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ABSTRACT

Although Diffusion Transformers (DiTs) have greatly advanced text-to-image
generation, models still struggle to generate the correct spatial relations between
objects as specified in the text prompt. Although mechanistic interpretability studies
have been adopted to explain neural networks’ behavior in language and vision
transformers from the perspective of the internal computation of representations,
they have not yet been used to study how a DiT can generate correct spatial relations
between objects. In this study, we investigate this open problem in a controlled
setting. We train, from scratch, DiTs of different sizes with different text encoders
to learn to generate images containing two objects whose attributes and spatial
relations are specified in the text prompt. We find that, although all the models
can learn this task to near-perfect accuracy, the underlying mechanisms differ
drastically depending on the text encoder. When using random text embeddings,
we find that the spatial-relation information is passed to image tokens through a two-
stage circuit, involving two cross-attention heads that separately read the spatial
relation and single-object attributes in the text prompt. When using a pretrained text
encoder (T5), we find that the DiT uses a different circuit that leverages information
fusion in the text tokens, reading spatial-relation and single-object information
together from a single text token. We further show that, although the in-domain
performance is similar for the two settings, their robustness to out-of-domain
perturbations differs, potentially suggesting the difficulty of generating correct
relations in real-world scenarios.

1 INTRODUCTION

Diffusion and flow model (Sohl-Dickstein et al., 2015} |Dhariwal & Nichol, 2021;|Ho et al., [2020;
Lipman et al.| [2023]; |/Albergo et al.,2023) has been leading the charge in generative modeling in many
domains, image, video, shape (Ho et al.,|2022), etc. Specifically, conditional diffusion transformers
(DiT) for text-to-image generation (T2I) have unleashed enormous creativity in both industry and the
research community, enabling high-fidelity, diverse image synthesis from natural language prompts
Rombach et al.|(2022b). However, many current T2I models often fail to follow prompts when
composing multiple objects onto a scene (Conwell & Ullmanl, 2022), particularly in arranging their
spatial relations (Huang et al.| (2023),|Ghosh et al.| (2023)), Huang et al.| (2025)). While the field is
fast advancing in generating accurate attributes for single objects, the improvement of generating
correct relations between objects is slow (Fig[J). Increasing attention has been drawn to this problem,
and multiple remedies have been proposed recently, including layout conditioning, cross attention
guidance, curriculum learning and finetuning with domain-specific data (Li et al. (2023)), |Chefer
et al.| (2023)), (Chatterjee et al.| (2024), Han et al.[|(2025)). However, few work has approached this
problem by understanding the underlying circuit for correct composition of multiple objects. Inspired
by an emerging research field, named “mechanistic interpretability”, that reverse-engineer a model’s
internal computations to identify how neurons, attention heads, and weights implement algorithms
and produce specific outputs, we study this relation generation problem in a mechanistic fashion,
with a goal to understand how T2I models can generate spatial relations under different configs, and
under what conditions they could fail.

To study this problem in a controlled setting, we construct a text-to-image task and train T2I models
from scratch. The task is to generate two objects (chosen from 2 colors and 3 shapes) in the scene
with one of eight spatial relations specified in the text. Then we delve into the underlying transformer
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circuits to achieve this task, and find the actual circuits used to solve this task heavily depend on
the choice of text encoders. With random token embedding, the T2I model implements a two-stage
circuits with two specialized cross-attention heads for reading relation information and single object
information respectively. With TS text encoder, because the information of the words in the prompt
is fused, each token contains the full information of the sentence. We find the T2I with TS5 encoder
indeed reads all the relation and single-object information from a single token. We justify the circuits
we found by both ablation and causal manipulation. We further find that though the two circuits
mechanism achieves similar task accuracy, their robustness is different upon small perturbation in the
text prompt. The accuracy with TS5 encoder collapses after perturbing by adding an extra token in the
prompt.

Our study resolves several open questions: 1) It was unclear how neural networks encode and use non-
commutative relations between objects (Wattenberg & Viégas|, [2024). Our work reveals a concrete
circuit in diffusion transformers that image tokens can read and implement the relational information
in the text, offering a mechanistic example that may generalize to other relational reasoning tasks. 2)
The iterative nature of sampling has been an obstacle that complicates attention map analysis and
circuit finding. We provide a systematic approach to summarize attention maps and pinpoint heads
underlying certain communication patterns, which could be adapted as a general tool to study DiT.
3) Previous studies attributed the spatial relation generation failure to particular stages, e.g. cross
attention (Chefer et al.|(2023), Phung et al.| (2023)) or text encoding (Zhang et al.|(2024)), [Kang et al.
(2025)). In this study, we offer a holistic view that bridges these threads. In our toy setting, the
T5-based DiT relies on the information fusion by T5 for spatial relationships while the RTE-based
DiT implements its own circuits for generating relations. This suggests that the embedding model
could be the bottleneck for generating spatial relations in real-world scenarios, making embedding
model improvements more critical than DiT modifications.

2 BACKGROUND

Spatial generation failure in T2I models Failure

Dataset design

in. multi-object §patial relation geperation has bqen prompt “Blue square s above red circle” ||
widely reported in T2I models. While new models im- text T5 .
proved significantly in generating accurate single ob- encoder{ RTE

ject attributes, the improvement of generating correct RTEw/ P“'
relations between objects is mild (Fig[0). One com- oyt I I [ I I I image

mon view is that spatially localized cross-attention  tokens tOkens ______________
grounds object placement. Building on this hypoth-

e§is, recent vyork t?lckles spgtial—r;lation failures by -mm-
directly manipulating attention at inference. Attend- crossattn | "
and-Excite (Chefer et al.| (2023)) “excites” the cross- PixAt-DIT '\ !

attention to subject tokens to prevent catastrophic
neglect and improve attribute binding; and Grounded
T2I with Attention RefocusingPhung et al.|(2023)) op-
timizes cross- and self-attention using layout-derived
losses—via user boxes or LLM-proposed layouts—to
enforce multi-object placement and spatial relations.
On the other hand, works like [Zhang et al.| (2024)
and [Kang et al.| (2025) argue that the poor spatial
performance of T2I models stems from the limita-
tions of text encoders. Zhang et al.| (2024)) finds that
text encoders used across frontier T2I models do not
sufficiently preserve spatial relations information in
their encodings. Similarly, Kang et al.|(2025) argues that multiple image properties including spatial
relations cannot be simultaneously encoded by CLIP.

Figure 1: Schematics of the model and task.
The T2I model archetecture adoptes the de-
sign of PixArt. There are three main compo-
nents: the text encoder that preprocess text
tokens, the DiT which is the backbone of the
image diffusion denosing process, and the
cross attention that passes text information
to image tokens. The task is to generate two
objects with a specified spatial relation.

Interpretability in diffusion The work that shares the most similar interest with us is (Okawa
et al.| 2024 [Park et al.,[2024), which studied the learning dynamics of composition of attributes on
a single object in a conditional diffusion model using a minimalist dataset. The key difference is
that we focus on the generation of a composition of multiple objects on the scene instead of a single
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object. Another difference is that we study the architecture where the conditioning signal is encoded
by a set of word vectors (e.g. TS encoder) and passed the information to image tokens via cross
attention, instead of a single vector summing all attributes as in|Okawa et al| (2024). This setting is
more closely related to modern text2image frameworks (Chen et al.,[2023}; [Rombach et al, 20224}

Xie et al.} 2024).

3 TRAIN T2I MODELS TO GENERATE SPATIAL RELATION

Previous work demonstrates that pretrained T2I models across different text encoders and architectures
show disproportionally better capabilities for single object feature generations than object 2D (top-
bottom, left-right) or 3D (front-back) relations (Huang et al.}[2023)). This observation motivates us
to study the mechanism of spatial relation generation and why it frequently fails in T2I models. To
understand this problem in a controlled manner, we construct a minimal text-image dataset and train
DiT-based T2I models of different sizes and text encoders from scratch. We make sure that both
single object features and object relation properties are reliably learned and amenable to mechanistic
analysis.

Dataset setup We reason that such a dataset should have following properties: 1) multiple objects in
the scene with distinct features, 2) objects arranged to satisfy specific (spatial) relations described by
the prompt, and 3) samples simple enough to evaluate rigorously. Guided by this principle, we design
a dataset of the following format: each sample consists of a pormpt in the format [descriptor
A] [object A] [relation] [descriptor B] [object BI]“ e.g., red square above
and to the left of blue circle”, and a corresponding image with two objects positioned on a gray
background (Fig.[T]A). We use three shapes (circle, triangle, square), two colors (red, blue), and eight
spatial relations: left, right, above, below, upper left, upper right, lower left, lower right. The shape
and color of the two objects are always distinct, and their positions are arranged to avoid collisions.
The color descriptors A and B are randomly dropped, and spatial relations are described with multiple
paraphrases to add variability.

Model architecture We use a DiT-
based T2I model, following a PixArt-
style architecture representative of the
state-of-the-art open-source DiT mod-
els (Chen et al) (2023)). We train
several model sizes with patch size
2: DiT-B (12 layers, 12 heads, 768

latent dimensions), mini (6L, 6H, 384- ooy elationshp focse
d), micro (6L, 3H, 192-d), and nano e
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practice, images are encoded with the
Stable Diffusion VAE
[20224). As for text conditioning, we
compare three encoders: (i) T5-XXL
(Raffel et al.l 2023); (ii) a random
token encoder with sinusoidal posi-
tional encoding (RTE) (iii) RTE with-
out positional encoding. This compar-
ison tests whether the diffusion trans-
former can learn object relations with-
out semantic or contextual structure in
the text embeddings, enabling better
localization of the relational computa-

tions (Fig. [TA).
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Figure 2: Training dynamics of the T2I models (DiT-B). A)
and B) Both models trained with random token embedding
and T5 can achieve good accuracy on the task. C) The
task is learned step by step. In both models, they first learn
to generate objects but with wrong attributes binding, then
they the correct binding of single-object attributes (e.g. red
square), finally they learn the correct spatial relation.

training, we evaluate model generations on 96 prompts spanning 8 spatial relations and 12 object
pairs. Generation is performed on multiple random seeds with the default sampler (DPM-Solver++

with 14 steps (Cu et al [2022)) and classifier-free guidance of 4.5 (Ho & Salimans| [2022). We
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evaluate the consistency of generated images with the prompts using classic segmentation and
classification tools from cv2 (Bradski|(2000)). Specifically, we assess on the following 4 aspects
of features: 1) existence of correct colors on the image, denoted as color, 2) existence of correct
shapes on the image, denoted as shape 3) correctness of shape color binding on the two objects,
denoted as unique_binding and 4) correctness of spatial relation between the identified two
objects, denoted as spatial_relation.

Accuracy on all four metrics increases with model parameter sizes up to the DiT-mini configu-
ration; accuracy gains from DiT-mini to DiT-B are marginal. All trained models at the largest
parameter size (DiT-B) show high accuracy in color and shape, but the unique_binding
andspatial_relation accuracy varies significantly depending on the chosen text encoders (Tab.
[2). RTE and T5 achieve strong unique_binding and spatial_relation accuracy, whereas
RTE without positional encoding is significantly worse on these metrics. Without positional cues,
“red A on top of blue B”” and “blue B on top of red A” collapse to the same bag-of-words embeddings,
yielding identical outputs. Adding positional information resolves this ambiguity, indicating that
pretrained semantic structure (T5) is not strictly required for learning object relations

Having established the end-point performance trends across models, we next examine how these ca-
pabilities emerge during training. For both T5-DiT and RTE-DiT models, we evaluate an exponential
moving average (EMA) of weights (Karras et al.|[2024) following the diffusion-model practice and
show the accuracy curves averaged across multiple runs. We consistently observe that color accu-
racy converges first, followed by shape and then unique_binding. spatial_relationis
learned the slowest (Fig. 2JA.), indicating that relational composition is more challenging to learn
than single-object attributes or bindings. Comparing across the two text encoders, we observe that
T5-DiT models converge to optimal accuracy faster across all 4 features. Moreover, the temporal
gaps between different feature learning are tighter. We also provide generation examples at different
checkpoint steps throughout the training for visual examination. The different dynamics suggests
that the two family of models potentially use different internal mechanisms to accomplish the same
generation task.

4 RELATION GENERATION CIRCUITS IN RTE-DI1T

Cross Attention Maps Text Tokens Attention map tensor Attention map :ynopsis
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Figure 3: Illustration of our method to find relevant heads, which we name as “attention synopsis”.
The giant attention tensor is first reduced to those only between two interested groups of tokens (e.g.
the relation token regardless specific words, or an object token regardless where or what it is). Then
the reduced attention tensor is averaged over diffusion time steps, resulting in a layer x head map
which we use to pinpoint relevant heads.
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4.1 ATTENTION SYNOPSIS

In our DiT-based model architecture, cross-attention mechanism is the sole pathway for text prompts
to influence the image tokens at each denoising step. Therefore, we examine the cross-attention
patterns to gain insights into how text on single object feature and spatial relations guide correct
generations. Given the high dimension of DiT’s cross attention maps ([layers x heads X time steps X
condition vs uncondition pass x number of tokens]), it is impractical to perform manual inspection.
Moreover, simply averaging attention maps over different samples and prompts can obscure specific
interactions. Therefore, we develop a scalable paradigm to analyze and quantitatively summarize the
cross-attention head patterns called Artention Synopsis (Fig.[3) Leveraging this method, we efficiently
search through over 10 million attention maps to trace text-to-image flow and localize the relevant
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circuit mechanisms for spatial relations generation. Specifically, we leverage the fact that token
categories are identifiable in both image and text (image tokens by object segmentation, text tokens by
semantic attribute). We then aggregate attention within and across categories, yielding interpretable
category-to-category interaction patterns. After this aggregation, we reduce the cross-attention map
tensor dimension to [num layer x num head x num time steps]. Given that the attention maps usually
change smoothly across time, we further calculate the mean attention maps over time steps, reducing
the tensor to shape [num layer, num head], which we denote as the attention map synopsis.

Many previous works have reported the cross attention communication between the text token of
a single object and the corresponding object in the image (Tang et al.| 2022), and this property is
leveraged to control generation (Hertz et al.| 2022} [Liu et al., [2024). These findings suggest that
there is coupling between single object tokens across text and image modality, supporting good
generation. However, less is known about whether text tokens describing spatial relations between
objects extends similar properties. Therefore, we leverage the Attention Synopsis method to examine
all category-to-category cross-attention patterns, especially focusing on the spatial relations category.
We show results for RTE-DiT in this section and T5-DiT in Section

In RTE-DiT, we find a minimal circuit that enables generation of correct objects at correct spatial
locations. The circuit consists of two key cross attention heads which we discuss in details below.
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Figure 4: The spatial relation heads in random-embedding-based T2I. A) We find specialized
cross attention heads that contributes to the object image tokens (top: the objectl in the text; bottom:
the object2 in the text) attending to the relation text tokens. B) We show the activation of this head
across images tokens and sampling steps. The map for the composite relation “below and right”
decomposes cleanly as the sum of the maps for “below” and “right”, C) The observed attention
patterns can be induced by positional embedding.

4.2 SPATIAL RELATION HEAD

We first use attention synopses to look for cross attention heads that contribute to passing relation
information from text tokens to image tokens and find specialized heads (FigH). We find, indeed,
there are specialized heads for this job. In the case of “objectl” (i.e. the first object in the text), there
is only one head (L2HS) that dominates, while in the case of “object2”, there are a small number of
heads that have this role. We also find similar pattern in models with other sizes.We name these heads
“spatial relation head”. By plotting the “activation” of this head across sampling steps (Fig. [)), we
find its spatial pattern aligns with the spatial regions corresponding to the relation token, with a trend
of concentrating to the object. This observation implies the query that maximizes the attention score
of this head is potentially aligned with positional embedding. We verify this by checking the QK
circuit[Elhage et al| (2021)) of L2H8 (Fig[4[C). The head projects sinusoidal positional embeddings
from image tokens into the query space (Q) and MLP-projected relation-word embeddingﬂ into the

'In the PixArt architecture, frozen text embeddings are first passed through a learnable MLP projection
before entering the attention layers.
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Figure 5: The object generation heads in random-embedding-based T2I. A) We find specialized
heads in the synopses of cross-attention, computed from image tokens of each object to its own shape
tokens. B) We show the activation of this head across images tokens and sampling steps for the
prompt “red square is below and to the right of the blue circle”: tokens at the eventual square location
attend to “square,” while the other object attends to “circle”; selectivity sharpens from Step 0—12.
C) Injecting the VO output of the relation head (L2HS) into positional embeddings is sufficient to
elicit selective attention from tagged locations to the “square” token (left); without the tag the pattern
is weak (right). This indicates the object generation head reads the relational tag generated by the
spatial relation head.
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key space (K) via learned linear layers (W,, W3). This QK interaction aligns specific coordinates
in the image grid with the semantics of spatial relation tokens. The resulting inner-product maps
(FigH|C) form smooth gradients whose orientation reflects the spatial relations (e.g., “above” produces
a vertical gradient). These gradients act as positional tags, marking the regions of the canvas where
the first object should be placed. Downstream heads then read these tags to guide accurate object
placement and generation.

4.3 OBJECT GENERATION HEAD

The spatial relation head allows differential tagging of image tokens based on relational text tokens.
To successfully complete the task, the model also needs to generate the correct object on the tagged
canvas. To this purpose, we examine cross attention heads that contribute to passing object shape
information from text tokens to image tokens. We identify a single head—Layer 4, Head 3 (L4H3) that
consistently mediates communication between an object’s image tokens and its corresponding shape
word in the prompt (Fig.[5]A). This linkage is invariant to both the object’s position in the sentence
and the specified spatial relation, indicating that the head encodes shape identity independently
of relational context. During sampling, we can see this communication channel is active later in
sampling (step4-8), linking each objects to their corresponding shape tokens in the prompt (Fig. [5B).

4.4 ABLATION OF CASUAL MANIPULATION

To test whether the above discussed heads has a

causal rple in correct spatial relatio.n and object shape  sincosPosencodingin DT pyompt.“Blue square is above and to the
generation, we perform both ablation and casual ma- left ofred circle”

nipulation experiments.

We also perform layer- and head-specific ablation L2H8: Relational Head  Earlier in diffusion
in image to text tokens cross-attention and evaluate Blue square is above and to the left of red circle.
image generation on all testing prompts. Specifically, [T L |
we identify and mask tokens corresponding to 3 types
of concepts in the text prompts respectively - object n:
shape (object), object color (color) and spatial l VO ircit o
relation (spatial). Ablating spatial-relation atten- AddTag 1 (et therebeabjec 11)
tion specifically in L2HS8 reduced relational accuracy
from 67% to 33%, while other heads showed negli-
gible effects (Fig. D). This confirms L2H8’s criti-
cal role in implementing the correct spatial layout.
On the other hand, ablating shape cross-attention
particularly in L4H3 makes object shape generation
accuracy decrease from 90% to 76% while ablation
of other layer head combinations shows minimal ef-
fect (Fig. )..ThIS emphasized .the critical vglue Vodrait

of such a head in robustly generating correct object (Hypothetical) Mapping text featureof‘square” and circe”to
shape. Although the effect size of object shape ab- O Vista featuren coresponding locations.

lation is smaller than the spatial relations ablation, .
effects in both cases are only confined to the two pre-

viously identified heads, L2H8 and L4H3, suggesting . . .
a highly concentrated circuit. Figure 7: Schematics of the object relation

circuit in DiT trained with random embedding

QK dircuit
ion of textual relation to image position

|
W
[

]

a

l L4H3: Object Gen Head Later in diffusion

Blue square is above and to the left of red circle.

QK circuit
Those with Tag 1 will attend to shape of object 1.

Those with some (Hypothetical) tags will attend to shape of
object 2.

We reason that L2H8 and L4H3 functions in sequence

to generate a correct object at the correct spatial loca-

tion. To test this hypothesis, we inject the VO output

of the relation head (L2HS8) into L4H3’s image tokens positional embeddings. This manipulation is
sufficient to elicit selective attention from tagged locations to the “square” token (Fig[5|C.). Without
the injected VO inputs, no obvious attention pattern is observed (right), showing that the downstream
object shape head reads the relational tag.
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4.5 CONSISTENCY ACROSS MODEL SIZES

Finally, we test the generalizability of this circuit mechanism by examining across RTE-DiT of
different parameter sizes. We find putative spatial relation heads consistently in DiT models of three
different scales (DiT-B, mini, micro) we trained. The smallest model (DiT-nano) where we cannot
find such a head also failed badly on spatial relation (accuracy 5%) (Tab. [2).

In summary, for DiTs trained with random token embedding (RTE), relational object generation
unfolds in two stages (Fig.[7): The “spatial relation head” reads relational text tokens (e.g., “above,”
“left”) via the QK circuit and interact with the sinusoidal positional encoding of image tokens,
producing spatial gradients for each relation. The VO circuit writes positional tags (e.g., Tag 1)
onto image tokens, marking where the object (e.g. 1st in sentence) should appear. In the “object
generation head,” tokens with matching tags attend to shape token of the corresponding object. The

VO circuit maps these text features (e.g., “square”, “circle”) into visual features at tagged locations,
generating the object via denoising.

This modularizes operation where relation heads laying the ground and object heads assigning
attributes provides a clean and disentangled mechanism for robust composition of relation and object
combination.

5 RELATION CIRCUITS IN T5
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Figure 8: TS mechanism for relational generation. A. T5-based DiT is robust to attention ablation of
relation word, but most sensitive to shape2 and EOS. B. Manipulation via factorized word vector
arithmetic causally affects generated object relation.

Given the clear mechanism found in RTE-based T2I models, it’s tempting to apply the same Attention
Synopsis method and identify specialized cross attention heads for spatial relation in T5-based
models. However, no clear pattern emerges from averaging.Thus, we seek alternative strategy for the
alternative mechanism.

Given that after TS encoder each text token could contain the information of the whole sentence, the
image tokens may receive the spatial relation information from non-relation tokens. We test this by
using attention mask to see which word has the largest effect on object relation generation (Fig[SA).
Surprisingly, the relation words, filler and color words have little effect on the generation performance
(Fig.[8]A). Ablating <end_of_sentence> token disrupts the denoising generation process, thus
decimating all evaluation metrics. The relation accuracy decreases after masking shapel and
shape?2, where ablating shape1 reduces spatial relation by 15%, while ablating shape?2 harms
all shape, binding and relation accuracy by 50%.

This suggests an intriguing alternative mechanism: through the T5 language model, the information
of objectl and object2 and their relation has been encoded in the contextual embedding of shape?2
and shapel tokens, thus DiT only needs to decode the information from them, and ignore others.

Visualization (UMAP, tSNE, PCA) of the TS contextual embedding for the second shape token

(Vihapeo) shows clear qualitative separation by spatial relation and, within each relation, by object2’s
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color. This indicates that multiple semantic factors—its own identity, the other object’s identity, and
the spatial relation—are jointly represented in this embedding space (Fig. [A.T).

We further analyze this effect by a formal variance analysis. We model the contextual embedding of
the second object token as a linear combination of four factor vectors: sEapeZ = Vihape2 + Veolor2 +
Vinapet + Viel. This structure allows us to extract a vector for each level within a factor (e.g., a
vector for “upper right” versus “lower left”), enabling controlled embedding manipulations. Variance
partitioning supports this factorization (Tab.[3). In the raw T5 embedding, shape2 accounts for
the largest share of variance (~37.5% partial R?), with relat ion still contributing substantially
(~12%). After projection through the DiT MLP, the balance shifts: relation becomes the
dominant factor (~21%), while shape?2’s share decreases, suggesting DiTs reorganize the token
representation and accentuate the relation information for generation.

2
V;hapel Veolor2 ‘/shapel Viel tot. R

part. R2  37.5%  4.7% 50%  12.1%

marg. R®  514%  47%  189%  121% 07

TS emb

part. R? 14.9% 8.0% 7.2% 21.3%

49
marg. B2 169%  8.0%  9.0%  213% 0°

DiT MLP

Table 1: Variance partitioning of T5 embedding and DiT-MLP projection of shape?2 token.

To causally test the hypothesis that relation information is encoded in specific object tokens within
the TS5 embedding, we performed targeted vector arithmetic on the 4096-d prompt embedding for
a shape token (e.g., “square”). Starting from the original embedding of object2, (e.g. Vgyue 10
prompt “blue circle is to the lower left of red square”), we subtracted the learned factor vector for the
original relation (e.g., Viower left) and added a scaled vector for an alternative relation (e.g., 2Viower right
or 2‘/upper right)~

As shown in Fig. 8B, this manipulation systematically shifts the generated object positions to match
the new relational configuration, while leaving object identities (color and shape) largely intact. This
provides direct causal evidence that relational geometry is embedded in the contextual representation
of the shape?2 token, and that simple linear operations in this space can reconfigure spatial relations
in generated images.

Robustness of RTE-based and T5-based circuits When evaluating on prompt with the exact
format as the training ones, RTE- and T5-trained models have comparably high performance on
spatial relation. However, slight prompt variation breaks the tie, i.e. adding the to the prompt reduces
the relational accuracy of T5-DiT model by around 40% (Fig. [IOB., Tab. [2). This suggests that
even though the task accuracies are similar between RET-based and T5-based T2I models, their
robustness to the small perturbations in the text is different. The T5-based model is more sensitive to
the perturbation.

6 DISCUSSION
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A EXTENDED RESULTS

Across models: single-object vs spatial
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Figure 9: Evaluation of spatial vs single feature accuracy of popular text to image models
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Figure 10: Evaluation of model performance on trained and generalized prompt template.

A.1 EVALUATION TRAINING DYNAMICS
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Table 2: Comprehensive evaluation of models on prompt template variations.

Abbreviations: WD: weight decay, rnd: random embedding, rndpos: random embedding plus
position encoding. bind: unique and correct attribute binding. sp rel: spatial relation correctness
(loose). sp rel+: spatial relation correctness (stringent). Dx, Dy: difference of coordinates between
the two identified objects (with target attributes) x1 — x2, y1 — Y2, With the unit pixel (128 pixel
total).

All statistics are averaged from 264 prompts, covering all 8 relations and all object combinations,
each drawing 50 samples. Thus, the non-zero value in Dx, Dy suggests systematic bias in spatial
relation.

shape color  bind sprel sprel+ Dx Dy

model name template
rndpos DiT-B Ol is Rel 02 0.877 0.928 0.855 0.843 0.758 -04 09
O1 is Rel the 02 0900 0.942 0877 0.862  0.717 -0.3 -04
O1 Rel 02 0.858 0.909 0.833 0.823 0.752 -1.2 -1.6
O1 Rel the 02 0.877 0.925 0.853 0.842  0.759 -0.3 -1.2
the Ol isRel the O2 0.895 0.946 0.868 0.833 0.614  -0.9 0.5
rndpos DiT-mini Ol is Rel 02 0.865 0.914 0.838 0.828 0.644 0.8 0.4
01 is Rel the 02 0.871 0.931 0.847 0.834 0.613 1.1 1.5
O1 Rel 02 0.778 0.845 0.743 0.737 0.621 1.5 -0.4
O1 Rel the 02 0.799 0.879 0.770 0.762  0.616 1.8 0.0
the Ol isRelthe O2 0.767 0912 0.721 0.680  0.471 -0.1 1.8
rndpos DiT-micro  O1 is Rel O2 0.726  0.683 0.508 0.489 0.315 -0.2 0.2
O1 is Rel the 02 0.738 0.705 0.520 0.501 0.312 0.3 0.2
O1 Rel 02 0.626 0.604 0395 0.38  0.270 0.1 -1.5
O1 Rel the 02 0.649 0.639 0410 0.401 0.269 02 -12
the Ol isRel the O2 0.665 0.724 0.432 0.403 0.234 2.1 -0.7
rndpos DiT-nano Ol is Rel O2 0360 0.531 0.195 0.090 0.049 32 0.1
O1 is Rel the 02 0.372  0.539 0.205 0.096  0.051 24  -16
O1 Rel 02 0270 0.568 0.146 0.069 0.037 5.1 -04
O1 Rel the 02 0.279 0.581 0.151 0.071 0.036 32 24
the Ol isRelthe O2 0.399 0.632 0.193 0.082  0.047 36 35
rnd DiT-B Ol is Rel 02 0.859 0.899 0415 0.207 0.192 0.1 0.1
Ol is Rel the 02 0.863 0.903 0416 0.207 0.190 -0.0 -0.0
O1 Rel 02 0.856 0.893 0412 0.205 0.191 0.0 -0.0
O1 Rel the 02 0.860 0.902 0415 0.206  0.191 -0.0 0.1
the Ol isRel the O2 0.866 0.910 0.417 0207  0.188 0.1 0.0
T5 DiT-B Ol isRel O2 0.857 0.892 0.820 0.808 0.749 -0.8 -0.5
O1 is Rel the 02 0915 0931 0.894 0498 0306 -33.7 -249
O1 Rel 02 0.853 0.871 0.825 0.608 0.493 45 -16.6
O1 Rel the 02 0941 0958 0925 0400 0217 -351 -37.0
the Ol isRelthe O2 0.917 0.935 0.896 0.529 0309 -184 -20.7
T5 DiT-mini Ol is Rel 02 0.856 0.889 0.822 0.810  0.659 -04 0.6
O1 is Rel the 02 0.877 0.922 0.855 0487 0259 -358 -24.1
O1 Rel 02 0.816 0.844 0.772 0.559 0399 -12.7 -18.2
O1 Rel the 02 0.895 0.946 0.878 0.391 0.184 -38.7 -37.6
the Ol isRelthe O2 0.906 0947 0.885 0537 0272 -17.1 -193
T5 DiT-B WD Ol isRel O2 0.183 0.114 0.033 0.033 0.031 -1.2 1.3
O1 is Rel the 02 0.169 0.104 0.030 0.017 0013 -39.7 -222
O1 Rel 02 0.164 0.110 0.032 0.025 0.023 5.0 -154
O1 Rel the 02 0.181 0.122 0.037 0.016 0.011 -404 -348
the Ol isRel the O2  0.160 0.100 0.028 0.017 0.013 -15.0 -184
T5 DiT-mini WD OT is Rel O2 0.894 0.942 0866 0.854  0.667 -0.4 1.0
O1 is Rel the 02 0911 0.967 0.886 0.521 0265 -42.0 -19.1
O1 Rel 02 0.843 0.886 0.804 0.596  0.429 9.1 -16.7
O1 Rel the 02 0911 0975 0.888 0414 0.189 -47.1 -353

the Ol isRel the O2 0911 0965 0.887 0514 0249 -22.4 -13.8

13



Under review as a conference paper at ICLR 2026

Prompt: “blue triangle is to the upper left of red square” 14 steps, cfg 4.5

Learning visual Existance of target Correct binding of object Correct spatial relation
primitives attributes (shape, color) attributes (shape, color) between objects

Training | g
Steg n 1500 3500 5750 8500 11750 15750 20250 26000 32500 40500 50000 61250 75000

Prompt: “blue triangle i to the upper feft of red square” 14 steps, cfg 4.5 D{T-B, random embedding + pos

Learning visual Correct binding of ob{e(t Correct spatial relation
primitives  attributes (shape, color) between objects

(A
Training (4
Step 1 1500 3500 5750 8500 11750 15750 20250 26000 32500 40500 50000 61250 75000
Prompt: “blue triangle is to the upper left of red square” 14 steps, fg 4.5 DjT-B, T5

Learning visual Existance of target ~ Correct binding of object Correct spatial relation
primitives attributes (shape, color)attributes (shape, color) between objects

Training |Hpa4S]
Step 1 1500 3500 5750 8500 11750 15750 20250 26000 32500 40500 50000 61250 75000
Prompt: “blue triangle is to the upper left of red square” 14 steps, g 45 DiT-mini, random embedding + pos

Learning visual Correct binding of object Correct spatial relation
primitives attributes (shape, color) between objects

T’a"s“"g T1 1500 3500 5750 8500 11750 15750 20250 26000 32500 40500 50000 61250 75000
Prompt: “blue triangle is to the upper left of red square” 14 steps, cfg 4.5 DiT-mini, TS

Figure 11: Comparison of training dynamics of DiT models with different text encoding and
scale. Specific evaluation prompt used was “blue triangle is to the upper left of red square”, sampled
with 14 steps at cfg 4.5, sampled from the same noise seed. Further, T5 models immediately learn to
achieve object attribute binding after learning attributes themselves, while random embedding model
gradually learn the correct attribute binding and then spatial relation. Across scales, generally, larger
scale models train faster.

Figure 12: Observation on sampling dynamics Specific evaluation prompt used was “the red square
is above and to the right of the blue circle”, sampled with 14 steps at cfg 4.5. Model used is DiT-B
rand emb pos. A transition can be seen at step 4-6, where the two object at their final positions can be
clearly seen from the expected outcome G(Xo(x;)).
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Figure 13: Dimension reduction visualization of shape2 token representation (PCA, tSNE,
UMAP). Top row: T5 contextual embedding (4096d), Bottom row: DiT-MLP projection (784d).
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B DATASET AND CODE AVAILABILITY

To preserve anonymity, we will publicly release all code, configuration files, and datasets at a
permanent URL upon acceptance.

C LLM USAGE

The usage of LLM is limited to language polishing and grammar, and literature search. We asked
an LLM to suggest surface-level rewrites to improve clarity, grammar, and style for author-written
passages. Edits were limited to phrasing and organization at the sentence/paragraph level. We also
used an LLM to source papers, and produce brief literature summaries for writing references.
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