulative distribution function of the nonconformity score is continuous.

We additionally require that the true bias ∆B is not too large. From (7), we know that ∆B ≤ 1 for
B ≥ 1. We assume that ∆B < 1, i.e., that the bias is strictly lower than 1. Below, the choice of 1/2
as the upper limit is arbitrary, and any choice in (0, 1) will work with our proof, affecting only the
final constants. Furthermore, since we control B, we may choose it large enough so that ∆B ≤ 1/2
holds. Thus, we view this assumption as mild and primarily made for ease of exposition.
Assumption 3. The bias is not too large: ∆B ≤ 1/2.
Theorem 3 (CWCP achieves dataset-conditional coverage). Assume Assumptions 2 and 3 hold.
Suppose ŵ : X → [0, B] satisfies EP [|ŵ(X) − w∗

B(X)|] ≤
√
2∆R + ϵ and ∆̂B ∈ R satisfies

|∆̂B − ∆B | ≤
√
2∆R + 2ϵ, for some ϵ such that

√
2∆R + ϵ ≤ 1/4. Suppose we run WCP

with weights ŵ at an inflated coverage level of 1 − α + ∆̂B + 5ϵ, with an i.i.d. calibration set
Xcal = (X1, Y1), . . . , (Xm, Ym) ∼ P , where m = O

(
B log(1/ϵ)+B log(1/δ)

ϵ2 + B2 log(1/δ)
ϵ2

)
, and

Cτ (x) = {y ∈ Y : s(x, y) ≤ τ}. Then,

Pr
Xcal

[
1− α− 2

√
2∆R ≤ Pr

Q
[Y ∈ Cτ (X)] ≤ 1− α+ 2∆B + 12ϵ+ 2

√
2∆R

]
≥ 1− δ.

Theorem 3 requires that
√
2∆R + ϵ ≤ 1/4 and thus requires that ∆R < 1/32 (note that we did not

optimize the constant 1/32 in this condition and it can likely be improved; however, we do not know
how to remove the restriction that ∆R = O(1) from our proof). Nevertheless, we still believe this
result to be of theoretical interest whenW is sufficiently rich or structural assumptions are imposed
on P and Q which inform the choice of a class W with zero misspecification error (for example,
when P and Q are Gaussian, discrete, or piecewise constant, or when the density ratio is assumed
to have a certain structure, such as linear-in-known-features).

By combining Theorem 3 with Theorem 1 and Lemma 2, we are able to obtain end-to-end high-
probability dataset-conditional guarantees for CWCP with learned importance weights.
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Corollary 1 (End-to-end guarantees). Assume that the conditions of Theorem 1, Lemma 2, and
Theorem 3 hold. Suppose we first learn a clipped density ratio ŵ : X → [0, B], where ŵ ←
CLISF(W, ϵ2, δ, B,EX(PX),EX(QX)) as in Theorem 1. Second, we use ŵ as in Lemma 2 with
an estimation sample size mest = O(B log(1/δ)/ϵ2) to get a bias estimate ∆̂B . Third, we use ŵ
and ∆B as in Theorem 3 to obtain prediction sets Cτ (X) = {y ∈ Y : s(x, y) ≤ τ}. Then,

Pr

[
1− α− 2

√
2∆R ≤ Pr

Q
[Y ∈ Cτ (X)] ≤ 1− α+ 2∆B + 12ϵ− 2

√
2∆R

]
≥ 1− 3δ

where the randomness is over the draw of the density ratio estimation sets, the bias estimation set,
and the calibration set. Additionally, we require

O
(
B log(1/ϵ) +B log(1/δ)

ϵ2
+

log(1/δ)

ϵ2

)
,O
(
B2C2

B +B4 log(1/δ)

ϵ4

)
,O

(
C̃2

B +B2 log(1/δ)

ϵ4

)
labeled examples from P , unlabeled examples from P , and unlabeled examples from Q, respectively.

Proof. We union bound the failure events of Theorem 1, Lemma 2, and Theorem 3.

4.3 SPLIT CONFORMAL VS. WCP VS. CWCP

At the end of the day, a practitioner might wonder when to use split conformal prediction, weighted
conformal prediction, or clipped weighted conformal prediction. As evidenced by Example 1,
CWCP is preferable to WCP when the true ratio w∗ has large higher moments under P because
it does not catastrophically undercover when the calibration set contains an input x such that w∗(x)
is very large. However, a reader might note that, when applied to Example 1, split conformal will
also perform well: since split conformal achieves 1 − α expected marginal coverage on P , then it
will also achieve at least 1− α− TV(P,Q) coverage on Q.

A few remarks are in order. First, under the setting of Theorem 3 shows that CWCP does not under-
cover (assuming no misspecification). In order to achieve the same guarantee with split conformal,
a natural approach would be to inflate the prediction by a level of TV(P,Q) = ∆1 — this is the
same correction used by CWCP with B = 1. In general, obtaining a good estimate of this quantity
requires some machinery such as training a discriminative model (Sreekumar & Goldfeld (2022) and
Tao et al. (2024)) or density ratio estimation. This remark is of particular interest when the resulting
prediction sets are for downstream use by a risk-averse agent — in this case, it is important to ensure
minimal undercoverage, as Theorem 3 does.

Second, a natural question is if there are problems which are (i) challenging for split conformal
prediction, (ii) challenging for unclipped density ratio estimation methods and WCP, and (iii) not
challenging for CWCP with a modest choice of B. In general, this will be the case when w∗ follows
a power law. To illustrate this, let PX = U(0, 1) and define w∗(x) = 1/(2

√
x). It is easily checked

that w∗ defines a valid density ratio with EP [w
∗(X)2] =∞ (infinite second moment) and thus will

present a challenge for (unclipped) LSIF and WCP. On the other hand, since the tail probability of
w∗ is P (w∗(X) ≥ t) = 1/(4t2), we have

∆B = EP [(w
∗(X)−B)+] =

∫ ∞

B

P (w∗(X) ≥ t) dt =

∫ ∞

B

1

4t2
dt =

1

4B
.

In particular, note that ∆1 = 1/4, which implies that split conformal will significantly undercover.
On the other hand, by taking B = O(1/ϵ), we may drive ∆B ≤ ϵ. In this example, CWCP is able
to balance the advantages of both WCP (accounting for the covariate shift) and split conformal (low
variance). In finance, power-law distributions are often used to model log-returns of a stock and
trading volume (Gabaix et al., 2003); when training models on one time period (e.g., pre-crisis) and
testing on another (e.g., during crisis), the density ratios between these periods naturally inherits this
heavy-tailed behavior. In medical studies, extreme density ratios are also common (Li et al. (2019),
Gao et al. (2021)). These lend credence to the practical applicability of CWCP.

5 EXPERIMENTS

We compare our method with the following baselines: WCP + LSIF (Tibshirani et al., 2019) and
likelihood-regularized quantile-regression (LR-QR) (Joshi et al., 2025). For illustration, to demon-
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Figure 2: (Left) Coverage results for CWCP, LR-QR, split conformal, and WCP on iWildCam data.
(Right) Ablation results for CWCP, varying B. The solid colored lines show the distribution of cov-
erage levels over 30 trials. The colored dotted lines represent average coverage levels. Qualitatively,
better performance is given by a CDF which looks like a step function about 0.8.

strate the necessity of accounting for covariate shift, we additionally include split conformal (Pa-
padopoulos et al., 2002) in our comparisons. For additional experiments, see Appendix F.

5.1 WILDLIFE CAMERA TRAP DATA

We evaluate our method on the iWildCam dataset (Beery et al., 2021), which contains 203029 dat-
apoints corresponding to photographs taken by wildlife cameras across the globe. These images
additionally have metadata containing a location identifier; this was only used to split the data. The
task is to classify the image as one of 182 species based on a 224× 224 RGB photograph. The data
was organized into 4 splits: train, validation, in-distribution (ID) test, and out-of-distribution (OOD)
test. No locations were shared between the {train, validation, ID test} and OOD test splits. Thus, a
covariate shift arises from differences in camera choice, ambient light, etc.

Experimental details. The nonconformity score was 1 − p(x), where p was a model trained be-
forehand on the train split to predict class probabilities. This was done by finetuning a linear head
over the representation layer of a pretrained image model. W was defined similarly. To fit each
conformal prediction method, we sample 20 locations from the train set and 20 locations from the
OOD test set. We hold out half of the subsampled test set for evaluation; we discard the labels of
the other half. We then train each method on the kept data and then find its coverage on the held out
test set. We used a coverage level of 1− α = 0.8. This was repeated for 30 trials.

Results. Figure 2 displays the results. Notably, split conformal has significant average undercover-
age due to not accounting for covariate shift. WCP, CWCP, and LR-QR track the nominal coverage
on average. Additionally, by inspecting the tails, we see that the coverage values of CWCP are the
most tightly concentrated around the nominal value of 0.8. We additionally performed an ablation
study by varying B. Notably, for smaller values of the clipping parameter, the average coverage
remained close to 0.8. However, for B = 40 and B = 80, there was significant undercoverage.

5.2 SYNTHETIC DATA

We additionally evaluate our method on synthetic data at various controlled levels of covariate shift.
The covariate is X = (X1, . . . , Xd) ∈ Rd and the outcome is Y ∈ R. We define

PX := N (0, Id), QX = N (β · e1, Id)
PY |X = QY |X = 1⊤X + exp(X2

1 ) +N (0, 1)

where e1 is the first standard basis vector and β models the level of covariate shift.

Experimental details. We consider the nonconformity score s defined by the residual |Y − µ(X)|,
where µ : Rd → R is a fixed regression model trained beforehand on P . We consider the classW
of the general form of a change of measure between two Gaussians with identity covariance,W ={
x 7→ exp

(
x⊤µ− ∥µ∥2

2

)
: µ ∈ Rd

}
. All algorithms are run with d = 100 with 600 examples.
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Figure 3: Coverage results for CWCP (B ∈ {2.5, 5, 10, 20}), split conformal, and WCP on synthetic
shifted Gaussians data. The x-axis represents β. Qualitatively, good performance corresponds to a
red line which is close to y = 0.8 (good expected coverage) and a small blue region (low variance).

For each value of β ∈ [0, 0.1, 0.2, . . . , 2], we ran 30 trials of the experiment above with a target of
1− α = 0.8. For each trial, we measured the coverage on a freshly drawn dataset from Q.

Results. Figure 3 displays the results. We did not evaluate LR-QR, as W was not compatible
with the linear structure assumed in Joshi et al. (2025). Notably, CWCP and split conformal had
much less variance in coverage than WCP. However, split conformal displayed increasing levels of
undercoverage with increasing β, where as this was less of an issue for CWCP and WCP (which
account for the covariate shift). Comparing CWCP run with different levels of B, one can see that
the variance increases as B increases; however, for lower values of B there was slight degradation
of the expected coverage (this is most apparent when comparing B = 2.5 and B = 20).

6 CONCLUSION

We introduce a principled framework to address the instability of weighted conformal prediction
under covariate shifts with unbounded density ratios. Our method consists of two components:
CLISF, which learns stable density ratios by regularizing the function class, and CWCP, which
constructs prediction sets and corrects for the clipping-induced bias. We provide dataset-conditional
coverage guarantees for this approach. Crucially, the sample complexity of our method does not
blow up with the higher moments of the density ratio, a key limitation of prior work. Experiments
confirm that weight clipping is an effective tool for reliable conformal inference under shift.

To conclude, we outline possible directions for future work.

Beyond marginal guarantees. This work focuses on marginal coverage. An important next step is
to extend this clipping-based framework to achieve stronger, more fine-grained guarantees, such as
class-conditional or group-conditional coverage under covariate shift.

Efficient alternatives to CLISF. As mentioned in Remark 4, in general the CLISF problem is
nonconvex. Future work could investigate convex surrogates or penalties instead of clipping.

Correction only where necessary. Our method adjusts for the clipping bias by inflating the cov-
erage. Our overcoverage guarantee is thus averaged over the entire distribution P . However, one
might hope for guarantees more akin to PQ-learning or learning with rejection (Goldwasser et al.
(2020), Kalai & Kanade (2021)), in which the overcoverage should be limited to a specific subpop-
ulation of X . More formally, we would like to output a partition X = X1 ∪ X2, and achieve almost
exact coverage conditioned on X ∈ X1, while guaranteeing that the mass of X2 under P is small.
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A PROOFS

A.1 PROBABILISTIC INEQUALITIES

Lemma 3 (Bernstein’s inequality). Let Z1, . . . , Zm be independent random variables such that
|Zi − E[Zi]| are almost surely bounded by M . Let σ2 :=

∑m
i=1 Var(Zi). Then, for all t > 0,

Pr

[∣∣∣ m∑
i=1

(Zi − E[Zi])
∣∣∣ > t

]
≤ 2 exp

(
− t2

2σ2 + 2
3Mt

)
.

Lemma 4 (McDiarmid’s inequality). Let X1, . . . , Xm be independent random variables taking val-
ues in X , and let f : Xm → R satisfy the bounded differences property: there exist constants
C1, . . . , Cm ≥ 0 such that for all i and all x1, . . . , xm, x′

i ∈ X ,

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| ≤ Ci.

Then, for any ϵ > 0,

Pr [|f(X1, . . . , Xm)− E[f(X1, . . . , Xm)]| ≥ ϵ] ≤ 2 exp

(
− 2ϵ2∑m

i=1 C
2
i

)
.

Lemma 5 (Bousquet’s inequality, Bousquet (2002)). Let X1, . . . , Xn be independent identically
distributed random vectors. Assume that E[Xi,s] = 0, and that Xi,s ≤ 1 for all s ∈ T , where T is
some index set. Let v = 2E[Z] + σ2 (where σ2 = sups∈T

∑n
i=1 E[X2

i,s]). Then for all t ≥ 0,

P{Z ≥ EZ + t} ≤ exp

(
− t2

2(v + t/3)

)
.

Below is a specialization of Lemma 5 to uniform convergence of a bounded function class.

Lemma 6. Let F be a class of measurable functions taking values in [0, B], and let X1, . . . , Xn

be i.i.d. random variables. Define Z := supf∈F

(
E[f(X)] − 1

n

∑n
i=1 f(Xi)

)
. Let V :=

supf∈F Var(f(X)). Then for all δ ∈ (0, 1]: with probability at least 1− δ,

Z ≤ E[Z] +

√
2(V + 2E[Z]) log(1/δ)

n
+

2B log(1/δ)

3n
.

Proof. By applying Lemma 5 to the scaled random variables f(Xi)/B, we obtain

Pr [Z > E[Z] + γ] ≤ exp

(
− nγ2

2(V + 2E[Z] +Bγ/3)

)
.

We want this to be at most δ. Solving for γ, it suffices for

γ ≥
√

2(V + 2E[Z]) log(1/δ)

n
+

2B log(1/δ)

3n
.

Lemma 7 (Weighted DKW inequality, Pournaderi & Xiang (2024)). Assume Q ≪ P and w∗ :=
dQ/dP ≤ B. Let Xcal, Ycal = (X1, . . . , Xm), (Y1, . . . , Ym) ∼ Pm be a calibration set. Denote by
F(Xcal,Ycal)(t;w) and FP (t;w) the weighted empirical and population nonconformity score CDFs
using w, respectively (see (1)). Then, for any γ > 0,

Pr
Xcal,Ycal

[
sup
t∈R

∣∣F(Xcal,Ycal)(t;w)− FP (t;w)
∣∣ > γ

]
≤ 72

γ
exp

(
−mγ2

4B

)
+ 2 exp

(
−mγ2

2B2

)
.
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A.2 PROOF OF LEMMA 1

Using the definition of the LSIF objective R (Kanamori et al., 2009), we have

R(w) =
1

2
· EP [(w(X)− w∗(X))2] + C, ∀w : X → R+,

where C is some constant independent of w and w∗ = dQX/dPX is the true density ratio.

To prove the first claim, note that w∗
B = min(w∗(x), B) is the pointwise minimizer to the squared

deviation (w(x)− w∗(x))2 over w ∈ WB for all x ∈ X . This is due to the following two cases: if
w∗(x) (the unconstrained minimizer) lies in [0, B], then we have w∗

B(x) = w∗(x); alternatively, if
w∗(x) > B, then the constrained minimizer is B = w∗

B(x).

To prove the second claim, note that for any w ∈ WB ,

(w(x)− w∗(x))2 − (w∗
B(x)− w∗(x))2 =

{
(w(x)− w∗(x))2, w∗(x) ≤ B

(w(x)− w∗(x))2 − (B − w∗(x))2, w∗(x) > B

=

{
(w(x)− w∗(x))2, w∗(x) ≤ B

(w(x)−B)(w(x) +B − 2w∗(x)), w∗(x) > B

≥
{
(w(x)− w∗(x))2, w∗(x) ≤ B

(w(x)−B)2, w∗(x) > B

= (w(x)− w∗
B(x))

2, ∀x ∈ X

where the second equality is due to difference of squares and the third inequality is due to the case
w∗(x) > B combined with the fact that w(x) ≤ B (since we assume w ∈ WB). Thus, integrating
this entire inequality with respect to PX , we obtain

EP

[
(w(X)− w∗

B(X))2
]
≤ EP

[
(w(x)− w∗(x))2 − (w∗

B(x)− w∗(x))2
]

= 2 · (R(w)−R(w∗
B))

which concludes the proof.

A.3 PROOF OF THEOREM 1

First, we state and prove a supporting lemma. Below, we parameterize the upper bound on the
expectation of functions fromWB by U , rather than a coarse bound by B, to account for scenarios
where this upper bound might in fact be much less than B. For example, since EP [w

∗(X)] = 1, one
might expect that U ≪ B whenW contains only those functions close to w∗.
Lemma 8 (Uniform convergence of LSIF loss over bounded ratio class). SupposeWB ⊆ [0, B]X

and EP [w(X)] ≤ U for all w ∈ WB . Let Xtrain = (X1, . . . , Xmtrain) ∼ Pmtrain

X and Xtest =

(X̃1, . . . , X̃mtest) ∼ Qmtest

X be i.i.d. samples. Then for any δ ∈ (0, 1), with probability at least 1−δ
over the draw of Xtrain, Xtest,

sup
w∈W

∣∣∣R̂(w)−R(w)
∣∣∣ (12)

≤ 2B · EXtrain
[RadXtrain

(W)] +

√
10UB3 log(2/δ)

mtrain
+

B2 log(2/δ)

3mtrain

+ 2 · EXtest [RadXtest(W)] +

√
6UB log(2/δ)

mtest
+

2B log(2/δ)

3mtest
.

Proof. By the triangular inequality,

(12) ≤ sup
w∈W

∣∣∣∣∣ 1

mtrain

mtrain∑
i=1

w(Xi)
2

2
− EPX

[
w(X)2

2

]∣∣∣∣∣︸ ︷︷ ︸
(A)

+ sup
w∈W

∣∣∣∣∣ 1

mtest

mtest∑
i=1

w(X̃i)− EQX
[w(X̃)]

∣∣∣∣∣︸ ︷︷ ︸
(B)

.
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We control (A) and (B) separately via uniform convergence arguments.

Term (A). Let Ftrain = {x 7→ 1
2w(x)

2 : w ∈ W}. Since w(x) ∈ [0, B], each f ∈ Ftrain takes
values in [0, B2/2], so Range(Ftrain) = B2/2. By Lemma 6,

(A) ≤ EXtrain
[(A)] +

√
2(supf∈Ftrain

(VarP [f(X)]) + 2EXtrain
[(A)]) log(1/δtrain)

mtrain
+

2(B2/2) log(1/δtrain)

3mtrain

with probability at least 1− δtrain. By a standard symmetrization argument,

EXtrain
[(A)] ≤ 2 · EXtrain

[RadXtrain
(Ftrain)] ≤ 2B · EXtrain

[RadXtrain
(W)]

where the last inequality follows from the composition principle: since Ftrain = (r 7→ r2/2) ◦ W ,
and since r 7→ r2/2 is B-Lipschitz for r ∈ [0, B]. Note that we also have the loose bound 2B ·
EXtrain

[RadXtrain
(W)] ≤ 2B2 sinceW is bounded by B. Next, note that

sup
f∈Ftrain

VarP [f(X)] ≤ sup
f∈Ftrain

EP [f(X)2] = sup
w∈W

EP [w(X)4/4] ≤ UB3/4

where the last inequality follows from the assumption that EP [w(X)] ≤ U and w(X) ≤ B for all
w ∈ W . By combining these bounds, we find

(A) ≤ 2B · EXtrain
[RadXtrain

(W)] +

√
10UB3 log(1/δtrain)

mtrain
+

B2 log(1/δtrain)

3mtrain
.

Term (B). Again by Lemma 6,

(B) ≤ EXtest
[(B)] +

√
2(supw∈W(VarP [w(X)]) + 2EXtest

[(B)]) log(1/δtest)
mtest

+
2B log(1/δtest)

3mtest

≤ 2 · EXtest
[RadXtest

(W)] +

√
6UB log(1/δtest)

mtest
+

2B log(1/δtest)

3mtest
.

where the last line follows by bounded supw∈W(VarP [w(X)]) ≤ UB, again using the assumption
that EP [w(X)] ≤ U and w(X) ≤ B for all w ∈ W; and the coarse bound EXtest

[(B)] ≤ B.

The desired result follows by combining our bounds on (A) and (B) together with a union bound,
after choosing δtrain = δtest = δ/2.

We are now ready to give the proof of Theorem 1.

Controlling the empirical process. First, note that Lemma 8 holds with U ≤ B because we assume
WB ⊆ [0, B]X . Thus, by Lemma 8 and Assumption 1,

sup
w∈WB

∣∣∣R̂(w)−R(w)
∣∣∣

≤ 2B · EXtrain
[RadXtrain

(WB)] +

√
10B4 log(2/δ)

mtrain
+

B2 log(2/δ)

3mtrain

+ 2 · EXtest
[RadXtest

(WB)] +

√
6B2 log(2/δ)

mtest
+

2B log(2/δ)

3mtest

≤ 2BCB√
mtrain

+

√
10B4 log(2/δ)

mtrain
+

B2 log(2/δ)

3mtrain
+

2C̃B√
mtest

+

√
6B2 log(2/δ)

mtest
+

2B log(2/δ)

3mtest

with probability at least 1− δ over the draw of Xtrain, Xtest. Shortly, we will require that the right
hand of this is at most ϵ/4. By making each term no more than ϵ/24, this is the case if

mtrain ≥ max

(
2304B2C2

B

ϵ2
,
5760B4 log(2/δ)

ϵ2
,
8B2 log(2/δ)

ϵ

)
= O

(
B2C2

B +B4 log(1/δ)

ϵ2

)
,

mtest ≥ max

(
2304C̃2

B

ϵ2
,
3456B2 log(2/δ)

ϵ2
,
16B log(2/δ)

ϵ

)
= O

(
C̃2

B +B2 log(1/δ)

ϵ2

)
.
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Applying the excess risk transfer lemma. If the right hand above is bounded by ϵ/4, then since ŵ
minimizes the empirical CLISF objective,

R(ŵ) ≤ inf
w∈WB

R(w) + 2 · ϵ/4

= R(w∗
B) + inf

wB∈WB

(R(wB)−R(w∗
B)) + ϵ/2

= R(w∗
B) + ∆R + ϵ/2

=⇒ EP [(ŵB(X)− w∗
B(X))2] ≤ 2∆R + ϵ

where the last implication follows from Lemma 1. This concludes the proof.

Remark 5. As mentioned in the statement of Theorem 1, we can improve the sample dependence
on B when P is known. In this case, we need only consider functions which integrate to 1, which
represent the valid density ratios. In this case, it suffices to have

mtrain = O
(
B2C2

B +B3 log(1/δ)

ϵ2

)
, mtest = O

(
C̃2

B +B log(1/δ)

ϵ2

)
.

A.4 PROOF OF LEMMA 2

By Bernstein’s inequality,

Pr
[∣∣∣∆̂B − (1− EP [ŵ(X)])

∣∣∣ > γ
]
= Pr

[∣∣∣∣∣ 1m
m∑
i=1

ŵ(Xi)− EP [ŵ(X)]

∣∣∣∣∣ > γ

]

≤ 2 exp

(
− γ2m2

2m ·VarP [ŵ(X)] + 2
3Bγm

)
. (13)

Next, note that

VarP [ŵ(X)] ≤ EP [ŵ(X)2] (ŵ is nonnegative)
≤ B · EP [ŵ(X)] (ŵ is bounded above by B)
≤ B · (EP [w

∗
B(X)] + ϵ) (triangular inequality and EP [|ŵ(X)− w∗

B(X)|] ≤ ϵ)
≤ B · (EP [w

∗(X)] + ϵ) = (1 + ϵ)B. (w∗
B ≤ w∗ and w∗ integrates to 1)

Thus, plugging into (13) and performing some slight simplifications,

(13) ≤ 2 exp

(
− γ2m2

2m ·B(1 + ϵ) + 2
3Bγm

)
≤ 2 exp

(
− γ2m

2B(1 + ϵ+ γ)

)
,

Finally, by several applications of the triangular inequality∣∣∣∆̂B − (1− EP [ŵ(X)])
∣∣∣ ≤ γ

=⇒
∣∣∣∆̂B −∆B

∣∣∣ ≤ ∣∣∣∆̂B − (1− EP [ŵ(X)])
∣∣∣+ |EP [ŵ(X)]− EP [w

∗
B(X)]| ≤ ϵ+ γ

which concludes the proof.

A.5 PROOF OF THEOREM 2

First, we state and prove a supporting lemma. This is a generalization of Proposition 1 of Lei &
Candès (2021) to account for weights w1 and w2 which are not necessarily normalized to 1. This
arises due to weight clipping in Algorithm 1.

Lemma 9. Let P,Q,W be as in Lemma 8. Let w1, w2 ∈ W . Then,

sup
t∈R

∣∣∣∣FP (t, w1)− FP (t, w2)

∣∣∣∣ ≤ EP

[
|w1(X)− w2(X)|

]
max

(
EP

[
w1(X)

]
,EP

[
w2(X)

]) .
where FP (t, w) denotes the weighted nonconformity score CDF defined in (1).
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Proof. Write C := EP

[
w1(X)

]
and D := EP

[
w2(X)

]
. Let Q1 be the measure satisfying

d(Q1)X/dPX = w1/C, and define Q2 analogously for w2/D. Then,

sup
t∈R

∣∣∣∣FP (t, w1)− FP (t, w2)

∣∣∣∣ ≤ TV(Q1, Q2)

=
1

2
EP [|w1(X)/C − w2(X)/D|]

=
1

2
EP

[∣∣∣∣w1(X)− w2(X)

C
+ (1/C − 1/D)w2(X)

∣∣∣∣]
≤ EP [|w1(X)− w2(X)|]

2C
+
|D − C|

2C

≤ 2 · EP [|w1(X)− w2(X)|]
2C

where the last line follows from the triangular inequality. Note that this argument is completely
symmetric in w1 and w2, and so we may replace C with max(C,D). This concludes the proof.

We are now ready to give the proof of Theorem 2.

Our starting point is Corollary 1 of Tibshirani et al. (2019), which implies that

1− α+ ∆̂B + 3ϵ ≤ Pr
Xcal,(X,Y )∼Q̂

[Y ∈ Cτ (X)] = FP (τ, ŵ)

where Q̂ is the measure satisfying dQ̂/dP = ŵ/EP [ŵ(X)]. Thus, by Lemma 9,

|FP (τ, ŵ)− FP (τ, w
∗)| ≤ EP [|ŵ(X)− w∗(X)|]

1
(w∗ integrates to 1)

≤ EP [|ŵ(X)− w∗
B(X)|] + EP [|ŵ∗

B(X)− w∗(X)|]

≤ ϵ+
√
2∆R +∆B

≤ 2
√
∆R + ∆̂B + 3ϵ (we assume |∆̂B −∆B | ≤ 2ϵ+

√
2∆R)

which implies that

FP (τ, w
∗) = Pr

Xcal,Q
[Y ∈ Cτ (X)]

≥ 1− α+ ∆̂B + 3ϵ− (∆̂B + 3ϵ+ 2
√
2∆R) = 1− α− 2

√
2∆R

which concludes the proof.

A.6 PROOF OF THEOREM 3

We start by applying Lemma 7 to the normalized weights ŵ/EP [ŵ(X)],

Pr
Xcal,Ycal

[
sup
t∈R

∣∣∣∣F(Xcal,Ycal)(t; ŵB)− FP (t; ŵB)

∣∣∣∣ > ϵ

]
≤ 72

ϵ
exp

(
− mϵ2

4(B/µ)

)
+ 2 exp

(
− mϵ2

2(B/µ)2

)
(14)

where that µ = EPX
[ŵB(X)]. We can lower bound µ as

µ = EP [ŵ(X)]

≥ EP [w
∗
B(X)]− EP [|ŵ(X)− w∗

B(X)|] (triangular inequality)
≥ EP [w

∗(X)]− EP [|w∗
B(X)− w∗(X)|]− EP [|ŵ(X)− w∗

B(X)|] (triangular inequality)

≥ 1−∆B − (
√

2∆R + ϵ)
(EP [|w∗

B(X)− w∗(X)|] = ∆B and EP [|ŵ(X)− w∗
B(X)|] ≤

√
2∆R + ϵ)

≥ 1/4. (Assumption 3 and
√
2∆R + ϵ ≤ 1/4)
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Substituting this lower bound into (14) gives the bound

(14) ≤ 72

ϵ
exp

(
−mϵ2

16B

)
+ 2 exp

(
− mϵ2

32B2

)
. (15)

To ensure that (15) is at most δ, it suffices to choose

m ≥ max

(
16B

ϵ2
log

(
144

ϵδ

)
,
32B2 log(4/δ)

ϵ2

)
.

Let this success event be denoted by E . Casing on E , we have

sup
t∈R

∣∣∣∣F(Xcal,Ycal)(t, ŵ)− FP (t, w
∗)

∣∣∣∣
≤ sup

t∈R

∣∣∣∣F(Xcal,Ycal)(t, ŵ)− FP (t, ŵ)

∣∣∣∣+ sup
t∈R

∣∣∣∣FP (t, ŵ)− FP (t, w
∗
B)

∣∣∣∣+ sup
t∈R

∣∣∣∣FP (t, w
∗
B)− FP (t, w

∗)

∣∣∣∣
(triangular inequality)

≤ ϵ+
EP [|ŵ − w∗

B |]
max(EP [ŵ(X)],EP [w∗

B(X)])
+

EP [|w∗
B(X)− w∗(X)|]
EP [w∗(X)]

(E and Lemma 9)

≤ ϵ+ 2(ϵ+
√
2∆R) + EP [|w∗

B(X)− w∗(X)|]
(w∗ integrates to 1, ∆B ≤ 1/2, and EP [|w∗

B(X)− w∗(X)|] ≤ ϵ+
√
2∆R)

= ∆B + 3ϵ+ 2
√
2∆R (16)

Next, recall that WCP will output the score threshold

τ := inf{t ∈ R : F(Xcal,Ycal)(t, ŵ) ≥ 1− α+ ∆̂B + 5ϵ}.

Note that since F(Xcal,Ycal)(t, ŵ) is not continuous, it is not necessarily true that F(Xcal,Ycal)(τ, ŵ) =

1− α+ ∆̂B + 5ϵ. However, we show that the discretization error cannot be too large: casing on E ,
and using Assumption 2, it holds that

1− α+ ∆̂B + 5ϵ ≤ F(Xcal,Ycal)(τ, ŵ) ≤ 1− α+ ∆̂B + 7ϵ. (17)

(where we have used the continuity of FP (t) (which implies continuity of FP (t, ŵ)) in conjunction
with the uniform error bound of E to argue that the “jumps” can be no more than 2ϵ). Thus,

1− α+ ∆̂B + 5ϵ ≤ F(Xcal,Ycal)(τ, ŵ) ≤ 1− α+ ∆̂B + 7ϵ

=⇒ 1− α+∆B + 3ϵ ≤ F(Xcal,Ycal)(τ, ŵ) ≤ 1− α+∆B + 9ϵ (|∆̂B −∆B | ≤ 2ϵ)

=⇒ 1− α− 2
√
2∆R ≤ FP (τ, w

∗) ≤ 1− α+ 2∆B + 12ϵ+ 2
√

2∆R (using (16))

This concludes the proof, since FP (τ, w
∗) = Q(Y ∈ Cτ (X)).

B MOTIVATING EXAMPLE

For convenience, we restate Example 1 from the introduction.

Example 1 (Restatement). Fix a dimension d ∈ N, radius r ∈ (0, 1), and mixture weight θ ∈ (0, 1).
Define the input space X = [0, 1]d and label space Y = [0, 1]. Define B to be the ball {x ∈ X :
∥x∥∞ ≤ r}. Define the train distribution P to be uniform over X × Y . Define the test distribution
Q = (1−θ)P+θS, where S is uniform over B×Y . Define the nonconformity score to be s(x, y) =

∥x∥∞. It can be checked that TV(P,Q) = θ(1− rd) and w∗(x) =

{
1− θ + θ/rd, x ∈ B
1− θ, x ̸∈ B .

In this example, as r → 0, note that TV(P,Q) → θ but supx∈X w(x) → ∞. In other words, as
the radius decreases, the total variation between P and Q remains stable, but the supremum of the
density ratio is unbounded.
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Proposition 1. Fix parameters d ∈ N, r ∈ (0, 1), θ ∈ (0, 1), α ∈ (0, 1) with θ < 1 − α. Let
distributions P,Q, ball B, true density ratio w∗, and score s be as in Example 1. Suppose

m =
⌊ c

rd

⌋
, where 0 < c <

αθ

(1− α)(1− θ)
. (18)

Suppose we draw the calibration set Xcal = (X1, . . . , Xm) ∼ Pm and compute the WCP threshold
τ using the true density ratio w∗. Then, with probability at least 1 − e−(c−rd), the score threshold
satisfies τ ≤ r. Furthermore, on the event τ ≤ r, the resulting predictor C(x) = {y : s(x, y) ≤ τ}
has marginal coverage under Q upper bounded by Q(Y ∈ C(X)) ≤ θ + (1− θ)rd.

Proof. Let N :=
∑m

i=1 1[Xi ∈ B] be the number of calibration points falling in B. Because
P (X ∈ B) = rd and m is defined as equation 18, it follows that

Pr
Xcal

[N ≥ 1] = 1− (1− rd)m ≥ 1− e−mrd ≥ 1− e−(c−rd).

Now, condition on the event N ≥ 1. Note that

F̂m(r) :=
N(1− θ + θ/rd)

N(1− θ + θ/rd) + (m−N)(1− θ)
≥ (1− θ + θ/rd)

(1− θ + θ/rd) +m(1− θ)
,

where the last inequality follows since we condition on N ≥ 1. Next, using (1− θ) + θ/rd ≥ θ/rd

and m ≤ c/rd,

F̂m(r) ≥ θ/rd

θ/rd +m(1− θ)
≥ θ/rd

θ/rd + (c/rd)(1− θ)
=

θ

θ + c(1− θ)
≥ 1− α,

where the last inequality is due to c < αθ
(1−α)(1−θ) in (18). Thus, if N ≥ 1, then τ ≤ r.

Because the score s(x, y) = ∥x∥∞ depends only on x, the conformal set is C(x) = [0, 1] if ∥x∥∞ ≤
τ and C(x) = ∅ otherwise. Hence, conditioned on N ≥ 1, we have

Q(Y ∈ C(X)) = Q(∥X∥∞ ≤ τ) ≤ Q(∥X∥∞ ≤ r) = θ + (1− θ)rd.

Letting r → 0 while keeping θ fixed forces the coverage to converge to θ < 1− α; the miscoverage
is strictly greater than the nominal level α. To make this concrete, suppose we choose α = 0.1, and
θ = 0.1. Then, we can set c = 0.01. Proposition 1 then tells us that for m = 1/rd, the output
of WCP has a roughly 1% chance of having around 80% miscoverage (independent of r and d). In
other words, unless the calibration set is on the order of 1/rd, WCP cannot guarantee high coverage
probability. Furthermore, we made no attempt to optimize these constants.

Second, we show the existence of a sample size regime where learned importance weights can
catastrophically fail to estimate the importance weights in L1-error. The downstream effect on
WCP is a degradation of its expected marginal coverage for reasonable sample sizes.

Proposition 2. Fix parameters d ∈ N, rd ∈ (0, θ/4), θ ∈ (0, 1/2), 1/θ ≤ m < 1/rd. Suppose
we draw the source (train) and target (test) sets Xtrain = (X1, . . . , Xm) ∼ Pm and Xtest =

(X̃1, . . . , X̃m) ∼ Qm. Then, with probability at least 1
e

(
1− 1

e

)
≥ 0.2325: Xtrain ∩ B = ∅ and

Xtest ∩ B ̸= ∅. Furthermore, define the class of valid density ratios

wβ(x) =

{
β, x ∈ B
1−rdβ
1−rd

, x ̸∈ B
, β ∈

[
1− θ +

θ

rd
,
1

rd

]
. (19)

If Xtrain ∩ B = ∅ and Xtest ∩ B ̸= ∅, then R̂(wβ′) < R̂(wβ) for all β′ > β (where β, β′ are in the
above interval). In other words, if Xtrain ∩ B = ∅ and Xtest ∩ B ≠ ∅, which occurs with constant
probability, then ERM selects the largest possible valid weight for the region B, overestimating the
true weight of 1− θ + θ/rd. In particular letting ŵ denote the learned ratio, the L1 error between
ŵ and w∗ (defined in Example 1) will be 2(1− θ)(1− rd).
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Proof. Note that each Xi (resp. X̃i) lands in B with probability rd (resp. θ + (1− θ)rd). Thus

Pr
Xtrain

[Xtrain ∩ B = ∅] = (1− rd)m

> (1− rd)1/r
d

≥ 1/e

Pr
Xtest

[Xtest ∩ B ̸= ∅] = 1− (1− (θ + (1− θ)rd))m

≥ 1− (1− θ)m ≥ 1− e−mθ ≥ 1− 1/e.

where we have used that rd < 1/2 and 1/θ ≤ m ≤ 1/rd. Since Xtrain and Xtest are independent,

Pr
Xtrain,Xtest

[Xtrain ∩ B = ∅ ∧Xtest ∩ B ̸= ∅] =
1

e

(
1− 1

e

)
.

Now, condition on the event Xtrain ∩ B = ∅ ∧Xtest ∩ B ̸= ∅.

• Since Xtrain ∩ B = ∅, for every training point Xi, we have Xi /∈ B. Therefore, wβ(Xi) =
1−rdβ
1−rd

for all i ∈ [m].

• Since Xtest ∩ B ̸= ∅, at least one test point X̃j falls into B. Let’s partition the test set
indices into two sets: IB = {j : X̃j ∈ B} and IB∁ = {j : X̃j /∈ B}. By our conditioning,
the set IB is non-empty. Let mB = |IB| ≥ 1.

We can now write the empirical risk R̂(wβ) as an explicit function of β:

R̂(wβ) =
1

2

m∑
i=1

(
wβ(Xi)

2 − 2wβ(X̃i)
)

=
1

2

 m∑
i=1

(
1− rdβ

1− rd

)2

− 2

∑
j∈IB

wβ(X̃j) +
∑

j∈IB∁

wβ(X̃j)


=

1

2

[
m

(
1− rdβ

1− rd

)2

− 2

(
mB · β + (m−mB)

1− rdβ

1− rd

)]
To show that R̂(wβ) decreases as β increases, we find its derivative with respect to β:

d

dβ
R̂(wβ) =

1

2

[
m · 2

(
1− rdβ

1− rd

)(
−rd

1− rd

)
− 2

(
mB + (m−mB)

−rd

1− rd

)]
= −mrd(1− rdβ)

(1− rd)2
−mB +

(m−mB)r
d

1− rd

= − mB

1− rd
+

m(rd)2(β − 1)

(1− rd)2

We must show this expression is negative. The first term, − mB
1−rd

, is strictly negative since mB ≥ 1

and rd ≤ 1. The second term is positive, since β > 1. For the derivative to be negative, we need the
negative term to have a larger magnitude:

mB

1− rd
>

m(rd)2(β − 1)

(1− rd)2
⇐⇒ mB(1− rd) > m(rd)2(β − 1)

Since mB ≥ 1, it is sufficient to show this for mB = 1:

1− rd > m(rd)2(β − 1)

We use the upper bound for β: β ≤ 1/rd. Substituting this in, it suffices to show

1− rd > mr2d(1/rd − 1),

which is true by assumption that m < 1/rd. Thus, d
dβ R̂(wβ) < 0 for all β ∈

[
1− θ + θ

rd
, 1
rd

]
,

which implies the desired claim.
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Finally, for completeness, we instantiate Corollary 1 on Example 1.

Proposition 3. Let the setting be as in Example 1, with W defined in Equation (19). Consider
learning a clipped density ratio ŵ and then prediction sets Cτ as in Corollary 1. Then,

Pr

[
1− α ≤ Pr

Q
[Y ∈ Cτ (X)] ≤ 1− α+ 2∆B + 12ϵ

]
≥ 1− 3δ

where the randomness is over the draw of the density ratio estimation sets, the bias estimation set,
and the calibration set. Additionally, we require

O
(
B log(1/ϵ) +B log(1/δ)

ϵ2
+

B2 log(1/δ)

ϵ2

)
,O
(
B4 +B4 log(1/δ)

ϵ4

)
,O
(
B2 +B2 log(1/δ)

ϵ4

)
labeled examples from P , unlabeled examples from P , and unlabeled examples from Q, respectively.

Proof. Note that Proposition 3 would follow from Corollary 1 as long as we are able to show that
CB , C̃B = O(B). Let us decomposeWB as a union of unclipped and clipped components,

WB =
{
wβ : β ∈ [1− θ + θ/rd, B]

}
∪

{(
x 7→

{
B, x ∈ B
1−rdβ
1−rd

, x ̸∈ B

)
: β ∈ [B, 1/rd]

}
.

Let us refer to the first term asW(1)
B and the second termW(2)

B . For any X = (X1, . . . , Xm) ∈ Xm,

RadX(WB) ≤ RadX(W(1)
B ) + RadX(W(2)

B ).

Thus, we bound each piece independently. To bound the first term, write

RadX(W(1)
B ) = Eσ∼{−1,1}m

[
sup

β∈[1−θ+θ/rd,B]

1

m

m∑
i=1

σiwβ(X)

]
.

since wβ is linear in β, the maximum will be achieved at an endpoint, where β ∈ {1−θ+θ/rd, B}.
Thus, RadX(W(1)

B ) = RadX({w1−θ+θ/rd , wB}) ≤ B/
√
m by Massart’s lemma. A similar ar-

gument holds forW(2)
B , sinceW(2)

B is affinely parameterized by β ∈ [B, 1/rd], and the maximum
must be at the boundary. Massart’s lemma again yields RadX(W(2)

B ) ≤ B/
√
m. By adding these

two bounds, we conclude that CB , C̃B = O(B) as desired.

C COMPLEXITY BOUNDS FOR CLIPPED CLASSES

Under the assumption that W has finite combinatorial dimension, we may obtain finer bounds on
the Rademacher complexity of WB . In this section, we present our results for classes with finite
fat-shattering dimension, a combinatorial measure which is known to characterize the sample com-
plexity of distribution-independent learning. We define this below.

Definition 1 (Fat-shattering dimension). Let F be a class of real-valued functions on a domain X ,
and let γ > 0. We say that a set S = {x1, . . . , xm} ⊆ X is γ-shattered by F if there exist real
numbers r1, . . . , rm such that for every σ ∈ {−1, 1}m there exists f ∈ F satisfying

σi = 1 =⇒ f(xi) ≥ ri + γ, σi = −1 =⇒ f(xi) ≤ ri − γ, ∀i ∈ [m].

The γ-fat-shattering dimension of F , denoted fatF (γ), is the largest integer m for which there exists
a set of m points that is γ-shattered by F . If no such largest m exists, then fatF (γ) =∞.

Example 2. Let F be the class of linear functions over Rd. Then, fatF (γ) = d.

We rely on the property that clipping does not increase the fat-shattering dimension of F . We prove
this below for completeness.

Lemma 10. Let F ⊆ RX . Define the clipped class FB = {x 7→ max(min(f(x), B),−B) : f ∈
F}. Then for any 0 ≤ γ ≤ B, it holds that fatFB

(γ) ≤ fatF (γ).
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Proof. Suppose S = {x1, . . . , xm} is γ-shattered by FB , and let r1, . . . , rm be the witness. For
every σ ∈ {−1, 1}m, let fσ

B ∈ FB be a function satisfying

σi = 1 =⇒ fσ
B(xi) ≥ ri + γ, σi = −1 =⇒ fσ

B(xi) ≤ ri − γ, ∀i ∈ [m].

Clearly, it must be that −B + γ ≤ ri ≤ B − γ, or else the above implications could not be
satisfied, since the range of functions in FB is [−B,B]. Now, let f ∈ F and define fB(x) =
max(min(f(x), B),−B). It can be easily checked that

fB(x) ≥ r + γ =⇒ f(x) ≥ r + γ, fB(x) ≤ r − γ =⇒ f(x) ≤ r − γ, ∀r ∈ [−B + γ,B − γ].

On the other hand, since each fB ∈ FB can be written like this, it follows that any sign behavior
that can be expressed by FB with witnesses in the range [−B + γ,B − γ] can also be expressed by
F . In particular, we use apply this to the functions fσ

B and conclude that fatFB
(γ) ≤ fatF (γ).

Equipped with this lemma, we can now derive an explicit bound on the Rademacher complexity of
FB in terms of B and the fat-shattering dimension of F . For ease of exposition, we assume that the
fat-shattering dimension is upper bounded by a constant as γ → 0 (which is the case for Example 2
and more generally, classes with finite pseudodimension).
Proposition 4. Let F ⊆ RX define FB as in Lemma 10. Assume that fatF (γ) ≤ d for all γ > 0.
Then for every sample X = (X1, . . . , Xm) ∈ Xm the empirical Rademacher complexity satisfies

RadX(FB) = O

(
B

√
d

m

)
.

Proof. We begin with an application of chaining; by Theorem 1.1 of Kakade & Tewari (2008), for
any sample X = (X1, . . . , Xm) ⊆ Xm, we may bound the empirical Rademacher complexity by

RadX(FB) ≤ 12

∫ ∞

0

√
logN2(α,FB , X)

m
dα

=
12√
m

∫ B

0

√
logN2(α,FB , X) dα, (FB has range in [−B,B])

where N2(α,F , X) is the L2-covering number of FB on the sample X . On the other hand,
from Theorem 1 of Mendelson & Vershynin (2003) (after suitable rescaling by 1/B) along with
Lemma 10 we may bound the log covering number as

logN2(α,FB , X) ≤ C1fatF (C2α) log(B/α), ∀α ∈ [0, B]

for some universal constant C1, C2 > 0. Combining with the above integral, we conclude

RadX(FB) = O

(
B

√
d

m

)
.

Remark 6. In particular, we may instantiate this with linear classes to derive a regime where
clipping yields a significant reduction in the Rademacher complexity of F . Let F = {x 7→ y⊤x :

y ∈ Rd, ∥y∥2 ≤ U}. By Proposition 4 and Example 2, we have that RadX(FB) = O(B
√

d
m ).

On the other hand, by directly bounding the Rademacher complexity, and then applying Talagrand’s
contraction principle, we may obtain RadX(FB) ≤ RadX(F) ≤ UR/

√
m assuming ∥Xi∥2 ≤ R

for all i ∈ [m]. Thus, Proposition 4 reveals a regime where B ≤ UR/
√
d where clipping allows a

significantly sharper bound on the complexity of FB than the naive strategy in Remark 1.

D CLISF WITH PIECEWISE CONSTANT DENSITY RATIOS

In this section, we assume that the input space X consists of points of the form (X0, X1, Y ) where
X0 ∈ [k] is a subpopulation identifier, X1 contains additional covariate information, and Y is the
outcome. We assume that P has the form

X0 ∼ Multinomial(p1, . . . , pk), (X1, Y ) | (X0 = i) ∼ Πi
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i.e., the training data point is drawn from group i with probability pi, and then conditional on be-
ing drawn from group i, the remaining features X1 and outcome Y are drawn from some joint
distribution Πk. We assume that Q has the form

X0 ∼ Multinomial(q1, . . . , qk), (X1, Y ) | (X0 = i) ∼ Πi.

In other words, P and Q are both mixtures of the Πi, but with different mixture weights. Thus,
the true weights have a piecewise constant structure, where w∗(X0, X1, Y ) depends only on the
subpopulation identifier X0. This is the setting considered by Bhattacharyya & Barber (2024). This
also subsumes the setting of Appendix B of Park et al. (2021), by taking X0 = j(X1), where j :
X → [k] is some clustering model. Park et al. (2021) propose to use bucketed source discriminators
or unsupervised learning to estimate the clusters.

In this setting, we consider two very natural settings of the density ratio classW and show that each
leads to efficient optimization of the CLISF objective.

Unknown train distribution. We consider the class W of piecewise constant weights
w(X0, X1) = wi ∈ R+ for X0 = i. In this case, the empirical CLISF objective, over a sam-
ple Xtrain = (X1, . . . , Xm) and Xtrain = (X̃1, . . . , X̃m), is equivalent to the convex QP

Minimize
1

2

m∑
i=1

(
w2

X0
m
− 2wX̃0

m

)
over w1, . . . , wk ∈ R

Subject to 0 ≤ wi ≤ B, ∀i ∈ [k]

and hence may be solved efficiently. Since there are no second-order interactions between the dif-
ferent wi, this may be minimized pointwise for each wi by taking wi = min(m̃i/mi, B) where mi

is the number of training points falling in cluster i, and m̃i is defined similarly for the test points.
When mi = 0, we follow the convention that m̃i/mi =∞.

Known train distribution. Now, assume the train marginal PX is known. More specifically, assume
we have access to the mixture weights p1, . . . , pk. We can incorporate this information into an
additional affine constraint on our feasible set, which enforces that the density ratios cannot integrate
to more than 1 under P :

Minimize
1

2

m∑
i=1

(
w2

X0
m
− 2wX̃0

m

)
over w1, . . . , wk, b1, . . . , bk ∈ R

Subject to 0 ≤ wi ≤ B, bi ≥ 0, ∀i ∈ [k];

k∑
i=1

pi(wi + bi) = 1

where b1, . . . , bk are slack variables representing the clipping bias. This is another convex QP in
w1, . . . , wk, b1, . . . , bk and hence may be solved efficiently.

E OTHER APPROACHES TO CHOOSING THE CLIPPING PARAMETER

In this section, we discuss additional strategies to select the clipping parameter B.

Choosing B via Corollary 1. Consider fixing the sample sizes. The dominant dependence on
B for the sample sizes in Corollary 1 are for the unlabeled P and Q examples. Assuming that
CB , C̃B = O(Bp), we may invert these sample sizes to obtain a heuristic B ≈ m

1
2(p+1) ϵ

2
p+1 .

However, this may be overly conservative and in practice it suffices to choose a larger value of B.

Choosing B to make ∆B small. A natural question is whether we can precisely control ∆B in
terms of B. If we choose B large enough such that ∆B = O(ϵ), then in (4), the overcoverage will
not depend on ∆B ; this is an “unbiased” coverage guarantee. Furthermore, if inf{B : ∆B ≤ ϵ} =
poly(1/ϵ), then the sample size is polynomial in 1/ϵ. However, precisely controlling ∆B is not
possible in general. For example, consider a two-symbol universe {a, b}, where P ({a}) = p and
P ({b}) = 1 − p, and Q is uniform over {a, b}. If p → 0, then inf{B : ∆B ≤ ϵ} → ∞ for any
fixed ϵ. To obtain rate control in B, we thus assume additional tail penalization on w∗. The below
proposition applies, for example, with the χ2 distance when P and Q are known to be spherical
Gaussians with similar variance (Corollary 1 of Rubenstein et al. (2019)).
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Figure 4: Coverage results for CWCP (B ∈ {5, 10, 20, 40, 80}), split conformal, WCP, and LR-QR
on Communities and Crime data. The colored bars represent average coverage and prediction set
size for each algorithm and the black bars represent ±1 standard deviation.

Proposition 5. Let f : R+ → R+ be nondecreasing on [B0,∞). Let ρ := EP [f(w
∗(X))]. Then,

∆B := EP [(w
∗(X)−B)+] ≤ ρ ·

∫∞
B

1
f(t) dt for all B ≥ B0. In particular, if f(x) ≥ C(x−B0)

p

for all x ≥ B0, for some C > 0 and p > 1, then ∆B ≤ EP [f(w∗(X))]
C(p−1)(B−B0)p−1 for all B ≥ B0.

Proof. By Markov’s inequality, and using the assumption that f is nondecreasing, for any α ≥ B0,

Pr
P

[w∗(X) ≥ α] ≤ Pr
P

[f(w∗(X)) ≥ f(α)] ≤ EP [f(w
∗(X))]

f(α)
=

ρ

f(α)
.

By integrating this upper bound on the tail probability, we find

∆B := EP [(w
∗(X)−B)+] =

∫ ∞

B

Pr
P

[w∗(X) ≥ t] dt ≤ ρ ·
∫ ∞

B

1

f(t)
dt.

To prove the second part of the claim, we use the assumption that f(x) ≥ C(x − B0)
p, which

implies 1/f(x) ≤ 1
C(x−B0)p

. This argument yields

∆B ≤
EP [f(w

∗(X))]

C
·
∫ ∞

B

1

(t−B0)p
dt =

EP [f(w
∗(X))]

C(p− 1)(B −B0)p−1
, ∀B ≥ B0.

F ADDITIONAL EXPERIMENTS

F.1 COMMUNITIES AND CRIME

We additionally evaluate our methods on the Communities and Crime dataset Redmond (2002),
which contains 1994 datapoints of communities in the United States, each datapoint being a 127-
dimensional input. The task is to predict the violent crime rate. Following Joshi et al. (2025), We
first randomly select half of the data as a training set, and use it to fit a 1 hidden layer neural network
as our predictor. We use the remaining half to design four covariate shift scenarios, determined by
the frequency of a specific racial subgroup. For each of these features, we find the median value m
over the remaining dataset. Datapoints with feature value at most m form our source set, and the
rest form our target set. This creates a covariate shift between train and test datasets.

Experimental details. The nonconformity score is the residual to our regression model. The we
consideredW defined by linear maps from the features space to R. We ran 30 trials in total, with a
coverage target of 1−α = 0.8, as in Joshi et al. (2025). For each trial, we measured the coverage on
a held out test set as well as the width of the resulting prediction interval. In contrast to Joshi et al.
(2025), who considered a ratio class consisting of linear maps directly from the feature space to R,
we considered the class of linear maps from the hidden layer of the regression model.
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Results. Figure 4 displays the results. For the Hispanic and Asian population covariate shifts,
CWCP achieved both average coverage close to 0.8 as well as low coverage variance. LR-QR also
achieved stable coverage. On the other hand, WCP had very high variance on the Hispanic and Asian
shifts. As predicted by our theory, the amount of variation tended to increase with B. For the White
population covariate shift, all methods slightly overcovered. Interestingly, WCP achieved a slightly
lower overcoverage compared to other methods, although with a higher variance in coverage.

Next, for the Black population shift, all methods except for WCP and CWCP (with high B) seemed
to greatly undercover. For the density ratio-based methods (WCP, LR-QR, and CWCP) a possible
explanation is that the class of ratios did not correctly capture the nature of the covariate shift in this
case, leading to high misspecification. For split conformal, a likely explanation is that it did not take
the covariate shift into account.

Regarding set sizes, for the Black, Hispanic, and Asian population covariate shifts, split conformal
and CWCP (B = 5) appeared to produce the smallest prediction sets on average. This is not
surprising, as split conformal and CWCP (B = 5) tended to exhibit less overcoverage compared to
other methods, particularly on the Hispanic and Asian shifts. In contrast, LR-QR, WCP, and CWCP
(B = 80) had the most overcoverage and, unsurprisingly, also the largest prediction set widths. A
key takeaway is that the good coverage performance of CWCP does not rely on outputting trivial
prediction sets, as evidenced by the relatively low prediction set widths.

F.2 EMPIRICAL VALIDATION OF SRM FOR CLIPPING PARAMETER SELECTION ON
SYNTHETIC DATA

We additionally investigate the performance of a SRM-based strategy for selecting B. As a proof of
concept, we implement a structural risk-regularized objective on the synthetic data setting from Sec-
tion 5.2. For varying sample sizes, we will investigate the generalization behavior of the empirical
minimizer of a SRM-regularized CLISF objective.

Experimental details. We consider the same distributions and density ratio class as Section 5.2. In
fact, since we are only interested in the density ratio estimation part (CLISF) of the CWCP pipeline,
we need only consider the marginal covariate distributions of P and Q. Thus, the task is equivalent
to estimating the density ratio between two shifted Gaussians. We used d = 200 in our experiments
and considered a fixed shift magnitude of β = 2 (this choice was arbitrary).

The SRM-regularized CLISF objective we solved was

arg min
B∈{2.5,5,10,20,40},w∈WB

R̂(w) + λ ·B
√

d

m
,

where R̂(w) is as in (3) and λ · B
√

d
m denotes the complexity regularization term chosen per Ap-

pendix C, with λ ≥ 0 denoting a regularization strength. We ran our experiments with varying
choices λ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1} and varying sample sizes m ∈ {50, 100, . . . , 500}. We ran
100 trials and measured the average generalization performance (in terms of the population square
loss EP [(ŵ(X)− w∗(X))2]) for each combination of B, λ, and m.

Results. Figure 5 displays the results. The bottommost figure plots the average test performance
(in terms of the population square loss EP [(ŵ(X)− w∗(X))2]) of the learned clipped density ratio
against the sample size m. Different colors indicate different choices of B, and the shaded colored
regions indicate ±1 standard deviation. The top six plots (each representing a value of λ) represent
the value of the SRM-regularized CLISF objective, again against the sample size m. Qualitatively,
the best choice of regularizer λ will correspond to a plot which most closely matches the bottommost
plot (corresponding to the test losses): this indicates that the best choice of B according to the SRM-
regularized objective is close to the best choice of B if we had known the test losses in advance. This
is clearly achieved for λ = 0.5, which very closely tracks the test loss plot.

For lower values of λ < 0.5, we observe that there was insufficient penalty for structural complexity.
This is because the lowest training loss was attained by the highest value of B = 80, whereas this
value achieved the worst generalization performance until m ≈ 200, and did not become compet-
itive with the best choice of B until m ≈ 500. This is a clear sign of overfitting due to λ being
insufficiently large.
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Figure 5: Results for the structural risk-regularized CLISF objective. Qualitatively, the best choice
of regularizer λ will correspond to a plot which most closely matches the bottommost plot: this is
clearly attained when λ = 0.5.
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For higher values of λ > 0.5, we observe that there was too much penalty for structural complexity.
This is evidenced by the fact that the SRM-regularized objective favored smaller values even for
higher sample sizes. For example, when λ = 0.7, the green curve (corresponding to B = 10) did
not go below the red and blue curves (B = 2.5, 5) until m ≈ 400, much later than on the test loss
plot. On the other hand, at least in this example, the suboptimality due to an overly conservative
choice of λ appears relatively benign, especially for lower values of m where only the yellow curve
(B = 40) was significantly higher than the others.

However, this approach has limitations. First, it exchanges the problem of selecting B for the
problem of selecting the regularization strength λ. While λ is a universal constant related to the
Rademacher complexity constants, in practice, the theoretical bounds are often loose, requiring λ to
be tuned as a hyperparameter. Nevertheless, our experiments suggest that a single choice of λ (e.g.,
≈ 0.5) is robust across varying sample sizes, unlike B, which must strictly grow with m. Second,
the computational cost is higher than a single fit, as one must solve the CLISF objective for a grid
of B values to identify the minimum of the penalized risk profile.

Our empirical results suggest that SRM provides a robust, data-driven mechanism for navigating the
bias-variance tradeoff. Crucially, while the optimal clipping threshold B shifts dramatically with
sample size (as seen in the bottom panel), the optimal regularization strength λ ≈ 0.5 remains stable
across the entire range of m. This implies that SRM effectively transforms the difficult problem
of selecting a dynamic, sample-dependent parameter B into the simpler task of selecting a static,
structural constant λ. By penalizing the hypothesis complexity directly, the method allows the esti-
mator to automatically adapt its capacity to the available data, tracking the optimal test performance
without requiring access to the target labels.
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