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ABSTRACT

Contrastive Language-Image Pre-training (CLIP) has recently demonstrated suc-
cess across various tasks due to superior feature representation empowered by
image-text contrastive learning. However, the instance discrimination method
used by CLIP can hardly encode the semantic structure of training data. To handle
this limitation, cluster discrimination has been proposed through iterative clas-
sification and cluster assignment. Nevertheless, most cluster discrimination ap-
proaches only define a single pseudo-label for each image, neglecting multi-label
signals in the image. In this paper, we propose a novel multi-label cluster dis-
crimination method to enhance representation learning. In the clustering step, we
first cluster the large-scale LAION 400M dataset into one million centers based
on off-the-shelf embedding features. Considering that natural images frequently
contain multiple visual targets, we select the multiple closest centers as additional
class labels. In the discrimination step, we design an efficient multi-label classi-
fication loss, which elegantly separates losses from positive classes and negative
classes and facilitates distributed training on large-scale data. We validate the
proposed multi-label cluster discrimination method with experiments on differ-
ent scales of models and pre-training datasets. Experimental results show that
our method achieves state-of-the-art performance on multiple downstream tasks
including linear probe, zero-shot classification, and image-text retrieval.

1 INTRODUCTION

Language-supervised visual pre-training, e.g., CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021), has been established as a simple yet effective methodology for visual representation learning.
Empowered by image-text contrastive learning, pre-trained CLIP models exhibit remarkable versa-
tility and transferability across various downstream tasks (e.g., linear probe, zero-shot classification,
and image retrieval). As illustrated in Fig. 1a, CLIP aligns the visual and textual signals of each
instance into a unified semantic space by cross-modal instance discrimination. Nevertheless, the
instance discrimination method used by CLIP can hardly encode the semantic structure of training
data, because instance-wise contrastive learning always treats two samples as a negative pair if they
are from different instances, regardless of their semantic similarity. When a large number of in-
stances are selected into the mini-batch to form the contrastive loss, negative pairs that share similar
semantics will be undesirably pushed apart in the embedding space.

To handle the limitations of instance discrimination, cluster discrimination methods (e.g., DeepClus-
ter (Caron et al., 2018), SeLa (Asano et al., 2020), ODC (Zhan et al., 2020), SwAV (Caron et al.,
2020), CoKe (Qian et al., 2022), and UNICOM (An et al., 2023)) have been proposed for deep un-
supervised learning through jointly learning image embeddings and cluster assignments. Learning
representations with clusters will pull similar instances together, which is beneficial for capturing
semantic structures in data. However, most cluster discrimination approaches only define a single
pseudo-label for each image as depicted in Fig. 1b. By contrast, natural language supervision pro-
posed in CLIP can provide richer forms of labels for a single image, e.g., objects, scenes, actions,
and relations, at multiple levels of granularity.

As can be seen from Fig. 2, a web image frequently contains multiple classification targets, such as
objects (Yang et al., 2016) and attributes (Pham et al., 2021). The existence of multiple objects in the
image requires laborious cropping (Li et al., 2023a; Abdelfattah et al., 2023) to construct single-label
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annotations, while some scenario elements in the image are hard to disentangle to obtain single-label
instances (Pham et al., 2021; Zhu et al., 2023). These real-world challenges pose so-called multi-
label classification where an image is equipped with multiple labels beyond a single label.

In this paper, we aim at boosting the visual representation power of the CLIP model by introducing
a novel Multi-Label Cluster Discrimination (MLCD) approach. In the clustering step, we follow
UNICOM (An et al., 2023) to conduct one step of off-line clustering by using the features predicted
by a pre-trained CLIP model (Radford et al., 2021). Due to the limited discrimination power of
the CLIP model, the single pseudo-label may not cover all of the visual signals in the image. To
this end, we further perform a similarity-based sorting against k class centers and select the top l
class centers as the positive class centers for that image. In the discrimination step, we follow the
Circle loss (Sun et al., 2020) to design a multi-label loss to effectively deal with multiple labels. The
vanilla version of the multi-label loss exploits relative similarity comparison between positive and
negative classes. More specifically, the optimization seeks to narrow the gap between the intra-class
similarities {si} and the inter-class similarities {sj} by reducing all possible (sj − si). However,
optimizing (sj − si) usually leads to a decision boundary allowing ambiguity (Sun et al., 2020).
To this end, we introduce another two optimization targets (i.e., decreasing sj and increasing si)
into the loss function. Introducing the additional two items enables an elegant separation of positive
class loss and negative class loss (Eq. 5), which can facilitate distributed training on large-scale data
with minimal communication overhead. To alleviate inter-class conflict and save the computation
time on the classifier layer, we also employ PartialFC (An et al., 2022) and randomly sample part of
the negative class centers during each iteration.

The main contributions of our paper are the following:

• We propose a novel multi-label cluster discrimination method for visual representation learning
on large-scale data. In the clustering step, we employ one step of offline k-means to predict
multiple labels for each training sample. In the discrimination step, we explore multi-label
classification, which considers multiple supervision signals for a single image and learns better
semantic structure in data.

• To avoid ambiguity during the optimization of (sj − si), we add additional optimization tar-
gets by maximizing the within-class similarity si, as well as to minimizing the between-class
similarity sj . By doing so, the loss from positive class labels and negative class labels can be
elegantly separated, decreasing the communication cost of distributed training.

• The proposed multi-label cluster discrimination significantly boosts the representation power
compared to the instance discrimination-based model (e.g., OpenCLIP and FLIP (Li et al.,
2023b)) and the cluster discrimination-based model (e.g., UNICOM (An et al., 2023)) on the
downstream tasks (e.g., linear probe, zero-shot classification, zero-shot retrieval).

2 RELATED WORK

Visual Representation Learning. Visual representation pre-training methods can be mainly di-
vided into three categories: (1) supervised learning by using manually annotated class labels (e.g.,
ImageNet-1K/-21K (Deng et al., 2009) and JFT-300M/-3B (Dosovitskiy et al., 2021; Zhai et al.,
2022a)), (2) weakly-supervised learning by employing hashtags (Mahajan et al., 2018; Singh et al.,
2022) or text descriptions (Radford et al., 2021; Jia et al., 2021; Li et al., 2023b), and (3) unsuper-
vised learning (Chen et al., 2020; He et al., 2020; Caron et al., 2018) by designing appropriate pretext
tasks (e.g., solving jigsaw puzzles (Noroozi & Favaro, 2016), invariant mapping (Chen & He, 2021),
and masked image inpainting (He et al., 2022)). Even though fully supervised pre-training can learn
a strong semantic signal from each training example, manual label annotation is time-consuming
and expensive thus supervised learning is less scalable. In this paper, we focus on annotation-free
pre-training which can be easily scaled to billions of web images to learn visual representation for
downstream tasks.

Instance and Cluster Discrimination. Instance discrimination (Chen et al., 2020; He et al., 2020;
Radford et al., 2021) is usually implemented by the contrastive loss to pull images from the same
instance as well as push away images from different instances. Among these instance discrimination
methods, language-supervised visual pre-training, e.g., CLIP (Radford et al., 2021), is a simple yet
powerful approach to take advantage of rich forms of labels at multiple levels of granularity for
a single image. Even though CLIP (Radford et al., 2021) has recently demonstrated impressive
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Figure 1: Overview of our multi-label cluster discrimination method. Fig. 1a treats each image-
text pair as a unique instance, failing to capture the data’s semantic structure. Fig. 1b improves
by grouping similar instances but struggles with multi-label signals in a single image. Fig. 1c,
our proposed method, addresses this challenge by assigning multiple class labels to each sample,
capturing different granularities of visual signals in one image.

success, instance-wise contrastive learning always treats different instances as negative pairs thus
it can hardly capture the full semantic information from the training data. To explore potential
semantic structures in the training data, cluster discrimination (Caron et al., 2018; Asano et al., 2020;
Zhan et al., 2020; Li et al., 2020; Caron et al., 2020; Qian et al., 2022) is proposed with two iterative
steps: (1) the clustering step to assign a single class label for each sample, and (2) the classification
step to learn a classifier to predict the assigned pseudo label. In cluster discrimination methods,
each cluster contains more than one instance, visually similar instances will be pulled closer and
thus cluster discrimination can better capture semantic structures from data. However, multiple
visual elements can exist in one single image and the single label used by cluster discrimination
may not cover all visual signals.

Multi-label Classification. Multi-label classification (Tsoumakas & Katakis, 2007; Zhang & Zhou,
2013) assigns a set of multiple labels for each instance. Compared with single-class classification,
where each instance is assigned with a single label, multi-label classification (Yang et al., 2016;
Zhao et al., 2021; Xia et al., 2023) is more challenging (Liu et al., 2017; 2021). Considering mul-
tiple labels are drawn from k categories, the multi-label classification can be decomposed into k
binary classification tasks. However, the binary cross-entropy loss involves issues regarding imbal-
ance (Ridnik et al., 2021). Through analyzing the intrinsic loss functions of the classification loss
and the metric loss (Wang et al., 2019), Sun et al. (Sun et al., 2020) formulate a unified multi-label
loss function to exploit relative comparison between positive and negative classes. Nevertheless, the
relative comparison (sj − si) allows ambiguity for convergence. In this paper, we only employ one
step of offline clustering to predict multiple labels for each image and then design an efficient and ro-
bust multi-label classifier to achieve good feature representation when training on the automatically
clustered large-scale data.

3 METHODOLOGY

Given a training set X = {x1, x2, ..., xn} including n images, visual representation learning aims
at learning a function f that maps images X to normalized embeddings E = {e1, e2, ..., en} with
ei = f(xi), such that embeddings can describe the semantic similarities between different images.

3.1 PRELIMINARIES

Instance Discrimination achieves semantic embedding by minimizing a contrastive loss function
represented as:
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LID = − log
exp(e′Ti ei)∑k
j=1 exp(e

′T
j ei)

, (1)

where exp(·) denotes the exponential function, and ei and e′i denote the normalized image and text
embeddings for the instance i in CLIP (Radford et al., 2021). Meanwhile, e′j contains one positive
text representation for i and (k−1) negative text representations sourced from different instances. As
illustrated in Fig. 1a, the instance discrimination based CLIP model jointly trains an image encoder
and a text encoder to predict the correct image-text pairings from a batch of training examples.

Cluster Discrimination is composed of two primary stages: the clustering process and the discrim-
ination process. During the clustering phase, every instance is assigned one pseudo-class label. This
label is later employed as a guiding factor for training a classifier in the subsequent discrimination
phase. For the normalized embedding feature ei = f(xi), the clustering process determines a cen-
troid matrix W ∈ Rd×k and assigns the cluster label yi for each image xi. This is achieved by

min
W∈Rd×k

1

n

n∑
i=1

min
yi∈{0,1}k

∥ei −Wyi∥22 s.t. y⊤i 1k = 1, (2)

where n is the number of training samples, ei is the normalized feature embedding obtained by using
the image encoder f , and the centroid wi belonging to centroid matrix W ∈ Rd×k is considered
the normalized prototype of i-th cluster. yi, falling within the set {0, 1}k, stands as a single label
assignment restricted by the condition y⊤i 1k = 1, where 1k is 1-vector with a length of k.

Then, the training data, denoted as {xi}ni=1, is divided into k classes represented by prototypes W =
{wi}ki=1. Utilizing the pseudo labels and centroids derived from the clustering phase, the process
of cluster discrimination can be executed by minimizing a conventional softmax classification loss,
formulated as:

LCD = − log
exp(wT

i ei)∑k
j=1 exp(w

T
j ei)

= − log
exp(si)∑k
j=1 exp(sj)

= log(1 +

k∑
j=1,j ̸=i

exp(sj − si)), (3)

where ei is the normalized embedding corresponding to the image xi, and xi is categorized under
the class symbolized by the normalized prototype wi. For a more straightforward representation, we
define the intra-class similarity wT

i ei, and the inter-class similarity, wT
j ei as si and sj , respectively.

Based on Eq. 3, in the discrimination phase that employs classification, sj and si are paired to
optimize the reduction of the difference (sj − si). As depicted in Fig. 1b, the cluster discrimination
based UNICOM model (An et al., 2023) trains an image encoder to predict the one-hot pseudo label
for each image from a batch of training examples.

3.2 MULTI-LABEL CLUSTER DISCRIMINATION

Clustering. Considering the time consumption of iterative clustering and discrimination (Caron
et al., 2018), An et al. (An et al., 2023) implemented a single step of offline clustering with the aid
of efficient feature quantization (Johnson et al., 2019). On the large-scale LAION-400M dataset, it
only takes around 10 minutes to cluster one million classes. Despite the straightforwardness of the
clustering step, the automatically clustered large-scale dataset inevitably confronts intra-class purity
and inter-class conflict problems due to the specific definition of class granularity.

In the realm of clustering algorithms, there often exists a trade-off between maintaining high within-
class purity and ensuring low inter-class conflict. In the context of contrastive learning, the issue
of inter-class conflict can be significantly alleviated by reducing the number of sampled negative
instances within the mini-batch and adopting a suitable semi-hard mining technique. In this paper,
we follow UNICOM (An et al., 2023) to prioritize intra-class purity (i.e., clustering one million
level classes from 400 million images) and employ PatialFC (An et al., 2022) to alleviate inter-class
conflict (i.e., randomly sampling part of the negative class centers during each iteration).

Multi-label Classification. As illustrated in Fig. 2, a single image can encompass several visual
components. This implies that even if one class only contains one image, the single class label may
not cover all visual cues present in the image. To consider the different granularities of visual in-
formation, for each sample, we perform a similarity-based sorting against one million class centers,
selecting the top l class centers as the positive class centers for that sample. During training, this
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Figure 2: Illustration of the multiple visual elements in images from the automatically clustered
LAION-400M dataset.

sample will be directed to move closer to these l positive class centers, while simultaneously dis-
tancing from the other k− l negative class centers. As shown in Fig. 1c, our method assigns multiple
class labels to each training example, capturing different granularities of visual signals in one image.

The corresponding similarity scores are represented as {si} (i = 1, 2, · · · , l) and {sj} (j =
1, 2, · · · , k − l), respectively. To minimize each sj as well as to maximize si, (∀i ∈
{1, 2, · · · , l}, ∀j ∈ {1, 2, · · · , k − l}), we employ a multi-label classification strategy (Li et al.,
2017; Sun et al., 2020). This is achieved by

LMLC = log(1 +

k−l∑
j=1

l∑
i=1

exp(sj − si))︸ ︷︷ ︸
contrastive

) = log(1 +
∑
j∈Ωn

exp(sj)
∑
i∈Ωp

exp(−si)︸ ︷︷ ︸
contrastive

), (4)

where Ωn and Ωp denote the negative and positive class set in order to simplify the representation.
Here, Eq. 4 iterates through every similarity pair to reduce (sj − si). Optimizing (sj − si) usually
leads to a decision boundary of sj − si = m (m is the margin). However, this decision boundary
allows ambiguity as indicated in Circle loss (Sun et al., 2020). For example, {sj , si} = {0.1, 0.4}
and {s′j , s′i} = {0.5, 0.8} both achieve the margin m = 0.3. However, the gap between si and s′j is
only 0.1, compromising the separability of the feature space. As we expect to maximize the within-
class similarity si and to minimize the between-class similarity sj , we further introduce these two
items into the multi-label classification loss:

LMLCD = log(1 +
∑
j∈Ωn

exp(sj)
∑
i∈Ωp

exp(−si)︸ ︷︷ ︸
contrastive

+
∑
j∈Ωn

exp(sj)︸ ︷︷ ︸
negative

+
∑
i∈Ωp

exp(−si)︸ ︷︷ ︸
positive

)

= log(1 +
∑
i∈Ωp

exp(−si)) + log(1 +
∑
j∈Ωn

exp(sj)), (5)

where Ωp symbolizes the collection of positive class labels for each sample, si encapsulates the
score associated with each positive class, Ωn denotes the collection of negative class labels for each
sample, and sj corresponds to the score for each negative class. In Eq. 5, loss from positive class
labels log(1 +

∑
i∈Ωp

exp(−si)) and loss from negative class labels log(1 +
∑

j∈Ωn
exp(sj)) are

elegantly separated. To alleviate inter-class conflict as in (An et al., 2022; 2023), we also employ
negative class sampling into Eq. 5,

L′
MLCD = log(1 +

∑
i∈Ωp

exp(−si)) + log(1 +
∑
j∈Ω′

n

exp(sj)), (6)

where |Ω′
n| = |Ωn| ∗ r, and r ∈ [0, 1] is the negative class sampling ratio. Ω′

n is a subset of Ωn that
is randomly sampled during each loss calculation step.
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CLIP† WIT-400M 95.2 98.0 87.5 77.0 81.8 90.9 69.4 89.6 82.1 95.1 96.5 99.2 99.2 72.2 99.8 98.2 94.1 92.5 64.7 42.9 85.8 91.5 72.0 57.8 76.2 80.8 84.2
CLIP‡ WIT-400M 95.3 98.1 87.2 77.8 81.5 90.7 68.0 89.7 80.9 94.9 96.0 99.2 99.2 72.3 99.8 96.7 94.5 92.9 65.9 41.9 85.3 91.0 70.6 59.6 61.8 79.8 83.5
OPNCLIP‡ LAION-400M 93.3 97.9 87.9 78.0 81.0 93.6 64.4 91.7 83.0 93.3 95.5 98.8 99.2 66.5 99.2 97.1 92.4 92.5 77.5 32.5 84.3 88.1 64.0 59.8 57.6 71.9 82.3
UNICOM LAION-400M 93.4 98.5 90.8 82.4 80.0 94.6 74.5 91.4 82.2 94.2 95.7 99.3 99.2 68.7 98.5 96.7 92.6 92.7 77.8 33.4 85.4 87.4 66.7 60.3 57.4 72.4 83.3
Ours LAION-400M 94.3 98.9 92.0 83.4 82.1 94.8 79.6 92.5 84.6 95.3 97.2 99.3 99.3 72.4 99.3 99.1 94.7 92.5 78.2 34.5 86.0 90.0 68.5 60.1 57.9 73.4 84.6

Table 1: Linear probe performance of various pre-trained models on 26 datasets. †: Results reported
in CLIP paper. ‡: Results we reproduced. Entries in green are the best results using LAION-400M.
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CLIP† WIT-400M 92.9 96.2 77.9 48.3 67.7 77.3 36.1 84.1 55.3 93.5 92.6 78.7 87.2 99.3 59.9 71.6 50.3 23.1 32.7 58.8 76.2 60.3 24.3 63.3 64.0 66.9
CLIP‡ WIT-400M 91.0 95.2 75.6 51.2 66.6 75.0 32.3 83.3 55.0 93.6 92.4 77.7 76.0 99.3 62.0 71.6 51.6 26.9 30.9 51.6 76.1 59.5 22.2 55.3 67.3 65.6
OpenCLIP‡ LAION-400M 87.4 94.1 77.1 61.3 70.7 86.2 21.8 83.5 54.9 90.8 94.0 72.1 71.5 98.2 53.3 67.7 47.3 29.3 21.6 51.1 71.3 50.5 22.0 55.3 57.1 63.6
FLIP‡ LAION-400M 89.3 97.2 84.1 63.0 73.1 90.7 29.1 83.1 60.4 92.6 93.8 75.0 80.3 98.5 53.5 70.8 41.4 34.8 23.1 50.3 74.1 55.8 22.7 54.0 58.5 66.0
Ours LAION-400M 90.3 95.3 83.7 62.9 72.1 90.1 39.4 84.5 62.3 93.7 93.9 79.4 78.5 99.1 59.7 69.9 50.7 28.7 27.9 53.7 75.7 57.7 22.2 58.4 57.9 67.5

Table 2: Zero-shot classification performance on 25 datasets. †: Results reported in CLIP paper. ‡:
Results reported in FLIP paper. Entries in green are the best results using LAION-400M.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Our models are pre-trained on the LAION-400M dataset (Schuhmann et al., 2021) with the same
model configurations as CLIP. The training process consists of 32 epochs, utilizing a batch size of
32K on 80 NVIDIA A100 GPUs. To expedite the training, we employ mixed-precision computa-
tion (Micikevicius et al., 2017) and flash attention (Dao et al., 2022), while leveraging the DALI
library for efficient data loading and preprocessing. We use the AdamW optimizer with a learning
rate of 0.001 and weight decay of 0.2. To assess the performance of zero-shot classification and
zero-shot image-text retrieval tasks, we employ contrastive learning to train a text encoder from
scratch for 32 epochs with a frozen image encoder following Locked-image Tuning (LiT) (Zhai
et al., 2022b). The structure of the text encoder is also identical to CLIP. In the following exper-
iments, unless otherwise specified, the model used is ViT-L/14, the number of classes (k) is one
million, the ratio of sampled negative class centers (r) is 0.1, and the number of positive labels (l)
assigned to each image is 8.

4.2 LINEAR PROBE

Following the same evaluation setting as CLIP, we report the linear probe performance of our method
on 26 datasets. As depicted in Tab. 1, inherent biases exist in different pre-training data. The
WIT dataset is beneficial for action-related datasets (e.g., Kinetics700, UCF101), while LAION
exhibits superior proficiency in object datasets (e.g., Cars, Birdsnap). Nevertheless, our method still
achieves an average improvement of 1.1% compared to CLIP. To isolate the confounding effects
of pre-training data, we compare our model with OPENCLIP and UNICOM by using the LAION-
400M dataset as the training data. As shown in Fig. 3a, our method outperforms OPENCLIP on 25
datasets, demonstrating an average improvement of 2.3%. In Fig. 3b, our model surpasses UNICOM
on 23 datasets and achieves an average improvement of 1.3%, confirming the effectiveness of the
proposed multi-label loss.

4.3 ZERO-SHOT CLASSIFICATION

In Tab. 2, we present a comparison of our method with state-of-the-art approaches in zero-shot
classification on 25 datasets. The prompt templates and class names are consistent with previous
works (Li et al., 2023b). As depicted in Fig. 3c, our method surpasses OpenCLIP on 23 datasets with
3.9% average performance improvement. Although FLIP uses masking to save memory footprint to
learn more samples per iteration, our method demonstrates better results on 15 out of 25 datasets in
Fig. 3d, and achieves a significant performance boost of 1.5% on average.
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(a) Our model vs. OpenCLIP on linear probe (b) Our model vs. UNICOM on linear probe

(c) Our model vs. OpenCLIP on zero-shot CLS (d) Our model vs. FLIP on zero-shot CLS

Figure 3: Linear probe and zero-shot comparisons on different downstream datasets.Y-axis shows
the performance difference. Green bars indicate our model outperforms the baselines, while the
orange bars depict our model is surpassed by the baselines.

4.4 ZERO-SHOT RETRIEVAL

Tab. 3 reports zero-shot image-text retrieval results on Flickr30k and MSCOCO. In comparison to
OpenCLIP, our model achieves 60.8%/44.5% I2T/T2I retrieval Recall@1 on the MSCOCO dataset,
which is 2.8%/3.2% higher than OpenCLIP. Similarly, our model demonstrates significant improve-
ments of 1.8%/3.9% on the Flickr30k dataset. Furthermore, compared to FLIP, our model exhibits
either competitive or superior retrieval performance.

Text retrieval Image retrieval
Flickr30k MSCOCO Flickr30k MSCOCO

CASE DATA R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP‡ WIT-400M 87.8 99.1 99.8 56.2 79.8 86.4 69.3 90.2 94.0 35.8 60.7 70.7
OpenCLIP‡ LAION-400M 87.3 97.9 99.1 58.0 80.6 88.1 72.0 90.8 95.0 41.3 66.6 76.1
FLIP‡ LAION-400M 89.1 98.5 99.6 60.2 82.6 89.9 75.4 92.5 95.9 44.2 69.2 78.4
Ours LAION-400M 89.1 98.4 99.5 60.8 83.2 91.3 75.9 93.1 96.8 44.5 69.6 79.9

Table 3: Zero-shot image-text retrieval on the test splits of Flickr30k and MSCOCO. ‡: Results
reported in FLIP paper. Entries in green are the best results using LAION-400M.

4.5 ZERO-SHOT ROBUSTNESS EVALUATION

Following FLIP (Li et al., 2023b), we conduct a robustness evaluation as shown in Tab. 4. In compar-
ison to the models pre-trained on LAION, our method demonstrates superior robustness compared to
both OpenCLIP and FLIP. It is worth noting that the performance gap between our model pre-trained
on LAION and CLIP pre-trained on WIT arises from the statistical differences in pre-training data.
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CASE DATA IN-V2 IN-A IN-R ObjectNet IN-Sketch

CLIP‡ WIT-400M 69.5 71.9 86.8 68.6 58.5
OpenCLIP‡ LAION-400M 64.0 48.3 84.3 58.8 56.9
FLIP‡ LAION-400M 66.8 51.2 86.5 59.1 59.9

Ours LAION-400M 68.9 56.4 85.1 62.7 60.4

Table 4: Zero-shot robustness evaluation. ‡: Results reported in FLIP paper. Entries in green are the
best results using LAION-400M. Here, all methods employ the model backbone of ViT-L/14.

4.6 IMAGENET CLASSIFICATION

We evaluate performance on ImageNet (Deng et al., 2009) under three distinct settings: finetun-
ing, linear classification, and zero-shot. As shown in Tab. 5, our ViT-L/14 model achieves better
performance on all settings, indicating that multi-label cluster discrimination can better encode the
semantics of data than instance discrimination and cluster discrimination.

CASE DATA Finetune Linear Probe Zero Shot

CLIP WIT-400M - 83.9 75.3
OpenCLIP‡ LAION-400M 86.2 82.1 72.8
FLIP ‡ LAION-400M - - 74.6
UNICOM LAION-400M - 81.8 -

Ours LAION-400M 87.1 84.6 75.6

Table 5: ImageNet results under finetuning, linear probe, and zero-shot settings. ‡: Results reported
in FLIP paper. Here, all methods employ the model backbone of ViT-L/14.

4.7 ABLATION STUDY

In Tab. 6, we first conduct ablation experiments to investigate the impact of hyper-parameters. In
Tab. 7, we verify the effectiveness of the proposed contrastive loss decomposition and the efficacy
of our multi-label learning on ImageNet.

Number of Classes. The number of classes (k) plays a crucial role in balancing inter-class conflict
and intra-class purity. In Tab. 6a, we observe that as the number of classes increases from 10K
to 1M, there is a gradual increase in intra-class purity, leading to an improved performance on
ImageNet. However, as the number of classes continues to increase from 1M to 5M, inter-class
conflicts gradually escalate, resulting in a deteriorated performance.

Sample Ratio. The sample ratio (r) influences the number of negative samples and directly affects
the likelihood of encountering inter-class conflicts. A sample ratio of 0.01 yields a linear probe
performance of only 73.4% due to the limited number of negative samples, which adversely affects
the representation learning. Conversely, a sample ratio of 1.0 substantially increases the probability
of encountering inter-class conflicts. Tab. 6b presents that the superior linear probe performance of
75.2% is achieved when employing a sample ratio of 0.1.

# classes 10K 20K 50K 1M 2M 5M

IN1K 66.9 71.1 74.4 75.2 74.9 74.7

(a) The number of classes in training set.

sample ratio 0.01 0.05 0.1 0.2 0.5 1.0

IN1K 73.4 75.1 75.2 74.9 68.3 63.2

(b) The ratio of sampled negative class centers.
positive centers 1 2 4 8 16 32

IN1K 71.4 72.9 73.2 75.2 72.1 68.7

(c) The effect of multi labels per sample.

positive threshold 0.95 0.93 0.91 0.89 0.87 0.85

IN1K 72.2 72.7 73.3 72.4 68.7 63.2

(d) The effect of varying positive thresholds.

Table 6: Ablation experiments. The model backbone used here is ViT-B/32. Pre-training is exe-
cuted on the LAION-400M dataset for a duration of 5 epochs. Performance assessment is undertaken
using a linear probe on the ImageNet validation set.
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CASE DATA Finetune Linear Probe Zero Shot

MLC LAION-400M 80.9 76.9 63.9
MLCD LAION-400M 81.2 78.1 64.5

(a) Efficacy of contrastive loss decomposition.

CASE DATA 0.5K 1K 2K 4K 8K 20K

UNICOM IN1K 42.1 58.4 61.5 62.8 62.4 61.5
MLCD IN1K 63.2 67.2 68.2 69.9 69.7 69.0

(b) Efficacy of multi-label learning on ImageNet.

Table 7: Ablation experiments of (a) the proposed contrastive loss decomposition and (b) the
multi-label learning on ImageNet. For (a), pre-training is executed on the LAION-400M dataset
by 32 epochs. The model backbone used here is ViT-B/32. Results are reported on the ImageNet
validation dataset. For (b), pre-training is executed on the ImageNet training dataset by 100 epochs.
The model backbone used here is ResNet-50. The evaluation is undertaken using a linear probe on
the ImageNet validation set.

Multi-label Assignment. We explore two different approaches to obtain multi-labels. Firstly, we
artificially assign a predetermined number of labels to each sample. Tab. 6c presents linear probe
results on ImageNet with different numbers of positive centers. Consequently, we observe a gradual
improvement in performance as the number of positive centers increases from 1 to 8. However, as
the number of positive centers continues to increase, the inclusion of excessive positive centers intro-
duces noise labels, leading to a degradation in performance. Additionally, we have also investigated
the use of sample-cluster similarity thresholds to obtain multiple labels. This approach results in
varying numbers of positive centers associated with each sample. However, as shown in Tab. 6d, the
performance of applying adaptive positive centers is generally lower compared to that of using fixed
assignment of positive centers (Tab. 6c). This indicates that the global similarity threshold is hard to
search while the fixed assignment strategy benefits from the prior that the daily image statistically
contains several visual concepts.

Effectiveness of Contrastive Loss Decomposition. In Tab. 7a, we compare the performance of the
vanilla MLC (Eq. 4) and the proposed MLCD (Eq. 5) on the ImageNet. Both MLC and MLCD
employ the negative class center sampling with a ratio of 0.1. MLCD outperforms MLC in all
three settings: fine-tuning, linear classification, and zero-shot, confirming the effectiveness of the
two additional optimization targets. In Appendix. A.1, we compare their gradient calculation and
time cost on the classification layer. The proposed contrastive loss decomposition can significantly
decrease the communication cost, facilitating distributed training on large-scale training data.

Effectiveness of Multi-label Learning on ImageNet. In Tab. 7b, we compare the proposed multi-
label cluster discrimination and the single-label cluster discrimination on ImageNet with the clus-
tered class number ranging from 0.5K to 20K. The clustering step is conducted by using the features
predicted by the CLIP model. In the discrimination step, both MLCD and UNICOM employ the
negative class center sampling with a ratio of 0.1, and the positive number for MLCD is set as 8.
As we can see, the proposed multi-label learning significantly surpasses UNICOM and achieves
the best performance of 69.9% when the class number is 4K, which is four times of the true class
number of ImageNet. In Fig. 5 of the Appendix, we visualize the top three labels for our training
samples. When training with multiple labels, our method can learn complementary visual signals
(e.g., different breeds of dogs, different locations of figs) to improve visual representation learning.

5 DISCUSSION AND CONCLUSION

In this paper, we propose a novel multi-label cluster discrimination method to cope with multiple
visual signals existing in one image. Compared to the vanilla version of the multi-label loss (i.e.,
seeking to narrow the gap between the inter-class similarities and intra-class similarities), our meth-
ods enable elegant separation of losses from positive and negative classes. Extensive experimental
results show that the proposed multi-label loss is effective for providing better transferrable features
on multiple downstream tasks than both instance and cluster discrimination methods.

Limitations. We use the publicly available large-scale training data (i.e., the LAION-400M dataset)
for training, and the resulting model weights reflect the intrinsic data biases, including potentially
negative implications. For example, our model is less competitive in activity classification compared
to the CLIP model trained on the private WIT-400M dataset.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998.

Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi. Prototypical contrastive learning of unsuper-
vised representations. In ICLR, 2020.

Miaoge Li, Dongsheng Wang, Xinyang Liu, Zequn Zeng, Ruiying Lu, Bo Chen, and Mingyuan
Zhou. Patchct: Aligning patch set and label set with conditional transport for multi-label image
classification. In ICCV, 2023a.

Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling
language-image pre-training via masking. In CVPR, 2023b.

Yuncheng Li, Yale Song, and Jiebo Luo. Improving pairwise ranking for multi-label image classifi-
cation. In CVPR, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Weiwei Liu, Ivor W Tsang, and Klaus-Robert Müller. An easy-to-hard learning paradigm for mul-
tiple classes and multiple labels. JMLR, 2017.

Weiwei Liu, Haobo Wang, Xiaobo Shen, and Ivor W Tsang. The emerging trends of multi-label
learning. TPAMI, 2021.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised
pretraining. In ECCV, 2018.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv:1306.5151, 2013.

11



Under review as a conference paper at ICLR 2024

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv:1710.03740, 2017.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Sixth Indian Conference on Computer Vision, Graphics & Image Processing, 2008.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In ECCV, 2016.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In ICCV,
2012.

Khoi Pham, Kushal Kafle, Zhe Lin, Zhihong Ding, Scott Cohen, Quan Tran, and Abhinav Shrivas-
tava. Learning to predict visual attributes in the wild. In CVPR, 2021.

Qi Qian, Yuanhong Xu, Juhua Hu, Hao Li, and Rong Jin. Unsupervised visual representation learn-
ing by online constrained k-means. In CVPR, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Tal Ridnik, Emanuel Ben-Baruch, Nadav Zamir, Asaf Noy, Itamar Friedman, Matan Protter, and
Lihi Zelnik-Manor. Asymmetric loss for multi-label classification. In ICCV, 2021.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv:2111.02114, 2021.

Mannat Singh, Laura Gustafson, Aaron Adcock, Vinicius de Freitas Reis, Bugra Gedik, Raj Prateek
Kosaraju, Dhruv Mahajan, Ross Girshick, Piotr Dollár, and Laurens van der Maaten. Revisiting
weakly supervised pre-training of visual perception models. In CVPR, 2022.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv:1212.0402, 2012.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer: Bench-
marking machine learning algorithms for traffic sign recognition. Neural networks, 2012.

Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao Wang, and Yichen
Wei. Circle loss: A unified perspective of pair similarity optimization. In CVPR, 2020.

Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview. International
Journal of Data Warehousing and Mining, 2007.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equiv-
ariant cnns for digital pathology. In MICCAI, 2018.

Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-similarity loss
with general pair weighting for deep metric learning. In CVPR, 2019.

Xiaobo Xia, Jiankang Deng, Wei Bao, Yuxuan Du, Bo Han, Shiguang Shan, and Tongliang Liu.
Holistic label correction for noisy multi-label classification. In ICCV, 2023.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In ICCV, 2010.

Hao Yang, Joey Tianyi Zhou, Yu Zhang, Bin-Bin Gao, Jianxin Wu, and Jianfei Cai. Exploit bounding
box annotations for multi-label object recognition. In CVPR, 2016.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. In ACL, 2014.

12



Under review as a conference paper at ICLR 2024

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In CVPR, 2022a.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. In CVPR, 2022b.

Xiaohang Zhan, Jiahao Xie, Ziwei Liu, Yew-Soon Ong, and Chen Change Loy. Online deep clus-
tering for unsupervised representation learning. In CVPR, 2020.

Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms. TKDE, 2013.

Jiawei Zhao, Ke Yan, Yifan Zhao, Xiaowei Guo, Feiyue Huang, and Jia Li. Transformer-based dual
relation graph for multi-label image recognition. In ICCV, 2021.

Ke Zhu, Minghao Fu, and Jianxin Wu. Multi-label self-supervised learning with scene images. In
ICCV, 2023.

13



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 GRADIENT CALCULATION OF MLC AND MLCD

For the baseline multi-label classification method (Eq. 4), the gradients with respect to si and sj are
derived as follows:

dLMLC

dsi
=

− exp(−si) ·
∑

j∈Ωn
exp(sj)

1 +
∑

j∈Ωn
exp(sj) ·

∑
i∈Ωp

exp(−si)

=
− exp(−si) · allreduce(1⊤ exp(sj))

1 + allreduce(1⊤ exp(sj) · allreduce(1⊤ exp(−si)))
, (7)

and
dLMLC

dsj
=

exp(sj) ·
∑

j∈Ωn
exp(−si)

1 +
∑

j∈Ωn
exp(sj) ·

∑
i∈Ωp

exp(−si)

=
exp(sj) · allreduce(1⊤ exp(−si))

1 + allreduce(1⊤ exp(sj) · allreduce(1⊤ exp(−si)))
, (8)

where allreduce(·) denotes a parallel reduction operation that collects the sum of the exponentials
from all processes and then redistributes the calculated result back to each process. For the proposed
multi-label cluster discrimination method (Eq. 5), the gradients of the positive similarity score si and
the negative similarity score sj are derived as follows:

dLMLCD

dsi
=

− exp(−si)

1 +
∑

i∈Ωp
exp(−si)

=
− exp(−si)

1 + allreduce (1⊤ exp(−si))
, (9)

dLMLCD

dsj
=

exp(sj)

1 +
∑

j∈Ωn
exp(sj)

=
exp(sj)

1 + allreduce (1⊤ exp(sj))
. (10)

The above formulas illustrate the derivatives of the loss function LMLC and LMLCD with respect to
the similarity scores. As we can see, the proposed method enables an elegant separation of positive
and negative gradient calculation, which can decrease the communication frequency of calling the
allreduce(·) operation. To compare the time cost on the classification layer, we train UNICOM (An
et al., 2023), LMLC, and LMLCD on the LAION-400M dataset with one million classes. We use ViT-
B/32 as the backbone, and the final embedding dimension is 512. The batch size is set as 32, 800 and
the A100 GPU number is 80 in total distributed across 10 computation nodes. The time cost of the
forward and backward steps regarding the backbone is 409ms. For LMLC and LMLCD, the positive
class number is set as 8. For the single-label classification method, UNICOM, the time cost on the
classification layer is 75ms. For LMLC and LMLCD, the time cost on the classification layer is 138ms
and 82ms. The proposed multi-label cluster discrimination method slightly increases the time cost
by 9.3% on the classification layer compared to the single-label cluster discrimination method (An
et al., 2023). Compared to the widely used multi-label classification method, the proposed method
obviously decreases the time cost by 45.6% on the classification layer. Therefore, the proposed
decomposition of contrastive loss ensures efficient parallel computation across multiple GPUs from
different computation nodes with minimal communication overhead.

A.2 PRE-TRAINING DETAILS

Encoders. Tab. 8 shows the architectures we use. The designs follow CLIP Radford et al. (2021).
Our image encoders involve ViT-B and ViT-L, using the same patch size as in CLIP.

Learning Embedding Input Vision Transformer Text Transformer
Model rate dimension resolution layers width heads layers width heads

ViT-B/32 5× 10−4 512 224 12 768 12 12 512 8
ViT-B/16 5× 10−4 512 224 12 768 12 12 512 8
ViT-L/14 4× 10−4 768 224 24 1024 16 12 768 12

Table 8: ViT hyper-parameters.
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Hyper-parameters. Our default pre-training configuration is shown in Tab. 9. During the training
process of the text encoder, the hyperparameters are the same as those of the pre-training for the
image encoder. The vision model is frozen, preventing any backpropagation of gradients. When
calculating the multi-label contrastive loss, we follow the approaches of ArcFace (Deng et al., 2019)
and Unicom (An et al., 2023), we apply L2 normalization to both the features and the class centers,
and introduce a margin (m = 0.3) for the positive classes.

Hyperparameter Value

Batch size 32800
Vocabulary size 49408
Training epochs 32
Maximum temperature 100.0
Weight decay 0.2
Warm-up iterations 2000

Table 9: Training hyperparameters.

Scalability. In Fig. 4a and Fig. 4b, we validate the scalability of our method. Scaling up the ViT
model and incorporating more data both significantly enhance our model’s performance.
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Figure 4: (a) the convergence curves of different ViTs. (b) the scalability curves of different ViTs
under varying dataset scales. Larger ViTs and datasets lead to better model performance.

A.3 LINEAR PROBE EVALUATION

In our linear probing analysis, we adhered to the same configuration as employed by CLIP. We
utilized the L-BFGS optimization algorithm as implemented in PyTorch, executing it on a GPU with
an upper limit of 1000 iterations. We adopted CLIP’s parametric binary search protocol to optimize
the hyperparameter λ, with the optimization process conducted on the validation set. In cases where
a dataset lacks a predefined validation set, we manually partition the dataset. This streamlined
methodology allowed us to efficiently run tests across all 26 datasets within a few hours. For the
final results, the validation set is merged back into the training set for an additional round of training.

A.4 ZERO-SHOT EVALUATION

For the experiments in Tab. 2, we use the prompts same as FLIP. Following CLIP (Radford et al.,
2021), we report the mean accuracy per class for FGVC Aircraft, Oxford-IIIT Pets, Caltech-101,
and Oxford Flowers 102 datasets. We report the mean of top-1 and top-5 accuracy for Kinetics-700,
ROC AUC for Hateful Memes, and 11-point mAP for Pascal VOC 2007 Classification. We report
top-1 accuracy for the rest of the datasets.
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Dataset Classes Train size Test size Evaluation metric

Food101 102 75,750 25,250 accuracy
CIFAR10 10 50,000 10,000 accuracy
CIFAR100 100 50,000 10,000 accuracy
Birdsnap 500 42,138 2,149 accuracy
SUN397 397 19,850 19,850 accuracy
Cars 196 8,144 8,041 accuracy
Aircraft 100 6,667 3,333 mean per class
VOC2007 20 5011 4952 11-point mAP
DTD 47 3,760 1,880 accuracy
Pets 37 3,680 3,669 mean per class
Caltech101 101 3,000 5,677 mean-per-class
Flowers 102 2,040 6,149 mean per class
MNIST 10 60,000 10,000 accuracy
STL10 10 5,000 8,000 accuracy
EuroSAT 10 10,000 5,000 accuracy
RESISC45 45 3,150 25,200 accuracy
GTSRB 43 26,640 12,630 accuracy
KITTI 4 6770 711 accuracy
Country211 211 42,200 21,100 accuracy
PCAM 2 294,912 32,768 accuracy
UCF101 101 9,537 1,794 accuracy
Kinetics700 700 530,779 33,944 mean(top1,top5)
CLEVR 8 2,000 500 accuracy
Memes 2 8,500 500 ROC AUC
SST2 2 7,792 1,821 accuracy
ImageNet 1000 1,281,167 50,000 accuracy

Table 10: List of linear probe datasets with the data distribution and evaluation metrics.

A.5 ZERO-SHOT RETRIEVAL

We assess the effectiveness of zero-shot retrieval using two established benchmarks:
Flickr30K (Young et al., 2014) and COCO (Lin et al., 2014), each containing 1K and 5K image-
text pairs in their test sets, respectively. In adhering to the procedures outlined in CLIP and FLIP,
we derive the image and text embeddings from the relevant encoders, and then execute retrieval by
calculating cosine similarities across potential image-text pairs, without prompt being utilized.

A.6 ZERO-SHOT ROBUSTNESS EVALUATION

In our zero-shot robustness assessment on ImageNet related sets, we employ the 7 prompts provided
by CLIP, with dataset preparation and division adhering to the methods used in OPENCLIP. For
ObjectNet, we emulate the approach of CLIP by utilizing class names without any prompt.

A.7 DOWNSTREAM DATASETS

We use 26 image classification datasets to prove the effectiveness of our method. These datasets
include Food101 Bossard et al. (2014), CIFAR10 Krizhevsky et al. (2009), CIFAR100 Krizhevsky
et al. (2009), Birdsnap Berg et al. (2014), SUN397 Xiao et al. (2010), Stanford Cars Krause et al.
(2013), FGVC Aircraft Maji et al. (2013), VOC2007 Everingham (2007), DTD Cimpoi et al. (2014),
Pets Parkhi et al. (2012), Caltech101 Fei-Fei et al. (2004), Flowers102 Nilsback & Zisserman
(2008), MNIST LeCun et al. (1998), SLT10 Coates et al. (2011), EuroSAT Helber et al. (2019),
RESISC45 Cheng et al. (2017), GTSRB Stallkamp et al. (2012), KITTI Geiger et al. (2012), Coun-
try211 Radford et al. (2021), PCAM Veeling et al. (2018), UCF101 Soomro et al. (2012), Kinet-
ics700 Carreira et al. (2019), CLEVR Johnson et al. (2017), Hateful Memes Kiela et al. (2020),
SST2 Radford et al. (2021), ImageNet Deng et al. (2009).Details on each dataset and the corre-
sponding evaluation metrics are provided in Tab. 10.
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Figure 5: Visualization of top 3 labels given to the training samples from the automatically clustered
ImageNet dataset. Multiple positive labels show complementary visual signals.

Figure 6: Some interesting labels given to the training samples from the automatically clustered
ImageNet dataset. Multiple positive labels sometimes show abstract correlations, e.g., the concept of
“colorful” between “paintbrush” and “oil painting” in the 1st row, the concept of “shining” between
“shield” and “armour” in the 2nd row, the concept of “with a handle” between “ladle” and “frying
pan” in the 3rd row.
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A.8 MULTI-LABEL LEARNING ON IMAGENET

In Fig. 5, we visualize the top 3 labels given to some selected training samples. We cluster the
original ImageNet training dataset into 4K classes by using the pre-trained CLIP model. As depicted
in Fig. 5, these multiple positive labels exhibit complementary visual signals (e.g., different activities
on the snow, different breeds of dogs, different locations of figs, and different objects in the room).
For each of the automatically clustered 4K classes, we match the dominant class to the original 1K
classes. In the single-label cluster discrimination method, only one label is used for training, and the
recall of the correct label is 76.2%. By contrast, in the proposed multi-label cluster discrimination,
the top 8 labels are used for training, and the recall of the correct label is 93.5%. Even though using
multiple labels introduces some incorrect labels, the proposed multi-label cluster discrimination
method can learn complementary visual signals to improve visual representation learning.

In Fig. 6, we also visualize some interesting labels given to the automatically clustered samples.
As we can see, multiple positive labels sometimes show abstract correlations. For example, there
is the concept of “colorful” between “paintbrush” and “oil painting” in the 1st row, the concept
of “shining” between “shield” and “armour” in the 2nd row, and the concept of “with a handle”
between “ladle” and “frying pan” in the 3rd row.

A.9 BROADER IMPACTS

Training the large-scale vision model requires high energy consumption thus resulting in large
amounts of carbon emissions. Even though our multi-label cluster discrimination method only em-
ploys one-step offline clustering, the remaining cost in the multi-label classification step is still
sizable.
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