
Competing Bandits in Non-Stationary Matching Markets

Avishek Ghosh 1 Abishek Sankararaman 2 Kannan Ramchandran 3 Tara Javidi 4 5 Arya Mazumdar 4

Abstract
Understanding complex dynamics of two-sided
online matching markets, where the demand-side
agents compete to match with the supply-side
(arms), has recently received substantial interest.
To that end, in this paper, we introduce the frame-
work of decentralized two-sided matching market
under non stationary (dynamic) environments. We
adhere to the serial dictatorship setting, where the
demand-side agents have unknown and different
preferences over the supply-side (arms), but the
arms have fixed and known preference over the
agents. We propose and analyze an asynchronous
and decentralized learning algorithm, namely
Non-Stationary Competing Bandits (NSCB),
where the agents play (restrictive) successive
elimination type learning algorithms to learn
their preference over the arms. The complexity
in understanding such a system stems from the
fact that the competing bandits choose their
actions in an asynchronous fashion, and the lower
ranked agents only get to learn from a set of
arms, not dominated by the higher ranked agents,
which leads to forced exploration. With carefully
defined complexity parameters, we characterize
this forced exploration and obtain sub-linear
(logarithmic) regret of NSCB. Furthermore, we
validate our theoretical findings via experiments.

1. Introduction
Repeated decision making by multiple agents in a compet-
itive and uncertain environment is a key characteristic of
modern day, two sided markets, e.g., TaskRabbit, UpWork,
DoorDash, etc. Agents often act in a decentralized fashion

1Systems and Control Engg. (SysCon) and Centre for Machine
Intelligence and Data Science (CMInDS), IIT Bombay 2AWS
AI, Santa Clara, USA (Part of the work was done while affiliated
with UC Berekely) 3Electrical Engg. and Computer Sciences,
UC Berkeley 4Halıcıoğlu Data Science Institute (HDSI), UC San
Diego 5Electrical and Computer Engineering, UC San Diego.
Correspondence to: Avishek Ghosh <avishek ghosh@iitb.ac.in>.

Submitted to the ICML 2023 workshop on ‘The Many Facets of
Preference-based Learning’

on these platforms, and understanding the induced dynamics
is an important step before designing policies around how
to operate such platforms to maximize various system ob-
jectives such as revenue, efficiency and equity of allocations
(Johari et al., 2021; Liu et al., 2020). A body of recent work is
aimed at understanding the decentralized learning dynamics
in such matching markets (Sankararaman et al., 2021; Liu
et al., 2020; 2021; Dai & Jordan, 2021a;b; Basu et al., 2021).
This line of work studies the matching markets introduced
first by the seminal work of (Gale & Shapley, 1962), under
the assumption where the participants are not aware of their
preference and learn it over time by participating in the
market. A key assumption made in these studies is that the
true preferences of the market participants are static over
time, and thus can be learnt with repeated interactions.

Markets, however are seldom stationary and continuously
evolving. Indeed, an active area of research in management
sciences and operations research revolve around understand-
ing the equilibrium properties in such evolving markets
(Damiano & Lam, 2005; Akbarpour et al., 2020; Kurino,
2020; Johari et al., 2021). However, a central premise in this
line of work is that the participants have exact knowledge
over their preferences, and only need to optimize over other
agents’ competitive behaviour and future changes that may
occur. In this work, we take a step towards bridging the two
aforementioned lines of work. To be precise, we study the
learning dynamics in markets where both the participants
do not know their exact preferences and the unknown
preferences are themselves smoothly varying over time.

Conceptually, the seemingly simple addition of varying pref-
erences invalidates the core premise of learning algorithms
in a stationary environment (such as those in (Liu et al., 2021;
Sankararaman et al., 2021)) where learning is guaranteed to
get better with time as more samples can potentially be col-
lected. In a dynamic environment, agents need to additionally
trade-off collecting more samples by competing with other
agents to have a refined estimate, with the possibility that the
quantity to be estimated being stale and thus not meaningful.

Model Overview: The model we study consists of N
agents and k ≥ N resources or arms, where the agents
repeatedly make decisions of which arm to match with
over a time horizon of T . The agents are globally ranked
from 1 through N . The agents are initially assumed to not

1

Submission and Formatting Instructions for ICML 2023

know their rank. In each round, every agent chooses one
of the k arms to match with. Every arm that has one or
more agents requesting for a match, allocates itself to the
highest ranking agent requesting a match1, while blocking
all other requesting agents. If at time t, agent j is matched
to arm `, then agent i sees a random reward independent of
everything else with mean µj,`,t. The agents that are blocked
are notified of being blocked and receive 0 reward. Moreover
the agents are decentralized, i.e., make decisions on which
arm to match is a function of the history of the arms chosen,
arms matched and rewards obtained at that agent.

The serial dictatorship model is as an important special
case of the general matching market, with applications in
pareto-optimal allocations that occur in cloud computing
(Dickerson et al., 2019), (Even et al., 2009), crowd-sourcing
(Massoulié & Xu, 2016) and question-answering platforms
(Shah et al., 2020). In fact, in the classical application of
matching universities to applicants (Gale and Shapley, 1962),
a serial dictatorship model is reasonable since the university
ranking is same for all the applicants. For stationary markets,
decentralized algorithms was first studied in the serial
dictatorship setting (Sankararaman et al., 2021; Basu et al.,
2021), before being generalized to arbitrary markets (Liu
et al., 2021). Thus in this context, our work contributes to the
growing body of work on decentralized learning in matching
markets, whereby we give first algorithms and results in the
non-stationary setting under the serial dictatorship model.

The key departure from prior works of (Liu et al., 2020; 2021;
Sankararaman et al., 2021) is that the unknown arm-means be-
tween any agent j and arm ` is time-varying, i.e., the mean is
dependent on time t. We call our model smoothly varying, be-
cause we impose the constraint that for all agents j and arms `,
and time t, |µj,`,t−µj,`,t+1|≤δ, for some known parameter
δ. However, we make no assumptions on the synchronicity
of the markets, i.e., the environments of different agents can
change arbitrarily with the only constraint that any arm-agent
pair means does not change by more than δ in one time-step.

From a practical perspective, slow variation is a reasonable
model in many settings of cloud computing ((Dickerson
et al., 2019)) and financial applications, where the number
of decisions are typically made in the order of seconds,
while distribution changes/shifts typically occur at a larger
time-scale of minutes or even hours. We show later that
this model even with known δ, highlights the key tension
in the multi-agent setting since the environments across
agents varies asynchronously and designing decentralized
algorithms is challenging and requires several technical
novelty. Algorithms adaptive to general non-stationarity
are unknown even for the single agent bandit problem
(Krishnamurthy & Gopalan, 2021) and thus, we leave the

1If i<j, then agent with rank i is said to be higher ranked than
agent j

general non-stationary market bandits to future work.

Decentralized decision making: The decision making by
agents in our models are decentralized - i.e., at each time the
decision of which arm to pull is based only on the information
collected by that agent thus far. At each time after the pull
of an arm, every agent either observes that they collided and
thus get no reward, or receive a stochastic reward. In addition
to rewards, we also assume that agents can write limited
information on a ‘black-board’, which act as a public broad-
cast. In our model, we only assume that at each time-step,
each agent can write one arm-id in {1,··· ,k} on the board.
Such models of information sharing across agents is standard
in decentralized matching markets - for ex. (Liu et al., 2021)
assume that at the end of every time-step, every agent can
observe the arms played by all agents in that time-step. In
this regard, the model of information sharing we consider is
weaker than that of (Liu et al., 2021). Furthermore, in Section
D, we remove access to this black-board and show that low
regret is achievable even if the only information agents have
are the arms they play and the rewards they achieve.

Key technical challenges: Even in the single agent case
without competitions, algorithms such as UCB (Auer et al.,
2002) perform poorly compared to non-stationary bandit
algorithms such as SnoozeIT (Krishnamurthy & Gopalan,
2021) that adapts to the varying arm means (c.f. Figure
2(a)) in smoothly varying environments. The reason is that
stationary algorithms such as UCB weighs all the samples
collected thus far equally in identifying which arm to pull,
while adaptive algorithms such as SnoozeITweighs recent
samples more than older samples in order to estimate the
arm-mean at the current time point. This is exacerbated in
a multi-agent competitive setup where agents need to decide
whether to pull an arm that yielded good results in the past,
but is facing higher competition at the present.

We circumvent this problem by introducing the idea of
forced exploration in the algorithm. Since the environments
are time-varying possibly asynchronously across agents,
a lower ranked agent may be forced to explore and obtain
linear regret, if any of the higher ranked agents are exploring.
To build intuition, consider a 2 agent system in which the
higher ranked agent is called Agent 1, and the other agent is
Agent 2. Suppose, Agent 1’s environment (i.e., arm-means)
are volatile where the gap between the best and second best
arm is small, while Agent 2 has a more benign environment,
where all arm-means are well separated and not varying with
time. In this case, Agent 1 will be forced to explore arms a
lot as its environment is fluctuating with no clear best arm
emerging. Since any collision implies that Agent 2 will not
receive a reward, Agent 2 is also forced to explore and play
sub-optimal arms a linear number to times to evade collision,
even when it knows its own best arms. This phenomenon
indeed also occurs in the stationary setting, albeit in the

2

Submission and Formatting Instructions for ICML 2023

stationary setting, every agent knows that after an initial
exploration time, all agents will “settle” down and find their
best arm. This is the concept of freezing time introduced in
(Sankararaman et al., 2021; Basu et al., 2021), that plays a
critical role in both the design and analysis of algorithms in
the stationary case. In the non-stationary setting however,
there is no single freezing time for the agents —rather agents
must continuously switch between exploring and exploiting,
as their environment varies with time.

2. Problem Setup
We consider the standard setup with N agents and k arms,
withk≥N . At time t, every agent j∈ [N] has a ranking of the
arms, which is dictated by the arm means {µj,`,t}j∈[N],`∈[k],
and this ranking is not known to the agents. On the other
hand, it is assumed that the agents are ranked homogeneously
for all the arms, and the ranking is known to the arms. This is
called the serial dictatorship model, is a well studied model
in the market economy (see (Abdulkadiroğlu & Sönmez,
1998; Sankararaman et al., 2021)).

Without loss of generality, it is assumed that the rank of agent
j∈ [N] is j. We say agent j is matched to arm ` at time t, if
agent j pulls and receives (non zero) reward from arm `. Our
goal here is to find the unique stable matching (uniqueness
ensured by the serial dictatorship model) between the agents
and the arm side in a non-stationary (dynamic) environment.
Our definition of stability is identical to that of the classical
Gale-Shapley matching ((Gale & Shapley, 1962)); i.e., a
matching is termed stable, if there exists no pair of agent-arm,
who would mutually prefer each other as opposed to their
current partners in the matching.

As explained in the introduction, we consider the smooth
varying framework of (Wei & Srivatsva, 2018; Krishna-
murthy & Gopalan, 2021) to model the non-stationary,
which assumes |µj,`,t+1−µj,`,t| ≤ δ for all t,j,k, and the
maximum drift is δ. We dub this as a δ-shifted system.

We write `
(1,t)
∗ as the arm preferred by the the Agent

ranked 1 at time t, i.e., `(1,t)∗ = argmax`∈[k]µ1,`,t. Sim-
ilarly, for Agent ranked j, the preferred arm is given by
`
(j,t)
∗ = argmax

`∈[k]\{`(1,t)∗ ,.,`
(j−1,t)
∗ }µj,`,t. So, we see that

(1, `
(1,t)
∗) forms a stable match, and so does (j, `

(j,t)
∗) for

2≤ j ≤N . Let L(j)(t) be the arm played by an algorithm
A. The regret of agent j playing algorithm A upto time T is
given by Rj =

∑T
t=1E[µ

j,`
(j,t)
∗ ,t

−µj,L(j)(t),t1ML(j)(t)
=j],

whereM(.) indicates whether armL(j) is matched.

3. NSCBwith 2 agents
We now propose and analyze the algorithm, Non-Stationary
Competing Bandits (NSCB) to handle the competitive
nature of a market framework under a smoothly varying
non-stationary environment. To understand the algorithm

better, we first present the setup with 2 agents and k arms,
and then in Section C, we generalize this toN agents.

We considerN=2, since it is the simplest non-trivial setup
to gain intuition about the complexity of the competitive
nature of NSCB algorithm. Without loss of generality,
assume that agent r has rank r, where r∈{1,2}. So, in the
above setup, Agent 1 is the highest ranked agent.

3.1. Black Board model:

Moreover, to begin with and for simplicity, we assume
a black-board model, and later in Section D, remove the
necessity of this black board. We emphasize that black-board
model of communication is quite standard in centralized
multi-agent systems, with applications in game theory,
distributed learning and auction applications (Awerbuch &
Kleinberg, 2008; Buccapatnam et al., 2015; Agarwal et al.,
2012). Through this black-board, the agents can communi-
cate to one other. As we will see subsequently, Agents write
critical information like the arm preferred by it, the duration
of commitment to a particular arm etc to the blackboard, so
that all the other agents can read the information and change
their learning algorithm accordingly. Recall that, at each
time-step, each agent can only write at-most one arm-id in
{1,···,k} on the board. Such models of information sharing
across agents is standard in decentralized matching markets
- for ex. (Liu et al., 2021) assume that at the end of every
time-step, every agent can observe the matched arms played
by all agents in that time-step. Furthermore, in Section D, we
remove access to this black-board and show that low regret
is achievable even if the only information agents have are
the arms they play and the rewards they achieve.

The learning algorithm is presented in Algorithm 1 and 2 for
Agents 1 and 2 respectively. The algorithms run over several
episodes indexed by i1 and i2 for Agents 1 and 2 respectively.

3.2. Algorithm for Agent 1

RANK ESTIMATION (): We let both agents pull arm
1 in the first time slot. Agent 1, will see a (non-zero) reward,
and hence estimates its rank to be 1. The other agent, will
see a 0 reward, so it estimates its rank as 2.

Since Agent 1 is highest ranked agent, it does not face any
collision. It plays the well-known and standard Successive
Elimination (SE) type algorithm (see (Slivkins, 2019)). The
learning algorithm for Agent 1 bears resemblance with
the SnoozeIT algorithm of (Krishnamurthy & Gopalan,
2021), except the fact that we have k arms in the system as
opposed to 2 arms of SnoozeIT 2. In a nutshell, the agent
(a) first explores to identify if there is a best arm and (b) if it
finds a best arm, it commits to that for some amount of time.

2In fact we obtain theoretical guarantees for SnoozeIT with
k arms in Appendix G.1 which may be of independent interest.

3

Submission and Formatting Instructions for ICML 2023

Algorithm 1 NSCBwithN=2; for Agent 1

1: Input: Horizon T , drift limit δ
2: Initialize set of tuples S1 =φ, episode index i1←1
3: RANK ESTIMATION()
4: for t=1,2,...,T do
5: Pull-Arm by Agent 1:
6: if S1 =φ then
7: Play round-robbin (i.e., pull arm t % k); set

zt(1)←Explore
8: else
9: Play arm x, such that (x,s) ∈ S1 s.t. s > t; set

zt(1)←Exploit
10: end if
11: Test by Agent 1:
12: if Arm a = Lambda-Opt (λ̃, [k]) (see Definition 1)

then
13: Λi1← t−si1 , buffer1 = 8

δ

√
klogT
Λi1
−2(k−1)

14: if buf1>Λi1 then
15: S1 ← S1 ∪ {(a, si1 + buffer1)}, Updates

black-board with (a,si1 +buffer1)
16: end if
17: else
18: i1← i1+1,si1← t (next epoch starts)
19: end if
20: Release arm by Agent 1:
21: if ∃(x,s)∈S1 :s≤ t then
22: S1←S1\(x,s), release arm x, i1← i1+1,si1← t
23: end if
24: end for

Note that with non-stationary environment, Agent 1 needs
to repeat this procedure over time.

Let us set up a few notation. We denote zt(1) to denote the
phase of Agent 1, and zt(1)∈ {Explore,Exploit}. In
Algorithm 1, we we use{si1}i1=1,2,.. to denote the starting of
epochs, and i1 as the index count. At time t, Agent 1 checks
whether there exists an optimal arm by the following test.

3.2.1. TEST FOR OPTIMALITY

Let µ̂a,t(w̃) denote the empirical reward mean of arm a at
time t, based on its last w̃ pulls. We now define the rest bases
on which our learning algorithms decide whether to commit
on an arm or not.

Definition 3.1. (Lambda-Opt (λ̃,A)) At time t, an arm a is
said to be Lambda-Opt (λ̃,A) with respect to setA, if there ex-
ists λ̃∈(0,1) such that µ̂a,t(w̃)>µ̂b,t(w̃)+4r(w̃)−(k−1)δ,

for all b∈A\{a}, where w̃= c1logT

λ̃2
, and r(w̃)=

√
2logT
w̃ .

Intuitively, the above test decides whether the lower
confidence interval of arm a is bigger than that of the upper
confidence interval of arm b with some additional slack.

Since the mean rewards are bounded in [0,1], if the above
test succeeds, it can be shown (see Lemma G.3) that learning
algorithms can commit on arm a and incur 0 regret for some
time, determined by the buffer length.

Since Agent 1 faces no competition, A= [k] (the set of all
arms), but A will be different for Agent 2, as we will see
shortly. In Algorithm 1, we denote Λi1 as the duration of
the exploration period before the test succeeds at episode
i1. After the test, the agent exploits the obtained best arm for
(buffer1−Λi1) time, and then releases it. We define the set
S1 to determine whether Agent 1 should commit or continue
exploring.

In Figure 1, we consider one episode of Agent 1, where
the yellow segments indicate the exploration time, and at
the end of that, the purple segment indicates the commit
(exploitation) (to say arm i∗) time. Furthermore, when
Agent 1 commits, it writes the arm on which it is committing
and the duration of the commit to the black-board, so that
Agent 2 can accordingly choose actions from a restricted set
of arms to avoid collision. Note that, there is no competition
here, and the (interesting) market aspect is absent.

3.3. Algorithm for Agent 2

The actions of Agent 2 borne out the competition (market)
aspect of the problem, and is written formally in Algorithm 2.
To fix notation, we denote {ti2}i2=1,2,.. as the time instances
where an epoch starts for Agent 2, and i2 denotes the
episode index. Moreover, we use the notation zt(2) to
denote the state of Agent 2, and as explained in Algorithm 2,
zt(2) ∈ {Explore ALL,Explore − j,Exploit(x)},
where the terms are explained shortly.

We observe from Algorithm 2 ensures that Agent 2 won’t
collide with Agent 1. This is because, in case of collision,
Agent 2 will receive a deterministic zero reward, and thus
will encounter maximum instantaneous regret.

Hence, Agent 2 gets to explore all the k arms, and plays in
a round robbin fashion only when Agent is also exploring
(and has not committed yet). This is called the Explore
ALL phase. This is shown in light green in Figure 1, and line
5 of Algorithm 2.

On the other hand, if Agent 1 has committed to an arm, say
the j-th arm, it it of best interest for Agent 2 to explore within
the set [k]\{j}. Otherwise, it will encounter collision once
in ever k rounds. This is called the Explore-j phase of
Agent 2. This is shown in dark-green in Figure 1 and lines
7-8 of Algorithm 2. In the figure, j= i∗.

Apart from Explore ALL and Explore-j, Agent 2 also
gets to commit or Exploit an arm. Observe that Agent
2 gets only gets to commit when Agent 1 has committed
already (to an arm j)–otherwise it will face collision. Agent

4

Submission and Formatting Instructions for ICML 2023

Algorithm 2 NSCBwithN=2; for Agent 2

1: Initialize set of tuples S(j)
2 =φ, ∀ j∈ [k], episode index

i2←1
2: for t=1,2,...,T do
3: Pull-Arm by Agent 2:
4: if Agent 1 is not committed then
5: Play round robbin on [k] (pull arm t+1%k), set

zt(2)←Explore ALL

6: else if Agent 1 is committed to arm j and S(j)
2 =φ

then
7: Play round robbin on [k]\{j} (i.e., pull arm index

t%(k−1)-th smallest arm id in [k]\{j})
8: zt(2)←Explore-j
9: else if Agent 1 is committed to arm j, and

∃(x,s)∈S(j)
2 s.t. s>t then

10: Play arm x; set zt(2)←Exploit
11: end if
12: if {zt(1) 6=zt−1(1)}OR{zt(2) 6=zt−1(2)} then
13: i2← i2+1, ti2← t
14: end if
15: Test by Agent 2:
16: for j ∈ [k] s.t. zt(2) ∈

{Explore-j,Explore ALL} do
17: if Arm a = Lambda-Opt (λ̃,[k]\{j}) then

18: τ
(j)
i2
← t−ti2 , buffer2 = 8

δ

√
(k−1)logT/τ

(j)
i2
−

2(k−2)

19: if buffer2>τ
(j)
i2

then
20: S

(j)
2 ←S

(j)
2 ∪{(a,min{ti2 +buffer2,si1+1)}

21: end if
22: end if
23: end for
24: Release arms for Agent 2:
25: for j∈ [k] do
26: if ∃(x,s)∈S(j)

2 :s≤ t then, S(j)
2 ←S

(j)
2 \(x,s)

27: end for
28: end for

2 tests whether an arm is best for it by the Lambda-Opt (λ̃,A)
test with A = [k] \ {j}. If such an arm exists, then Agent
2 gets to commit to it. Similar to Agent 1, we define ti2 as
the time instance when the Lambda-Opt (λ̃,A) test succeeds
for Agent 2 and define τ (j)

i2
as the duration of the test. Since

Agent 2 tests with k−1 arms, the buffer2 is set accordingly.

From Line 20 of Algorithm 2, note that Agent 2 only gets to
commit to the ‘optimal’ arm until min{ti2 +buffer2,si1+1}.
Hence, we restrict Agent 2 to end its exploitation as soon as
the exploitation of Agent 1 ends. The reasoning is same—
Agent 1 starts exploring right after its exploitation and Agent
2 must release the arm it was exploiting to avoid collision.
Also, observe that since Agent 2 never updates the black

((a)) ((b))

Figure 1: Action of Agents 1 and 2 in a matching markets

board. This is because Agent 2 is the lowest rank agent in the
system, and the action of Agent 1 is not influenced by Agent 2.

From line 20 of Algorithm 2, Agent 2 constructs the setsS(j)
2 ,

which denote the exploitation period of Agent 2, without
arm j in the system. This is used to represent the different
phases of Agent 2 in Algorithm 2 in a compact form.

Saving extra exploration: Note that Agent 2 continues to
test for an optimal arm even when Agent 1 is exploring. It
might seem to be wasteful at first since it cannot commit im-
mediately. This is useful because, Agent 2 constructs the sets
S

(j)
2 , and as soon as Agent 1 commits to arm jwithS(j)

2 being
non-empty, Agent 2 gets to commit leveraging this test. This
saves extra exploration for Agent 2 and hence reduces regret.

From the above description, we characterize the fundamental
reason, for which Agent 2 might suffer additional regret,
which we now discuss.

Forced Exploration: Consider Scenario 3 of
Figure 1(b). Here, Agent 2 has decided to commit on an
arm before Agent 1. However, it cannot start to exploit since
Agent 1 is still exploring. Otherwise, it will periodically face
collisions (and get 0 reward, hence incurring linear regret
in this duration). This is the additional exploration faced by
Agent 2, which we term as forced exploration (shown in blue
in Figure 1(b)). In Theorem 4.5, we characterize the regret
stems from this forced exploration.

Furthermore, as shown in Figure 1 and discussed in Algo-
rithm 2 (line 20), Agent 2 is forced to terminate its exploita-
tion and start exploration, as soon as the exploitation of Agent
1 ends. Note that this also results in higher regret of Agent 2,
as it does not get to fully exploit the arm it was committed to.

In the subsequent section, we characterize the price paid by
Agent 2 because of the above-mentioned restrictions.

4. Theoretical Guarantees for NSCBwithN=2

We first define the dynamic gap of the problem.

4.1. Problem Complexity—Dynamic Gap

We define the (dynamic) gap, denoted by {λCt [r]}t=1,2,.. for
agent r, which determines how complex the problem is.

5

Submission and Formatting Instructions for ICML 2023

Definition 4.1. For C ⊆ [k], we define the dynamic gap of
Agent r on a dominated set C as,

λCt [r]= max
λ∈[0,1]

{ min
a,b∈[k]\C
a6=b

1

w(λ)
|
t∑

t′=s

µr,a,t′−µr,b,t′ |≥λ},

and if such a λ does not exist, we set λCt [r]=c1

√
logT
t . Here,

s= t−w(λ)+1, and w(λ) = c0(k−|C|)logT
λ2 . For shorthand,

if C=φ (null set), we denote λφt [r] =λt[r]. Here c1 and c0
are universal constants.

Remark 4.2. We first note that when δ = 0 (stationary
system) and C = φ, the dynamic gap reduces to the gap
between the best and the second best arm. Note that the latter
is the usual definition of problem complexity in multi-armed
bandit problems ((Lattimore & Szepesvári, 2020)).
Remark 4.3. When C = φ and k = 2, the above definition
matches exactly to that of ‘detectable gap’ of (Krishnamurthy
& Gopalan, 2021).
Remark 4.4. The dominated dynamic gap is a strict
generalization of the usual window based average gap used
in non-stationary bandits. We introduce a dominated set C,
for the competitive market setting, since the actions of lower
ranked agents are dominated by that of higher ranked ones.

4.2. Regret Guarantee
We now characterize the regret of Agent 1 and 2 playing
Algorithms 1 and 2 respectively.

Theorem 4.5 (2 Agent NSCB). Suppose we run Algorithm 2
with 2 Agents upto horizon T with drift δ. Then the expected
regret for Agent 1 is R1(δ)≤C

∑m
`=1

1
λmin,`[1] klogT, and

for Agent 2 is

R2(δ)≤C1

m∑
`=1

{(
1

λmin,`[2]
+

1

(λmin,`[1])2

)
klogT

+d(k

k−1
)1/3e

(
1

mina∈[k]λ
{a}
min,`[2]

)
(k−1)logT

}
,

where horizon T is divided intom blocks, each having length
at most min{cδ−2/3k1/3log1/3T,T}. Here

λmin,`[r]= min
t∈`-th block

λt[r]andλ{a}min,`[r]= min
t∈`-th block

λ
{a}
t [r]

denote the dynamic gap of Agent r over entire `-th block.

Remark 4.6. Similar to (Krishnamurthy & Gopalan, 2021),
we define the quantity λCmin,`[r], which is the minimum
dynamic gap of agent r over the `-th block. When C=φ, we
denote this by λmin,`[r].

4.3. Discussion
Regret of Agent 1: The regret of Agent 1 is given by klogT

λmin,`[1] ,
summed over blocks, where λmin,`[1] is the complexity

parameter (dynamic gap) for Agent 1. In the special case,
where δ = 0 (stationary system), the number of blocks is
1, and the complexity parameter coincides with the the
definition of classical gap (difference between the best
and the second best arm) of the stationary setup. In this
case, this regret bound matches to that of the classical
instance dependent regret of Upper Confidence Bound
(UCB) algorithm of (Auer et al., 2002).

Regret of Agent 1 matches (Krishnamurthy & Gopalan,
2021): Observe that the regret of Agent 1 matches exactly to
Snooze-IT of (Krishnamurthy & Gopalan, 2021). Since
Agent 1 faces no collision, we were able to recover this.

Regret of Agent 2: The regret of Agent 2 has 3 components.
The first term, klogT

λmin,`[2] comes from the Explore-ALL,
where Agent 2 explores all arms and the regret is similar to
Agent 1. This also depends on the complexity of Agent 2.

The second term in the regret expression, [1
λmin,`[1]]

2klogT

originates from the Forced Exploration of Agent 2.
Note that this depends on the complexity (gap) of Agent
1. This validates our intuition, since, when Agent 1’s
environment is complex, it takes more exploration for Agent
1, and as a result Agent 2 faces additional forced exploration.
This is a manifestation of the competitive structure of the
market framework, since the regret of Agent 2 is influenced
by that of higher ranked agent.

The third term in the regret expression comes from
Explore-j phase, where Agent 1 is committed on arm j.
Observe that here, the dominated gap naturally comes into
the picture. The pre-factor of [k/(k−1)]1/3 appears for the
following reason. We design the blocks in such a way that
each block contains at most 2 phases of Agent 1. Moreover,
we show that the number of epochs for Agent 2 in one
exploitation phase of Agent 1 is at most 2d[k/(k−1)]1/3e.

Regret matches to UCB-D3 of (Sankararaman et al., 2021)
in stationary setup: We compare the regret of NSCB with
that of the non-stationary UCB-D3 of (Sankararaman
et al., 2021). In the stationary environment (δ = 0), the
definition of gap is invariant with time. For Agent 2, from
(Sankararaman et al., 2021, Corollary 2), we obtain the regret
to beO[1

ρ2 (k−1)logT], where ρ is the stationary dominated
gap. Note that this is exactly same as Theorem 4.5 (except
for a mildly worse dependence on k). Hence, we recover the
order-wise optimal regret in the stationary setting.

5. NSCBwith N agents,
Blackboard Removal and Experiments

Owing to space crunch, we defer these sections to the
Appendices C,I and E respectively. We extend NSCB to
N agents and obtain regret bound for r-th ranked agent.
We also discuss the market setup without blackboard and
characterize the price (in terms of regret) for it.

6

Submission and Formatting Instructions for ICML 2023

References
Abdulkadiroğlu, A. and Sönmez, T. Random serial dicta-

torship and the core from random endowments in house
allocation problems. Econometrica, 66(3):689–701, 1998.

Agarwal, A., Bartlett, P. L., Ravikumar, P., and Wainwright,
M. J. Information-theoretic lower bounds on the oracle
complexity of stochastic convex optimization. IEEE Trans-
actions on Information Theory, 58(5):3235–3249, 2012.

Akbarpour, M., Li, S., and Gharan, S. O. Thickness and
information in dynamic matching markets. Journal of
Political Economy, 128(3):783–815, 2020.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2):235–256, 2002.

Auer, P., Gajane, P., and Ortner, R. Adaptively track-
ing the best bandit arm with an unknown number of
distribution changes. In Beygelzimer, A. and Hsu, D.
(eds.), Proceedings of the Thirty-Second Conference on
Learning Theory, volume 99 of Proceedings of Machine
Learning Research, pp. 138–158. PMLR, 25–28 Jun 2019.
URL https://proceedings.mlr.press/v99/
auer19a.html.

Awerbuch, B. and Kleinberg, R. Competitive collaborative
learning. Journal of Computer and System Sciences, 74
(8):1271–1288, 2008.

Basu, S., Sankararaman, K. A., and Sankararaman, A.
Beyond log2(t) regret for decentralized bandits in
matching markets. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 705–715. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/basu21a.html.

Besbes, O., Gur, Y., and Zeevi, A. Stochastic multi-armed-
bandit problem with non-stationary rewards. Advances in
neural information processing systems, 27:199–207, 2014.

Buccapatnam, S., Tan, J., and Zhang, L. Information
sharing in distributed stochastic bandits. In 2015 IEEE
Conference on Computer Communications (INFOCOM),
pp. 2605–2613. IEEE, 2015.

Dai, X. and Jordan, M. I. Learning strategies in decentralized
matching markets under uncertain preferences. Journal
of Machine Learning Research, 22(260):1–50, 2021a.

Dai, X. and Jordan, M. I. Multi-stage decentralized matching
markets: Uncertain preferences and strategic behaviors.
arXiv preprint arXiv:2102.06988, 2021b.

Damiano, E. and Lam, R. Stability in dynamic matching mar-
kets. Games and Economic Behavior, 52(1):34–53, 2005.

Dickerson, J., Sankararaman, K., Sarpatwar, K., Srinivasan,
A., Wu, K.-L., and Xu, P. Online resource allocation with
matching constraints. In International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 2019.

Even, G., Halldórsson, M. M., Kaplan, L., and Ron, D.
Scheduling with conflicts: online and offline algorithms.
Journal of scheduling, 12(2):199–224, 2009.

Gale, D. and Shapley, L. S. College admissions and the
stability of marriage. The American Mathematical
Monthly, 69(1):9–15, 1962.

Garivier, A. and Moulines, E. On upper-confidence bound
policies for switching bandit problems. In International
Conference on Algorithmic Learning Theory, pp. 174–188.
Springer, 2011.

Johari, R., Kamble, V., and Kanoria, Y. Matching while
learning. Operations Research, 69(2):655–681, 2021.

Karnin, Z. S. and Anava, O. Multi-armed bandits: Com-
peting with optimal sequences. Advances in Neural
Information Processing Systems, 29:199–207, 2016.

Knuth, D. E. Stable marriage and its relation to other
combinatorial problems: An introduction to the math-
ematical analysis of algorithms, volume 10. American
Mathematical Soc., 1997.

Krishnamurthy, R. and Gopalan, A. On slowly-varying
non-stationary bandits. arXiv preprint arXiv:2110.12916,
2021.

Kurino, M. Credibility, efficiency, and stability: A theory
of dynamic matching markets. The Japanese Economic
Review, 71(1):135–165, 2020.

Lattimore, T. and Szepesvári, C. Bandit algorithms.
Cambridge University Press, 2020.

Liu, F., Lee, J., and Shroff, N. A change-detection based
framework for piecewise-stationary multi-armed bandit
problem. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Liu, L. T., Mania, H., and Jordan, M. Competing bandits
in matching markets. In International Conference on
Artificial Intelligence and Statistics, pp. 1618–1628.
PMLR, 2020.

Liu, L. T., Ruan, F., Mania, H., and Jordan, M. I. Bandit
learning in decentralized matching markets. Journal of
Machine Learning Research, 22(211):1–34, 2021.

7

https://proceedings.mlr.press/v99/auer19a.html
https://proceedings.mlr.press/v99/auer19a.html
https://proceedings.mlr.press/v139/basu21a.html
https://proceedings.mlr.press/v139/basu21a.html

Submission and Formatting Instructions for ICML 2023

Luo, H., Wei, C.-Y., Agarwal, A., and Langford, J. Efficient
contextual bandits in non-stationary worlds. In Conference
On Learning Theory, pp. 1739–1776. PMLR, 2018.

Massoulié, L. and Xu, K. On the capacity of information
processing systems. In Conference on Learning Theory,
pp. 1292–1297. PMLR, 2016.

Pittel, B. The average number of stable matchings. SIAM
Journal on Discrete Mathematics, 2(4):530–549, 1989.

Roth, A. E. and Vate, J. H. V. Random paths to stability
in two-sided matching. Econometrica: Journal of the
Econometric Society, pp. 1475–1480, 1990.

Sankararaman, A., Basu, S., and Sankararaman, K. A. Dom-
inate or delete: Decentralized competing bandits in serial
dictatorship. In International Conference on Artificial
Intelligence and Statistics, pp. 1252–1260. PMLR, 2021.

Shah, V., Gulikers, L., Massoulié, L., and Vojnović, M.
Adaptive matching for expert systems with uncertain task
types. Operations Research, 68(5):1403–1424, 2020.

Slivkins, A. Introduction to multi-armed bandits. arXiv
preprint arXiv:1904.07272, 2019.

Slivkins, A. and Upfal, E. Adapting to a changing
environment: the brownian restless bandits. 2008.

Wei, L. and Srivatsva, V. On abruptly-changing and slowly-
varying multiarmed bandit problems. In 2018 Annual
American Control Conference (ACC), pp. 6291–6296.
IEEE, 2018.

Whittle, P. Restless bandits: Activity allocation in a
changing world. Journal of applied probability, 25(A):
287–298, 1988.

8

Submission and Formatting Instructions for ICML 2023

Appendix

A. Related work
A.1. Bandits and Matching Markets

Bandits and matching markets have received a lot of attention lately, owing to both their mathematical non-triviality and
the enormous practical impact they hold. Regret minimization in matching markets was first introduced in (Liu et al.,
2020) which studied the much simpler problem of stationary markets under a centralized scheme, where a central entity
matches agents with arms at each time. They showed that under this policy, a learning algorithm can get per-agent regret
scaling as O(log(T)). Subsequently, (Sankararaman et al., 2021) studied the decentralized version of the problem under
the serial dictatorship and proposed the UCB-D3 algorithm that achievedO(log(T)) per-agent regret. Subsequently, (Liu
et al., 2021) proposed CA-UCB, a fully decentralized algorithm that could achieveO(log2(T)) per-agent regret in the general
decentralized stationary markets. Matching markets has been an active area of study in combinatorics and theoretical computer
science due to the algebraic structures they present (Pittel, 1989; Roth & Vate, 1990; Knuth, 1997). However, these works
consider the equilibrium structure and not the learning dynamics induced when participants do not know their preferences.

A.2. Non-Stationary Bandits

The framework on non stationary bandits were introduced in (Whittle, 1988) in the framework of restless bandits, and later
improved by (Slivkins & Upfal, 2008). There has been a line of interesting work in this domain–for example in (Garivier
& Moulines, 2011; Auer et al., 2019; Liu et al., 2018) the abruptly changing or switching setup is analyzed, where the arm
distributions are piecewise stationary and an abrupt change may happen from time to time. In particular (Liu et al., 2018)
proposes a change point based detection algorithm to identify whether an arm distribution has changes of not in a piecewise
stationary environment. Furthermore, in (Besbes et al., 2014), a total variation budgeted setting is considered, where the
total amount of (temporal) variation is known, but the change may happen, either smoothly or abruptly.

Moreover, in the above-mentioned total variation budget based non-stationary framework, an adaptive algorithm, that does
not require the knowledge of the drift parameter is obtained in (Karnin & Anava, 2016) for the standard bandit problem and
later extended to (Luo et al., 2018) for the contextual bandit setup.

On the other hand, there are a different line of research that focuses on the smoothly varying non-stationary environment,
in contrast to the above mentioned abrupt or total budgeted setup, for example see (Wei & Srivatsva, 2018; Krishnamurthy
& Gopalan, 2021). Note that (Wei & Srivatsva, 2018) modify the sliding window UCB algorithm of (Garivier & Moulines,
2011) and employ windows of growing size. On the other hand, very recently (Krishnamurthy & Gopalan, 2021) analyzed
the smoothly varying framework by designing windows of dynamic length and test for optimality within a sliding window.
The algorithm of (Krishnamurthy & Gopalan, 2021), namely Snooze-IT, is an asynchronous algorithm that works on
repeated Explore and Commit (ETC) type principle where the explore and commit times are random.

In this paper, we work with the smoothly varying non-stationary framework of (Krishnamurthy & Gopalan, 2021). We choose
this algorithm because of its simplicity, and the dynamics and competition that comes out of a market framework is better
understood in such a sliding window based Explore and Commit type algorithm. In general, we believe that our basic principle
can be adapted to any sliding window based algorithm in a non-stationary environment.

Notation: For a positive integer r, we denote the set {1,2,...,r} by [r]. Moreover, For 2 integers, a,b, the notation a%b
implies the remainder (modulo) operation. Throughout the paper, we useC,C1,C2,...,c,c1,c2,... as universal constants, the
value of which may change from instance to instance.

B. Our Contributions
B.0.1. ALGORITHMS

We introduce a learning algorithm, NSCB, in which agents proceed in phases with asynchronous start and end-points, wherein
in each phase, agents explore among those arms that are not currently preferred by higher-ranked agents, and subsequently
exploit a good arm, for a dynamic duration of time in which the estimated best arm can remain to be optimal. The main
algorithmic innovation is to identify that the static synchronous arm-deletion strategy of UCB-D3 (Sankararaman et al., 2021),

9

Submission and Formatting Instructions for ICML 2023

can be coupled with SnoozeIT to yield a dynamic, asynchronous explore-exploit type algorithm for non-stationary bandits.

B.0.2. TECHNICAL NOVELTY IN THE ANALYSIS

In order to analyze and prove that NSCB yields goo d regret guarantees, we introduced this notion of forced exploration.
Roughly speaking, this is the regret incurred due to exploration of an agent, when the higher ranked agents are exploring. This
extra regret is a consequence of the rank ordering via the serial-dictatorship (which we define in Section ??) model, whereby
agents can incur collision and do not get any reward. Although agents in the stationary setting also incur forced exploration,
its effect is bounded since every agent can eventually guarantee that the best arm can be learnt. However, in an asynchronously
varying environment, bounding this term is non-trivial. We circumvent this by decomposing the forced exploration of an
agent recursively; an agent ranked r effectively explores if either its own environment is fluctuating and thus hard to identify its
best arm, or if the agent ranked r−1 is effectively exploring. We leverage this to recursively bound the regret of agent ranked
r as a function of agent ranked r−1. Unravelling this recursion yields the final regret. In the process, we also derive new
regret bounds for the general Snooze-IT algorithm of (Krishnamurthy & Gopalan, 2021) for the general k armed bandit
that generalizes the 2 armed bound obtained in (Krishnamurthy & Gopalan, 2021), which may be of independent interest.

B.0.3. SUPERIOR EMPIRICAL PERFORMANCE

We empirically validate our algorithms to demonstrate that it (i) is simple to implement, (ii) the results match the theoretical
insights, such as agents incurring additional regret due to forced explorations and (iii) outperforms prior state of art UCB D3
(Sankararaman et al., 2021) in both stationary and non-stationary environments. The last point is compelling and demonstrates
that our algorithm is strictly more general than UCB-D3 by being provably and empirically superior to UCB-D3 in non-
stationary environment, and being empirically superior to UCB-D3 in stationary environments. Theoretically, we show that the
regret bounds of our algorithm matches order-wise that of UCB-D3 in the stationary environment (cf. Sections 4.3 and C.2).

C. NSCBAlgorithm with N competing agents
In this section, we extend NSCB for N agents. We stick to the notation where we denote the r-th ranked Agent as Agent
r and focus on its the learning algorithm. Let us fix some notation first.

We denote Ct(r) as the set of committed arms by agents ranked higher that r (i.e., Agents 1, 2, ... , r − 1). This can
be defined sequentially in the following way: let Ct(1) ∈ {φ,1, ... , k} as the arm committed by Agent 1. We define
Ct(r)={Ct(1),...,Ct(r−1)} as the committed (or dominated) set of Agent r. The learning scheme is presented in Algorithm 3

Similar to Algorithms 1 and 2, we start with the rank estimation sub-routine, the end of which agents know their own rank.

RANK ESTIMATION() The rank estimation takesN−1 time steps. At t=1, all agents pull arm 1. In the subsequent steps,
i.e., for t∈ [2,N−1], agents, the agents who were matched to an arm, continues to play the matched arm–and the rest of
the agents play arm (indexed by) t. By inductive reasoning, thanks to the collision structure, it is easy to observe that, by
N−1 time instant, all agents know their own rank.

In Algorithm 3, we denote {tir}ir=1,2,.. as the start epochs of episodes for Agent r. Furthermore, to denote the state of Agent
r we define zt(r) as the following:

zt(r)={Explore−Ct(r),Exploit(x)},

where in Explore−Ct(r), the r-th agent plays in a round robbin fashion on the set of [k]\Ct(r) arms (line 18 of Algorithm 3)
, and in Exploit(x) it pulls arm indexed by x (line 20).

At time t, Agent r first looks at the black-board, and using the information, it constructs the dominated set Ct(r), which
contains all the committed arms from Agents 1 to r−1. Based on Ct(r), Agent r updates zt(r) to reflect whether it is in
Explore-Ct(r) phase, or in the exploit phase. In particular, Agent r gets to commit on an arm in [k]\Ct(r), if all the higher
ranked agents have already committed, i.e., |Ct(r)|=r−1. A new phase is spawned for Agent r if either the dominated set
Ct(r) 6=Ct(r−1) changes, or its own phase ends. Both this cases are captured by zt(r), and hence, based on whether zt(r)
changes or not, Agent r decides to start a new phase.

The test procedure of Agent r is similar to that of Agent 2, with a difference that Agent r tests in the arms in the subset
[k]\Ct(r), and hence the buffer length is accordingly designed. Once the Agent commits on an arm (say x), it writes the
triplet (x,exploit period,r) to the black board. It also updates the dominated set Ct+1(r) for the next round.

10

Submission and Formatting Instructions for ICML 2023

Algorithm 3 NSCB for r-th Agent

1: Input: Horizon T , drift limit δ
2: Initialize S(Ω)

r =φ for all Ω⊆ [k], and |Ω|≤r−1, Initialize ir←1, C1(r)=φ
3: RANK ESTIMATION()
4: for t=1,2,...,T do
5: Update State zt(r):
6: if |Ct(r)|<r−1 then
7: zt(r)←Explore−Ct(r)
8: else if ∃(x,s)∈S(Ct(r))

r s.t. s>t, then
9: zt(r)←Exploit(x)

10: else
11: zt(r)←Explore−Ct(r)
12: end if
13: if zt(r) 6=zt−1(r) then
14: ir← ir+1,tir← t
15: end if
16: Pull-Arm by Agent r:
17: if zt=Explore−Ct(r) then
18: Play round robbin with [k]\Ct(r) (i.e., pull t+(r−|Ct(r)|−1)%(k−|Ct(r)|) smallest arm in [k]\Ct(r))
19: else if zt=Exploit(x) then
20: Play arm x
21: end if
22: Test by Agent r:
23: for Ω⊆ [k] s.t. |Ω|=r−1 and zt(r)= Explore-Ct(r) do
24: if Arm a = Lambda-Opt (λ̃,[k]\Ω) then

25: τ
(Ω)
ir
← t−tir , bufferr= 8

δ

√
(k−|Ct(r)|) logT

τ
(Ω)
ir

−2(k−r), define t̄ir =min{tir +bufferir ,tir−1+1}

26: if bufferir >τir , then SΩ
r ←SΩ

r ∪{(a,t̄ir)}, else iir← ir+1,tir← t
27: end if
28: end if
29: end for
30: Updates Black Board:
31: if ∃(x,s) s.t. s≥ t+1, then write (x,t̄ir ,r) on the black board end if
32: Updates Dominated set Ct+1(r):
33: Updates Ct+1(r)={x∈ [k] :∃s>t+1,and∃j≤r−1s.t.(x,s,j)exists on board}
34: end if
35: end for

Similar to Algorithm 2, we also need to ensure that Agent r ends its exploitation phase when any higher ranked agent starts
exploring, otherwise it will face collision. This is ensured by defining t̄ir in line 25 of Algorithm 3.

We emphasize again that Agent r only gets to commit when |Ct(r)|=r−1, i.e., Agents 1 through r−1 has already committed.
This leads to additional exploration, which we call forced exploration. In the subsequent section, we characterize
the additional regret incurred by this forced exploration.

Saving extra exploration: Note that Agent r constructs the sets SΩ
r for all Ω⊆ [k] with |Ω|= r−1. As explained in the 2

agent case, this saves extra exploration for Agent r, because if the statistical test succeeds on an arm j∈ [k]\Ct(r), and there
exists Ω, with |Ω|=r−1 such that SΩ

r is non-empty, Agent r immediately commits to arm j.

C.1. Regret Guarantee

We characterize the regret of r-th agent, with r≥2. Note that the regret of Agent 1 will be identical as Theorem 4.5, since
it faces no competition and hence no collision.

11

Submission and Formatting Instructions for ICML 2023

As explained in Algorithm 3, the regret of r-th Agent will depend on the dynamic gap of Agents 1 to r− 1. Hence, for
mathematical tractability and notational convenience, we define the following constrained dynamic gap of the problem.

∆t[r]= min
C∈[k],|C|≤r−2

λCt [r], ∆̃t[r]= min
C∈[k],|C|≤r−1

λCt [r]

Remark C.1. Note that the definitions of ∆t[r] and ∆̃t[r] are generalizations of the dynamic gap λCt [r], with further restrictions
on the dominated set C.

With this, we have the following result:
Theorem C.2 (N agent NSCB). Suppose we run Algorithm 3 forN agents with δ drift. The regret for r-th ranked agent is
given by

Rr(δ)≤C
m∑
`=1

[
k

k−r+2
]1/3

{[
klogT

∆min,`[r]
+

klogT

∆2
min,`[r−1]

]

+

⌈(
k−r+2

k−r+1

)1/3
⌉(

1

∆̃min,`[r]

)
(k−r+1)logT

}
,

where we divide the horizon T inm blocks, having at most min{cδ−2/3k1/3log1/3T,T} length. Here

∆min,`[r]= min
t∈`block

∆t[r]and∆̃min,`= min
t∈`block

∆̃t[r]

denote the gap for `-th block.
Remark C.3. The terms in the regret expression depends on the dynamic gap of Agent r and r−1. As shown in Appendix H, it
turns out that owing to the serial dictatorship nature of the problem, in order to characterize the regret of Agent r, it is sufficient
to look at the behavior of Agent r−1. This inductive argument helps us to extend the results in a 2-agent NSCB to a general
N -agent NSCB.
Remark C.4. The performance of Agent r depends crucially on Agent r−1, and based on whether Agent r−1 is exploring
or exploiting, the regret depends on the higher ranked r−2 agents. Hence, the dynamic gap depending on both r−1 and
r−2 sneaks in the regret expression via ∆t[r] and ∆̃t[r].

C.2. Discussion

Special case, r= 2: When r= 2 in Theorem C.2, we exactly get back the regret of Agent 2 in Theorem 4.5. So, for Agent
2, there is no additional cost for extending NSCB toN agents.

Different terms of Theorem C.2: Similar to the 2 agent case, the first term in the regret expression presents the regret from
exploration of Agent r, when Agent r−1 is exploring. Hence, the size of the dominated set is at most r−2, and the dynamic
gap is given by ∆min,`[r].

Similarly, the second term corresponds to the forced exploration of Agent r. This occurs when Agent r is ready to commit,
but is forced to explore since Agent r−1 is exploring. Note that this depends on how complex the system of Agent r−1
is. Since Agent 1 is exploring, the size of the dominated set is still r−2, and the dynamic gap is ∆min,`[r].

Finally, the third term corresponds to the regret when Agent r has committed. Observe that, in this case, the size of dominated
set is at most r−1. Hence, it is characterized by ∆̃t[r].

Note that we characterize the regret of Agent r by focusing on one phase of Agent r−1 (similar to the 2 agent case), and we
show that the number of epochs of Agent r−1 in one block is at most 4d[k/(k−r+2)]1/3e, which causes the multiplicative
pre-factor. Note that with r=2, the factor is absent, since the blocks are designed to contain at most 2 epochs of Agent 1.

Regret matches UCB-D3 of (Sankararaman et al., 2021) in stationary setup: Note that, in the stationary setup (δ=0), the
regret expression in Theorem C.2 matches to that of UCB-D3 (except a mildly weak dependence on k), which is shown to
be order optimal. So, NSCB recovers the optimal regret in the stationary case.

D. NSCBwithout Black Board; Towards Complete decentralization
Upto now, we present NSCBwith a black board, via which the agents communicate among themselves. In this section, we
remove this, and obtain the same information via collision. We emphasize that without the black board, the learning algorithm

12

Submission and Formatting Instructions for ICML 2023

Algorithm 4 Black board removal forN=2

InitializeQ0←Explore
for t=1,...,T do

if Agent 2 experiences collision then
Qt← toggle(Qt−1)

end if
end for

Algorithm 5 Black board removal for r-th Agent NSCB

InitializeM0[s]←Explore for all s∈ [r−1]
for t=1,...,T do

if Agent r experiences collision and reward goes to Agent r′<r then
Mt[r

′]← toggle(Mt−1[r′])
end if

end for

is completely decentralized.

D.1. Special case: Black board removal withN=2

In the presence of the black board, Agent 2 knows whether Agent 1 is exploring (on all [k] arms) or committed to a particular
arm. The same information can be gathered from a collision. Agent 2 maintains a latent variableQt, which indicates whether
Agent 1 is in Explore or Exploit phase. At the beginning,Q0←Explore.

The routine is formally written in Algorithm 4. If at round t, Agent 2 faces a collision on arm j, one of two things can
happen—(a) Agent 1 has ended exploring and committed to arm j or (b) Agent 1 has ended its exploitation and is exploring.
This is true from the design of NSCB. After a collision, Agent 2 looks at Qt−1. If Qt−1 = Explore, then case (a) has
happened and ifQt−1 =Exploit, then case (b) has happened. So, just toggling the variableQt is enough for Agent 2 to
keep track of Agent 1. It is easy to see that, from the round robbin structure of exploration, that after Agent’s 1 phase changes,
it may take upto k time steps for a collision to take place.
Lemma D.1 (Regret Guarantee). Suppose δ′ = Ckδ, for a constant C > 1. Then, for a δ shifted system, NSCB without
blackboard the regret of Agent 1 and 2 are given by

RNo-Blackboard
1 (δ)≤R1(δ′)andRNo-Blackboard

2 (δ)≤R2(δ′)

whereR1(.) andR2(.) denote the regret of Agent 1 and 2 respectively as shown in Theorem 4.5 with the presence of the black
board. So, the regret guarantees of Theorem 4.5 extend in this case with δ replaced by δ′.
Remark D.2. It is easy to check from Theorem 4.5 that the regret increases with an increasing drift δ. In the framework without
blackboard, we incur additional regret since δ′=Ckδ (and δ′>δ). We upper bound the performance without black board by a
worse system with drift δ′>δ having a blackboard. The additional regret can be thought as the price of removing the blackboard.
Remark D.3. The above lemma can be shown via a reduction argument (see Appendix I). For a δ shifted system, upto time
k, the maximum total shift is kδ, and hence with δ′, we ensure that the system remains stationary in these k time steps. We
emphasize that NSCB is an asynchronous algorithm, and the dentition of δ′ helps in reducing the reduction to a worse system
with drift δ′>δ.

D.2. Black board removal withN agents

NSCB is an asynchronous algorithm, and hence establishing coordination between agents is quite non-trivial. In previous
works, such as (Sankararaman et al., 2021), the learning includes a fixed set of time slots for communication among agents.
This coordinated communication can not be done for NSCB, since the phases start and end at random times. Hence, to handle
this problem, we consider a slightly stronger reward model. We emphasize that the stronger reward model was also used
in previous works such as (Liu et al., 2021).

Reward model: To ease communication across agents, we assume that in case of collision, the reward is given to the highest
ranked agent, and all the remaining agent gets zero reward, as well as the index of the agent who gets the (non-zero) reward.

13

Submission and Formatting Instructions for ICML 2023

We remark that this side information is not impractical in applications like college admissions, job markets etc., and this
exact reward model is also studied in (Liu et al., 2021).

The routine is formally written in Algorithm 4. Under this new reward model, Agent r maintains a set of latent variables,
Mt[s] for all s∈ [r−1], whereMt[s]∈{Explore,Exploit}. If at time t, if Agent r experiences a collision, and the reward
goes to an Agent r′, with r′<r (i.e., r′ is a higher ranked agent), then Agent r togglesMt[r

′]. In this way, after a collision
on arm j, Agent r knows that either Agent r′ has committed on arm j or it is exploring on a set of arms including j. Hence,
based onMt−1[r′], Agent r knows which event has happened exactly, which is the information a black board would have
provided. From the round robbin nature of exploration, detecting this may take at most k steps.

Lemma D.4 (Regret Guarantee). Suppose δ′ = Ckδ, for a constant C > 1. Then, for a δ shifted system, NSCB without
blackboard the regret of Agent r is given by

RNo-Blackboard
r (δ)≤Rr(δ′)

whereRr(.) denotes the regret of Agent r, as in Theorem C.2 with the presence of the black board. So, the regret guarantee
of Theorem C.2 extends in this case with δ replaced by δ′.

Remark D.5. Similar to the 2 agent case, here also, the removal of black board results in an increase of regret,since we replace
δ by δ′, which is bigger than δ.
Remark D.6. The above result holds under the modified and stronger reward model. Design of an efficient coordination
protocol in an asynchronous system is left as future work.

E. Simulations
In Figure 2, we show through simulations that - (i) Snooze-IT of (Krishnamurthy & Gopalan, 2021) outperforms vanila UCB of
(Auer et al., 2002) in the case of single agent, (ii) NSCB multi-agent setting is effective to simulate and matches the theoretical
insights, and (iii) in the multi-agent case, NSCB outperforms UCB-D3, especially for higher ranked agents. In all settings,
we consider the arms to have gaussian distribution with variance 0.4 and means varying with time as given below. All plots are
plotted after averaging over 10 runs, with the median being highlighted in bold, and the inter-quartile range between the 25th

and 75th quantiles in the shaded region. In the single agent setting of Figure 2(a), we considered three arms, with the third
arm having a fixed mean of 0.5 throughout. In the multi-agent setting in Figures 2(b), 2(c), 2(d), 2(e), we initialized the arm
means randomly from the uniform distribution on [0,1]. In each of the 10 runs, the arm means for every agent-arm pair evolved
independently according to a symmetric random walk by either adding or subtracting a value of δ as specified in the plot title. We
simulated the NSCB algorithm by assuming access to a black-board, the performance on which can be translated to the setting
without access to the black-board as seen in Lemma D.4. For UCB-D3, we use the standard hyper-parameters recommended
in (Sankararaman et al., 2021). The plots are averaged over the randomness in the arm-mean variation across time as well.

We observe in Figure 2(a), that the performance of Snooze-IT is much better than that of the classical UCB algorithm
of (Auer et al., 2002). In Figures 2(b) and 2(c), we validate the performance of NSCB for a 3 agent system with different values
of δ. We first note that the regret flattens out sometimes, which indicates that the NSCB algorithm has chosen an ‘optimal’ arm,
and commit to it, incurring zero regret as shown in Lemma G.3. Furthermore, matching to our intuition, the regret of agent
ranked 1 is the lowest, then Agent 2 and and finally Agent 3. This is because as Theorem 4.5 and C.2 suggest, the performance
of an Agent gets dominated by all the agents ranked higher. Furthermore, observe that the flattening of regret for Agents
2 and 3 are much infrequent compared to that of Agent 1.

In Figures 2(d) and 2(e), we compare the performance of NSCB with that of UCB-D3 in a dynamic environment. We find
that although the performance of agent 1 is similar in the two systems, the performance of the lower ranked agents are much
superior in NSCB compared to UCB-D3. This shows that NSCB is sensitive to the potential variations in arm-means and
helps all agents adapt faster compared to UCB-D3 which is designed assuming the environment is stationary. Moreover,
since the phase lengths grow exponentially with time in UCB-D3 where lower ranked agents assume that the best arm of
the higher ranked agents will remain constant within a phase. In the dynamic case, this assumption is no longer valid, and
thus the regret of lower ranked agents are much worse under UCB-D3, as compared to NSCB.

In Figure 2(f), we take a stationary environment and compare UCB D3 with NSCB run with δ=0.025. In this plot we observe
that even in the stationary setting, the regret of NSCB is superior to UCB-D3. The reason is that the phase lengths in UCB-D3
was fixed to be exponentially growing, while the phase lengths in NSCB is chosen adaptively depending on the empirical
arm means.

14

Submission and Formatting Instructions for ICML 2023

((a)) ((b)) ((c))

((d)) ((e)) ((f))

Figure 2: In (a), we compare SnoozeIT and UCB with k= 3. In (b) and (c) NSCB on a system with 3 agents and 4 arms
is simulated, and the same systems are compared with UCB-D3 in (d) and (e). In (f) we compare against a stationary system
with NSCB run with δ=0.025.

F. Conclusion and open problems
We introduced the problem of decentralized, online learning in two-sided markets when the underlying preferences vary
smoothly over time. We propose and analyze an asynchronous algorithm, namely NSCB, first for 2 agents, and then forN
agents. We provide a complete characterization of the regret of NSCB. Moreover, we verify via simulations, the theoretical
insight we previously obtained. This paper however leaves several intriguing open problems: (a) we want to understand
whether the assumption of known δ be relaxed, i.e., a step towards making NSCB parameter-free and problem adaptive;
(b) whether it is possible to extend our analytic framework to the dynamic framework to general markets beyond serial
dictatorship; and (c) to consider other forms of non-stationary such as piece-wise constant markets or variations with a total
budget constraint. We keep these as future endeavors.

G. Proof of Theorem 4.5; NSCBwith 2 Agents
G.1. Preliminaries: Theoretical Guarantees of SNOOZE-ITwith k arms

As is standard in formalizing bandit processes (Lattimore & Szepesvári, 2020), we assume that the random process lies in a prob-
ability space endowed with a collection of independent and identically distributed random variables (Ui,j [t])i∈[N],j∈[k]t≥1. For
each i∈ [N] and j∈ [k], andk≥1, the random variables (Ui[k]) is distributed as the 0 mean, unit variance Gaussian random vari-
able3. With this description, the realized reward by agent i∈ [N], when it matches with arm j∈ [k] for the kth time at time-index

3Our analysis can be extended verbatim to any sub-gaussian distribution

15

Submission and Formatting Instructions for ICML 2023

t is given byUi,j [k]+µi,j,t. In this description, the set of arm-means (µi,j,t)i∈[N],j∈[k],t∈[T] are fixed non-random parameters.
Definition G.1 (Good Event).

E :=

N⋂
i=1

E(i),

where

E(i) :=

{
∀t∈ [T],∀j∈ [k],∀w≤ t,

∣∣∣∣ 1

w

w∑
s=0

Ui,j [t−s]
∣∣∣∣≤r(w)

}
,

here r(w) :=
√

8log(T)
w .

In words, the event E is the one in which every contiguous sequence of i.i.d. random variables is ‘well-behaved’. The
event E(1) is identical to the good-event specified for the single agent case in (Krishnamurthy & Gopalan, 2021). Standard
concentration inequalities give that this occurs with high probability which we record in the proposition below.
Proposition G.2.

P[E]≥1− 2Nk

T 2
.

Implication: The above proposition states that it is sufficient to look at the behavior of the learning algorithm under event
E . Since the rewards are bounded by 1, the additional regret incurred over T rounds will beO(NkT), which decays with T ,
and hence, from now on, we only focus on events conditioned on E .

Proof. Fix a t∈ [T],i∈ [N],j∈ [k] andw≤ t. Classical sub-gaussian inequality gives that

P

[∣∣∣∣ 1

w

w−1∑
s=0

Ui,j [t−s]
∣∣∣∣>r(w)

]
≤2exp

(
−1

2
wr(w)2

)
,

=
2

T 4
.

Now, taking an union bound over t,i,j andw gives that

P[E{]≤ 2Nk

T 2
.

The definition of the good event is useful due to the following result.
Lemma G.3 (No regret in the exploit-phase). If the good event E in Definition G.1 holds, then every agent in every exploit
phase will incur 0 regret.

Proof. We first prove the result for agent ranked 1. For any phase i1 of Agent 1, denote by time t=gi1 to be the time-instant
at which an arm a and λ>0 is identified that satisfies a>λ b (this means arm a= Lambda-Opt(λ,[k] from Definition 1) for
all b∈ [k]\{a}. In words, time gi1 is the time when the statistical test by Agent 1 succeeds. Recall from the notations in
the algorithm that Λi1 :=gi1−si1 .

Suppose in a phase i1, agent 1 exploits an arm a∈ [k] one or more rounds. Notationally, this is from times [gi1 +1,si1+1].
We will show that (i) there exists a minimum gap λ>0, such that at time gi1+1, for all arms a

′ ∈ [k]\{a}, the mean of arm
a exceeds a

′
by a certain margin, and (ii) in the duration [si1 +τi1 ,si1+1] is set such that the chosen arm a continues to be

optimal in the entire EXPLOIT phase.

The first claim is formalized below.

Under the good event E , there exists a time t
′ ∈ [si1 , gi1], such that for all arms b ∈ [k] \ {a}, µa,t′ − µb,t′ ≥

4
√

4 log(T)
Λi1
−2(k−1)δ.

16

Submission and Formatting Instructions for ICML 2023

Proof. The statistical test succeeded at time gi1 , i.e., there exists a λ>0 such that a>λ b, for all b∈ [k]\{a}. By Definition
3.1, the window sizew :=kd c1log(T)

λ2 e. Since the test succeeds at time t=gi1 , clearlyw≤Λi1 .

In order to describe the proof, we set some notations. For every arm a∈ [k], denote by the set of timesL(a)
i1

:={l(a)
1 ,···,l(a)

w/k} to
be thew/k times arm awas played in the time-interval [gi1−w,gi1]. These times are random variables —however conditioned
on gi1 , these are deterministic since in the Explore phase of Algorithms 2 and 3, agents explore the arms in a round-robin
fashion from arms indexed the smallest to the largest. Denote by µa,t(w/k) := k

w

∑
s∈L(a)

i1

µa,s. For every arm a∈ [k], denote

by the random index la to be the number of times arm a has been played in the past, before time gi1−w.

Since the statistical test succeeds at time t=gi1 , we have from Definition 3.1

µa,t(w/k)+
k

w

la+w/k∑
s=la

Ua[s]>µb,t(w/k)+
k

w

lb+w/k∑
s=lb

Ub[s]+4r(w/k)−(k−1)δ.

Re-arranging and using the definition of the Good event, we have

µa,t(w/k)−µb,t(w/k)>4r(w/k)−(k−1)δ+
1

w

lb+w/2∑
s=lb

Ub[l]−
1

w

la+w/2∑
s=la

Ua[l],

≥2r(w/k)−(k−1)δ.

where the second inequality stems from the definition of the good event. Now, since the drift is bounded by δ, we have that

µa,t(w/k)−µb,t(w/k)≤ k

w

∑
s∈L(a)

i1

(µa,s−µb,s)+(k−1)δ.

Combining the preceding two displays, we get that

k

w

∑
s∈L(a)

i1

(µa,s−µb,s)>2r(w/k)−2(k−1)δ.

The second inequality follows from the fact that the window size w≤Λi1 is smaller than the explore duration of phase i1.
Substituting the expression for r(w/k), we obtain

r(w/k)=

√
8klogT

w
=cλ,

where c is a universal constant.

Since λ is constrained with the number of samples inw, we have

c1klogT

λ2
≤Λi1⇒λ≥c0

√
klogT

Λi1

Substituting this, we obtain

k

w

∑
s∈L(a)

i1

(µa,s−µb,s)≥2

√
4klog(T)

Λi1
−2(k−1)δ=4

√
klog(T)

Λi1
−2(k−1)δ

Now, since the average gap exceeds a bound, it implies that there exists at-least one t
′ ∈ [si1 , gi1] such that

µa,t′−µb,t′ >4
√

klog(T)
Λi1

−2(k−1)δ.

17

Submission and Formatting Instructions for ICML 2023

Now, since the drift at each time-step in each arm is at-most δ, arm a will remain optimal compared to arm b at-least

in the time-interval [t
′
, t
′

+ 2
δ (4
√

klog(T)
Λi1

− 2(k − 1))], i.e., arm a is optimal compared to arm b in the duration

[t
′
, t
′

+ 4
δ

√
4klog(T)

Λi1
− 2(k − 1)]. Since t

′ ≥ si1 , and from Algorithms 1, 2 and 3 the definition of buffer period is

buffer1 := 4
δ

√
4klog(T)

Λi1
−2(k−1), arm a is superior to arm b in the exploit duration of phase i1. Now, since arm b was

arbitrary, this implies that Agent 1 will incur no regret during the exploit phase of i1.

For the general case, we will prove by induction. Suppose the induction hypothesis that all agent ranked 1 through to r−1 are
incurring 0 regret in an exploit phase. Notice from the description of Algorithm 3 that agent ranked r can potentially go into an
exploit phase if and only if all agents ranked 1 through r−1 are in an exploit phase. Additionally, the base case of the induction
hypothesis is what we established in the preceding paragraph where agent ranked 1 incurs 0 regret in the exploit phase. Under
this induction hypothesis, we will now argue that agent ranked r will also incur 0 regret in the corresponding exploit phase.

We make one observation based on the serial-dictatorship structure. If all agents ranked 1 through r−1 are in (i) Exploit
phase and (ii) are incurring 0 regret, then the stable match optimal arm for agent ranked r is to play the arm with the
highest mean among those arms not being exploited by agents ranked 1 through r−1. This is a simple consequence of the
definition of stable match (c.f. Section 2). Thus, it suffices to argue that when agent ranked r commits, it commits to the
optimal arm. We use identical arguments as for agent ranked 1 to show the following: If at time t, for a given Ω⊂ [k] with
|Ω|=r−1, the statistical test succeeds with arm a∈ [k], then there exists a time t

′ ∈ [sir ,t], such that for all arms b∈Ω\{a},
µa,t′−µb,t′ ≥4

√
4(k−r) log(T)

Λi1
−2(k−r+1)δ. The proof follows identical arguments as that of Claim G.1 by using the

observation that r(w) is a decreasing function ofw.

We now characterize the regret in the exploration phase, where SNOOZE-IT plays the round robbin algorithm. We first start
with the setup where an agent gets to explore all k arms. Later, we can easily extend these results, where an agent explores
a subset of arms.

Let us first recall a few notation from the previous section. For Agent 1, in episode i1, assume that the test succeeds at gi1 ,
and accordingly we define ∆i1 =gi1−si1 . We have the following result:

Lemma G.4 (Episode Regret). Under the good event E , the Regret of Agent 1 in the exploration phase of i1-th phase is given by

R1≤C1

[
k
√

Λi1 logT
]
.

Proof. The regret of Agent 1 in episode i1 is given by

R1 =

si1+1∑
t=si1+1

µ∗t−µSNOOZE−IT (t).

The above can be further decomposed as

R1 =

gi1∑
t=si1+1

µ∗t−µSNOOZE−IT (t)+

si1+1∑
t=si1+1

µ∗t−µSNOOZE−IT (t).

Note that as shown in Lemma G.3, the second term in the above expression is 0, and so we need to calculate the first term
only. Furthermore,

R1 =1+

gi1−1∑
t=si1+1

µ∗t−µSNOOZE−IT (t)

from the fact the the mean rewards lie in [0,1].

We first note that the statistical test did not pass until time gi1 − 1. Hence, there exists no two arms a, b such that
a=Lambda-Opt(λ̃,[k]). Using the definition of the statistical test with t≤gi1−1, under the good event E , for τ number of

18

Submission and Formatting Instructions for ICML 2023

pulls between any 2 arms, we obtain

µa,t(τ)−µb,t(τ)≤C1

√
logT

τ
−(k−1)δ. (1)

Let us now look at the regret decomposition

R1 =1+

gi1−1∑
t=si1+1

µ∗t−µSNOOZE−IT (t)

Since, we know that the Snooze-IT plays the round robbin algorithm in the interval si1 +1 to gi1−1, we split the said
interval in k parts,L(a)

i1
for all arms a∈ [k]. Let us first look at the intervalL(a)

i1
where Snooze-IT plays arm a. We obtain∑

t∈L(a)
i1

µ∗t−µa=
∑
t∈L(a)

i1

max
b∈[k]

µb,t−µa,t

Let us now break the above sum. We define the setO∗b as the set of time indices where arm b is the optimal arm, for all b∈ [k].
With this, we have ∑

t∈L(a)
i1

µ∗t−µa=
∑

t∈L(a)
i1
∩O∗b

∑
b∈[k]

µb,t−µa,t

=
∑
b∈[k]

∑
t∈L(a)

i1
∩O∗b

µb,t−µa,t

(i)

≤C
∑
b∈[k]

[
|L(a)
i1
∩O∗b |{

√
logT

|L(a)
i1
∩O∗b |

−(k−1)δ+(k−1)δ}

]

≤C
∑
b∈[k]

[√
|L(a)
i1
∩O∗b |logT+(k−1)δ|L(a)

i1
∩O∗b |

]

≤C
√

logT
∑
b∈[k]

[√
|L(a)
i1
∩O∗b |

]
(ii)

≤ C
√

logT
√
k

√
|L(a)
i1
|

=C
√
klogT

√
|L(a)
i1
|

where (i) follows from Equation 1, and using the fact that we require at most kδ deviation to align arm a and b (owing to the
round robbin nature of the play). Step (ii) follows from Cauchy Schwartz inequality. Now, the total regret we obtain is given by∑

a∈[k]

∑
t∈L(a)

i1

µ∗t−µa≤
∑
a∈[k]

[
C
√
klogT

√
|L(a)
i1
|
]

≤C1

[
k
√

logT
√

Λi1

]
Hence, under the good event, the regret of agent 1 is given by

R1≤C1

[
k
√

logT
√

Λi1

]
.

We now connect the quantity Λi1 to the complexity gap of the problem. Since we are dealing with agent ranked 1, we consider
the set of dominated arms, C=φ (null set). We write λt[1] as the complexity gap of the problem. We have the following lemma.

19

Submission and Formatting Instructions for ICML 2023

Lemma G.5 (Gap dependent regret). The regret of agent 1 is given by

R1≤Ck
√

Λi1 logT ≤ C

λgi1−1[1]
klogT

Proof. The proof depends on the following claim: In the exploration phase of agent 1, at time t′=si1 +τ , if the gap satisfies

λt′ [1]>C
√

logT
kτ , then the statistical test passes at time t′. In order to show the claim, we first show that for a window size

ofw(λt′ [1])=C klogT
λ2
t′ [1]

, such that all arms have w̃=w(λt′ [1])/k samples, we have

µa,t′(w̃)−µb,t′(w̃)>k(λt′ [1]−δ)

for any pair of arms a and b. The above is easy to show and follows from the definition of the problem complexity, following
the lines of Lemma 5 of (Krishnamurthy & Gopalan, 2021).

Now, with the window of size klogT
λ2
t′ [1]

, such that all arms have w̃ samples, we apply the test on arms a and b. After some algebric

manipulation, and invoking the condition of the test, we observe that as long as λt′ > c
√

logT
τ , or τ > c logT

λ2
t′[1]

, we can use

the window of size klogT
λ2
t′ [1]

and the test succeeds at the end of the window.

Now, recall that the test did not pass at si1−1, and so from the above claim, we obtain

λgi1−1[1]≤c

√
logT

Λi1−1
,

which implies √
Λi1≤

C

λgi1−1[1]

√
logT ,

thus proving the lemma.

This concludes the regret proof where the agent gets to explore all k arms. We now explain how to extend this for agents
exploring a subset of arms. For the general case, we will focus on the constrained set of arms.

Let us focus on Agent ranked r. It first constructs the set C(r) at time t. Then, its action will be exploring the arms in [k]\C(r).
This is given by the setup of the problem. We have the following claim, which uses identical arguments as Lemma G.4:

The regret in phase ir of Agent r from playing round-robbin on set [k]\Cr is given by

Rr≤
C

λgir−1[1]
(k−|Cr|)logT

When agent r explores all the arms, Cr=φ, and we get back to the regret ofO(klogT).

We finally argue about the length of an epoch. We have the following claim.
Lemma G.6 (Episode length). For k-armed SNOOZE-IT, the length of an episode is at least cδ−2/3k1/3log1/3T .

Proof. Recall that, the length of the buffer is set as 4
δ

√
4klog(T)

Λi1
−2(k−1). We consider 2 cases:

Case I Λi1≥buffer1: In this case, there is no exploit phase, and so the length of an episode is Λi1

Case II Λi1≥buffer1: In this setting, there exists an exploit phase, and the length of the episode is given by buffer1 (comes
from the definition of buffer)

Now considering the above two alternative, the length of an episode is given by max{Λi1 ,buffer1}. In order to lower bound
the episode length, we minimize max{Λi1 ,buffer1}, which happens when

Λi1 =
4

δ

√
4klog(T)

Λi1
−2(k−1).

20

Submission and Formatting Instructions for ICML 2023

Now, in the standard slowly varying framework, the value of δ is typically small. For example, see (Krishnamurthy & Gopalan,
2021) Theorem 3 of (Krishnamurthy & Gopalan, 2021), we require δ=1/Tα for α∈(0,1). In the regime where T is large, the
second term in the above expression becomes a minor one, and for compactness of the expression, and to ease the calculation,
we ignore the second term. We obtain

Λi1≈
4

δ

√
4klog(T)

Λi1
⇒Λi1≈cδ1/3k1/3log1/3T,

and thus the episode length is at least cδ1/3k1/3log1/3T , which proves the lemma.

G.2. Continuing the proof of Theorem 4.5 with results form Section G.1

In this section, we prove the regret of both Agents 1 and 2 for Algorithms 1 and 2.

More interestingly, in this section, we provide a full characterization of the regret of Agent 2. Note that since Agent 2 plays
on a restrictive or dominated set of arms, dictated by Agent 1, it encounters additional regret. In the description of Algorithm 2,
we pointed out the scenarios where Agent 2 is forced to (a) either explore or (b) to stop exploiting. Here, we obtain a regret
upper-bound from these forced exploration-exploitation.

Notation: To better understand the algorithm, let use focus on a particular phase of Agent 1, say the i1-th epoch/episode.
We use the same notation defined in Algorithm 2. So, si1 denotes that start-time of epoch i1 ans si1+1 denotes the end of epoch
i1. The exploration duration before committing to an arm is Λi1 , and so the exploitation phase starts at si1 +Λi1 . Similarly,
the length of exploitation is si1+1−Λi1 . Let us also assume that the committed arm of Agent 1 in this phase is i∗.

In the calculation below, we condition on the good event E . At the end of this section, we provide a justification of the
sufficiency of conditioning on this event and provide the total regret guarantees.

Since Agent 1 plays Algorithm 1, as shown in Lemma G.3, during the exploitation phase, it incurs no regret.

During the exploration phase, using Lemma G.4, the regret of Agent 1 in i1-th phase is

R1(i1)≤C(k
√

Λi1 logT)

We now look at the behavior of Agent 2, while Agent 1 is in phase i1. As shown in Figure 1, there can be multiple phases
of Agent 2 inside one phase of Agent 1, and hence let us assume that at the beginning of epoch i1, the phase number of Agent
2, given by i2 = ni1 , and by the end of phase i1, the episode index is ni1 +Ni1 , thus ensuring Ni1 number of episodes of
Agent 2, within one episode of Agent 1.

G.3. Regret of Agent 2 during the exploration period of Agent 1 in the i1th phase

In this phase, which lasts for Λi1 rounds, we characterize the regret of Agent 2. For this, let us define τni1
as the duration,

starting from si1 it takes for Agent 2 to commit to an arm unconditionally. This means that in the absence of competition,
starting from si1 , Agent 2 would take τni1

to commit to an arm by exploring all the arms.

We have 2 cases:

Case I (Λi1 ≤ τni1
): In this case, since Agent 1 commits first, the regret of Agent 2, from Lemma G.4 is given by

O(k
√

Λi1 logT). In this case, Agent 2 is not forced to explore.

Case II (Λi1 ≥ τni1
): In this case, Agent 2 incurs a regret of O(k

√
τni1

logT) plus some additional regret owing to force
exploration. The forced exploration comes from the fact that in this case, although Agent 2 has enough information to commit, it
still explores because Agent 1 has not committed yet, and the commitment of Agent 2 will cause periodic collisions for Agent 2.

G.3.1. FORCED EXPLORATION

We now characterize the regret of Agent 2 form forced exploration. Note that Agent 2 is forced to explore at time t if:

21

Submission and Formatting Instructions for ICML 2023

1. Agent 1 is exploring, and

2. At time t, S(jt)
2 is non-empty, where jt∈ [k] is the arm played by Agent 1.

Let us understand this in a bit more detail. If S(jt)
2 is non-empty, it implies that without the presence of competition, Agent

2 would have played arm jt. This comes from the definition of S(.)
2 . Now, when Agent 1 is playing that arm, it implies a

forced exploration on Agent 2. We can write down the above forced exploration time steps as the following.

Forced Exploration=

si1+Λi1∑
t=si1

k∑
j=1

1(jt=j)1
(
τ (j)
ni1

<t
)
,

where τ (j)
ni1

is defined as the duration of the exploration period before the (λ̃,A) test succeeds withA=[k]\{j}, when Agent
is in phase Explore ALL.

Since the mean rewards lie in [0,1], the regret obtained from forced exploration is

O

si1+Λi1∑
t=si1

k∑
j=1

1(jt=j)1
(
τ (j)
ni1

<t
),

Combining this two, the regret of Agent 2 during the exploration phase of Agent 1 is given by

O

1(Case-I)k
√

Λi1 logT+1(Case -II)

k√τni1
logT+

si1+Λi1∑
t=si1

k∑
j=1

1(jt=j)1
(
τ (j)
ni1

<t
)

G.4. Regret of Agent 2 during exploitation phase of Agent 1

Suppose Agent 1 commits to arm i∗. In this phase, Agent 2 is forced to play in a restrictive set [k]\{i∗}. Note that in this
phase, several cases may happen:

Agent 2 is exploiting: Note that Agent 2 keeps the set S(j)
2 for all j ∈ [k], and if j 6= i∗, Agent 2 immediately commits to j.

Keeping track of such S(j)
2 thus ensures that agent 2’s exploration are not wasted.

Furthermore, if S(j)
2 is empty, for all j 6= i∗, Agent 2 will keep accumulating samples, now from a restrictive set [k]\{i∗},

and may commit to an arm within the set. In both the cases, we have shown in Lemma G.3 that the regret incurred is zero.

Agent 2 is exploring: Note that inside the exploit phase of Agent 1, Agent 2 basically plays the Snooze-IT algorithm over
the arm-set [k]\{i∗}. Hence, using Lemma G.4 on the constrained set [k]\i∗, the regret is given by

O

ni1
+Ni1∑

p=ni1+1

(k−1)

√
τ̃

(i∗)
p logT

,
whereNi1 is the number of phases of Agent 2 in the current exploitation phase of Agent 1, and τ̃ (i∗)

p is defined as the duration
of the exploration period before the (λ̃,A) test succeeds withA=[k]\{i∗}, when Agent 2 is in state Explore-i∗.

G.5. Total Regret of both agents in one phase

Putting everything together, the regret of Agent 1 and 2, denoted byR1(i1) andR2(i1) respectively, during the i1-th phase
of Agent 1 is given by

R1(i1)≤O(k
√

Λi1 logT),and

22

Submission and Formatting Instructions for ICML 2023

R2(i1)≤O

[
1(Case-I)k

√
Λi1 logT︸ ︷︷ ︸

T1

+1(Case -II)

k√τni1
logT+

si1+Λi1∑
t=si1

k∑
j=1

1(jt=j)1
(
τ (j)
ni1

<t
)

︸ ︷︷ ︸
T2

+

ni1
+Ni1∑

`=ni1
+1

(k−1)

√
τ̃

(i∗)
` logT


︸ ︷︷ ︸

T3

]

G.5.1. REGRET FOR AGENT 1 IN PHASE i1:

We now bound
√

Λi1 using Lemma G.5. In particular, we obtain

√
Λi1≤O

(
1

λgi1−1

)√
logT ,

where gi1 =si1 +Λi1 is the time instant where the test succeeds for Agent 1, and λt denotes the dynamic gap. Hence, we have

R1(i1)≤O(k
√

Λi1 logT)≤O

(
klogT

λgi1−1[1]

)
,

G.5.2. REGRET FOR AGENT 2 IN PHASE i1

We now upper bound T1,T2 and T3 separately. We first consider T1.

We have

T1 =1(Case-I)k
√

Λi1 logT ≤k
√

Λi1 logT ,

and using the same modified lemma as before, we obtain

T1≤O

(
klogT

λgi1−1[1]

)
,

where λgi1−1[1] denotes the dynamic gap for player 1 at time instant gi1−1.

For T2, we have

T2 =1(Case -II)

k√τni1
logT+

si1+Λi1∑
t=si1

k∑
j=1

1(jt=j)1
(
τ (j)
ni1

<t
)

≤

(
k
√
τni1

logT︸ ︷︷ ︸
T2,1

+

si1+Λi1∑
t=si1

k∑
j=1

1(jt=j)1
(
τ (j)
ni1

<t
))

︸ ︷︷ ︸
T2,2

The term T2,1 can be bounded similar to Λi1 . This is the exploitation time of Agent 2 in the Explore all phase. Hence, it can
be upper bounded as

T2,1≤O

(
klogT

λg̃i1−1[2]

)
,

where g̃i1 =si1 +τni1
is the time instant where the test succeeds for Agent 2, andλg̃i1−1[2] denotes the dynamic gap for player

2 at time instant g̃i1−1.

23

Submission and Formatting Instructions for ICML 2023

Note that during the exploration phase of Agent 1, the arms are being played in a round robbin fashion, and hence

T2,2≤
si1+Λi1∑
t=si1

k∑
j=1

1(jt=j)1
(
τ (j)
ni1

<t
)
≤
si1+Λi1∑
t=si1

k∑
j=1

1(jt=j)

≤
k∑
j=1

si1+Λi1∑
t=si1

1(jt=j)1
(
τ (j)
ni1

<t
)

≤
k∑
j=1

Λi1
k

=Λi1 .

Hence, we have

T2,2≤O

(1

λgi1−1[1]

)2

logT

.
Combining T2,1 and T2,2, we have

T2≤O

(klogT

λg̃i1−1[2]

)
+

(
1

λgi1−1[1]

)2

logT



Let us now control T3. Note that during the exploitation phase of Agent 1, Agent 2 only incurs regret while exploring within
the set of [k]\{i∗}. So, using the Lemma G.5 now using on arm set [k]\{i∗}with cardinality k−1 is given by

√
τ̃

(i∗)
p ≤O

 (k−1)
√

logT

λ
(i∗)
(gni1

,p)−1[2]

,
where gni1 ,p

is the time instant where the test succeeds when Agent 2 is in p-th phase. Furthermore, since Agent 2 is not

playing arm i∗, this regret depends on the dynamic gap excluding arm i∗, denoted by λ(i∗)
(.) . Using this, we have

T3 =

ni1
+Ni1∑

p=ni1
+1

(k−1)

√
τ̃

(i∗)
p logT ≤

ni1
+Ni1∑

p=ni1
+1

 (k−1)logT

λ
(i∗)
(gni1

,p)−1[2]

.
Combining T1,T2 and T3, we obtain

R2(i1)≤O

(klogT

λgi1−1[1]

)
+

(
klogT

λg̃i1−1[2]

)
+

(
1

λgi1−1[1]

)2

logT+

ni1
+Ni1∑

p=ni1+1

 (k−1)logT

λ
(i∗)
(gni1

,p)−1[2]


≤O

(klogT

λg̃i1−1[2]

)
+

(
1

λgi1−1[1]

)2

klogT+

ni1
+Ni1∑

p=ni1
+1

 (k−1)logT

λ
(i∗)
(gni1

,p)−1[2]

,
since λt∈ [0,1]. What remains is a bound onNi1 .

G.6. Total Regret upto time T

In the above calculations, we have the regret for the i1-th phase of Agent 1 only. Note that the starting instances of epochs
for Agent 1, denoted by {si1}i1=1,2,.. is random. To handle this issue, the learning epoch is split into several (deterministic)
blocks and the total regret guarantee is given over these deterministic splits.

24

Submission and Formatting Instructions for ICML 2023

G.7. Total Regret for Agent 1

From Lemma G.6, the minimum length of an epoch of Agent 1 is given by Ω(δ−2/3k1/3 log1/3T). Motivated by this, we
fix the deterministic blocks of length δ−2/3k1/3log1/3T so that each block can accommodate at most 2 phases. Using this,
we write the regret of Agent 1 as

R1≤C
m∑
`=1

1

λmin,`[1]
klogT,

where m denotes the number of blocks, each having length at most min{c δ−2/3k1/3 log1/3 T, T}, and
λmin,`[1]=mint∈`-th blockλt.

G.7.1. TOTAL REGRET OF AGENT 2

Now let us look at Agent 2. Note that in the exploitation phase of Agent 1, Agent 2 either plays on a constrained set with
k−1 arms, or uses the optimistic estimates to exploit. So, using Lemma G.6, now on a constrained set of size (k−1) the
minimum length between 2 epochs of Agent 2 is given by

Ω
(
δ−2/3(k−1)1/3log1/3T

)
.

Note that the since an entire phase of Agent 1, which includes exploration as well as exploitation is lower bounded by
Ω(δ−2/3k1/3log1/3T), trivially the exploitation phase is at least, Ω(δ−2/3k1/3log1/3T). Hence the number of epochs played
by Agent 2 for during the i1-th phase of Agent 1 is given by

Ni1≤2×2×

⌈(
k

k−1

)1/3
⌉
.

We are now ready to write the total regret of Agent 2 upto time T . It is given by

R2≤C1

m∑
`=1

{(
1

λmin,`[2]

)
klogT+

(
1

λmin,`[1]

)2

klogT

+

⌈(
k

k−1

)1/3
⌉(

1

mina∈[k]λ
(a)
min,`[2]

)
(k−1)logT

}
,

where the number of blocks is denoted bym, each having length at most min{cδ−2/3k1/3log1/3T,T}, and

λmin[`]= min
t∈`-th block

λt.

Furthermore, λ(a)
(.) denotes the dynamic gap in the problem without arm a.

G.8. Event E and the total regret

All the above calculations are done conditioned on the good event. Now the total regret (of agent 1) is upper bounded by

(1−P(E)R1+P(Ec)×T,

where the second term comes from the trivial fact that the rewards are within [0,1], and so the trivial regret is T . Substituting
the expression of P(Ec) from Proposition G.2, we get the regret upper bound as

R1+
2Nk

T
.

25

Submission and Formatting Instructions for ICML 2023

Note that the second term is decreasing with T and hence considered as the minor term with respect toR1. So, we conclude
that the overall regret is (order-wise) upper bounded byR1.

Similar arguments and exact conclusion can be drawn for Agent 2 as well.

H. Proof of Theorem C.2; NSCB for N agents
In this theorem, we consider the generic case of N agents, and we characterize the regret of agent ranked r. We consider
the learning of Agent r−1 as the action of Agent r will be dominated by that. The proof here follows in the same lines as
of Theorem 4.5. The problem has an inductive structure, and this proof exploits that. We may only focus on the behavior
of r−1-th agent; very similar to focusing on the first agent in the previous theorem.

H.1. Behavior of r−1-th ranked Agent

We consider 1 epoch of agent r−1. From the notation of Algorithm 3, it starts at tir−1 , and let the exploration period is Λir−1 .
Similarly, the exploitation period duration is tir−1+1−Λir−1

.

Note that if r≥3, the exploration of Agent r−1 will be restricted. Let Ct(r−1) be the set of arms dominated by agents ranked
1 to r−2, i.e., |Ct(r−1)|≤r−2. With this, for a fixed Ct(r−1), the dynamic gap parameter for Agent ranked r−1 is given
by λCt(r−1)

t [r−1]. Note that when Ct(r−1)=φ, Agent r−1 will Explore all arms.

H.1.1. REGRET OF AGENT r IN EXPLORE PHASE OF AGENT r−1

As presented in the previous theorem, we break the regret of Agent r, during the exploration and the exploitation phase of
agent r−1.

During the exploration phase, Agent r can either Explore all arms, or explore within a restricted set. Recall that Ct(r) denotes
the set of arms dominated by agents ranked higher than Agent r. If Ct(r) =φ, Agent r explores all the arms. Otherwise it
will explore the set of arms given by [k]\Ct(r).

Similar to the 2 agent case, here also, Agent 2 will face forced exploration, and the definition is identical—instead of
conditioning on the behavior of Agent 1, here, we condition on the behavior of Agent r−1.

Following the same lines, we obtain the regret of Agent r in the exploration phase of Agent r−1 is given by

O


 (k−|Ct(r−1)|)logT

λ
Ct(r−1)
gir−1

−1[r−1]

+

(
(k−|Ct(r)|)logT

λ
Ct(r)
gir−1[r]

)
+

 1

λ
Ct(r−1)
gir−1

−1[r−1]

2

(k−|Ct(r−1)|)logT


where the time instances, gir−1

denote the time the (λ̃,A) test succeeds for Agent r−1 withA=[k]\Ct(r−1). Similarly, gir
denote the time (λ̃,A) test succeeds for Agent r withA=[k]\Ct(r). Note that |Ct(r−1)|≤r−2 and |Ct(r)|≤r−2, since
Agent r−1 has not committed yet. We upper bound the following as

O

((k−|Ct(r)|)logT

λ
Ct(r)
gir−1[r]

)
+

 1

λ
Ct(r−1)
gir−1

−1[r−1]

2

(k−|Ct(r−1)|)logT


H.1.2. REGRET OF AGENT r IN EXPLOIT PHASE OF AGENT r−1

Similar to the behavior of Agent 2, in this case Agent r may be multiple epochs inside an exploration period of Agent r−1.

Note that inside the exploit phase of Agent 1, Agent 2 plays with the arm-set [k]\Ct(r). Hence, mimicking the regret of
Agent 2 as explained i the proof of Theorem C.2, the regret owing to exploitation is given by

26

Submission and Formatting Instructions for ICML 2023

O

ir+Nir∑
p=ir+1

√
(k−|Ct(r)|)τ̃ (Ct(r))

p logT

,
where Nir is the number of phases of Agent 2 in the current exploitation phase of Agent 1, and τ̃ (Ct(r))

j is defined as the
duration of the exploration period before the (λ̃,A) test succeeds withA=[k]\Ct(r).

We bound the above as

O

ir+Nir∑
p=ir+1

 (k−|Ct(r)|)logT

λ
Ct(r)
(gir,p)−1[2]

.

We now need to bound Nir . Note that, when Agent 1 commits, |Ct(r−1)|= r−2. As a consequence, using G.6 with the
constrained set Ct(r−1), the minimum length of an episode for Agent r−1 is Ω(δ−2/3(k−r+2)1/3log1/3T . Hence, we have

Nir≤2×2×

⌈(
k−r+2

k−r+1

)1/3
⌉
.

We now break the learning horizon into deterministic epochs. We use deterministic blocks of fixed length given by
O(δ−2/3k1/3log1/3T). Now, within one such block, the number of epochs of Agent r−1 is upper bounded by

⌈(
k

k−r+2

)1/3
⌉
.

Hence, in one such deterministic block the regret of Agent r will be multiplied by the regret in one phase of Agent r−1 times
the number of phases of Agent r−1.

H.1.3. REGRET EXPRESSION

We are now ready to write the expression of regret for Agent r. In the above calculation, we work with a fixed constrained
set Ct(r−1). We now extend the result uniformly for all constrained set here. We obtain

Rr≤C
m∑
`=1

{(
k

k−r+2

)1/3


 1

min
C∈[k]
|C|≤r−2

λCmin,`[r]

+

 1

min
C∈[k]
|C|≤r−2

λCmin,`[r−1]


2klogT

+

⌈(
k−r+2

k−r+1

)1/3
⌉ 1

min
C∈[k]
|C|≤r−1

λCmin,`[r]

(k−r+1)logT

}
,

where we now discuss several terms.

The term min C∈[k]
|C|≤r−2

λCmin,`[r] denotes the (worst-case) gap, of Agent r on a subset C of cardinality at most r−2. Note that

this is an lower bound on the term λ
Ct(r)
gir−1[r]. Furthermore, since we do not have a lower bound on |Ct(r)|, we upper bound

k−|Ct(r)| as k.

27

Submission and Formatting Instructions for ICML 2023

Similarly, the second term comes from forced exploration. The final term also follows from the exploitation of Agent r. Here,
min C∈[k]

|C|≤r−1

λCmin,`[r] denotes the (worst-case) gap, of Agent r on a subset C of cardinality at most r−1. Note that this is

an lower bound on the term λ
Ct(r−1)
gir−1 [r−1].

This above argument proves the theorem under the good event E . Similar to the proof of Theorem C.2, we can extend the
result to the total regret using Proposition G.2.

I. Proof of Lemma D.1
The proof comes from a reduction argument from the setup without blackboard to the setup with blackboard. Here, we obtain
a sufficient condition on the drift δ′, such that the dynamics “without blackboard” setup can be reduced to the problem setting
of “with blackboard”.

In the case of two agents, the proof for this reduction uses the following fact established in Section D: in the absence of
the black-board, Agent 2 requires at-most k time-steps to infer the state of agent 1. Thus, if δ

′
=Ckδ, then the deviation

in arm-means in these k time steps before communication can occur is at-most δ′. This coincides with the deviation of the
setting “with blackboard” where in one time-step Agent 2 learns of the state of Agent 1.

Hence, we can upper bound the performance here by a worse system with drift δ′. However, from the point of view of a δ′

shifted system, the framework is equivalent to having a black board present.

Thus, the regret proofs for the case “without blackboard” are just corollaries of the regret proof “with blackboard” with δ′.

J. Proof of Lemma D.4
The proof of Lemma D.4 follows identical argument. With the modified reward model, we argue in Section D that it takes
at most k time steps for Agent r to learn the arms that are being dominated by Agents ranked 1 to r−1. Hence, essentially,
the framework is equivalent to the proof of Lemma D.1, and hence the lemma follows.

28

