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Figure 1: Construction process of VIDEOEVAL dataset and illustration of MANTISSCORE.

Abstract

The recent years have witnessed great advances001
in text-to-video generation. However, the video002
evaluation metrics have lagged significantly be-003
hind, which fails to produce an accurate and004
holistic measure of the generated videos’ qual-005
ity. The main barrier is the lack of high-quality006
human rating data. In this paper, we release007
VIDEOEVAL, the first large-scale multi-aspect008
video evaluation dataset. VIDEOEVAL consists009
of high-quality human-provided ratings for 5010
video evaluation aspects on the 37.6K videos011
generated from 11 existing popular video gen-012
erative models. We train MANTISSCORE based013
on VIDEOEVAL to enable automatic video qual-014
ity assessment. Experiments show that the015
Spearman correlation between MANTISSCORE016
and humans can reach 77.1 on VIDEOEVAL-017
test, beating the prior best metrics by about018
50 points. Further result on the held-out Eval-019
Crafter, GenAI-Bench, and VBench, show that020
MANTISSCORE is highly generalizable and021
still beating the prior best metrics by a remark-022
able margin. We observe that using Mantis as023
the based model consistently beats that using024
Idefics2 and VideoLLaVA, and the regression-025
based model can achieve better results than the026
generative ones. Due to its high reliability, we027
believe MANTISSCORE can serve as a valuable028
tool for accelerate video generation research.029

1 Introduction030

Powerful text-to-video (T2V) generative models031

have been exponentially emerging these days. In032

2023 and 2024, we have witnessed an array of 033

T2V models like Sora (OpenAI, 2024b), Runway 034

Gen-2 (Esser et al., 2023), Lumiere (Bar-Tal et al., 035

2024), Pika1, Luma-AI2, Kling3, Emu-video (Gird- 036

har et al., 2023), StableVideoDiffusion (Blattmann 037

et al., 2023a). These models have shown their po- 038

tential to generate longer-duration, higher-quality, 039

and more natural videos. Despite significant ad- 040

vancements in video generation models, the evalua- 041

tion metrics of video generation is lagging behind. 042

The recent literature has adopted a wide range 043

of metrics to do video quality assessments. How- 044

ever, these metrics suffer from the following is- 045

sues: (1) they can only be used to evaluate visual 046

quality or aesthetics, while failing to capture as- 047

pects like motion smoothness, factual consistency, 048

etc. Examples of such metrics include CLIP (Rad- 049

ford et al., 2021b), DINO (Caron et al., 2021), 050

BRISQUE (Mittal et al., 2012a), FVD (Unterthiner 051

et al., 2019), and IS (Salimans et al., 2016). (2) 052

some metrics focus only on a single mean opinion 053

score (MOS), failing to provide fine-grained sub- 054

scores across different multiple aspects. Examples 055

include T2VQA (Kou et al., 2024b), FastVQA (Wu 056

et al., 2022), and DOVER (Wu et al., 2023). Sev- 057

eral works (Ku et al., 2023; Bansal et al., 2024) pro- 058

pose to prompt multi-modal large-language-models 059

(MLLM) like GPT-4o (Achiam et al., 2023) or 060

1https://pika.art/home
2https://lumalabs.ai/dream-machine
3https://kling.kuaishou.com/
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Gemini-1.5 (Reid et al., 2024) to produce multi-061

aspect quality assessment for given videos. How-062

ever, our experiments show that they also have low063

correlation with humans.064

The biggest barrier to build reliable video met-065

rics is the lack of high-quality human-annotated066

dataset. To overcome this barrier, we curate067

VIDEOEVAL, the first large-scale, multi-aspect068

video evaluation dataset. We select prompts069

from VidProM (Wang and Yang, 2024), and use070

11 popular text-to-video models, including Pika,071

Lavie (Wang et al., 2023c), SVD (Blattmann et al.,072

2023a), etc, to generate videos of various quality073

based on these prompts. We define five key as-074

pects for evaluation in Table 2, and each aspect075

is scored from 1 (bad) to 4 (perfect). For annota-076

tion, we trained 20 raters to perform a multi-aspect077

rating over individual generated videos. We have078

collected ratings for a total of 37.6K videos. We079

iterate multiple rounds of refinement to ensure a080

high inter-annotation-agreement (IAA) ratio over081

60% for all five aspects.082

To build the video evaluator, we select Mantis-083

Idefics2-8B (Jiang et al., 2024a) as our main back-084

bone model due to its superior ability to handle085

multi-image and video content, accommodating up086

to 128 video frames and supporting native reso-087

lution. After fine-tuning Mantis on VIDEOEVAL-088

train, we get our video evaluator, MANTISSCORE.089

Experiments show that we achieve a Spearman cor-090

relation of 77.1 on VIDEOEVAL-test and 59.5 on091

EvalCrafter (Liu et al., 2023b) for the text-to-video092

alignment aspect, surpassing the best baseline by093

54.1 and 4.4 respectively. The pairwise comparison094

accuracy gets 78.5 on GenAI-Bench (Jiang et al.,095

2024b) video preference part, and 72.1 in average096

on 5 aspects of VBench (Huang et al., 2023), sur-097

passing the previous best baseline by 11.4 and 9.6098

respectively. Additional ablation studies with dif-099

ferent backbone models confirmed that the Mantis-100

based metric provides a gain of 12.1 compared to101

using the Idefics2-based metric. Due to the signifi-102

cant improvement, we believe that MANTISSCORE103

can serve as the reliable metrics for future video104

generative models.105

2 Related Work106

2.1 Text-to-Video Generative Models107

Recent progress in diffusion models (Ho et al.,108

2020; Rombach et al., 2022) has significantly109

pushed forward the development of Text-to-Video110

(T2V) generation. Given a text prompt, the T2V 111

generative model can synthesize new video se- 112

quences that didn’t previously exist (Wang et al., 113

2023c; OpenAI, 2024b; Chen et al., 2023a, 2024a; 114

Henschel et al., 2024; Bar-Tal et al., 2024). Early 115

diffusion-based video models generally build upon 116

Text-to-Image (T2I) models, adding a tempo- 117

ral module to extend itself into the video do- 118

main (Wang et al., 2023c; Chen et al., 2023c). Re- 119

cent T2V generation models are directly trained 120

on videos from scratch. Among these, models 121

based on Latent Diffusion Models (LDMs) have 122

gained particular attention for their effectiveness 123

and efficiency (Zhou et al., 2022; An et al., 2023; 124

Blattmann et al., 2023b). While the other works 125

used the pixel-based Diffusion Transformers (DiT) 126

also achieve quality results (Gupta et al., 2023; 127

Chen et al., 2023b; OpenAI, 2024b). 128

2.2 Video Quality Assessment 129

As the current progress of Text-to-Video genera- 130

tive models leaves it uncertain how close we are 131

to reaching the objective, researchers have worked 132

on evaluation methods to benchmark the genera- 133

tive models. Common methods involve the use 134

of FVD (Unterthiner et al., 2018) and CLIP (Rad- 135

ford et al., 2021a) to evaluate the quality of frames 136

and the text-frames alignment respectively. How- 137

ever, other aspects like subject consistency, tempo- 138

ral consistency, factualness cannot be captured by 139

these metrics. Recent works like VBench (Huang 140

et al., 2023) proposes to use different DINO (Caron 141

et al., 2021), optical flow (Horn and Schunck, 1981) 142

to reflect these aspects. However, the correlation 143

with human judgment is relatively low. For ex- 144

ample, most models have subject/background con- 145

sistency scores over 97% in VBench, which is a 146

massive overestimation of the current T2V mod- 147

els’ true capability. Another work EvalCrafter (Liu 148

et al., 2023b) instead resorts to human raters to 149

perform comprehensive evaluation. 150

A recent work VideoPhy (Bansal et al., 2024) 151

follows VIEScore (Ku et al., 2023) prompt large 152

multi-modal models like Gemini (Reid et al., 2024) 153

and GPT-4o (Achiam et al., 2023) to provide qual- 154

ity assessment. However, our later study shows that 155

these multimodal language models also achieve 156

very low agreement with human raters. A concur- 157

rent work T2VQA (Kou et al., 2024a) also proposes 158

to train a quality assessment model on human- 159

annotated video ratings. However, there are a few 160

distinctions. Firstly, our dataset contains ratings 161
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for multiple aspects. Secondly, our dataset is 4x162

larger than the T2VQA dataset. Thirdly, our metric163

is built on pre-trained video-language foundation164

models to maximize its performance.165

3 VIDEOEVAL166

This section introduces the construction process of167

our dataset, VIDEOEVAL, for training video eval-168

uators. We start by explaining how we gathered169

and filtered diverse text prompts for video gener-170

ation, followed by the video-generation processes171

using 11 selected text-to-video models. Next, we172

outline the annotation pipeline that guides raters173

to score videos across multiple aspects defined in174

Table 2. We also include supplementary data to175

enhance robustness. Finally, we summarize the176

dataset statistics in Table 1, with 760 examples177

designated as the test set for evaluation.178

3.1 Data preparation179

Prompt Sources We utilize VidProM (Wang and180

Yang, 2024), a dataset containing extensive text-181

to-video pairs from different models. VidProM’s182

video-generation prompts are diverse and seman-183

tically rich, derived from real-world user inputs.184

To create a manageable subset from the 1.04 mil-185

lion unique prompts, we apply two filters: a length186

filter and an NSFW filter. The length filter elim-187

inates prompts with fewer than 5 words or more188

than 100 words. The NSFW filter removes prompts189

with a high probability of containing inappropri-190

ate content. After filtering, we perform random191

down-sampling to obtain a set of 44.5K prompts,192

31.6K of them are used in video generation and193

some videos may have the same text prompt.194

Video Generation We select 11 text-to-video195

(T2V) generative models (shown in Table 1)196

with various capabilities so that the quality of197

the generated video ranges from high to low198

in a balanced way. Some videos are pre-199

generated in the VidProM dataset, including200

Pika, Text2Video-Zero (Khachatryan et al., 2023),201

VideoCrafter2 (Chen et al., 2024a), and Mod-202

elScope (Wang et al., 2023a), whereas the others203

are generated by ourselves or collected from the204

Internet (i.e. SoRA). To eliminate differences be-205

tween models in subsequent annotation stage, we206

normalize the videos into a unified format. First,207

we standardized the frame rate to 8 fps to address208

discrepancies in temporal consistency between209

high and low fps videos. Specifically, for high210

frame rate model Pika and AnimateDiffusion (Guo 211

et al., 2023) we use frame down sampling, while for 212

low frame rate model like Text2Video-Zero, we em- 213

ployed frame interpolation (Huang et al., 2022) on 214

it. Details are shown in Appendix E. Additionally, 215

we cropped Pika videos to remove the watermark, 216

making them indistinguishable from other models. 217

Ultimately, we obtained 33.6K videos from 11 T2V 218

models, along with their generation prompts. 219

3.2 Annotation Pipeline 220

Evaluation Dimensions As discussed in sec- 221

tion 1, fine-grained and multi-aspect rating of 222

videos is crucial for enhancing both the reliabil- 223

ity and explainability of the video evaluator. In- 224

spired by VBench (Huang et al., 2023) and Eval- 225

Crafter (Liu et al., 2023b), and FETV (Liu et al., 226

2023c), we propose five key dimensions for text- 227

to-video evaluation, detailed in Table 2. These 228

dimensions encompass both low-level vision as- 229

pects, such as Visual Quality, which evaluates basic 230

visual impressions, and higher-level aspects, like 231

Text-to-Video Alignment and Factual Consistency, 232

which require a deep understanding of world knowl- 233

edge, is a capability previous metrics do not have. 234

Besides definition, a checklist for error points for 235

each dimension is also provided to assist the rater 236

in contributing more accurate and consistent rating. 237

Detailed are provided in Table 8. 238

Annotation We hired 20 expert raters, with each 239

rater performing rating for 1K-2K videos. Our 240

raters are mostly college graduate students. For 241

each aspect, there are three available ratings, 1 242

(Bad), 2 (Average), and 3 (Good), the score 4 (Per- 243

fect) is post-annotated, as described in the sub- 244

section 3.3. To ensure the consistency and quality 245

of the annotations, we conducted a system train- 246

ing for each rater. Initially, we conducted a pilot 247

training session with examples of multi-aspect rat- 248

ings for various videos. Following this, multiple 249

rounds of small-scale annotation were conducted 250

to compute the inter-annotator agreement (IAA) 251

across five aspects, as shown in Table 3. The re- 252

sults indicate a high score-matching ratio for all 253

aspects, along with Fleiss’ κ (Fleiss and Cohen, 254

1973) and Krippendorff’s α (Krippendorff, 2011) 255

metrics, with values around 0.4 or 0.5, suggesting 256

sufficient agreement to proceed with large-scale 257

annotation. The annotation process takes roughly 258

4 weeks to finish. 259
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Base Model or Video Type Video Source Total Size Resolution Duration FPS Score

Human Annotated Videos

Pika VidProM 4.6k (768, 480) 3.0s 8 [1-4]
Text2Video-Zero (Khachatryan et al., 2023) VidProM 4.6k (512,512) 2.0s 8 [1-4]
VideoCrafter2 (Chen et al., 2024a) VidProM 4.9k (512, 320) 2.0s 8 [1-4]
ModelScope (Wang et al., 2023a) VidProM 4.5k (256, 256) 2.0s 8 [1-4]
LaVie-base (Wang et al., 2023c) Generated 3.2k (512, 320) 2.0s 8 [1-4]
AnimateDiff (Guo et al., 2023) Generated 1.4k (512, 512) 2.0s 8 [1-4]
LVDM (He et al., 2022) Generated 3.1k (256, 256) 2.0s 8 [1-4]
Hotshot-XL (Mullan et al., 2023) Generated 3.2k (512, 512) 1.0s 8 [1-4]
ZeroScope-576w (Sterling, 2024) Generated 2.2k (256, 256) 2.0s 8 [1-4]
Fast-SVD (Blattmann et al., 2023a) Generated 1.0k (1024, 576) 3.0s 8 [1-4]
SoRA-Clip (OpenAI, 2024b) Collected 0.9k various 2.0/3.0s 8 [1-4]

Augmented Videos

DiDeMo (Hendricks et al., 2017) Real 2.0k various 2.0/3.0s 8 4
Panda70M (Chen et al., 2024b) Real 2.0k various 2.0/3.0s 8 4

Table 1: Statistics of our curated VIDEOEVAL for training video-generation evaluator. It consists of 33.6K human-
scored videos across multiple aspects, with 4k real-world videos collected from DiDeMo (Hendricks et al., 2017)
and Panda70M (Chen et al., 2024b) as the supplementary data. Ultimately, we get 37.6K high-quality rated videos
as the final VIDEOEVAL.

Aspect Definition

Visual Quality (VQ) the quality of the video in terms of clearness, resolution, brightness, and color
Temporal Consistency (TC) the consistency of objects or humans in video
Dynamic Degree (DD) the degree of dynamic changes
Text-to-Video Alignment (TVA) the alignment between the text prompt and the video content
Factual Consistency (FC) the consistency of the video content with common-sense and factual knowledge

Table 2: The five evaluation aspects of VIDEOEVAL and their definitions.

IAA metric VQ TC DD TVA FC

Trial 1 (#=30)

Match Ratio 0.733 0.706 0.722 0.678 0.633
Kappa 0.369 0.414 0.413 0.490 0.265
Alpha 0.481 0.453 0.498 0.540 0.365

Trial 2 (#=100)

Match Ratio 0.787 0.699 0.913 0.570 0.727
Kappa 0.088 0.562 0.565 0.125 -0.089
Alpha 0.078 0.579 0.620 0.205 -0.106

Table 3: Inter-Annotator Agreement (IAA) analysis re-
sults considering Matching Ratio, Fleiss’ κ, and Krip-
pendorff’s α on the two trial annotations.

Review We conduct random checks on human260

scores during the annotating process. Once we find261

the exceeded unqualified ratio in certain rater, we262

promptly communicate with the respective rater263

and review the annotations for that segment of the264

video. This helps calibrate the annotation provided265

by that rater during the relevant period. For exam-266

ple, we found several raters are too lenient and tend267

to give high scores to unqualified videos. We then268

step in to make sure they are aligned with our under-269

Figure 2: The rating distribution on all the videos.

standing of evaluation dimensions. With periodical 270

random inspection on annotating, we completed the 271

large-scale annotation of 33.6K videos and moved 272

to the data augmentation stage. 273

3.3 Dataset Augmentation 274

To enhance the robustness of VIDEOEVAL dataset, 275

we incorporated post-augmentation into the dataset. 276

Firstly, expert raters will review the excellent 277

videos (all aspects are scored 3) again to select 278

perfect ones and raise their scoring to 4 (Perfect) in 279
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certain aspects, particularly among the SoRA and280

FastSVD (Blattmann et al., 2023a) videos.281

Additionally, we gather 4k real-world videos282

from the DiDeMo (Hendricks et al., 2017) and283

Panda70M (Chen et al., 2024b) with each video284

accompanied by a text description. We select and285

cut clips from the ones less than 5 seconds to en-286

sure a strong match between video and its text. We287

apply similar normalization in subsection 3.1 and288

also use SSIM and MSE between interval sampled289

frames to filter out the possible static videos, ensur-290

ing the quality in Dynamic Degree. Finally the 4K291

real videos are scored 4 (perfect) in all aspects.292

We plot the rating distributions across each di-293

mension in Figure 2. which is balanced except for294

Dynamic Degree. We inspected in detail via case295

study and turned out this distribution is expected.296

Eventually, we get the final 37.6K examples as297

the training split of VIDEOEVAL, and reserve 760298

examples as VIDEOEVAL-test for evaluation.299

4 Experiments300

In this section, we describe our experiment setup,301

including baseline methods for video evaluation,302

and evaluation benchmarks for video evaluation.303

We also discuss the training details of MANTISS-304

CORE, and the analysis of our experiment results.305

4.1 Baselines306

To compare with our evaluator model, we selected307

two categories of video quality metrics. The first308

category relies on statistical or neural features for309

evaluation. These metrics typically assess a sin-310

gle video dimension such as temporal consistency,311

and then yield a numerical value. The second cate-312

gory employs advanced MLLMs to evaluate videos313

across multiple dimensions. Extensive literature314

demonstrates that MLLMs not only excel in gener-315

ating content on user instructions but also outper-316

form traditional metrics in evaluating AI-generated317

content (AIGC). All baselines are listed in Table 4.318

Feature-Based Metrics319

1. Visual Quality. We use two no-reference im-320

age quality metrics PIQE (Venkatanath et al.,321

2015) and BRISQUE (Mittal et al., 2012b).322

We apply them on all frames of video and323

take the average score across frames.324

2. Temporal Consistency. In this dimension,325

CLIP-sim (Radford et al., 2021b) and DINO-326

sim (Caron et al., 2021) are computed as co-327

sine similarities of between adjacent frames 328

features, following VBench (Huang et al., 329

2023). Additionally, we calculate SSIM be- 330

tween adjacent frames, denoted as SSIM-sim. 331

3. Dynamic Degree. We uniformly sample four 332

frames from the target video and calculate 333

the average MSE (Mean Square Error) and 334

SSIM (Wang et al., 2004) between adjacent 335

frames in the sample as final score. 336

4. Text-to-Video Alignment. We include CLIP- 337

Score (Radford et al., 2021b) and X-CLIP- 338

Score (Ma et al., 2022) as metrics in this di- 339

mension. CLIP-Score calculates cosine simi- 340

larity between the feature of each frame and 341

the text prompt and then averages across all 342

frames, while X-CLIP-Score utilizes the fea- 343

ture of video instead of frames. 344

5. Factual Consistency. It is challenging to find 345

a feature-based metric to determine whether 346

the visual content aligns with common sense. 347

Therefore, we rely on the second category of 348

metrics for this dimension. 349

We discretized the continuous outputs of these 350

metrics to align with our labeling scores [1, 2, 3, 4]. 351

For instance, for CLIP-sim, values are converted to: 352

’4’ if raw output in [0.97, 1], ’3’ if in [0.9, 0.97), 353

’2’ if in [0.8, 0.9) and ’1’ otherwise. See Table 11 354

for details. 355

MLLM Prompting Based Metrics To under- 356

stand how existing MLLMs perform on the multi- 357

aspect video evaluation task, we designed a prompt- 358

ing template in Table 9 to let them output scores 359

ranging from 1 (Bad) to 4 (Perfect) for each aspect. 360

However, some models, including Idefics2 (Lau- 361

rençon et al., 2024), Fuyu (Adept AI, 2023), 362

Kosmos-2 (Peng et al., 2023), and CogVLM (Wang 363

et al., 2023b) and OpenFlamingo (Awadalla et al., 364

2023), fail to give reasonable outputs. We thus ex- 365

clude them from the tables. MLLMs that follow the 366

output format like LLaVA-1.5 (Liu et al., 2023a), 367

LLaVA-1.6 (Liu et al., 2024), Idefics1 (Laurençon 368

et al., 2023), Google’s Gemini 1.5 (Reid et al., 369

2024), and OpenAI’s GPT-4o (OpenAI, 2024a). 370

4.2 Evaluation Benchmarks 371

We have included the following benchmarks to eval- 372

uate the ability of MANTISSCORE and the above- 373

mentioned baselines on evaluating model genera- 374

tion results. 375
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Method Visual Quality Temporal Dynamic Degree Text Alignment Factual Avgerage

Random -3.1 0.5 0.4 1.1 2.9 0.4

Feature-basd automatic metrics

PIQE -17.7 -14.5 1.2 -3.4 -16.0 -10.1
BRISQUE -32.4 -26.4 -4.9 -8.6 -29.1 -20.3
CLIP-sim 21.7 29.1 -34.4 2.0 26.1 8.9
DINO-sim 19.4 29.6 -37.9 2.2 24.0 7.5
SSIM-sim 33.0 30.6 -31.3 4.7 30.2 13.4
MSE-dyn -20.3 -24.7 38.0 3.3 -23.9 -5.5
SSIM-dyn -31.4 -29.1 31.5 -5.3 -30.0 -12.9
CLIP-Score -10.9 -10.0 -14.7 -0.3 -0.3 -7.2
X-CLIP-Score -3.2 -2.7 -7.3 5.9 -2.0 -1.9

MLLM Propmting

LLaVA-1.5-7B 9.4 8.0 -2.2 11.4 15.8 8.5
LLaVA-1.6-7B -8.0 -4.1 -5.7 1.4 0.8 -3.1
Idefics2 4.2 4.5 8.9 10.3 4.6 6.5
Gemini-1.5-Flash 24.1 5.0 20.9 21.3 32.9 20.8
Gemini-1.5-Pro 35.2 -17.2 18.2 26.7 21.6 16.9
GPT-4o 13.6 17.6 28.2 25.7 30.2 23.1

Ours

MANTISSCORE (gen) 86.2 80.3 77.6 59.4 82.1 77.1
MANTISSCORE (reg) 84.7 81.5 68.4 59.5 84.6 75.7
∆ over Best Baseline +51.0 +50.9 +39.6 +32.8 +51.7 +54.1

Table 4: Correlation (Spearman’s ρ) between model answer and human reference on VIDEOEVAL-test.

VIDEOEVAL-test As mentioned in section 3, we376

split 760 video entries from VIDEOEVAL dataset,377

which contains 680 annotated videos and 80 aug-378

mented videos. We take label prediction accuracy379

and Spearman’s ρ in each dimension as evaluation380

indicators. For a specific aspect in the VIDEOE-381

VAL-test (e.g. Visual Quality), we use the predicted382

score from the same aspect to measure the perfor-383

mance for baselines and our models.384

GenAI-Bench GenAI-Bench (Jiang et al.,385

2024b) is a benchmark designed to evaluate386

MLLM’s ability on preference comparison for387

tasks including text-to-video generation and others.388

The preference data is taken from GenAI-Arena389

from user voting. We select the video preference390

data in our experiments. This involves the MLLM391

judging which of the two provided videos is392

generally better, measured by pairwise accuracy.393

We use the averaged scores of the five aspects for394

MLLM prompting baselines and our models to395

give the preference. We compute the correlation396

between model-assigned preference vs. human397

preference as our indicator.398

VBench VBench (Huang et al., 2023) is a399

comprehensive multi-aspect benchmark suite for400

video generative models, where they use a401

bunch of existing auto-metrics in each aspect.402

VBench have released a set of human pref-403

erence annotations on all the aspects, com- 404

prising videos by 4 models, including Mod- 405

elScope (Wang et al., 2023a), CogVideo (Hong 406

et al., 2022), VideoCrafter1 (Chen et al., 2023a), 407

and LaVie (Wang et al., 2023c). We select the 408

subset from 5 aspects of VBench, like technical 409

quality, subject consistency, and so on, to com- 410

pute the preference comparison accuracy. For each 411

aspect, we subsample 100 unique prompts in the 412

testing. We use the averaged scores of the five 413

aspects for MLLM prompting baselines and our 414

models to predict the preference. 415

EvalCrafter EvalCrafter (Liu et al., 2023b) is a 416

text-to-video benchmark across four dimensions: 417

Video Quality, Temporal Consistency, Text-to- 418

Video Alignment, and Motion Quality. We focused 419

on the first three ones and gathered 2,541 videos by 420

five models: Pika, Gen2, Floor33 (Floor33, 2024), 421

ModelScope, and ZeroScope (Sterling, 2024). In 422

EvalCrafter, human annotators rated each video on 423

a scale of 1-5, with each scored by three raters. 424

We calculated the average score across raters and 425

normalized it to [0, 1]. After inference on bench- 426

mark videos, we excluded "Dynamic Degree" and 427

"Factual Consistency" to match EvalCrafter’s di- 428

mensions. Finally, we used Spearman’s ρ in each 429

dimension as an indicator. 430

6



Benchmark → GenAI-Bench VBench

Model ↓ Sub-Aspect → Video
Preference

Technical
Quality

Subject
Consistency

Dyanmic
Degree

Motion
Smoothness

Overall
Consistency

Random 37.7 44.5 42.0 37.3 40.5 44.8

Feature-based Automatic Metrics

PIQE 34.5 60.8 44.3 71.0 45.3 53.8
BRISQUE 38.5 56.7 41.2 75.5 41.2 54.2
CLIP-sim 34.1 47.8 46.0 34.8 44.7 44.2
DINO-sim 31.4 49.5 51.2 24.7 55.5 41.7
SSIM-sim 28.4 30.7 46.2 24.5 54.2 27.2
MSE-dyn 34.2 32.8 31.7 81.7 31.2 39.2
SSIM-dyn 38.5 37.5 36.3 84.2 34.7 44.5
CLIP-Score 45.0 57.8 46.3 71.3 47.0 52.2
X-CLIP-Score 41.4 44.0 38.0 51.0 28.7 39.0

MLLM Prompting

LLaVA-1.5-7B 49.9 42.7 42.3 63.8 41,33 8.8
LLaVA-1.6-7B 44.5 38.7 26.8 56.5 28.5 43.2
Idefics1 34.6 20.7 22.7 54.0 27.3 33.7
Gemini-1.5-Flash 67.1 52.3 49.2 64.5 45.5 49.9
Gemini-1.5-Pro 60.9 56.7 43.3 65.2 43.0 56.3
GPT-4o 52.0 59.3 49.3 46.8 42.0 60.8

Ours

MANTISSCORE (gen) 59.0 64.2 57.7 55.5 54.3 61.5
MANTISSCORE (reg) 78.5 78.2 71.5 68.0 74.0 69.0
∆ over Best Baseline +11.4 +17.3 +20.3 -16.2 +18.5 +8.2

Table 5: Pairwise preference accuracy on GenAI-Bench (Jiang et al., 2024b) and VBench (Huang et al., 2023). For
MLLM prompting and our method, we averaged the five aspect scores defined in Table 2 as the score for each video
in the comparison, where the higher one deemed the winner. The table below shows the accuracy of each method by
comparing these computed scores with human annotations of "Win," "Tie," and "Lost" for the two videos.

Method Visual Temporal Text Align

Random -2.0 1.4 -0.9
EvalCraft (GPT-4V) 55.4 56.7 32.3

Feature-based Automatic Metrics

PIQE 0.5 -3.3 -0.9
BRISQUE 6.4 -1.3 6.7
CLIP-sim 36.0 53.5 19.2
DINO-sim 30.6 50.3 15.3
SSIM-im 32.4 36.9 11.4
MSE-dyn -15.4 -27.5 -8.1
SSIM-dyn -32.6 -33.9 -12.6
CLIP-Score 18.7 11.5 35.0
X-CLIP-Score 12.2 3.1 24.5

MLLM Prompting

LLaVA-1.5-7B 13.4 15.6 2.6
LLaVA-1.6-7B 12.2 8.5 18.9
Idefics1 1.5 -1.5 0.8
Gemini-1.5-Flash 34.9 -27.8 44.8
Gemini-1.5-Pro 37.8 -24.1 55.1
GPT-4o 32.9 12.5 40.7

Ours

MANTISSCORE (gen) 20.8 51.3 10.7
MANTISSCORE (reg) 42.4 51.3 59.5
∆ over Best Baseline -13.1 -5.4 4.4

Table 6: Spearman’s Correlation (ρ) of MANTISSCORE
on EvalCrafter (Liu et al., 2023b)

4.3 Training Details 431

For MANTISSCORE, We use two scoring methods: 432

generative scoring and regression scoring. Genera- 433

tive scoring involves training the model to output 434

fixed text forms, from which aspect scores are ex- 435

tracted using regular expressions. These scores 436

are integers corresponding to human annotation 437

scores. In contrast, regression scoring replaces the 438

language model head with a linear layer that out- 439

puts 5 logits representing scores for each aspect. 440

Regression scoring is trained using MSE loss. 441

We select Mantis-Idefics2-8B (Jiang et al., 442

2024a) as the base model, which can accommo- 443

date 128 video frames at most. The learning rate is 444

set to 1e-5. Each model is trained for 1 epoch on 8 445

A100 (80G) GPUs, finishing in 6 hours. 446

4.4 Results 447

We report the Spearman correlation results on the 448

VIDEOEVAL-test and EvalCrafter in Table 4 and 449

Table 6, respectively. For the preference compari- 450

son on videos, we report the pairwise accuracy on 451

the GenAI-Bench and VBench in Table 5. 452
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Base Model Scoring Type VIDEOEVAL ∗ EvalCrafter∗ GenAI-Bench VBench∗ Average

VideoLLaVA-7B Generation 71.9 9.8 42.6 46.5 42.7
Idefics2-8B Generation 73.9 11.3 50.7 53.9 47.5
Mantis-Idefics2-8B Generation 77.1 27.6 59.0 58.7 55.6
Idefics2-8B Regression 73.9 17.4 74.5 64.4 57.5
Mantis-Idefics2-8B Regression 75.7 51.1 78.5 73.0 69.6

Table 7: Ablation study on the base model and scoring function for MANTISSCORE. "∗" means that we take the
average of Spearman correlation or pairwise accuracy across the multiple aspects of the benchmark. The highest
numbers are bold for each benchmark, and the second are underlined.

MANTISSCORE achieves the SoTA performance453

On the VIDEOEVAL-test, MANTISSCORE gets an454

average of 54.1 improvements on all the five as-455

pects compared to the baseline GPT-4o. What’s456

more, on the EvalCrafter benchmark, MANTISS-457

CORE (reg) has 4.4 improvements on text-to-video458

alignment. For pairwise preference comparison,459

MANTISSCORE also gets 78.5 accuracy on GenAI-460

Bench, surpassing the second-best Gemini-1.5-461

Flash by 11.4 points. on the Vbench, our model462

archives the highest pairwise accuracy on 4 out of463

5 aspects from VBench, with an average of 16.1464

improvements.465

Feature-based Automatic Metrics are limited466

While some feature-based automatic metrics are467

good at a single aspect, they might fail to evaluate468

well on others. For example, on the VIDEOEVAL-469

test, the correlation scores of SSIM-dyn and MSE-470

dyn achieve 31.5 and 38.0 for the dynamic degree471

aspect, but they both get a negative correlation for472

others. Besides, PIQE, BRISQUE, CLIP-Score,473

and X-CLIP-Score get nearly all negative correla-474

tions for all 5 aspects. This proves the image qual-475

ity assessment metrics cannot be easily adapted to476

the video quality assessment task.477

4.5 Ablation Study478

We conducted an ablation study on the base model479

selection and scoring types by training different480

variants on VIDEOEVAL. Results shown in Table 7.481

Base model ablation To investigate the effects482

of changing the base model, we have trained dif-483

ferent variants with VideoLLaVA-7B and Idefics2-484

8B as the base models. Since VIDEOEVAL-test,485

EvalCrafter, and VBench both have multiple as-486

pects in the benchmarks, we take the average score487

across these aspects and report the general per-488

formance in Table 7. The results show that the489

Video-LLaVA-based version gets the worst per-490

formance on the four benchmarks, even if it is491

specifically designed for video understanding. The492

Idefics2-8B-based version has marginal improve-493

ments compared to the VideoLLaVA. After chang- 494

ing to Mantis-Idefics2-8B, the scores on the four 495

benchmarks keep improving from 47.5 to 55.6 on 496

average. When the scoring type is regression, the 497

mantis-based version is still better than the Idefics2- 498

based version by 12.1 points. Therefore, we select 499

the Mantis-based version as the final choice. 500

Regression scoring or generative scoring? The 501

primary difference between regression scoring and 502

generative scoring is that regression scoring can 503

give more fine-grained scores instead of just the 504

four labels. Results on EvalCrafter, GenAI-Bench, 505

and VBench all indicate that using regression scor- 506

ing can consistently improve the Spearman corre- 507

lation or the pairwise comparison accuracy. For 508

example, on GenAI-Bench, MANTISSCORE (reg) 509

achieves 78.5 accuracy, which is higher than the 510

59.0 of the MANTISSCORE (gen). The results 511

are similar for the other benchmarks. We thus 512

conclude that regression scoring with more fine- 513

grained scores is a better choice. 514

5 Conclusion 515

In this paper, we introduce MANTISSCORE, which 516

is trained on our meticulously curated dataset 517

VIDEOEVAL for video evaluation. We hired 20 ex- 518

pert raters to annotate the 37.6K videos generated 519

from 11 popular text-to-video generative models 520

across 5 key aspects, Visual Quality, Temporal Con- 521

sistency, Dynamic Degree, Text-to-Video Align- 522

ment and Factual Consistency. Our IAA match 523

ratio gets more than 60%. We test the performance 524

of MANTISSCORE using Spearman correlation on 525

VIDEOEVAL-test and EvalCrafter, and using pair- 526

wise comparison accuracy on GenAI-Bench and 527

VBench. The results show that MANTISSCORE 528

consistently gets the best performance, surpass- 529

ing the powerful baseline GPT-4o and Gemini 1.5 530

Flash/Pro by a large margin. Our work highlights 531

the importance of using MLLM for video evalua- 532

tion due to its rich world knowledge and the high- 533

quality rating dataset across multiple aspects. 534
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A Ethical Statement838

This work fully complies with the ACL Ethics Pol-839

icy. We declare that there are no ethical issues in840

this paper, to the best of our knowledge.841

B Risks and Limitation842

Although we have designed systematic pipelines to843

recruit expert raters and annotate the video evalua-844

tion scores, we still find out that some annotations845

contain errors and may harm the overall quality846

of the dataset. Our IAA score computation is only847

based on a small number of trial examples and, thus848

might not represent the actual IAA of the whole849

annotations.850

Besides, while MANTISSCORE is proven to be851

able to effectively give reasonable scores on our852

defined five aspects, it can still sometimes output853

wrong scores that do not match our expectations.854

We admit this drawback and list that as one of our855

future works.856

C Dataset Licence857

We have used VidProM (Wang and Yang, 2024)858

to collect the prompts used for video generation,859

whose usage LICENSE is CC BY-NC 4.0 license.860

For other evaluation datasets, We did not find li-861

cense for EvalCrafter (Liu et al., 2023b) human862

annotations. GenAI-Bench (Jiang et al., 2024b)863

is under MIT licence, and VBench (Huang et al.,864

2023) is under Apache 2.0 license. We are thus865

able to utilize these datasets in our experiments.866

We also release our curated dataset, VIDEOE-867

VAL, under MIT license to contribute to the video868

evaluation dataset.869

D Annotator Management870

During the annotation, we have recruited 20 expert871

raters, where 14 of them are undergraduate or grad-872

uate students, who will become one of the authors873

of our paper, and the rest of them are assured to be874

paid with decent salary.875

E Video Format Normalizing Details876

To mitigate difference of videos format from dif-877

ferent generative models, we normalize the frame878

rate of all the generated videos to 8 fps (frames879

per second). Specifically, for high frame rate880

model Pika and AnimateDiffusion (Guo et al.,881

2023), we use uniform down-sampling to nor-882

malize Pika from 24 fps to 8fps, and Animate-883

Diffusion from 23 fps to 8 fps. For low frame 884

rate model Text2Video-Zero (Khachatryan et al., 885

2023), we use video frame interpolation model 886

RIFE (Huang et al., 2022) to interpolate frames, 887

adding the frame rate from 4 fps to 8 fps. For 888

real-world videos from DiDeMo (Hendricks et al., 889

2017) and Panda70M (Chen et al., 2024b) in post 890

augmentation of VIDEOEVAL, we use the same 891

down-sampling as Pika and AnimateDiffusion to 892

reduce their frame rate from 30 fps to 8 fps. 893

Additionally, since video from Pika are always 894

attached a watermark "PIKA-LABS", we cropped 895

all the Pika videos from the resolution of (1088, 896

640) to (768, 480), making Pika video indistin- 897

guishable from videos from other models. 898

F Annotation Details 899

Additional annotation details are put in this section 900

for the reference. 901

Firstly we show the user interface of our anno- 902

tating website in Figure 3 and Figure 4. In both 903

welcome page and working page, we list the defini- 904

tion and a checklist of error points in five evaluation 905

dimensions, as shown in Table 8. Additionally we 906

also provide many Good/Average/Poor videos as 907

examples in each dimension for raters to quickly 908

understand each dimension and align well with our 909

understanding. 910

G Prompting Template 911

In process of training Mantis (Jiang et al., 2024a) 912

for generation scoring and the testing with "MLLM 913

Prompting" baselines, we use the same prompt tem- 914

plate provided in Table 9. 915

For training Mantis with regression scoring, we 916

make modification to the above template accord- 917

ingly, instructing model to output a float number 918

ranges from 1.0 to 4.0, as shown in Table 10. 919

H Feature-based Baselines Discretization 920

As described in subsection 4.1, we employ sev- 921

eral statistical or neural feature-based metrics as 922

baselines for comparison with our model. The con- 923

tinuous float-format outputs of these metrics are 924

discretized into labels [1, 2, 3, 4], aligning with our 925

annotation data format. The discretization rules are 926

presented in Table 11. Metrics with a ↑ symbol 927

indicate that higher values are better, while those 928

with a ↓ symbol indicate that lower values are bet- 929

ter. 930
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Figure 3: Welcome Page of our video annotating website, with definition, checklist for error points and diverse
video examples.
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Figure 4: Working page of our video annotating website

I Case study of VIDEOEVAL931

We showcase the annotations examples in Figure 5.932

The first example depicts a clear video of a woman933

with her hair moving, thus scoring 3 in all 5 aspects.934

The second example shows a distorted video, thus935

scoring 1 across all the aspects except the dynamic936

degree. We further analyzed the correlations be-937

tween the designed aspects in Figure 6. We found938

that visual quality achieves a high correlation of 0.6939

with temporal consistency, while dynamic degree940

has a very low correlation with all other aspects.

Visual Quality : 1
Temporal Consistency : 1
Dynamic Degree : 3
Text-to-Video Alignment : 1
Factual Consistency : 1

Video Annotation

Text: A transformation of a happy, energetic cartoon character gradually transitioning to a state of burnout and exhaustion. 

Visual Quality : 3
Temporal Consistency : 3
Dynamic Degree : 3
Text-to-Video Alignment : 3
Factual Consistency : 3

Text: The wind gently blows, and her hair moves. Nothing else moves.

Figure 5: Example of annotations. Each video has a text
description and is rated for the 5 aspects.

941

Figure 6: Correlation study on the evaluation aspects.
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Evaluation Aspect Detailed Description for Annotation

Visual Quality

Expected Case:(1) The video looks clear and normal on its appearance.
(2) The features like Brightness, Contrast, Color, etc, are appropriate and stable.
Error point:(a) local obvious unclear or blurry,
(b) too low resolution,
(c) some speckles or black patches,
(d) appearance of video is skewed and distorted,
(e) unstable optical property, such as brightness, contrast, saturation, exposure etc,
(f) flickering color of main objects and background
Note:Some videos have watermark, we can ignore that.

Temporal Consistency

Expected Case:
(1) The main objects, main characters and overall appearance are consistent
across the video.
(2) The appearance of video as well as the movements of humans and objects
are smooth and natural.
Error points:
(a) The person or object suddenly disappears or appears
(b) The type or class of objects has obvious changes
(c) There is an obvious switch in the screen shot
(d) the appearance of video or movements in it is laggy and un-smooth,
(e) local deformation or dislocation of human or objects due to the motion
(for large scale deformation, the video should also be rated as bad in
"1. visual quality"),
Note:
For a video almost static or with small dynamic degree, as long as it does not
have error points, then
it should be scored as good.

Dynamic Degree

Expected Case:
(1) The video is obviously not static, the people or objects or the video screen
is dynamic.
(2) The video can be easily distinguished from a static image.
Note:
You are supposed to focus on only dynamic degree, regardless of the visual
quality and video content

Text-to-Video Alignment

Expected Case:
The characters, objects, motions, events etc. that are mentioned in text input
prompts all exist reasonably.
Error points:
(a) The people and objects in prompt do not appear in video
(b) The actions and events in prompt do not appear in video
(c) The number, size, shape, color, state, movement and other attributes of
the objects in the video do not match the prompt
(d) Text mentioned in prompt is not displayed correctly in the video,
such as "a placard saying ’No Smoking’" but "No Smoking" is not spelled
correctly in the video
(e) The video format (such as width, height, screen ratio, duration) does not
match the format in prompt.

Factual Consistency

Expected Case:
(1) Overall appreance and motion are consistent with our common-sense,
physical principles, moral standards, etc.
Error points:
(a) static ones: Content in video goes against common sense in life, such as
lighting a torch in the water, standing in the rain but not getting wet, etc.
(b) static ones: The size, color, shape and other basic properties of objects
violate scientific principles
(c) dynamic ones: The overall movement of people or objects violates
common-sense and laws of physics, such as spontaneous upward movement
against gravity, abnormal water flow, etc.
(d) dynamic ones: Partial movements of people or objects violate common-sense
and laws of physics, such as the movement of hands or legs is anti-joint, etc.
Notes:
Relation with ’5. text-to-video alignment’:
Some text prompts express fictional and unrealistic content, for example,
"a dog plays the guitar in the sky" or "an astronaut rides a horse in space".
In this case, regardless of the veracity of the text prompt, you should
only consider whether the other content in the video makes sense.

Table 8: Expected cases and error cases for each aspect that annotators can see during the annotation.
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Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
please watch the following frames of a given video and see the text prompt for generating the video,
then give scores from 5 different dimensions:
(1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color
(2) temporal consistency, the consistency of objects or humans in video
(3) dynamic degree, the degree of dynamic changes
(4) text-to-video alignment, the alignment between the text prompt and the video content
(5) factual consistency, the consistency of the video content with the common-sense and factual knowledge

For each dimension, output a number from [1,2,3,4],
in which ’1’ means ’Bad’, ’2’ means ’Average’, ’3’ means ’Good’,
’4’ means ’Real’ or ’Perfect’ (the video is like a real video)
Here is an output example:
visual quality: 4
temporal consistency: 4
dynamic degree: 3
text-to-video alignment: 1
factual consistency: 2

For this video, the text prompt is "{text_prompt}",
all the frames of video are as follows:

Table 9: Prompting template in generation format used for MANTISSCORE training and the MLLM prompting
baselines

Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
please watch the following frames of a given video and see the text prompt for generating the video,
then give scores from 5 different dimensions:
(1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color
(2) temporal consistency, the consistency of objects or humans in video
(3) dynamic degree, the degree of dynamic changes
(4) text-to-video alignment, the alignment between the text prompt and the video content
(5) factual consistency, the consistency of the video content with the common-sense and factual knowledge

For each dimension, output a float number from 1.0 to 4.0,
higher the number is, better the video performs in that dimension,
the lowest 1.0 means Bad, the highest 4.0 means Perfect/Real (the video is like a real video)
Here is an output example:
visual quality: 2.24
temporal consistency: 3.89
dynamic degree: 3.17
text-to-video alignment: 1.86
factual consistency: 2.16

For this video, the text prompt is "{text_prompt}",
all the frames of video are as follows:

Table 10: Prompting template used for the MLLM prompting baseline and MANTISSCORE training

Dimension Metric 1 (Bad) 2 (Avg) 3 (Good) 4 (Perfect)

Visual Quality PIQE↓ [50,∞) [30,50) [15,30) [0,15]
BRISQUE↓ [50,∞) [30,50) [10,30) [0,10]

Temporal Consistency
CLIP-sim↑ [0,0.80) [0.80,0.90) [0.90,0.97) [0.97,1]
DINO-sim↑ [0,0.75) [0.75,0.85) [0.85,0.95) [0.95,1]
SSIM-sim↑ [0,0.6) [0.6,0.75) [0.75,0.9) [0.9,1]

Dynamic Degree MSE-dyn↑ [0,100] [100,1000) [1000,3000) [3000,∞)
SSIM-dyn↓ [0.9,1] [0.7,0.9) [0.5,0.7) [0,0.5)

Text-to-Video Alignment CLIP-Score↑ [0.2,0.27) [0.27,0.31) [0.31,0.35) [0.35,0.4]
X-CLIP-Score↑ [0,0.15) [0.15,0.23) [0.23,0.30) [0.30,1]

Table 11: Discretization rules for featured-based baselines.
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