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Abstract— Accurate localization is an essential technology for
the flexible navigation of robots in large-scale environments.
Both SLAM-based and map-based localization will increase
the computing load due to the increase in map size, which
will affect downstream tasks such as robot navigation and
services. To this end, we propose a localization system based on
Block Maps (BMs) to reduce the computational load caused by
maintaining large-scale maps. Firstly, we introduce a method
for generating block maps and the corresponding switching
strategies, ensuring that the robot can estimate the state in
large-scale environments by loading local map information.
Secondly, global localization according to Branch-and-Bound
Search (BBS) in the 3D map is introduced to provide the initial
pose. Finally, a graph-based optimization method is adopted
with a dynamic sliding window that determines what factors
are being marginalized whether a robot is exposed to a BM
or switching to another one, which maintains the accuracy
and efficiency of pose tracking. Comparison experiments are
performed on publicly available large-scale datasets. Results
show that the proposed method can track the robot pose even
though the map scale reaches more than 6 kilometers, while
efficient and accurate localization is still guaranteed on NCLT
[6] and M2DGR [35]. Codes and data will be publicly available
on https://github.com/YixFeng/block localization.

I. INTRODUCTION

For large-scale robotic automation in GPS-denied en-
vironments, such as indoor industrial environments, and
underground mining, efficient and precise localization is a
fundamental capability required by most autonomous mobile
systems.

GNSS/INS systems suffer from the signal block in urban
scenarios [14], which makes the localization result unreli-
able. The maturation of the 3D map construction achieved
through the offline processing of LiDAR or camera data is
evident. Particularly prominent within the domain of robotic
systems operating within predetermined memory limitation,
the employment of LiDAR/visual odometry for the purpose
of localization introduces a salient challenge arising from the
proclivity for error accumulation. This characteristic engen-
ders deviations in the proficient execution of tasks entrusted
to robotic entities. In light of this, an alternate strategy of
heightened efficacy emerges, characterized by the utilization
of the meticulously organized map, engendered via offline
methodologies, as a steadfast and dependable modality of
localization. Consequently, the adoption of map-based lo-
calization assumes paramount importance for autonomous
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Fig. 1. Dividing a large-scale map into multiple block maps has the
potential to enable robots to utilize limited resources to achieve arbitrary
scale navigation and service tasks. Consequently, the utilization of block
map-based localization becomes indispensable.

mobile systems with distinct operational objectives such as
remote delivery and mobile operations, among others. Using
dense maps [9] is usually more accurate but suffers from high
computational time. The use of feature maps [18] decreases
the computational time and makes the localization task more
suitable for real-time application. Even so, the increase in the
scale of the map aggravates the performance overhead and
the search domain uncertainty of the registration process,
which leads to a decrease in the real-time and accuracy of
robot localization.

Various approaches based on camera [33] and LiDAR
[5] are proposed for Map-based localization. During which,
LiDAR has been widely used for environment perception
thanks to their accurate range measurements. Besides, as
a result of accurate short-term motion constraints at high
frequency, IMU is adopted for compensating deficiencies of
LiDAR. Popular solutions for Lidar-Inertial based state esti-
mation can be divided into two categories: filtering-based and
optimization-based approaches. Filtering-based approaches
infer the most likely state from available measurements
and uncertainties, while optimization-based approaches try
to minimize reprojection error to find the optimal states.
However, the filter-based algorithm assumes Markovianity,
which is a fundamental constraint limiting its performance,
and global batch optimization cannot guarantee real-time
performance [1].

To address these limitations, we propose a BM generation
and maintenance method and the corresponding BM-based
localization system 1. We employ keyframe stitching instead
of segmenting the entire global map. This approach ensures

2024 IEEE International Conference on Robotics and Automation (ICRA)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 1709

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n 
(I

C
R

A
) |

 9
79

-8
-3

50
3-

84
57

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

R
A

57
14

7.
20

24
.1

06
10

12
2

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 05,2025 at 11:29:09 UTC from IEEE Xplore.  Restrictions apply. 



spatial continuity between block maps through the overlap
of keyframes, thereby preventing the loss of correlation
information between the robot’s laser point cloud and the
map when transiting between maps. Consequently, given a
coarse pose of the robot, BBS is utilized on the pyramid
of a given BM to get the initial pose. On top of this, for
the trade-off of accuracy and efficiency in pose tracking, we
propose a factor graph-based optimization method with the
dynamic sliding window that maintains different factors in
cases of the same BM and switching BM.

In summary, our contributions are as follows:

• A BM-based localization system in a large-scale envi-
ronment is proposed for the first time.

• A BM generation method and corresponding switching
strategy is proposed which maintains the spatial conti-
nuity of adjacent BMs.

• A factor graph-based optimization method with the
dynamic sliding window based on BMs is proposed to
achieve accurate and reliable state estimation.

• We achieve the best performance on publicly available
large-scale datasets.

II. RELATED WORK

Building a 3D map of an unknown environment is cru-
cial for map-based localization, which provides necessary
information for path planning. Due to the dense and accu-
rate depth measurements of environments, 3D LiDAR has
emerged as an essential sensor for robots. The cartographer
[16] make the laser fan project onto the horizontal plane
using an IMU, which is applicable to relatively flat ground
scenes. LOAM [37] introduces planes and edges as features
to achieve low-drift and low-computational complexity. In-
spired by LOAM, there have been multiple variations of
LOAM that enhance its performance. By incorporating IMU
data through tight coupling for the state estimation [21], [23],
[32], SLAM systems naturally become more precise and
flexible. Iterative closest points (ICP), Normal Distribution
Transform (NDT) and their variances are also utilized as
state estimation methods for odometry of LiDAR SLAM
[10], [12], [36]. NDT reduces the computational time with
respect to ICP approaches, while keeping the accuracy. None
of the above methods implements the solution of dividing a
large-scale map into several block maps.

Given the map generated by LiDAR SLAM, we often
distinguish localization problem between global localization
and pose tracking [28]. For global localization, Monte Carlo
localization [29] is a popular framework, which uses a
particle filter to estimate the robot’s pose and is widely
used in robot localization systems [9], [25]. This filtering
methodology should be more robust to local minima because
the particles should ideally come to a consensus through
additional measurements — though this is dependent on
random sampling and can make no time-based optimality
guarantees. As one of the most successful algorithms for
global optimization problem [2], [15], BBS has been widely
used for localization in autonomous driving [8], [31].

High-rate IMU measurements can effectively compensate
for the motion distortion in a LiDAR scan. To achieve robust
state estimation in challenging situations, LiDAR fused with
IMU has become prevailing in the process of map-based pose
tracking. Levinson [20] adopt the particle filter to combine
multiple observations for state estimation. Zhen [38] uses
the Error State Kalman Filter (ESKF) for sensor fusion
and is combined with a Gaussian Particle Filter (GPF) for
measurements update. Iterated Error State Kalman Filter
(IESKF) [23] is designed to correct the estimated state re-
cursively by generating new feature correspondences in each
iteration, which enables robust and efficient navigation for
ground vehicles in feature-less scenes. Lie Group has been
introduced to define the state and reduce the linearization
error in Invariant Extended Kalman Filter (Invariant EKF)
[26], Iterative Error State Kalman Filter [27] and Invariant
Unscented Kalman Filter (Invariant UKF) [3]. Nevertheless,
the Markov assumptions limit the performance of filter-based
state estimation, while the factor graph optimization (FGO)
presents a smoothing state estimation framework for flexible
sensor fusion [11], [22]. As the FGO with high accuracy is
computationally expensive, localization with sliding window
factor graphs [11], [30] are proposed to provide highly
accurate pose estimates in real-time.

III. METHOD

A. System Overview

As Fig.2 shows, based on the poses TWoff
off,m obtained from

offline graph-based SLAM [7], we opt for keyframe fusion as
opposed to segmenting the entire global map. This approach
ensures spatial continuity between block maps by leveraging
the overlap among keyframes, thereby preventing the loss
of correlation information between the robot’s laser point
cloud and the map during map transitions. Additionally, we
calculate the map centroid and establish a KD-Tree structure
to maintain the map retrieval repository. Subsequently, we
emulate cloud storage using ROS Services to store the maps
in the cloud. The retrieval through BBS on three-dimensional
maps at different resolutions enables the robot to achieve
coarse-to-fine global localization. To ensure robustness in
the robot’s pose tracking for localization, we employ sliding
window-based factor graph optimization to ensure that the
robot leverages a sufficient amount of historical information.
When switching BMs, due to the loss of a substantial amount
of prior map information, we dynamically adjust the sliding
window, and aim to mitigate the interference caused by
irrelevant historical data.

B. Block Maps Generation

In the Block-Map-Based localization method, maintaining
spatial continuity in robotic observations during BM transi-
tions is of paramount importance to ensure smooth estimates
and stability. To address this, our proposed methodology
focuses on the deployment of keyframe-based integration
to build BMs, instead of the more traditional method of
partitioning a comprehensive map into isolated BMs, as
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Fig. 2. Overview of our Block-Map-Based Localization which consists of four main modules: a block maps generation module, a pose initialization
module, a map retrieval server module and a pose tracking module.

Fig.3b, which neglects the relational integrity of map infor-
mation between contiguous BMs. The intricate procedure is
elucidated in Algorithm 1.

Algorithm 1 Block Maps (BMs) Generation Method

Input: LiDAR raw points in all k scans {Lpi}k;
Highly precise poses obtained from offline SLAM

TWoff
off,m;

Extrinsic parameters TL
off;

Block map size S.
Output: The block maps {WlBMj}.

1: Block maps count C = 0;
2: for all pointcloud Lpi in {Lpi}k do
3: Find the closest pose TWoff

off to the pointcloud times-
tamp;

4: Transform LiDAR points via offpi = (TL
off)
−1Lpi;

5: if it is the first pointcloud then
6: Record the translation part of the corresponding

pose as t̂Woff
off ;

7: Create a new WlB̂M for temporary storage;
8: end if
9: tWoff

off denotes the translation part of TWoff
off ;

10: if Euclidean dist(t̂Woff
off , t

Woff
off ) ≤ S then

11: WlB̂M = WlB̂M ∪TL
offT

Woff
off

offpi;
12: else
13: t̂Woff

off = tWoff
off ;

14: if C is equal to 0 or 1 then
15: Store WlB̂M with its count as WlBMj ;
16: Compute its centroid point Wlpc and build a KD-

Tree using all centroids;
17: C = C + 1;
18: else
19: Compute the centroid of WlB̂M;
20: Find its nearest neighbor in KD-Tree and save

the minimum distance d and index n;
21: if d ≥ 0.5S then
22: Redo lines 15 to 17;
23: else if 0.1S < d < 0.5S then
24: WlBMn = WlBMn ∪WlB̂M;
25: Renew the centroid and update the KD-Tree;
26: end if
27: end if
28: Clear the WlB̂M.
29: end if
30: end for

In our approach, as the robot frame in offline SLAM denoted
as off is different from the lidar frame, we leverage the
extrinsics TL

off to reproject the points into the frame off and
build the BMs by TWoff

off . To filter out excessively overlapping
BMs while remaining more map information, we compute
the centroids of the BMs to maintain a KD-Tree. When
a new candidate BM is completed, we use its centroid to
search for the nearest BM, and if the distance d satisfies
0.1S < d < 0.5S, we merge these two BMs to maintain an
appropriate map overlap.

This strategy effectively capitalizes on the overlapping
segments among keyframes, thereby ensuring a seamless
scan-to-map alignment during the map transition process.
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(a) Ours (b) Gao’s [13]

Fig. 3. The result comparison of different block maps separation methods.
Our method considers the overlap between adjacent block maps, and the
robot will not lose prior information when switching maps at the boundary.

C. Pose Initialization

Initializing the pose of robots is the beginning of the
whole system. The initial pose gives the first prior for
the factor graph to stabilize the non-linear optimization
process. Inspired by [17], we build up a pyramid of different
resolution maps for searching. In the searching step, we start
from the minimum resolution map and recursively iterate
from the highest score branch to the lowest score branch. To
reduce the computing cost of BBS, we simplified the search
process by giving an adapted initial score S0.

We are interested in finding the accurate ε in the initial
block map, as shown in the Eq.(1):

ε∗ = argmin
ε∈L

M(Tεhk), (1)

where ε∗ is the optimizing pose in the block maps. Tε is pose
ε represented in Lie Group. M(·) is a measurement function
to get the score of current pose ε in 2D block map planers
just as [17].

Firstly, a map pyramid Pm from level 0 to level N is built,
and each level is represented as Li ∈ Pm(i = 0, 1, · · · , N).
The resolution of Li is half that of Li−1. Secondly, we
choose the angular δθ and the linear r step sizes in searching.
For each Li(i = 0, 1, · · · , N), create a search window Wi

in Li.

wix =

⌈
Wi

x

r

⌉
, wiy =

⌈
Wi

y

r

⌉
, wiθ =

⌈
Wi

θ

δθ

⌉
, (2)

Wi
= {−wix, · · · , wix}×{−wiy, · · · , wiy}×{−wiθ, · · · , wiθ},

(3)
Wi = {ε0 + (rjx, rjy, rjθ) | (rjx, rjy, rjθ) ∈ W

i}. (4)

Finally, adaptively select a base score for branch and bound
search.

D. Pose Tracking

1) Problem Formulation: We propose our graph-based
optimization framework with a changeable sliding win-
dow size. In our case, we define a set of poses x =
{xts , · · · ,xte} and observations z, where ts and te are the
first and last pose in the sliding window respectively. We
seek to estimate the most likely states of the robot x over
a set of measurements z from various sensors inside the

current sliding window. This problem can be formulated as
a maximum a posteriori (MAP) problem:

x∗ = argmax
x

P (z | x)P (x), (5)

Assuming the noise follows the Gaussian distribution and is
independent, Eq.(5) can be rewritten as a sum of minimum
cost functions:

x∗ = argmin
x

∑
k

ek(x, zk)
>Ωkek(x, zk), (6)

ek(x, zk) denotes the cost functions between robot state
vector x and measurements zk, and Ωk is the corresponding
information matrices. To be specific, we introduce three
types of error functions and a prior from sliding window
marginalization:

x∗ = argmin
x

∑
k

eodm(x, zodm
k )>Ωodm

k eodm(x, zodm
k )

+
∑
k

emap(x, zmap
k )>Ωmap

k emap(x, zmap
k )

+
∑
k

eimu(x, zimu
k )>Ωimu

k eimu(x, zimu
k )

+Fmarg(x).

(7)

We differentiate between error functions by superscripts, map

for NDT matching errors, odm for odometry errors, and imu

for IMU preintegration measurements between subsequent
poses. Additionally, Fmarg(x) stands for the prior informa-
tion that derives from marginalized measurements outside
the sliding window.

2) Point Deskewing: Due to the particular mechanism
of the rotating 3D lidar, the raw scan received, Pk, is
distorted when moving at a fast speed. To cope with this
issue, we use the steady-speed motion model from previous
poses to predict lidar translation and obtain the rotation from
IMU forward propagation. Denote the lidar pose of the k-th
sweep as Tk and the transformation between two consecutive
frames k − 1 to k can be represented by:

ξk−1k = log(T−1k−2Tk−1) ∈ se(3), (8)

Then, we use the timestamp t ∈ (tk, tk′ ] of each point to
interpolate the lidar motion, where tk is the beginning of the
k-th sweep and tk′ is the end:

Tk(t) = Tk−1 exp(
t− tk
tk′ − tk

ξk−1k ), (9)

The raw points Pk can be corrected into the starting pose of
the sweep:

P̃k = {Tk(t)pk | pk ∈ Pk}. (10)

3) Dynamic Sliding Window: In this section, we introduce
our marginalization strategy with changeable sliding window
size. The number of active keyframes in the current sliding
window depends on two BM-related cases shown in the pose
tracking module of Fig.2. In the first case, when the robot
navigates in a single BM, we keep a maximum of Na =
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(a) (b) (c) (d)

Fig. 4. Subfigures (a) to (d) show smooth transition and the localization path passing through 4 consecutive block maps on nclt 2. Our switching strategy
is able to maintain spatial continuity with good performance.

20 keyframes and marginalize the old set of variables. By
linearizing these factors, the linear system becomes:[

Hαα Hαβ

Hβα Hββ

] [
xα
xβ

]
=

[
bα
bβ

]
, (11)

where β denotes the set of variables that have to be marginal-
ized, and all variables dependent on them are regarded as α.
Then, we apply the Schur complement, which yields a new
linear system Ĥααxα = b̂α with:

Ĥαα = Hαα −HαβH−1ββHβα, (12)

b̂α = bα −HαβH−1ββbβ . (13)

This strategy creates a marginalization factor connecting all
variables related to the factors removed.

In another case, the robot traverses the boundary of BMs
which means the system has to retrieve a new BM for
the source of scan-to-map alignment. Towards the goal of
retaining enough but not redundant historical information,
we only reserve Nr = 5 keyframes in the current sliding
window when BM switching and all factors before will
be marginalized as a prior. The design of reserved factors
corresponds to the information involved in the overlapping
zone of adjacent BMs. It aims to estimate a smooth trajectory
while switching the map instead of violent fluctuations.

IV. EXPERIMENT AND RESULTS

A. Dataset

We evaluate our method on two publicly available datasets,
NCLT [7] and M2DGR [35]. To demonstrate our method’s
superior performance in large-scale environments, we select
the longest sequence from these two datasets, as shown
in Table IV. Specifically, the North Campus Long-Term
(NCLT) dataset, collected at the University of Michigan’s
North Campus, is a large-scale, long-term autonomy dataset
for unmanned ground vehicles. It includes a 10 Hz Velodyne
HDL-32E LiDAR and a 100 Hz Microstrain 3DM-GX3-
45 IMU for the LIO system. While the same area is re-
peatedly explored, each sequence features diverse paths and
encompasses both outdoor and indoor scenes. We choose
five sequences from the NCLT dataset, with two of them
extending beyond 6 kilometers in length.

The M2DGR dataset comprises large-scale sequences for
ground robots, equipped with a comprehensive sensor suite,
including a Velodyne VLP-32C LiDAR and a 150 Hz 9-
axis IMU for the LIO system. It records trajectories in

challenging situations commonly encountered in practical
applications, such as entering elevators and navigating in
complete darkness. We select the two longest sequences
from the M2DGR dataset to validate the universality of our
approach.

B. Pose Initialization

To evaluate the accuracy of initial pose estimation, we
measured the translation error and the time cost of algo-
rithms compared with various methods including [4], [17],
[34]. Given that both [4] and [34] consume considerable
time initializing map descriptors using the FPFH process
(exceeding one hour), rendering them unsuitable for robot
global localization. Our approach, compared to the tradi-
tional Branch and Bound Search (BBS), employs a greedy
strategy to reduce potentially ineffective searches, thereby
accelerating localization efficiency. As delineated in Table
I, within a search range of 40×40 meters, our method
achieves localization times of less than 1 second, ensuring
computational precision while striking a balance between
computational efficiency and accuracy.

TABLE I
GLOBAL LOCALIZATION EVALUATION

Method
Translational

Error (m)
Time (s)

FPFH+RANSAC [4] 0.26 4036.36
FPFH+Teaser [34] 0.16 3935.50
BBS [17] 5.00 9.82
Ours 0.05 0.87

C. Pose Tracking Evaluation

In this section, we implement all experiments on an
Intel i9-12700K CPU with 64GB of RAM for fairness.
We conducted a rigorous evaluation of two state-of-the-
art (SOTA) incremental SLAM-based state estimation algo-
rithms [24], [32] and two map-based localization algorithms
Hdl-Localization [19] and Fastlio-Loc, which is adapted from
FAST-LIO2, loaded the global map once and then utilize the
Iterated Extended Kalman Filter (IEKF) for state estimation.
Additionally, to ensure a consistent and equitable comparison
with Hdl-Localization, and taking into account the pertinence
of control variables, we uniformly employed the NDT regis-
tration algorithm predicated on “DIRECT1”. This particular
approach entails searching the 1-neighbor voxel to compute
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TABLE II
ABSOLUTE TRAJECTORY ERRORS (RMSE, METERS) COMPARISON OF STATE-OF-THE-ARTS

Method nclt 1 nclt 2 nclt 3 nclt 4 nclt 5 m2dgr 1 m2dgr 2

part full part full part full part full part full part full part full

LIO-SAM × × × × × × 2.1779 3.5690 × × 1.4513 3.1022 6.3035 6.8771
FAST-LIO2 1.8562 3.3829 1.8400 3.3740 1.8456 3.3816 1.4103 3.1604 2.4028 3.7110 0.4199 2.7773 2.8482 3.9557

Hdl-Loc × × × × × × × × 0.5023 2.8725 × × × ×
Fastlio-Loc × × 3.0193 4.1371 0.1795 2.8340 0.1973 2.8352 × × 0.1457 2.7524 0.1302 2.7513

Ours 0.9736 2.9904 0.1983 2.8345 0.1854 2.8337 0.1832 2.8336 0.1529 2.8316 0.2336 2.7561 0.2206 2.7570
1 × denotes that the system totally failed.

TABLE III
AVERAGE TIME CONSUMPTION OF STATE UPDATE WHEN USING GLOBAL MAPS AND BLOCK MAPS RESPECTIVELY (MS)

Method nclt 1 nclt 2 nclt 3 nclt 4 nclt 5 m2dgr 1 m2dgr 2

Fastlio-Loc 10.25* 11.12 10.57 12.33 12.45* 14.75 11.68
Hdl-Loc 8.55* 8.75* 17.39* × 19.67 20.52* ×

Ours w/ Global Map 27.35 35.92 31.15 37.25 29.11 24.66 24.43
Ours w/ Block Map 15.25 14.28 18.16 22.25 20.61 14.64 11.17
1 ∗ denotes that the system failed in the middle and we calculate the average time before each

failure.
2 × denotes that the system totally failed.

the gradient of the matching score. The results of our analysis
are delineated in Table II. We evaluate the Root Mean
Square Error (RMSE) for two distinct trajectory patterns:
the “xyz” mode (trans part) and the “xyzrpy” mode (full).
Through an in-depth quantitative evaluation, it is evident
that our method outperforms other methods on the long-
distance NCLT dataset and consistently demonstrates stable
performance across all datasets. This superior performance
and stability can largely be attributed to our deployment of a
sliding window based on factor graph optimization for state
estimation and block maps generation and transition strategy,
which exhibits robustness in both outdoor and indoor scenes.
This strategy circumvents the inherent instability of state
estimations stemming from the Markov assumption, which
is commonly associated with filter-based methodologies.

D. Efficiency Evaluation

The method of map-blocking proposed by Gao [13] lacks
a mechanism for maintaining a map library, rendering it
unsuitable for our evaluation of localization performance.
Consequently, our comparison is confined to the efficacy of
existing map-based localization techniques relative to our
own, specifically when employing both global and block
maps. As shown in Table III, the algorithm we employ with
the block map is notably faster compared to the one using
the entire global map especially when the map is particularly
large. In the sequence nclt 2, we have increased the speed by
150%. However, it is worth noting that as the map continues
to grow, our time consumption advantages will become more
conspicuous. Additionally, the algorithm based on filtering
exhibits an obvious advantage in terms of speed but lacks
stability and accuracy. Our block map algorithm is quite
close to theirs in terms of speed and performs more robustly
in large-scale environments.

TABLE IV
DETAILS OF ALL THE SEQUENCES

Abbreviation Name Duration
(min:sec)

Distance
(km)

nclt 1 20120115 111:46 4.01
nclt 2 20120122 87:19 6.36
nclt 3 20120202 98:37 6.45
nclt 4 20120429 43:17 1.86
nclt 5 20120511 84:32 3.13
m2dgr 1 street 01 17:08 0.75
m2dgr 2 street 02 20:27 1.48

V. CONCLUSION

In this paper, we have proposed a localization system
based on block maps in large-scale environments. To enhance
the robustness of robot localization, we have incorporated a
factor graph optimization method based on a dynamic sliding
window, effectively leveraging more historical information
to mitigate the uncertainties associated with the Markov
assumption, aligning with our block map switching strategy.
Finally, we validated the superiority of our approach on pub-
licly available large-scale datasets. In future work, we intend
to further enhance this system. We aim to ensure that the
robot can achieve real-time and accurate global localization
in any position and in highly dynamic environments within
the framework of block maps. Additionally, we plan to detect
real-time changes in the environment and update the block
maps accordingly, catering to applications such as logistics
and food delivery robots.
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