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ABSTRACT

Arctic sea ice performs a vital role in global climate and has paramount impacts
on both polar ecosystems and coastal communities. In the last few years, multiple
deep learning based pan-Arctic sea ice concentration (SIC) forecasting methods
have emerged and showcased superior performance over physics-based dynami-
cal models. However, previous methods forecast SIC at a fixed temporal gran-
ularity, e.g. sub-seasonal or seasonal, thus only leveraging inter-granularity in-
formation and overlooking the plentiful inter-granularity correlations. SIC at vari-
ous temporal granularities exhibits cumulative effects and are naturally consistent,
with short-term fluctuations potentially impacting long-term trends and long-term
trends provides effective hints for facilitating short-term forecasts in Arctic sea
ice. Therefore, in this study, we propose to cultivate temporal multi-granularity
that naturally derived from Arctic sea ice reanalysis data and provide a unified
perspective for modeling SIC via our Sea Ice Foundation Model. SIFM is del-
icately designed to leverage both intra-granularity and inter-granularity informa-
tion for capturing granularity-consistent representations that promote forecasting
skills. Our extensive experiments show that SIFM outperforms off-the-shelf deep
learning models for their specific temporal granularity.

1 INTRODUCTION

Arctic sea ice has a profound influence on both local and global climate systems. The near-surface
air temperature of Arctic regions has increased at a speed that is two to nearly four times faster
than the global average from 1979 to 2021, a phenomenon known as “Arctic amplification” (Screen
& Simmonds, 2010; Rantanen et al., 2022). This accelerated temperature rise performs a key role
in the unprecedented rapid diminishing of Arctic sea ice which has extensive consequences that
could transcend the polar area. For example, the accelerated reduction of Arctic sea ice could not
only jeopardize the survival of species residing in polar regions but also pose adverse effects on local
communities whose livelihoods and well-being depend on those animals; it could substantially affect
mid-latitude summer weather by weakening the storm tracks (Vavrus, 2018); and it will bring new
opportunities for marine transportation and new access to natural resources like fossil fuels (Vincent,
2020).

Due to its vital role in coastal communities, global climate, and potential impacts on the world’s
economy, numerical and statistical models have been proposed to forecast pan-Arctic sea ice con-
centration (SIC) ranging from sub-seasonal to seasonal scale (Johnson et al., 2019; Wang et al.,
2019). However, numerical and statistical models usually rely on high-performance computing on
CPU clusters and often lead to complex debugging processes and uncertain parameterization, which
limits their performance in forecasting long-term SIC changes. With the advent of deep learning
models and their powerful capability in capturing complex patterns within high dimensional data,
recent studies have developed end-to-end SIC forecasting models based on deep learning approaches
and have presented a promising performance that exceeds previous numerical and statistical meth-
ods (Andersson et al., 2021; Ren et al., 2022). Although the intrinsic annual cyclic trend and intra-
seasonal predictability of Arctic sea ice (Wang et al., 2016) contains rich information both between
and within temporal scales, existing deep learning-based methods mainly focus on predicting SIC
at a specific temporal granularity, e.g., 7 days or 6 months’ averages, which leads to potential ne-
glect of intrinsic correlation between different time scales and limits the performance of forecasting
models. Since the Arctic sea ice extent (SIE, where SIC value is larger than 15%) has been ob-
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Figure 1: Visualization of Arctic sea ice trends. (a)The annual average SIC and SIE trend over the
last 35 years (1987-2023); the monthly cyclic trend of SIC (b) and SIE (c). Note that the averaged
SIC values are calculated over the entire pan-Arctic region which could only be used to observe the
trend.

served a continuous reclining trend during the last few decades (Figure 1(a)) and a clear recurrent
variational pattern, i.e., the annual pan-Arctic sea ice edge usually starts to expand after the summer
melting season in September (Figure 1(b)), utilizing inter-granularity and intra-granularity informa-
tion could be mutually beneficial. For instance, long-term trends in weekly granularity could help
to calibrate short-term daily predictions and finer granularity features could provide more accurate
initial conditions to facilitate seasonal forecasting. Besides, the most commonly utilized U-Net ar-
chitecture (Ronneberger et al., 2015) in previous work (Andersson et al., 2021) implicitly fulfills
sequential modeling by channel-wise fusion operations. The prediction of future SIC is essentially
a spatio-temporal forecasting task involving the prediction of over a hundred thousand time series,
each representing a non-overlapping grid location in the Arctic region. We argue that considering
forecasting future SIC is obviously a spatio-temporal task, and explicit modeling of SIC sequences
could improve forecasting skills.

Based on the above-mentioned motivations, we propose the transformer-based Sea Ice Foundation
Model (SIFM) that unifies the temporal granularity of interest to boost overall performance on
forecasting SIC in pan-Arctic region. Unlike previous approaches (as demonstrated in Figure 2),
we propose to independently tokenize spatial features, explicitly extract sequential information and
jointly model three granularities: daily, weekly average, and monthly average. Specifically, SIFM
first embeds SIC from each temporal granularity into independent spatial tokens and sequentially
concatenated to represent temporal fluctuations within each granularity. Then, we treat these inde-
pendent sequences as correlated granularity variates and utilize the attention mechanism in conjunc-
tion with the feed-forward network (FFN) for extracting both intra-granularity and inter-granularity
correlations. By incorporating multi-granularity representation, SIFM could simultaneously gener-
ate future SIC in different temporal scales and boost overall performance. Our contributions are
three folds:

• We revisit the potentially overlooked inter-granularity information by previous methods for
Arctic SIC forecasting and explore the effectiveness of independent spatial tokens repre-
sentation of SIC for facilitating accurate predictions.

• We propose SIFM that leverages independent spatial tokenization of SIC and effectively
unifies three temporal granularities that cover from sub-seasonal to seasonal scale for better
overall representation and improved forecasting performance.

• The comprehensive experiments demonstrate that by adopting the approach of multi-
granularity fusion, our SIFM achieves state-of-the-art on prediction in each granularity,
which advances toward a more practical Arctic sea ice forecasting system.

2 RELATED WORKS

2.1 SEA ICE CONCENTRATION FORECASTING

Researchers have proposed various approaches to forecasting SIC, encompassing numerical and
statistical models (Wang et al., 2013; Yuan et al., 2016). However, numerical and statistical models
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Figure 2: The main differences between (a) existing mainstream SIC forecasting approaches and
(b) our SIFM are follows: (1) Previous models take a channel-wise fusion to jointly extract spatial
features, e.g., utilizing 2D convolution to expand and downsample SIC channels. In our case, we
focus on capturing effective spatial tokens representation of SIC by the shared spatial encoder. (2)
The correlation among input SIC sequence is implicitly modeled via the U-Net-based architecture in
(a) while SIFM explicitly captures intra-granularity and inter-granularity correlation via sequential
modeling. (3) We propose leveraging multi-granularity information that is naturally derived from
the SIC and embedding it into granularity variates to improve overall forecasting skills.

usually rely on the high-performance computing of the CPU cluster and tend to result in complex de-
bugging processes and uncertain parameterization. Recently, deep learning models have drawn the
attention of sea ice research communities and have been widely investigated for Arctic sea ice fore-
casting (Petrou & Tian, 2019; Kim et al., 2020; Ali et al., 2021; Ali & Wang, 2022). These methods
utilize U-Net-based architectures to solve daily (SICNet (Ren et al., 2022), or monthly (IceNet (An-
dersson et al., 2021), MT-IceNet (Ali & Wang, 2022)) SIC forecasting. However, although these
U-Net-based architectures are built on top of LSTM (Liu et al., 2021) or CNN (Andersson et al.,
2021), the temporal information inherent in sea ice modeling can not be fully exploited. Moreover,
these methods and the latest Transformer-based model (Zheng et al., 2024) concentrate on single-
granularity SIC forecasting, where the inter-granularity information from multi-granularity sea ice
modeling is overlooked.

2.2 MULTI-SCALE REPRESENTATIVE LEARNING

The multi-scale phenomenon is common in vision tasks, while it is always overlooked in sea ice
modeling. To exploit the information in multi-scale sources, multi-scale features are commonly
exploited by using spatial pyramids (Lazebnik et al., 2006), dense sampling of windows (Yan et al.,
2012), and the combination of them (Felzenszwalb et al., 2008) in the vision community. The
learning of CNN-based multi-scale representations is typically approached in two ways: utilizing
external factors like multi-scale kernel architectures and multi-scale input architectures (Reininghaus
et al., 2015), or designing internal network layers with skip and dense connections (Lin et al., 2016).
Recently, there has been a surge of interest in applying transformer-based architectures to computer
vision tasks, with the Vision Transformer (ViT) being particularly successful in balancing global
and local features compared to CNNs (Dosovitskiy, 2020). When revisiting the task of forecasting
sea ice concentration, its multiscale features stem from different temporal resolutions. Existing
methods focus on a single scale, such as daily, weekly, or monthly. However, different temporal
resolutions are inherently connected, and treating them as a single scale for modeling would increase
the complexity of network learning.

3 SIFM FOR MULTI-GRANULARITY ARCTIC SEA ICE FORECASTING

Given historical Arctic SIC records Y = {XT−L−1, ..., XT−1, XT } ∈ [0%, 100%]L×H×W , where
L is the input length of a specific granularity which includes the given observation time step T ,
H and W denotes the rectangle pan-Arctic region, the forecasting model predicts the subsequent
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Figure 3: Overview of proposed SIFM, which comprises three main components: (1) The shared
spatial encoder first independently extracts spatial features of input SIC from each granularity (i.e.
7 days, 8 weeks’ averages and 6 months’ averages) to obtain spatial tokens, and then concate-
nates these spatial tokens accordingly. (2) The embedded spatial tokens are subsequently flattened
with respect to their granularity and linearly projected into the same length. We propose to uti-
lize an encoder-only transformer backbone to perform multi-granularity fusion which explicitly
captures both inter-granularity and intra-granularity sequential features. (3) Lastly, the predicted
multi-granularity features are restored to the shape of the input via linear transformation and the
shared spatial decoder.

SIC values Ŷ = {XT+1, ..., XT+P−1, XT+P } ∈ [0%, 100%]P×H×W with forecasting lead times
of P . In this study, our SIFM jointly models three granularities, i.e., daily, weekly average, and
monthly average SIC values that cover both sub-seasonal and seasonal variations, and simultane-
ously forecasting on all these temporal scales. For each temporal granularity, the input length L
equals the forecasting lead times P . The overview of the proposed SIFM architecture is presented
in Figure 3. The shared spatial encoder and decoder perform SIC tokenization and restoration while
multi-granularity fusion explicitly extracts sequential information.

3.1 SEA ICE CONCENTRATION TOKENIZATION

Existing mainstream deep learning-based methods for SIC forecasting adopt U-Net architectures and
leverage 2D convolution to perform channel-wise expansion and downsampling that extracts both
spatial features and temporal dependencies. However, since U-Net-based models are not specifically
designed for sequence modeling (Azad et al., 2024), the joint spatial-channel fusion of SIC and
implicit sequence modeling could be ill-posed properties for spatio-temporal forecasting tasks. In
this regard, we propose to independently tokenize spatial features at first, which could disentangle
the above ill-posed problem and be beneficial for SIC forecasting.

Independent spatial embedding. Since we aim to simultaneously model SIC derived from three
temporal granularities, encoding their spatial features into shared embedding space not only yields
consistent representation but also reduces the number of trainable parameters. Inspired by prior
works (Hu et al., 2023; Chen et al., 2023), we utilize Swin Transformer V2 (Liu et al., 2022) as the
backbone for both shared spatial encoder and decoder.

Specifically, each SIC input is independently fed into the shared spatial encoder and partitioned by a
non-overlapped window to generate patch representation (Dosovitskiy, 2020) with 32 spatial chan-
nels (the original SIC data has only one channel). To preserve local SIC information, we choose the
smallest 2 by 2 window size for the patch partition. Then, the patch tokens are further transformed
by the first two Swin Transformer blocks. The multi-scale spatial features are extracted through
the subsequent hierarchical encoder layers which comprise a patch merging operation and two Swin
Transformer blocks. The patch merging operation first concatenates the spatial feature of each group
of 2 by 2 adjacent patch representations from the previous encoder layer. The calculation of each
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pair of two consecutive Swin Transformer blocks in encoder layers can be described as follows:

zbs = LN(WMSA(zb−1)) + zb−1,

zb = LN(MLP (zbs)) + zbs,

zb+1
s = LN(SWMSA(zb)) + zb,

zb+1 = LN(MLP (zb+1
s )) + zbs, (1)

where zbs and zb represents the output spatial feature of the (Shifted) Window-Multi-head Self
Attention module and the MLP module for block b, respectively; LN denotes the layer normalization
operation (Lei Ba et al., 2016). The attention mechanism with a shifted window could effectively
extract neighboring SIC information and sufficiently represent the local correlation of sea ice. Af-
ter all input SIC are independently encoded into 2D spatial features, we apply linear projection to
generate 1D token for each SIC to obtain compact spatial representation for sequential modeling.

The shared spatial decoder adopts an identical Swin Transformer backbone and the decoding pro-
cedure is symmetrical to the encoding process, except that the patch merging operation is replaced
by the patch expanding operation (Cao et al., 2022). While patch merging downsamples the input
spatial feature dimension and increases the embedding channels, patch expanding symmetrically
restores the resolution of the feature map and merges channels via linear transformation.

Spatial feature skip connection. Since the SIC features encoded by Swin Transformer blocks will
be tokenized into highly compact sequence representation, the spatial SIC information should be
maximally preserved during the sequential modeling. Besides, our proposed sequential modeling
backbone comprises deep encoding layers which might lead to loss of embedded spatial features.
To preserve spatial SIC information and avoid insufficient restoration, we propose to add a skip
connection between the output of the last pair of Swin Transformer blocks in the spatial encoder and
the input of the first block in the shared decoder (see in Figure 3).

3.2 MULTI-GRANULARITY FUSION

We propose to jointly model three granularities that cover sub-seasonal to seasonal scale, i.e., 7
days, 8 weeks averages, and 6 months averages, and explicitly capture inter-granularity correlation
and intra-granularity sequential information.

Modeling granularity variates. As mentioned in Section 3.1 the shared spatial encoder trans-
forms each SIC into independent 1D tokens. These individual spatial tokens are then concatenated
sequentially based on their granularity respectively and utilized to form the multi-granularity rep-
resentation. As each granularity incorporates a different time span, the dimensions of concatenated
granularity sequences are mismatched. Considering that both the weekly average and monthly av-
erage are derived from daily SIC values, we choose to tokenize those sequences further and align
their feature dimensions with the length of daily input using a linear transformation. The generated
multi-granularity variates are subsequently fed into the sequential modeling backbone. Encouraged
by prior work (Liu et al., 2023), we propose to adopt an encoder-only Transformer architecture as the
sequential modeling backbone for multi-granularity fusion in Figure 3 that: (1) applies multi-head
self-attention on the embedded granularity variate tokens to explicitly capture inter-granularity cor-
relations; (2) each granularity variate is independently processed by FFN to extract intra-granulairty
information (as depicted in Figure 4(a)). As for the conventional usage of vanilla Transformer in se-
quence prediction, the attention mechanism is applied on embedded temporal tokens which comprise
variate information collected from the same time step (as in Figure 4(b)). The vanilla Transformer is
challenged in forecasting series with larger lookback windows due to performance degradation and
computation explosion. Furthermore, the temporal token embeddings incorporate multiple variates
that represent distinct physical measurements, which may struggle to capture variate-specific repre-
sentations and potentially lead to the generation of incoherent attention maps. However, in sea ice
modeling, each dimension of the tokenized granularity variate incorporates SIC features that come
from a different time span. This could lead to poor representation of sequential SIC features and
restrict the effective modeling of inter-granularity correlations. Experimentally, we will show in
Section 4.4 that by adopting our sequential modeling, the overall performance is superior to alter-
native backbones. After each SIC granularity variate token is properly fused and encoded, the final
prediction of future granularity variate features is generated through a linear projection layer.
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Figure 4: Comparison between different backbones for temporal sequence modeling: (a)
Our proposed SIFM sequentially concatenates independent SIC tokens that are derived from each
temporal scale as a granularity variate and applies an attention mechanism over the embedded variate
tokens. The FFN transforms the variate representation for the input of the next layer; (b) For vanilla
Transformer architecture (Vaswani, 2017), it applies an attention mechanism over temporal tokens
and FFN is applied on multivariate representations; (c) The MLP-mixer (Tolstikhin et al., 2021)
approach first performs token-wise mixing, then transpose the extracted features to apply channel-
wise mixing. The vanilla Transformer and MLP-mixer both fall short of modeling the sequential
information of sea ice.

Sequential feature skip connection. Considering the concatenated sequence of SIC features are
linearly transformed and aligned to form the multi-granularity variate representation, the significant
original sequential feature needs appropriate preservation. Besides, the deep sequence encoding
process could introduce unintended noise that deteriorates the modeling of intra-granularity corre-
lation. To compensate for the intra-granularity information and reduce the potential impact that im-
pairs inter-granularity modeling, we propose to utilize the cross-attention mechanism as a sequential
skip connection (as in Figure 3), where the latent query features are sourced from the concatenated
sequence token before the linear projection and the predicted SIC sequence generates both key and
value latent representations. The details about this process can be found in Appendix A.1.

4 EXPERIMENTS

In this section, we evaluate the forecasting performance of our SIFM over 8 years of SIC data and
compare it with other deep learning models. The implementation details of our SIFM is provided in
Appendix A.2.

4.1 DATASETS

We evaluate our proposed SIFM framework on the G02202 Version 4 dataset from the National
Snow and Ice Data Center (NSIDC). It records daily SIC data starting from October 25th 1978 and
provides the coverage of the pan-Arctic region (N:-39.36◦, S:-89.84◦, E:180◦, W:-180◦). Each daily
SIC data is formed of 448 x 304 pixels and each pixel corresponds to the area of a 25km x 25km grid.
The SIC data has a range of 0% to 100% and areas where SIC value is greater than 15% indicate the
SIE. We choose data from October 25th 1978 to the end of 2013 as the training dataset, the years
2014 and 2015 are selected as validation set, and data collected from 2016 to 2023 are used to test
models.

4.2 EVALUATION METRICS

To evaluate SIFM, we select widely used root mean square error (RMSE) and mean absolute error
(MAE) for comparison of forecasting accuracy. We also leverage R2 score to evaluate the perfor-
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mance:

R2 = 1− RSS

TSS
. (2)

where RSS represents the sum of squares of residuals and TSS denotes the total sum of squares. The
Integrated Ice-Edge Error score (Goessling et al., 2016) is introduced to evaluate the prediction of
SIE:

IIEE = O + U, (3)

O =
∑

(Max(SIEp − SIEt, 0)), (4)

U =
∑

(Max(SIEt − SIEp, 0)), (5)

SIEp, SIEt =

{
1, SIC > 15
0, SIC ≤ 15

(6)

where O and U represent the overestimated and underestimated SIE between the prediction (SIEp)
and the ground truth (SIEt), respectively. The difference between the forecasted and ground truth
sea ice area (in millions of km2) is calculated as follows:

SIEdif =

∑
(|SIEp − SIEt|)× 25× 25

1000000
. (7)

We also adopt the Nash-Sutcliffe Efficiency (Nash & Sutcliffe, 1970) to further evaluate the pre-
dicted quality:

NSE =
1−

∑
((SICt − SICp)

2)∑
((SICt −Mean(SICt))2)

(8)

4.3 MULTI-GRANULARITY FORECASTING

Baselines. Since our SIFM simultaneously generates predictions of three granularities, we se-
lect corresponding forecasting deep learning-based models for comparison. Specifically, we re-
implemented SICNet (Ren et al., 2022) and trained under an identical environment for direct com-
parison on 7 days SIC forecasting; Due to dataset and code accessibility, we adopt performance of
sub-seasonal forecasting methods as SICNet90 (Ren & Li, 2023), IceFormer (Zheng et al., 2024),
and seasonal forecasting methods IceNet (Andersson et al., 2021), MT-IceNet (Ali & Wang, 2022)
that reported in the original paper for reference.

Table 1: Quantitative results of SIC forecasting. We compare the performance of SIFM in each
temporal granularity with corresponding deep learning based methods. * marks that the performance
figures are reported in their original papers for reference.

Temporal Scale Lead Times Methods RMSE↓ MAE↓ R2↑ NSE↑ IIEE↓ SIEdif↓

Sub-seasonal

7 Days (Daily) SICNet 0.0490 0.0100 0.982 0.979 976 0.0718
SIFM 0.0429 0.0096 0.987 0.985 926 0.0380

45 Days (Daily) IceFormer* 0.0660 0.0201 0.960 - - -
90 Days (Daily) SICNet90* - 0.0512 - - - -
8 Weeks Average (Weekly) SIFM 0.0625 0.0140 0.973 0.968 1600 0.1541

Seasonal 6 Months Average (Monthly)
IceNet* 0.1820 0.0916 0.567 - - -
MT-IceNet* 0.0777 0.0197 0.915 - - -
SIFM 0.0692 0.0166 0.917 0.910 2156 0.2083

Main results. The overall performance of SIFM and baseline methods are listed in Table 1.
The lower RMSE/MAE indicates a more accurate forecast in SIC values. Methods with lower
IIEE/SIEdif are more capable of identify the edge of sea ice while higher R2/NSE suggests that the
predicted spatial patterns are more close to the ground truth. Our proposed method achieves the best
performance in all metrics for forecasting 7 days SIC, establishes a new state-of-the-art method for
sub-seasonal weekly average prediction, and presents superior seasonal SIC forecasting capability.
Considering the fact that baseline methods, except for SICNet, utilizes several additional atmo-
spheric and oceanic variables to facilitate forecasting, and our SIFM only leverages SIC data with
carefully extracted intrinsic inter-granularity correlation, it verifies the effectiveness of the proposed
approach for multi-granularity forecasting.
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Figure 5: Qualitative analysis of SIE prediction. The derived SIE ground truth and prediction
generated by SIFM and three single-granularity models (one for each temproal granularity) over:
(a) The first week of September; (b) 4 weeks; (c) 1 month. Considering the abnormal increase of
Arctic sea ice in 2022, our proposed method could still produce reasonable forecasts that keep the
similar overall shape of Arctic SIE.

Qualitative Analysis. To visually verify the forecasting skills of SIFM, we select the end of the
melting season in September 2022. From Figure 1(a) we can observe that the annual Arctic sea ice
in 2022 has increased by a considerable margin which is against the persisting long-term reclining
trend. This unusual rise makes SIC and SIE difficult for our model to predict since it only learns from
the data collected before 2014. Starting from September 1st, we calculate averaged SIC of 7 days,
4 weeks and 1 month that correspond to three temporal granularities of SIFM. The ground truth of
calculated average SIC along with the ground truth and predicted SIE are visualized in Figure 5. The
forecasting results in the lower row are produced by SIFM and the upper row represents predictions
generated by three variants of SIFM that only leverage single-granularity SIC, we will discuss later
in Section 4.4.

Despite the inconsistent annual trend of Arctic SIC in 2022, our method could still generate forecasts
that are consistent with the average SIE in the first week of September (Figure 5(a)), and the general
shape in both 4 weeks’ average (Figure 5(b)) and 1-month average (Figure 5(c)). Comparing to
models with similar backbone of SIFM but only leverage single-granularity SIC, the prediction of
SIE are noticeably different to the ground truth indicating that SIFM could effectively leverage
multi-granularity SIC to improve forecasting skills.
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Figure 6: Spatial residual of predicted SIC. We examine the spatial patterns of forecasting results
over the same period presented in Figure 5: SIFM could generate consistent daily forecasts (a).
Considering the abnormal Arctic SIC change in 2022, the annual trend could be different than the
SIC data on which the model was trained, SIFM could still predict weekly (b) and monthly (c)
average SIC with a bounded residual region rather than scattered forecasting results. The spatial
residual is calculated by using predicted SIC to subtract the ground truth value.

Figure 7: Averaged intra-granularity forecasting error. We evaluate models trained on multi-
granularity and single-granularity SIC and plot RMSE and MAE of each lead time step in three
temporal granularities over the test dataset.

We plot spatial residuals to further investigate the learned spatial patterns of our SIFM. In Fig-
ure 6(a), SIFM could accurately predict the first week of SIC, while in coarser weekly average gran-
ularity our SIFM tends to slightly underestimate in Arctic sea ice edge areas (Figure 6(b)). For the
predicted monthly average of September 2022, the overall shape of SIE resembles the observation
but overestimates SIC along the boundary.

4.4 ABLATION STUDY

To further analyze the performance of our proposed method, we trained five additional variants
of SIFM (as in Figure 7), i.e., three single-granularity models that respectively utilize temporal
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Table 2: Effectiveness of multi-granularity representation. Multi represents the proposed SIFM
and Single stands for models with similar backbone but trained solely on single-granularity data.

Temporal Scale Lead Time Granularity RMSE↓ MAE↓ R2↑ NSE↑ IIEE↓ SIEdif↓

Sub-seasonal
7 Days Single 0.0704 0.0148 0.982 0.979 1018 0.0509

Multi 0.0429 0.0096 0.987 0.985 926 0.0380

8 Weeks Average Single 0.0771 0.0163 0.962 0.954 2208 0.3301
Multi 0.0625 0.0140 0.973 0.968 1600 0.1541

Seasonal 6 Months Average Single 0.0721 0.0191 0.882 0.873 2482 0.4298
Multi 0.0692 0.0166 0.917 0.910 2156 0.2083

Table 3: Effectiveness of proposed approach for multi-granularity fusion. We adopt conven-
tional utilization of Transformer and recent trend in leveraging full MLP-based backbone (Tolstikhin
et al., 2021) for temporal sequence modeling as counterparts of our proposed sequential backbone.

Temporal Scale Lead Time Method RMSE↓ MAE↓ R2↑ NSE↑ IIEE↓ SIEdif↓

Sub-seasonal

7 Days
MLP Mixing 0.0506 0.0117 0.984 0.981 1153 0.1265
Transformer 0.0633 0.0159 0.970 0.965 1519 0.2338

SIFM 0.0429 0.0096 0.987 0.985 926 0.0380

8 Weeks Average
MLP Mixing 0.0689 0.0169 0.969 0.963 2222 0.3839
Transformer 0.0771 0.0206 0.970 0.964 1718 0.2028

SIFM 0.0625 0.0140 0.973 0.968 1600 0.1541

Seasonal 6 Months Average
MLP Mixing 0.0775 0.0206 0.857 0.845 2477 0.3837
Transformer 0.0913 0.262 0.833 0.821 3490 0.4902

SIFM 0.0692 0.0166 0.917 0.910 2156 0.2083

granularities in SIFM, and two multi-granularity forecasting models with different backbones to
perform the multi-granularity fusion.

Effectiveness of Multi-granularity modeling. We first verify our proposed multi-granularity
modeling approach by comparing SIFM with models that comprise of similar model architecture but
only adopt single granularity SIC data. Comprehensive experiments in Table 2 show that by lever-
aging the naturally derived multi-granularity SIC, the overall performance in all temporal scales can
be promoted by a significant margin. For each individual forecasting lead time, SIFM consistently
outperforms models solely trained on single-granularity data (as shown in Figure 7).

Alternative backbone for multi-granularity fusion. To validate the effectiveness of our pro-
posed multi-granularities fusion and sequential modeling approach, we compare the performance
of our SIFM with two other variants that are trained on the identical multi-granularity data with
different sequential backbones, i.e., Transformer and MLP mixer (Tolstikhin et al., 2021; Ekam-
baram et al., 2023). Considering intra-granularity performance in Figure 7, SIFM presents superior
forecasting skill in each time step of daily, weekly average and monthly average when compared
to multi-granularity variants, indicating the effectiveness of multi-granularity SIC variates for se-
quential modeling. As shown in Table 3, our SIFM outperforms these variants by a great margin,
demonstrating the intra-granularity and inter-granularity correlations inherent in the sea ice model-
ing benefits for the forecasting.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose SFIM, a transformer-based sea ice foundation model that unifies multi-
granularity covering from sub-seasonal to seasonal scale to enhance the sea ice concentration fore-
casting. Specifically, we propose to explore the independent spatial tokens representation of SIC
to exploit the inter-granularity information. These spatial tokens will be concatenated within their
own granularity and go through multi-granularity fusion to explicitly model their inter-granularity
correlations. Experiments demonstrate that our SIFM fulfills skillful forecasting in each granularity
compared with single-granularity methods. Since our SIFM is a versatile framework, the multi-
granularity climate information could also be incorporated easily in future work.
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A APPENDIX

A.1 THE DETAILS OF SEQUENTIAL FEATURE SKIP CONNECTION

CrossAttention(Q,K, V ) = softmax(
QKT

√
d

) · V,

Q = W g
Q · zgin,K = W g

K ·zgpred, V = W g
V · zgpred (9)

where g denotes each granularity. zgin, z
g
pred ∈ R1×dz represents the sequential features before linear

projection and the prediction, respectively. W g
Q,W

g
K ,W g

V ∈ Rd×dz are the query, key and value
projection matrices.

A.2 IMPLEMENTATION DETAILS

We first generate SIC data for three granularities and trained our SIFM on this prepared dataset for
20 epochs. For each temporal granularity, SIFM outputs the same length of input data as forecasting
leads, i.e. 7 days, 8 weeks average, and 6 months averages. In this study, we utilize a sliding
window with a length of 30 days to generate averaged SIC in monthly granularity. The dimensions
of embedding features of shared spatial encoder and decoder are set to 32. They both comprise of 4
layers of Swin Transformer V2 blocks, specifically, the number of blocks for each layer is configured
as [2, 2, 6, 2]. We use a window size of 28 by 19 to be consistent to the ratio of SIC data.

The dimension of each individual SIC token generated by linear projection equals 128. The sequen-
tially concatenated SIC tokens are further aligned and transformed to multi-granularity represen-
tation which has a dimension of 3 by 896. The embedding dimension of multi-granularity fusion
backbone is set to 256. SIFM is trained by AdamW using Pytorch on four NVIDIA A100 80GB
GPU for all experiments.

A.3 VISUALIZATION OF FORECASTING RESULTS

In this section, we will present more visualization of forecasting results generated by SIFM.
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Figure 8: Spatial residual comparison. We compare the spatial patterns of forecasting results
produced by SIFM and single-granularity variants.
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Figure 9: Spatial residual and predicted SIE quality of Mar 2017.
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Figure 10: Spatial residual and predicted SIE quality of Sep 2017.
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Figure 11: Spatial residual and predicted SIE quality of Mar 2018.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

GT

Pred

Forecast Period

Sep 1~7, 2018

(Daily Granularity)

Forecast Period

Sep 1~28, 2018

(Weekly Granularity)

Forecast Period

Sep 1~30, 2018

(Monthly Granularity)

(a) (b) (c)

Figure 12: Spatial residual and predicted SIE quality of Sep 2018.
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Figure 13: Spatial residual and predicted SIE quality of Mar 2019.
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Figure 14: Spatial residual and predicted SIE quality of Sep 2021.
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