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Abstract

Are generative pre-trained transformer (GPT) models only
trained to predict the next token, or do they implicitly learn a
world model from which a sequence is generated one token
at a time? We examine this question by deriving a causal in-
terpretation of the attention mechanism in GPT, and suggest-
ing a causal world model that arises from this interpretation.
Furthermore, we propose that GPT-models, at inference time,
can be utilized for zero-shot causal structure learning for in-
distribution sequences. Empirical evaluation is conducted in
a controlled synthetic environment using the setup and rules
of the Othello board game. A GPT, pre-trained on real-world
games played with the intention of winning, is tested on syn-
thetic data that only adheres to the game rules, oblivious to
the goal of winning. We find that the GPT model is likely to
generate moves that adhere to the game rules for sequences
for which a causal structure is encoded in the attention mech-
anism with high confidence. In general, in cases for which the
GPT model generates moves that do not adhere to the game
rules, it also fails to capture any causal structure.

1 Introduction
In recent years, the generative pre-trained transformer (GPT)
model (Radford et al. 2018) has demonstrated high-quality
generative capabilities, as perceived by humans. Although
this model is trained to generate one token at a time, it has
been demonstrated to perform a range of tasks beyond next-
token predictions, such as visual understanding and sym-
bolic reasoning (Liu et al. 2024; Team et al. 2023; Chowdh-
ery et al. 2023). Are these emergent abilities (Li et al. 2023)
or merely a ‘mirage’ resulting from the choice of metric and
task (Schaeffer, Miranda, and Koyejo 2024)?

In this paper we suggest that there is no restriction in the
GPT architecture for learning conditional independence (CI)
relations between tokens in a sequence. Moreover, under
certain assumptions, a causal structure is directly entailed
from these CI relations. One may ask whether this lack of
restriction results in implicitly learning a causal model of the
world during the pre-training procedure of GPT. Assuming
that, both, a causal world model and a model based on sur-
face statistics are sufficient solutions, one possibility is that
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a causal world model is a more compact solution and more
likely to be learned during pre-training (Occam’s razor). For
example, if weights are distributed from a uniform distribu-
tion in the surface statistics model, then a causal structure
limits the range of their distribution. If so, what are the as-
sumptions underlying this causal world model?

Rohekar, Gurwicz, and Nisimov (2024) recently proposed
ABCD, a method for causal interpretation of unmasked self-
attention in BERT models (Devlin et al. 2019) demonstrat-
ing it for explaining movie recommendations (Nisimov et al.
2022). We take a similar approach, with key differences, and
propose a causal interpretation of GPT’s masked attention
mechanism. Furthermore, we define a corresponding causal
world model. ABCD is adapted to learn causal structures
of which the induced dependency-relations are encoded in
GPT’s attention matrices. We then ask whether errors gen-
erated by GPT are correlated with the uncertainty in repre-
senting the causal structure by the attention matrices. To this
end, we define a metric based on the entropy of p-values of
CI tests that are used for inferring the causal structures.

Recent work examined the internal process of large lan-
guage models and examined whether a world model is im-
plicitly learned using a well-defined and constrained setting,
such as in the Chess game setting (Toshniwal et al. 2022)
and Othello board game setting (Li et al. 2023). For the Oth-
ello board game setting, Li et al. (2023) demonstrated that
the board state can be inferred from attention matrices in
GPT, and Nanda, Lee, and Wattenberg (2023) showed that a
linear classifier suffices to reconstruct the state of the board
game from the attention matrices. They claim an emergent
world model in GPT. Nevertheless, they do not explain how
the board game is encoded within the attention matrices and
why the attention mechanism can represent the board state.
In essence, they do not provide an explanation to the appar-
ent emergence of the world model. In addition, their recon-
structed world model (board game state) applies only to the
domain for which the GPT model was trained and lacks the
generative mechanism underlying the token-sequences.

In this paper, we consider the structural causal model as
a general-purpose world model that describes the generative
process and applies to various applications (not domain spe-
cific, such as Othello board state). We explore whether GPT
is able to capture properties of this world model, which may
explain its apparent emergence. See an example in Figure 1.
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Figure 1: An example of a real Othello game sequence and the corresponding causal structure recovered using the proposed
method. Red numbering {0,1,2,3} on the causal graph nodes and game board discs correspond to the game moves indices. The
blueish letters {a,b,c,d} indicate the discs in the initial state of the board game. (I) The causal graph learned by our method
given the sequence of moves described hereafter. (II) The initial state of the board game. (III) After move 0: black plays and
flips disc ‘d’ to black. (IV) After move 1: white plays and flips disc ‘c’ to white. This move does not depend on the previous
move 0, and this aligns with the learned causal graph in which node ‘1’ is found independent of node ‘0’. (V) After move 2:
black plays and flips disc ‘a’ to black. This was made possible since disc ‘d’ was black after being flipped to black in the earlier
move 0 (yellow arrow shows this causal connection). Correspondingly, this causal connection is also revealed in the learned
causal graph by node ‘0’ being the sole parent of node ‘2’. (VI) After move 3: white plays and flips disc ‘d’ to white. This was
made possible because disc ’1’ was white (due to move 1), and disc ‘d’ was black (as mentioned before, it was flipped to black
earlier in move 0). Therefore we expect both moves 0 and 1 to be the causes of current move 3 (see yellow arrows). This is
exactly revealed by the learned causal graph.

2 Preliminaries
In this section we provide notations and descriptions of self
attention in the GPT architecture, and structural causal mod-
els. Matrices are written in bold, vectors in bold-italic, and
models in calligraphic font. A summary of the main symbols
used in this paper is given in Table 1 (Appendix A).

Attention in GPT
Attention is a mechanism that estimates network weights
with respect to the context in an input sequence of tokens
(Schmidhuber 1992). In a GPT model, which is based on the
decoder part of the Transformer architecture (Vaswani et al.
2017), an attention layer estimates an n×n lower-triangular
(masked) attention matrix A given an input sequence of n
tokens. The input sequence is in the form of an n × d ma-
trix Y, where the i-th row vector is Y(i, ·), is an embedding
(representation) of the i-th token in d dimensions. The atten-
tion matrix is estimated by A = softmax(YWQKY⊤),
such that A is lower triangular and the rows sum to 11. In
addition to the attention weights, the attention layer calcu-
lates a values matrix, V = YWV , where row V(i, ·) is the
value vector of the i-th token. Then, the output embeddings
are

Z = AV, (1)

where the i-th row, Zi, is the embedding of the i-th output
token. In a GPT, several attention layers are stacked, and pre-
trained such that the i-th output embedding in the last layer
predeicts the (i+1)-th input token. That is, predicts the next
input token.

It is important to note that in the GPT architecture, the
embedding of one token is influenced by another token only

1The weight matrix is WQK = WQW⊤
K/

√
dK , where generally

the weight matrices WQ and WK are learned explicitly and dK is
the number of columns in these matrices (Vaswani et al. 2017).

by the attention matrix, A. In addition, note that an attention
matrix A is estimated uniquely for each input sequence of
tokens, using weight matrices {WQK ,WV } learned com-
monly for all in-distribution input sequences.

Structural Causal Model
A structural causal model (SCM) is a model that can encode
causal mechanisms in a domain (Pearl 2009; Spirtes, Gly-
mour, and Scheines 2000; Peters, Janzing, and Schölkopf
2017) and explain data samples generated from these causal
mechanisms (Pearl and Mackenzie 2018). An SCM is a tu-
ple {U ,X,F , P (U)}, where U = {U1, . . . , Um} is a set
of latent exogenous random variables, X = {X1, . . . , Xn}
is a set of endogenous random variables, F = {f1, . . . , fn}
is a set of deterministic functions describing the values X
given their direct causes, and P (U) is the distribution over
U . Moreover, each endogenous variable Xi has exactly one
unique exogenous cause Ui (m = n). The value of an en-
dogenous variable Xi, ∀i ∈ [1, . . . , n] is determined by

Xi ← fi(Pai, Ui) (2)

where Pai is the set of direct causes (parents in the causal
graph) of Xi, and left-arrow indicates assignment resulting
from the cause-effect relation. A graph G corresponding to
an SCM consists of a node per variable, and directed edges
for direct cause-and-effect relations that are evident from F .

In this paper we employ a linear-Gaussian SCM (as we
later relate it to the linear relations in GPT attention) hav-
ing directed acyclic graphs (DAG). In these models each
variable is determined by a linear combination of its direct
causes and an independently distributed additive noise deter-
mined by a corresponding normally distributed exogenous
variable.

For a linear-Gaussian SCM let G be a weight matrix,
where G(i, j) is the weight of parent (direct cause) node Xj



linearly determining the child (direct effect) node Xi. Node
Xk is not a parent of Xi if and only if G(i, k) = 0. In addi-
tion, U ∼ N (µU ,CU ), where in this paper we assume CU

is a diagonal matrix. The set of functions F is defined such
that ∀i ∈ [1, . . . , n],

Xi ← G(i, ·)X + Ui. (3)
Assuming a DAG and causally sorted nodes (ancestors pre-
cede their descendants), G is strictly lower triangular (zero
diagonal). Given the assignment, we can write in matrix
form X = GX +U , and

X = (I−G)−1 U . (4)
Since G is a strictly lower-triangular weight matrix, (I −
G)−1 is a lower uni-triangular matrix (ones on the diago-
nal). Note that this is equal to the sum of a geometric series

(I−G)−1 =

n−1∑
k=0

Gk. (5)

It can be seen that element (i, j) represents the cumulative
effect of Xj on Xi via all directed paths having length up
to n − 1. The equivalent weight of a directed path from Xj

to Xi is the product of the weights of all edges on that path,
and the cumulative effect via all the paths is the sum over
equivalent weights of distinct directed paths from Xj to Xi.
Note that even if some of the nodes are latent confounders is
still (I−G)−1 triangular because, by definition, latent con-
founders do not have ancestors and are first in a topological
ordering. Equation 4 represents a system with input U , out-
put X and weights (I−G)−1. The covariance matrix of the
output is

CX = E[(X − µX)(X − µX)⊤] =

= E[(I−G)−1 ÛÛ
⊤
((I−G)−1)⊤] =

= [(I−G)−1] E[ÛÛ
⊤
] [(I−G)−1]⊤ =

=
[
(I−G)−1

]
CU

[
(I−G)−1

]⊤
,

(6)

where Û = U − µU and µX = (I−G)−1µU .
In this paper we employ the constraint-based causal dis-

covery approach (Spirtes, Glymour, and Scheines 2000) that
use conditional independence (CI) tests to learn the underly-
ing causal graph. This approach generally requires assuming
the causal Markov property and faithfulness.
Definition 1 (Causal Markov) In a causally Markov
graph, a variable is independent of all other variables,
except its effects, conditional on all its direct causes.
Definition 2 (Faithfulness) A distribution is faithful to a
graph if and only if every independence relation true in the
distribution is entailed by the graph.

3 A Causal Interpretation of GPT
We describe the masked attention in GPT as a mechanism
that infers correlations between tokens of a given input se-
quence, where these correlations are induced by a causal
structure underlying the output sequence tokens. We then
describe a method for learning a causal graph by estimating
independence relations between tokens.

A Relation between GPT and SCM World Model
Rohekar, Gurwicz, and Nisimov (2024) derived a causal
interpretation of BERT-based models (Devlin et al. 2019).
We follow a similar approach, with several important mod-
ifications and extensions, to derive a causal interpretation
to GPT. First, unlike BERT-based models, which are pre-
trained to predict masked tokens within the input sequence
using the surrounding tokens (Devlin et al. 2019), GPT is
pre-trained to predict the next tokens in the sequence. That
is, given an input sequence of tokens, {t0, . . . , tn−1}, GPT
predicts tokens {t̂1, . . . , t̂n}. An attention matrix A and the
corresponding values matrix V have n rows correspond-
ing to input tokens {t0, . . . , tn−1} and the output embed-
dings of of these tokens are the rows of matrix Z = AV.
Thus, Note that V = YWV , where WV is a weight ma-
trix fixed for all input sequences, and Y is input embed-
ding of a specific sequence tokens. Each column of WV

can be viewed as an independent vector onto which the in-
put embeddings are projected. That is V(i, j) is the pro-
jection of token ti input embedding Y(i, ·) on, common
to all in-distribution sequences, vector WV ( · , j). At infer-
ence, each attention matrix of the last attention layer, A,
is extracted and a lower uni-triangular matrix is calculated,
D−1A, where D ≡ diag(A). Then the covariance matrix is
estimated

C =
[
D−1A

][
D−1A

]⊤
. (7)

Note that unlike Rohekar, Gurwicz, and Nisimov (2024),
which proposed C = AA⊤ for unmasked self-attention, we
utilize the triangular form of the masked attention in GPT
to revert the attention normalization performed by the soft-
max and obtain a uni-triangular form. Thus, this covariance
matrix allows us to treat properties calculated from different
attention matrices in a similar manner. In this paper (Sec-
tion 3 and Section 9), properties we calculate are based on p-
values when testing conditional independence relations be-
tween tokens. Next, following Rohekar, Gurwicz, and Nisi-
mov (2024) we relate each token to an endogenous node in
an SCM, and CU = I from the central limit theorem (Ro-
hekar, Gurwicz, and Nisimov 2024). Thus, equate covari-
ance C = CU[

D−1A
][
D−1A

]⊤
=

[
(I−G)−1

] [
(I−G)−1

]⊤
, (8)

where both D−1A and (I −G)−1 are lower uni-triangular
matrices, and the (i, j) elements, ∀i > j, of these matri-
ces have the same meaning, influence of token/node j on
token/node i. Finally, since GPT is pre-trained to predict
tokens {t1, . . . , tn} given input tokens {t0, . . . , tn−1}, and
since the only cross-token influence on embeddings is in the
attention layers, the last attention layer captures the causal
structure underlying the output tokens. Earlier attention lay-
ers transform embeddings of {t0, . . . , tn−1} to values, V,
which are equivalent to instantiations of exogenous vari-
ables, U in SCM. This follows from equating Equation 1
and Equation 4, where D−1A = (I−G)−1.

In light of the causal interpretation of GPT, one impor-
tant question is what is the causal world model that is sup-
ported by the GPT architecture. Often, a single causal struc-
ture is assumed to govern a domain. In contrast, the causal



world model that is entailed from the causal interpretation of
GPT assumes a distinct structural causal model for each in-
distribution sequence. Specifically, in a causal world model
supported by a GPT with k-heads in the last attention layer,
each in-distribution sequence is assumed to be generated by
an ensemble of k distinct SCMs.

In addition, for a given head, the causal structure over a
sequence of tokens {t1, . . . , tn} is equal to the sub-graph
over these tokens for all in-distribution extensions of the
sequence. That is, given a sequence of tokens {t1, . . . , tn}
and a corresponding graph structure Gn, observing any next
token, tn+1, such that {t1, . . . , tn, tn+1} is in-distribution,
should not violate causal relations in Gn and may only re-
veal relations between tokens {t1, . . . , tn} and token tn+1.

GPT for Zero-Shot Causal Structure Learning
The causal interpretation presented in this paper leads to a
view in which each attention module represents associations
(correlations) between input tokens that are induced by the
underlying causal structure. Although this allows only rung-
1 inference in the ladder of causation (Pearl and Macken-
zie 2018), under certain assumptions, many of the under-
lying causal relations can be extracted, even in the pres-
ence of latent confounders and selection bias (Spirtes, Gly-
mour, and Scheines 2000). These relations are generally rep-
resented in a type of causal structure called partial ances-
tral graph (PAG) (Richardson and Spirtes 2002). We fol-
low a procedure called ABCD, proposed by Rohekar, Gur-
wicz, and Nisimov (2024) with several modifications. First,
since the causal (topological) order is given (restricted by
the masked attention in GPT) we can apply causal discovery
recursively to efficiently learn the causal structure. To this
end we call the iterative causal discovery (ICD) algorithm
(Rohekar et al. 2021), as used in ABCD, to reconstruct a
causal structure in each recursive iteration. The procedure
is described in Algorithm 2. The input is a sequence of to-
ken over which we construct the graph. The output is a PAG
structure. In line 2 an exit condition corresponding to the
base case (single-node graph) is tested. In line 3, the last to-
ken is popped from the sequence and placed in tn resulting
in a shorter sequence S′. Then, a recursive call is made in in
line 4 to learn the structure over tokens in S′. Note that since
it is ensured that tn is not an ancestor of any token in S′ the
skeleton and v-structure relations of G′ is ensured not to be
change when adding back tn to the graph (Spirtes, Glymour,
and Scheines 2000). In lines 5–7 token tn is connected to ev-
ery node in G′. Finally, in line 8 edges between tn and the
rest of the graph are learned (removed if conditional inde-
pendence is found) using the ICD algorithm (Rohekar et al.
2021) and the graph is oriented (Zhang 2008). Although
we use ICD, other constrained-based causal discovery al-
gorithms (Colombo et al. 2012; Claassen, Mooij, and Hes-
kes 2013; Yehezkel and Lerner 2009; Spirtes, Glymour, and
Scheines 2000; Rohekar et al. 2018; Nisimov et al. 2021),
differing in their underlying assumptions, can be used.

Thus, a causal structure for a specific output sequence can
be learned in a zero-shot manner directly from the attention
matrix in the last layer. In multi-head attention, the last at-
tention layer, having k heads, is the last layer in which to-

Algorithm 1: Recursive Causal Discovery for GPT

Input: S: a sequence of tokens {t1, . . . , tn, }
Output: G: a partial ancestral graph (PAG)

1 Function LearnStructure(S):
2 if |S| = 1 then return a graph with the single

node in S

3 tn,S
′ ← pop(S)

4 G′ ← LearnStructure(S′)
5 G ← G′ + {tn}
6 set E to the set of edges (circle edge-marks)

between tn and every node in G′
7 connect E in G
8 test CI for edges in E and orient G using

Algorithm 3 (Appendix C)
9 return G

kens may affect one another. Hence, Algorithm 2 is called
for each head independently and a set of k structures is re-
turned.

Causal Structure Confidence
In this section we derive a metric that describe how compat-
ible a sequence is with the causal world model implicitly en-
coded by GPT. Given an output sequence of tokens, S, and a
causal structure G recovered from the last attention layer A,
can we score the confidence in this causal structure? Recall
that in the proposed world model each sequence has its own
causal structure, and each causal structure may have latent
variables. It is not clear how to calculate likelihood P (S|G).
We therefore propose the following approach.

A causal structure-learning algorithm performs multi-
ple statistical tests of conditional independence (CI) us-
ing the covariance matrix estimated from the attention ma-
trix. These CI tests calculate p-values and compare them
against a predetermined threshold of significance level (α).
It is important to note that there is a one-to-one corre-
spondence between the results of these CI test and the en-
tailed causal structure. That is, a causal structure can be
represented uniquely by a set of CI tests and their results.
Hence, we propose a scoring function based on the dis-
tribution of these p-values to evaluate the confidence in a
structure learned from a given attention matrix. A complete
undirected graph corresponds to lack of knowledge about
causal relations. Generally, causal structure-learning algo-
rithms prune edges from this graph based on statistical CI
tests between pairs of variables (tokens in our case). The re-
moval of edges between independent variables then may en-
tail causal relations between other variables Zhang (2008).
Let p = {p1, . . . , pℓ} a set of all p-values computed as
part of causal structure learning. The null-hypothesis is in-
dependence, where p-values greater than the significance
threshold, α, correspond to edges removed from the com-
plete graph. We denote pind = {p : p ∈ p and p ≥ α},
and pdep = {p : p ∈ p and p < α}. Since p-values are uni-
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Figure 2: Baseline model accuracy of generating legal Oth-
ello game moves. A model trained by Li et al. (2023) on
real-world games to predict the next move. Test set consists
of randomly generated sequences. Measured accuracy: the
percentage of generated moves that are legal according to
the Othello game rules. Gray area shows input sequences
with sizes in the range [10, 30] where the accuracy is lower
than the average of 95% (red dashed line).

formly distributed under the null hypothesis, we expect the
entropy of p-values corresponding to independence, redun-
dant relations (spurious correlations), Hind to be higher for
matrices that correspond to a structure compared to those
that do not. In addition, we expect the distribution of p-
values smaller than the significance level to be weighted to-
wards zero. Hence, entropy of p-values corresponding to de-
pendence relations, Hdep is expected to be lower for matrices
that correspond to a structure compared to ones that do not.
We therefore define the following confidence score given an
attention matrix A,

R(A) = Hind −Hdep, (9)

where Hind = −
∑

p∈pind
p log p and Hdep =

−
∑

p∈pdep
p log p, are entropy of p-values corresponding to

independence and dependence, respectively.

4 Experiments and Results
We use an experiment setup in which the world layout and
rules governing the generation of sequences are well defined
and known, but were not utilized during training. We mea-
sure how well attention in the trained GPT model represents
a causal world model and whether it is correlated with the
ability to generate tokens that adhere to the world rules.

Setup
We examine a GPT model trained by Li et al. (2023), for
predicting the next move given a sequence of consecutive
moves in the Othello strategy board game. They trained
the model on approximately 132,000 real-world sequences,
where it is assumed the players played with the intention
of winning. No information about the game board layout or
game rules was used in their training process. For example,
positional encoding was not used. In our experiments we use
a test set that is not in-distribution with respect to the train-
ing set, but in-distribution with respect to the game rules.

As a test set we use 1,000 randomly generated sequences of
legal moves. That is, each sequence consists of moves that
adhere to the Othello game rules but without considering any
strategy of winning the game as in the training set. In other
words, the support of the test distribution is not a subset of
the support of the training distribution,

supp(Ptrain) ⊂ supp(Ptest). (10)

See Appendix B for more details. This enables evaluating
whether the model implicitly encoded the game rules.

In Figure 2 we plot the accuracy of the model in gener-
ating a legal next move (vertical axis) as a function of the
number of tokens (length) in test input sequences (horizon-
tal axis). Note that length n sequences are test sequences
that are trimmed keeping only the first n tokens, such that
the same 1,000 sequences are used for all evaluated lengths.
Although the average accuracy of the model is 95% (dashed
red line), it is not uniformly distributed across different se-
quence lengths. For example, given a sequence of 15 moves,
GPT generates a legal 16-th move in 88% of the times (ad-
heres to the game board state and rules). It is evident that the
accuracy is significantly lower for input sequence lengths in
the range [10, 30] (lower than the average 95%). By defini-
tion of the Othello game rules, at the beginning of a game
there are only four legal moves, and as this game unfolds,
the number of possible legal moves generally increases be-
fore finally decreasing again as the number of vacant spaces
on the board decreases. It might be that memorization of sur-
face statistics can take place at the beginning of the game.
We therefore report experiment results for input sequences
with sizes in the range [10, 30] (gray area) where the accu-
racy is lower than the average. Throughout the experiments,
we employ Algorithm 2 for causal discovery using partial-
correlation with α = 0.01 as p-value threshold for testing
conditional independence (CI tests).

Legal Predictions vs. Structural Confidence
Is there a relation between the accuracy of generating le-
gal tokens (moves) and how well attention matrices rep-
resent (implicitly) causal structures? Recall that the model
was not trained explicitly to generate legal Othello game
moves but rather to predict the next move played by a human
with the intention of winning the game. Moreover, informa-
tion about the game, such as the existence of a board game
and rules, were not provided to the model (Li et al. 2023).
In this experiment we examine whether the cases in which
the model generates illegal tokens, are also cases where the
causal structure is less distinctive as measured by the struc-
tural confidence score, R (Equation 9). Here, the score for a
given sequence is the average of structural confidence scores
calculated for the eight attention heads in the last layer. From
Figure 3 it is evident that the legal move generation accuracy
(vertical axis) monotonically increases with the structural
confidence score R (horizontal axis) for sequence lengths in
[15, 30]. However, for sequence length 10 there is no clear
trend. We suspect that for short sequence lengths in the Oth-
ello game, memorization of surface statistics, as represented
by the attention matrix values without a structural informa-
tion, enables generating legal tokens with high accuracy.
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Figure 3: Legal move generation accuracy (vertical axis) as a function of structural confidence score R (horizontal axis).
Horizontal limits for each point indicates interval of R in which accuracy was averaged. Horizontal dotted red line indicates
average accuracy. It is evident that for sequences having length 15 or longer accuracy increases with the structural confidence
score. However, there is no clear trend for sequences having length 10.

Contribution of CI Tests
Next we examine if conditional independence (CI) tests
from which the causal structure is entailed provide an ad-
vantage over pair-wise correlations directly represented by
elements in the attention matrix. To this end we calculate the
confidence score (Equation 9) using p-values of a) all pair-
wise marginal independence relations (from raw attention-
matrix elements)—CI conditioning size 0, b) CI-tests hav-
ing exactly one node in the conditioning set, c) all CI-tests
having empty or exactly one node in the conditioning set,
and d) CI-tests used to reconstruct the causal structure with-
out limiting conditioning set sizes. The results are given in
Figure 4. Let R̄legal be the average structural confidence
score of sequences for which a legal token was generated,
and R̄illegal be the average structural confidence score of se-
quences for which an illegal token was generated. The ver-
tical axis represents the difference in structural confidence
scores R̄legal − R̄illegal. Error bars indicate 95% confidence
intervals (unpaired t-test). The horizontal axis indicate se-
quence length. It is evident that relying solely on raw atten-
tion values, case a), the difference between legal and ille-
gal generated tokens in not statistically significant, except
for sequence length 20. Relying solely on CI-test with ex-
actly one node in the conditioning set, case b), the differ-
ence between the structural confidence is positive for all
tested sequence lengths but statistically significant only for
sequences lengths 17. When employing pair-wise correla-
tions and CI tests with exactly one node in the condition-
ing tests, the result is statistically significant for both se-
quence lengths 17 and 20, implying that these two types of
tests are complementary. Finally, it is evident that using all
CI-tests needed to learn the causal graph, without limiting
the conditioning set sizes, case d), provide the best results

where sequence lengths in [15, 22] are statistically signifi-
cant and the difference between legal and illegal is positive,
(R̄legal > R̄illegal) in all tested sequence lengths.

Attention Heads Pruning with Respect to
Confidence Score
In this experiment we examine the importance of each at-
tention head (in multi-head attention) for legal-move gener-
ation. We evaluate the importance of a head by the degree
of confidence with which it represents a causal structure.
This is different from the experiments in Section 4 and Sec-
tion 4 where the average of structural confidence scores of
the heads was associated with each test sequence.

Here, a structural confidence score is calculated for each
attention head for each sequence in the test set. That is, for
1,000 test sequences and 8 heads in the last attention layer
there is a set of 8,000 scores. This set, denoted R, is sorted in
an ascending order. From this sorted set, nine equally spaced
values are selected as thresholds, denoted t = {t1, . . . , t9},
such that they correspond to 10%, 20%, ..., 90% percentiles.
Given a threshold, ti, for each test sequence the attention
heads that have structural confidence scores lower than the
threshold are pruned (skipped in the forward pass) and the
next token is generated without those heads. Hence, the
number of pruned heads may vary from sequence to se-
quence. We then calculate the legal-move generation accu-
racy for each threshold, that is, accuracy per pruning per-
centile. Note that retraining the model after pruning is not
required (Voita et al. 2019). In our case, it is expected that
pruning the heads with low structural confidence will have
limited impact on the accuracy. To examine this, we com-
pare the accuracy to that of a reverse-order pruning process.
In this process we prune heads having high structural con-
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Figure 4: Average difference of structural confidence between legal and illegal move generation (vertical axis) for different
input-sequence lengths (horizontal axis). Error bars are 95% confidence interval calculated using t-test. Confidence score are
calculated from p-values of: (a) all unconditional (marginal) independence tests, (b) all CI tests having exactly one conditioning
node, (c) only tests from both cases a) and b), (d) only CI-tests, without limiting the conditioning set sizes, needed to reconstruct
a causal structure.
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Figure 5: Normalized accuracy of legal-move generation (vertical axis) as a function of the percentage of pruned heads (hori-
zontal axis) with respect to structural confidence. A solid blue curve corresponds to pruning the percentage of heads having the
lowest structural confidence, whereas a dotted orange curve corresponds to reverse-order pruning process (pruning the percent-
age of heads having the highest structural confidence).

fidence scores while keeping those with lower scores. That
is, we sort the set of scores, R in a descending order, and
for each threshold prune the heads that have higher struc-
tural confidence scores. Under the assumption that GPT im-
plicitly uses a causal world model to generate the next to-
kens, we expect pruning heads having low structural confi-
dence scores will result in higher legal-move accuracy and
larger area under curve (accuracy as a function of pruning
percentile) than in the reverse-order pruning process.

In Figure 5 it is evident that pruning heads with lower
structural confidence scores (solid blue curve) results in
higher legal-move generation accuracy and greater area un-
der curve, compared to removing heads with higher struc-
tural confidence scores (dotted orange curve). This demon-
strates the importance of individual attention heads that en-
code structural information for generating legal moves.

5 Conclusions

We presented a causal interpretation of GPT that may ex-
plain the apparent emergence of world model in recent stud-
ies. Following this interpretation, we described a method
that utilizes the triangular form of the attention matrices in
GPT to efficiently recover the causal structures for input se-
quences in a zero-shot manner. Finally, using experiments
in the controlled environment of the Othello board game we
demonstrated that GPT implicitly learns to represent causal
structures in attention heads. Specifically, in cases where the
confidence in recovering structures from the attention matri-
ces is low, GPT generally fails to generate a token that ad-
heres to the Othello board game rules. In future work, these
results may provide insights on the sources of hallucination
in GPT-based models and methods for detecting them.



A Main Notations
In Table 1 we provide common symbols and their meaning
used in this paper. Table 1 describes two sets of symbols.
The first five rows describe symbols used for referring to
entities in GPT, whereas the last four rows describe symbols
used for referring to entities in SCM.

Table 1: Main notations used for the analogy between GPT
and attention in SCM. The first set of symbols describes en-
tities in GPT, and the second set describes entities in SCM.

Symbol Description

Zi output embedding of input symbol i,
Zi ≡ Z(i, ·), in attention layer

V i value vector corresponding to input i,
V i ≡ V(i, ·), in attention layer

A attention matrix
T Transformer neural network

WV ,WQK learnable weight matrices in GPT

Xi a random variable representing
node i in an SCM

Ui latent exogenous
random variable i in an SCM

G weighted adjacency matrix of an SCM
G causal graph structure

B Difference between Test and Training
The data used to train the GPT model was real-world se-
quences of Othello game moves (Li et al. 2023). These
moves were played in a strategic manner with an intention of
winning the game. In contrast, the experiments in the paper
were conducted using a test data consisting of randomly gen-
erated sequences of moves that adhere with the game rules,
without considering the outcome of the game.

We measure the difference between distributions of se-
quences in the training dataset, Dtrain, and test dataset,
Dtest, by estimating n-gram frequencies. For a given se-
quence, {t0, . . . , tℓ−1}, we extract the last n tokens assum-
ing that the probability of the next generated token tℓ de-
pends only on these n tokens,

P (tℓ|t0, . . . , tℓ−1) = P (tℓ|tℓ−n, . . . , tℓ−1). (11)

For the i-th sequence in the test set, trimmed to length ℓ,
we count the number of occurrences N

test|train
n (i) of the

n-gram {tℓ−n, . . . , tℓ−1} of the test sequence in the train-
ing data sequences, trimmed to length ℓ, and divide by the
number of training sequences, |Dtrain|. We estimate the
mean µtest

n by averaging over the number of test sequences,
|Dtest|,

µtest|train
n =

1

|Dtest|

∑
i

N test
n (i)

|Dtrain|
. (12)

Similarly, using sequences excluded from the training data
we estimate µ

train|train
n , the percentage of occurrences of n-

grams of training sequences in the training data sequences.

For each sequence length evaluated in the paper, ℓ ∈
{15, 17, 20, 22, 25, 30}, we calculate percentage of n-gram
occurrences for n ∈ [2, . . . , 6]. We compare the percentage
of occurrences µ

test|train
n and µ

train|train
n in Figure 6. From

this evaluation it is evident that the distribution of real-world
sequences played with an intention of winning (Dtrain) is
different from that of randomly generated sequences (Dtest)
used in the paper to examine the trained GPT model.

C Recursive Causal Discovery from GPT
Attention

We described our method in Algorithm 2, where, given an
input sequence, a causal structure is learned from an atten-
tion matrix in the last layer. In this section, we describe line
8 in more detail where the ICD algorithm (Rohekar et al.
2021), modified to learn only a set of given edges, is called.
The operations in line 8 are mostly similar to operations
in the ABCD algorithm (Rohekar, Gurwicz, and Nisimov
2024). The main difference is that this step refines a par-
tially learned causal structure, by testing conditional inde-
pendence between pairs of nodes connected by edges in a
given list E.

The operations in line 8 of Algorithm 2 are as follows.
First, covariance is estimated from an attention matrix A,

C =
[
D−1A

][
D−1A

]⊤
, (13)

where D ≡ diag(A) is a diagonal matrix consisting of
elements on the diagonal of A such that D−1A is a uni-
triangular matrix. Then, a correlation matrix is estimated

R = diag(C)−
1/2 C diag(C)−

1/2. (14)
Conditional independence between two variables X and Y
conditioned on set Z is estimated by calculating the par-
tial correlation from R. Then, let Ind (X,Y |Z) be a CI test
based on partial correlation, where p-values are estimated
using Fisher z-transform. Finally, call ICD to learn a set of
edges using Ind. In Algorithm 3 we provide a simple mod-
ification of ICD such that it learns only the edges in E and
uses a given initial graph. In red we strike out parts of the
ICD and in blue are our additions. The rest of the pseudo
code is exactly as given by Rohekar et al. (2021). As input,
we add the initial graph G to be used and further refined, and
add the set of edges E to be learned (remove edges connect-
ing conditionally independent nodes). In line 1 we remove
the initialization of a complete graph as the initial graph is
given as input. In line 3 and line 6, we add the set of edges
E to be tested to the ICD iteration function. Lastly, in line 8
only edges in E, rather than all edges in G are tested.

Overall, utilizing the causal order, enforced by the trian-
gular form of the GPT attention matrix, each recursive call
assumes that the current graph is the final learned graph ex-
cept for the edges connecting the newly added node to the
rest of the graph nodes (edge list E). Note that this does not
violate ICD-Sep conditions (Rohekar et al. 2021) that needs
to be complied for having a sound and complete causal dis-
covery algorithm. By considering only the edges connecting
a node to its predecessors in the given causal order, a signifi-
cantly lower number of CI tests are required for learning the
causal graph compared to the unmodified ICD algorithm.



Algorithm 2: Causal Discovery for GPT

Input: S: a sequence of tokens {t1, . . . , tn, }
Output: G: a partial ancestral graph (PAG)

1 Function LearnStructure(S):

2 if |S| = 1 then return a graph with the single node in S

3 tn,S
′ ← pop(S)

4 G′ ← LearnStructure(S′)
5 G ← G′ + {tn}
6 set E to the set of edges (circle edge-marks) between tn and every node in G′
7 connect E in G
8 test CI for edges in E and orient G using ICD (Rohekar et al. 2021)
9 return G

Algorithm 3: Modified ICD (Rohekar et al. 2021) algorithm

Input:
Ind: a conditional independence oracle
G: initial PAG
E: set of edges to be learned

Output:
G: a PAG

1 initialize: r ← 0, G ← a complete graph with ‘o’ edge-marks, and done← False

2 while (r ≤ n) & (done = False) do
3 (G, done)← Iteration(E, G, r) ▷ refine G using conditioning sets of size r
4 r ← r + 1

5 return G

6 Function Iteration(E, G, r):

7 done← True
8 for edge (X,Y ) in E edges(G) do
9 {Zi}ℓi=1 ← PDSepRange (X , Y , r, G) ▷ Zi complies with ICD-Sep conditions

10 if ℓ > 0 then
11 done← False
12 for i← 1 to ℓ do
13 if Ind(X,Y |Zi) then
14 remove edge (X,Y ) from G
15 record Zi as a separating set for (X,Y )
16 break

17 orient edges in G
18 return (G, done)
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Figure 6: Percentage of occurrences (vertical axis) of n-grams from test and training sequences in the training data for n ∈
[2, . . . , 6] (horizontal axis). Light blue columns are µtrain|train

n , and dark blue are µtest|train
n values. The clear difference between

µ
test|train
n and µ

train|train
n which indicates a clear difference between the distributions of real-world sequences used to train the

GPT model and randomly generated sequences used for evaluation.
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