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Abstract

We introduce DynaMITE-RL, a meta-reinforcement learning (meta-RL) approach
to approximate inference in environments where the latent state evolves at varying
rates. We model episode sessions—parts of the episode where the latent state
is fixed—and propose three key modifications to existing meta-RL methods: (i)
consistency of latent information within sessions, (ii) session masking, and (iii)
prior latent conditioning. We demonstrate the importance of these modifications
in various domains, ranging from discrete Gridworld environments to continuous-
control and simulated robot assistive tasks, illustrating the efficacy of DynaMITE-
RL over state-of-the-art baselines in both online and offline RL settings.

1 Introduction

Markov decision processes (MDPs) [4] provide a general framework in reinforcement learning (RL),
and can be used to model sequential decision problems in a variety of domains, e.g., recommender
systems (RSs), robot and autonomous vehicle control, and healthcare [22, 21, 7, 46, 31, 5]. MDPs
assume a static environment with fixed transition probabilities and rewards [3]. In many real-world
systems, however, the dynamics of the environment are intrinsically tied to latent factors subject to
temporal variation. While nonstationary MDPs are special instances of partially observable MDPs
(POMDPs) [24], in many applications these latent variables change infrequently, i.e. the latent
variable remains fixed for some duration before changing. One class of problems exhibiting this latent
transition structure is recommender systems, where a user’s preferences are a latent variable which
gradually evolves over time [23, 26]. For instance, a user may initially have a strong affinity for a
particular genre (e.g., action movies), but their viewing habits could change over time, influenced by
external factors such as trending movies, mood, etc. A robust system should adapt to these evolving
tastes to provide suitable recommendations. Another example is in manufacturing settings, where
industrial robots may experience unobserved gradual deterioration of their mechanical components
affecting the overall functionality of the system. Accurately modelling such latent transitions caused
by hardware degradation can help manufacturers optimize performance, cost, and equipment lifespan.

Our goal in this work is to leverage such a temporal structure to obviate the need to solve a fully general
POMDP. To this end, we propose Dynamic Model for Improved Temporal Meta Reinforcement
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Figure 1: (Left) The graphical model for a DLCMDP. The transition dynamics of the environment
follows T (st+1,mt+1 | st, at,mt). At every timestep t, an i.i.d. Bernoulli random variable, dt,
denotes the change in the latent context, mt. Blue shaded variables are observed and white shaded
variables are latent. (Right) A DLCMDP rollout. Each session i is governed by a latent variable mi

which is changing between sessions according to a fixed transition function, Tm(m′ | m). We denote
li as the length of session i. The state-action pair (sit, a

i
t) at timestep t in session i is summarized into

a single observed variable, xit. We emphasize that session terminations are not explicitly observed.

Learning (DynaMITE-RL), a method designed to exploit the temporal structure of sessions, i.e.,
sub-trajectories within the history of observations in which the latent state is fixed. We formulate our
problem as a dynamic latent contextual MDP (DLCMDP), and identify three crucial elements needed
to enable tractable and efficient policy learning in environments with the latent dynamics captured by
a DLCMDP. First, we consider consistency of latent information, by exploiting time steps for which
we have high confidence that the latent variable is constant. To do so, we introduce a consistency loss
to regularize the posterior update model, providing better posterior estimates of the latent variable.
Second, we enforce the posterior update model to learn the dynamics of the latent variable. This
allows the trained policy to better infer, and adapt to, temporal shifts in latent context in unknown
environments. Finally, we show that the variational objective in meta-RL algorithms, which attempts
to reconstruct the entire trajectory, can hurt performance when the latent context is nonstationary. We
modify this objective to reconstruct only the transitions that share the same latent context.

Closest to our work is VariBAD [47], a meta-RL [1] approach for learning a Bayes-optimal policy,
enabling an agent to quickly adapt to a new environment with unknown dynamics and reward
functions. VariBAD uses variational inference to learn a posterior update model that approximates
the belief over the distribution of transition and reward functions. It augments the state space with
this belief to represent the agent’s uncertainty during decision-making. Nevertheless, VariBAD and
the Bayes-Adaptive MDP framework [35] assume the latent context is static across an episode and
do not address settings with latent state dynamics. In this work, we focus on the dynamic latent state
formulation of the meta-RL problem.

Our core contributions are as follows: (1) We introduce DynaMITE-RL, a meta-RL approach to
handle environments with evolving latent context variables. (2) We introduce three key elements
for learning an improved posterior update model: session consistency, modeling dynamics of latent
context, and session reconstruction masking. (3) We validate our approach on a diverse set of
challenging simulation environments and demonstrate significantly improved results over multiple
state-of-the-art baselines in both online and offline-RL settings.

2 Background

We begin by reviewing relevant background including meta-RL and Bayesian RL. We also briefly
summarize the VariBAD [47] algorithm for learning Bayes-Adaptive policies.

Meta-RL. The goal of meta-RL [1] is to quickly adapt an RL agent to an unseen test environment.
Meta-RL assumes a distribution p(T ) over possible environments or tasks, and learns this distribution
by repeatedly sampling batches of tasks during meta-training. Each task Ti ∼ p(T ) is described by
an MDPMi = (S,A, Ri, Ti, γ), where the state space S , action space A, and discount factor γ are
shared across tasks, while Ri and Ti are task-specific reward and transition functions, respectively.
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The objective of meta-RL is to learn a policy that efficiently maximizes reward given a new task
Ti ∼ p(T ) sampled from the task distribution at meta-test time. Meta-RL is a special case of
a POMDP in which the unobserved variables are R and T , which are assumed to be stationary
throughout an episode.

Bayesian Reinforcement Learning (BRL). BRL [18] utilizes Bayesian inference to model the
uncertainty of agent and environment in sequential decision making problems. In BRL, R
and T are unknown a priori and treated as random variables with associated prior distributions.

Figure 2: VariBAD does not model
the latent context dynamics and fails to
adapt to the changing goal location. By
contrast, DynaMITE-RL correctly infers
the transition and consistently reaches
the rewarding cell (green cross).

At time t, the observed history of states, actions and re-
wards is τ:t = {s0, a0, r1, . . . , rt, st}, and the belief bt
represents the posterior over task parameters R and T
given the transition history, i.e. bt , p(R, T | τ:t). Given
the initial belief b0(R, T ), the belief can be updated it-
eratively using Bayes’ rule: bt+1 = p(R, T | τ:t+1) ∝
p(st+1, rt+1 | τ:t, R, T ) · bt. This Bayesian approach to
RL can be formalized as a Bayes-Adaptive MDP (BAMDP)
[14]. A BAMDP is an MDP over the augmented state
space S+ =S×B, where B denotes the belief space. Given
the augmented state s+

t =(st, bt), the transition function is
given by T+(s+

t+1 |s
+
t ,at)=Ebt [T (st+1 |st, at)·δ(bt+1 =

p(R, T | τ:t+1)], and reward function under the current
belief is, R+(s+

t , at) = Ebt [R(st, at)]. The BAMDP for-
mulation naturally resolves the exploration-exploitation
tradeoff. A Bayes-optimal RL agent takes information-
gathering actions to reduce its uncertainty in the MDP
parameters while simultaneously maximizing the task re-
turns. However, for most interesting problems, solving
the BAMDP—and even computing posterior updates—
is intractable given the continuous and typically high-
dimensional nature of the task distribution.

VariBAD. Zintgraf et al. [47] approximates the Bayes-optimal solution by modeling uncertainty over
the MDP parameters. These parameters are represented by a latent vector m ∈ Rd, the posterior over
which is p(m | τ:H), where H is the BAMDP horizon. VariBAD uses a variational approximation
qφ(m | τ:t) parameterized by φ and conditioned on the observed history up to time t. Zintgraf
et al. [47] show that qφ(m | τ:t) approximates the belief bt. In practice, qφ(m | τ:t) is represented
by a Gaussian distribution qφ(m | τ:t) = N (µ(τ:t),Σ(τ:t)), where µ and Σ are sequence models
(e.g., recurrent neural networks or transformers [42]) that encode trajectories to latent statistics. The
variational lower bound at time t is Eqφ(m|τ:t)[log pθ(τ:H | m)]−DKL(qφ(m | τ:t) ‖ pθ(m)), where
the first term reconstructs the trajectory likelihood pθ(τ:H | m) and the second term regularizes the
variational posterior to a prior distribution over the latent space, typically modeled with a standard
Gaussian distribution. Importantly, the trajectory up to time t, i.e., τ:t, is used in the ELBO equation
to infer the posterior belief at time t, which then decodes the entire trajectory τ:H , including future
transitions. Given the belief state distribution qφ of a BAMDP, the policy maps both the state and
belief to actions, i.e., π(at | st, qφ(m | τ:t)). The BAMDP solution policy π∗ is trained, e.g., via
policy gradient methods, to maximize the expected cumulative return over the task distribution:
J(π) = ER,T

[
Eπ[
∑H−1
t=0 γtr(st, at)]

]
.

3 Dynamic Latent Contextual MDPs

As a special case of a BAMDP, where the belief state is parameterized with a latent context vector
(analogous to the problem formulation of VariBAD), the dynamic latent contextual MDP (DLCMDP)
is denoted by 〈S,A,M, R, T, ν0, H〉, where S is the state space, A is the action space,M is the
latent context space, R : S ×A×M 7→ ∆[0,1] is a reward function, T : S ×A×M 7→ ∆S×M is
a transition function, ν0 ∈ ∆S×M is an initial state distribution, γ ∈ (0, 1) is a discount factor, and
H is the (possibly infinite) horizon.

We assume an episodic setting in which each episode begins in a state-context pair (s0,m0) ∼ ν0. At
time t, the agent is at state st and context mt, and has observed history τ:t = {s0, a0, r1, . . . , rt, st}.
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DynaMITE-RL Training
1: Input: env, policy, critic, belief model
2: for iter = 1 to num_rl_updates do
3: Collect DLCMDP episodes
4: Train posterior belief model by maximizing

ELBO (Eq. (2))
5: Train policy and critic with any online RL

algorithm
6: end for

Figure 3: Pseudo-code (online RL training) and model architecture of DynaMITE-RL.

Given the history, the agent selects an action at ∈ A, after which the state and latent context
transitions according to T (st+1,mt+1 | st, at,mt), and the agent receives a reward sampled from
R(st, at,mt). Throughout this process, the context mt is latent (i.e., not observed by the agent).

DLCMDPs embody the causal independence depicted by the graphical model in Figure 1. Particularly,
DLCMDPs impose a structure on changes of the latent variable m, allowing the latent context m to
change less or more frequently. We denote by dt the random variable at which a transition occurs
in mt. According to Figure 1, the transition function T is represented by the following factored
distribution:
T (st+1 = s′,mt+1 = m′ | st = s, at = a,mt = m)

= Ts(s
′ | s, a,m)1{m′ = m, dt = 0}Td(dt = 0) + ν0(s′ | m′)Tm(m′ | m)1{dt = 1}Td(dt = 1),

where Tm :M 7→M is the latent dynamics function, Ts is the context-dependent state transition
function, and Td is the termination probability distribution. We refer to sub-trajectories between
changes in the latent context as sessions, which may vary in length. At the start of a new episode,
a new state and a new latent context are sampled based on the distribution ν0. Each session itself
is governed by an MDP parameterized with a latent context m ∈M, which changes stochastically
between sessions according to the latent transition function Tm(m′ | m). For notational simplicity
we use index i to denote the ith session in a trajectory, and mi the respective latent context of that
session. We emphasize that sessions switching times are latent random variables.

Notice that DLCMDPs are more general than latent MDPs [38, 29], in which the latent context is
fixed throughout the entire episode; this corresponds to dt ≡ 0. Moreover, DLCMDPs are closely
related to POMDPs; letting dt ≡ 1, a DLCMDP reduces to a general POMDP with state spaceM,
observation space S, and observation function ν0. As a consequence DLCMDPs are as general as
POMDPs, rendering them very expressive. Moreover, the specific temporal structure of DLCMDPs
allows us to devise efficient learning algorithms that exploit the transition dynamics of the latent
context, improving learning efficiency. DLCMDPs are related to DCMDPs [40], LSMDPs [8], and
DP-MDP [45]. However, DCMDPs assume contexts are observed, and focus on aggregated context
dynamics, LSMDPs assume that the latent contexts across sessions are i.i.d (i.e., there is no latent
dynamics) and DP-MDPs assume that sessions are fixed length.

We aim to learn a policy π(at | st,mt) which maximizes the expected return J(π) over unseen test
environments. As in BAMDPs, the optimal DLCMDP Q-function satisfies the Bellman equation;
∀s+ ∈ S+, a ∈ A : Q(s+, a) = R+(s+, a) + γ

∑
s+′∈S+ T+(s+′ | s+, a) max

a′
Q(s+′ , a). In the

following section, we present DynaMITE-RL for learning a Bayes-optimal agent in a DLCMDP.

4 DynaMITE-RL

We detail DynaMITE-RL, first deriving a variational lower bound for learning a DLCMDP posterior
model, then outlining three principles for training DLCMDPs, and finally integrating them into our
training objective.

Variational Inference for Dynamic Latent Contexts. Given that we do not have direct access to
the transition and reward functions of the DLCMDP, following Zintgraf et al. [47], we infer the
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posterior p(m | τ:t), and reason about the latent context vector m instead. Since exact posterior
computation over m is computationally infeasible, given the need to marginalize over task space, we
introduce the variational posterior qφ(m | τ:t), parameterized by φ ∈ Rd, to enable fast inference at
every step. Our learning objective maximizes the log-likelihood Eπ[log p(τ)] of observed trajectories.
In general, the true posterior over the latent context is intractable, as is the empirical estimate of the
log-likelihood. To circumvent this, we derive the evidence lower bound (ELBO) [27] to approximate
the posterior over m under the variational inference framework.

Let Z = {mi}K−1
i=0 be the sequence of latent context vectors for K sessions in an episode (note that

K is inherently a random variable—the exact number of sessions in an episode is not known) and Ω =

{dt}H−1
t=0 denote the collection of session terminations. We use a parametric generative distribution

model for the state-reward trajectory, conditioned on the action sequence: pθ(s0, r1, s1, . . . , rH , sH |
a0, . . . , aH−1). In what follows, we drop the conditioning on a:H−1 for the sake of brevity.

The variational lower bound can be expressed as:

log pθ(τ) ≥ Eqφ(Z,Ω|τ:t)
[

log pθ(τ | Z,Ω)
]︸ ︷︷ ︸

trajectory reconstruction

−DKL(qφ(Z,Ω | τ:t)) ‖ pθ(Z,Ω))︸ ︷︷ ︸
prior regularization

= LELBO,t, (1)

which can be estimated via Monte Carlo sampling over a learnable approximate posterior qφ. In
optimizing the reconstruction loss of session transitions and rewards, the learned latent variables
should capture the unobserved MDP parameters. The full derivation of the ELBO for a DLCMDP is
provided in Appendix A.1.

Figure 2 depicts a (qualitative) didactic GridWorld example with two possible rewarding goals that
alternate between sessions. The VariBAD agent does not account for latent goal dynamics and gets
stuck after reaching the goal in the first session. By contrast, DynaMITE-RL employs the latent
context dynamics model to capture goal changes, and adapts to the context changes across sessions.

Consistency of Latent Information. In the DLCMDP formulation, each session is itself an MDP
with a latent context fixed across the session. This within-context stationarity means new observations
can only increase the information the agent has about this context. In other words, the agent’s
posterior over latent contexts should gradually hone in on the true latent distribution. Although this
true distribution remain unknown, this insight suggest the use of a session-based consistency loss,
which penalizes the agent if there is no increase in information between timestep. Our consistency
objective penalizes the agent when the difference between KL-divergence of the posterior to the final
posterior in the session between consecutive timesteps is positive, which is the case when there is no
increase in information about a session’s latent context after observing a new transition. Let dH−1 = 1
and ti ∈ {0, . . . ,H} be a random variable denoting the last timestep of session i ∈ {0, . . . ,K−1},
i.e., ti = min{t′ ∈ Z≥0 :

∑t′

t=0 dt = i+ 1}. For time t in session i, we define,

δt = DKL(qφ(mi | τ:t+1) ‖ qφ(mi | τ:ti)),

where qφ(mi |τ:ti) is the final posterior in session i. This measures the difference between our current
belief at time t to the final belief at the end of the session. Our temporal, session-based consistency
objective is

Lconsistency,t = max{δt+1 − δt, 0}.

Using temporal consistency to regularize inference introduces an explicit inductive bias that allows
for better posterior estimation.
Remark 4.1. We introduce session-based consistency for DLCMDPs, though it is also relevant in
single-session settings with stationary latent context. Indeed, as we discuss below, while VariBAD
focuses on single sessions, it does not constrain the latent’s posterior to be identical to final posterior
belief. Consistency may be useful in settings where the underlying latent variable is stationary, but
may hurt performance when this variable is indeed changing. Since our modeling approach allows
latent context changes across sessions, incorporating consistency regularization does not generally
hurt performance.

Latent Belief Conditioning. Unlike the usual BAMDP framework, DLCMDPs allow one to model
temporal changes of latent contexts via dynamics Tm(m′ | m) across sessions. To incorporate this
model into belief estimation, in addition to the history (τ:t, d:t), we condition the posterior on the final
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1

2

Figure 4: The environments considered in evaluating DynaMITE-RL. Each environment exhibits
some change in reward and/or dynamics between sessions including changing goal locations (left and
middle left), changing target velocities (middle right), and evolving user preferences of itch location
(right).

latent belief qφ(m′, d′ | m, d, τ:t) from the previous session, and impose KL-divergence matching
between this belief and the prior distribution pθ(m′ | m).

Reconstruction Masking. When the agent is at time t, Zintgraf et al. [47] encodes past interactions
to obtain the current posterior qφ(m | τ:t) since this is all the information available for inference about
the current task (see Eq. (1)). They use this posterior to decode the entire trajectory—including future
transitions—from different sessions to optimize the lower bound during training. The insight is that
decoding both the past and future allows the posterior model to perform inference about unseen states.
However, we observe that when the latent context is stochastic, reconstruction over the full sequence
is detrimental to training efficiency. The model is attempting to reconstruct transitions outside of the
current session that may be irrelevant or biased given the latent state dynamics, rendering it a more
difficult learning problem. Instead we reconstruct only the transitions within the session defined by
the predicted termination indicators, i.e., at any arbitrary time t within session i, the session-based
reconstruction loss is given by

Lsession-ELBO,t = Eqφ(Z,Ω|τ:t)
[

log pθ(τti−1+1:ti | Z,Ω)
]
−DKL(qφ(Z,Ω | τ:t)) ‖ pθ(Z,Ω)),

where ti is the last timestep of session i.

DynaMITE-RL. By incorporating the three modifications above, we obtain at the following training
objective for our variational meta-RL approach:

LDynaMITE-RL(θ, φ) =

H−1∑
t=0

[
Lsession-ELBO,t(θ, φ) + βLconsistency,t(φ)

]
, (2)

where β > 0 is a hyperparameter that balances the consistency loss with the ELBO objective. We
present a simplified pseudocode for online training of DynaMITE-RL in Algorithm 3a and a detailed
algorithm in Appendix A.2.

Implementation Details. We use Proximal Policy Optimization (PPO) [37] for online RL training.
We introduce a posterior inference network that outputs a Gaussian over the latent context for the
i-th session and the session termination indicators, qφ(mt+1, dt+1 | τ:t,mt, dt), conditioned on
the history and posterior belief from the previous session. We parameterize the inference network
as a sequence model, with e.g., an RNN [9] or a Transformer [42], with different multi-layer
perceptron (MLP) output heads for predicting the logits for session termination and the posterior
belief. In practice, the posterior belief MLP outputs the parameters of a Gaussian distribution
qφm(mt+1 | τ:t,mt) = N (µ(τ:t),Σ(τ:t)) where the variance represents the agent’s uncertainty
about the MDP. The session termination network applies a sigmoid activation function σ(x) = 1

1+e−x

to the MLP output. Following PPO [37], the actor loss Jπ and critic loss Jω are respectively given
by Jπ = Eτ∼πψ [log πψ(a | s,m)A(s, a,m)] and Jω = Eτ∼πψ [(Qω(s, a,m)− (r + Vω(s′,m))2],
where V is the state-value network, Q is the state-action value network, and A is the advantage
function. We also add an entropy bonus to ensure sufficient exploration in more complex domains.
A decoder network, also parameterized using MLPs, reconstructs transitions and rewards given the
session’s latent context m, current state st, and action at, i.e., pTθ (st+1 | st, at,mt) and pRθ (rt+1 |
st, at,mt). Figure 3b depicts the implemented model architecture. The final objective is to jointly
learn the policy πψ, the variational posterior model qφ, and the factored likelihood model pθ that

6



0.0 0.5 1.0 1.5 2.0
1e5

0

10

20

30

40

50
GridworldAlternate

0 1 2 3 4 5
1e7

250

200

150

100

50

0
Reacher-Circle

0 1 2 3 4 5
1e7

700

600

500

400

300

200

100

HalfCheetah-Vel

0.0 0.2 0.4 0.6 0.8 1.0
1e7

100
50

0
50

100
150
200
250

ScratchItch-Jaco

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ep
is

od
e 

R
ew

ar
d

RL^2 VariBAD BORel SecBAD ContraBAR DynaMITE-RL (ours) DynaMITE-RL (GT session termination)

Figure 5: Learning curves for DynaMITE-RL and state-of-the-art baseline methods. Shaded areas
represent standard deviation over 5 different random seeds for each method and 3 for ScratchItch. In
each of the evaluation environments, we observe that DynaMITE-RL exhibits better sample efficiency
and converges to a policy with better environment returns than the baseline methods.

Table 1: Average single episode returns for DynaMITE-RL and other state-of-the-art meta-RL al-
gorithms across different environments. Results for all environments are averaged across 5 seeds
beside ScratchItch which has 3 seeds. DynaMITE-RL, in bold, achieves the highest return on all of
the evaluation environments and is the only method able to recover an optimal policy.

Gridworld Reacher HC-Dir HC-Vel Wind+Vel ScratchItch
RL2 33.4±1.6 −150.6±1.2 −420.0±8.4 −513.2±8.7 −493.5±1.8 50.4±16.8

VariBAD 31.8±1.9 −102.4±4.2 −242.5±4.8 −363.5±3.2 −188.5±4.4 81.8±6.9

BORel 32.4±2.4 −103.5±4.6 −240.6±4.3 −343.4±3.6 −167.8±5.4 82.5±6.0

SecBAD 38.5±3.1 −96.2±4.8 −202.4±10.4 −323.5±3.4 −155.3±5.4 101.4±9.2

ContraBAR 34.5±0.9 −101.6±3.2 −256.5±3.6 −312.3±4.8 −243.4±2.6 114.6±24.4

DynaMITE-RL 42.9±0.5 −8.4±5.1 −68.5±2.3 −146.0±8.1 −42.8±6.9 231.2±23.3

minimizes the following loss:

L(θ, φ, ψ) = E
[
Jπ(ψ) + λ · LDynaMITE-RL(φ, θ)

]
, (3)

where J is the expected return, and λ > 0 is a hyperparameter balancing the RL objective with
DynaMITE-RL’s variational inference objective. We also evaluate DynaMITE-RL in an offline RL
setting, in which we collect an offline dataset of trajectories following an oracle goal-conditioned pol-
icy and subsequently approximate the optimal value function and RL agent using offline RL methods,
e.g., IQL [28]. The value function and the policy are parameterized with the same architecture as in
the online setting and will be detailed in Appendix A.5.

5 Experiments

We present experiments that demonstrate, while VariBAD and other meta-RL methods struggle to
learn good policies given nonstationary latent contexts, DynaMITE-RL exploits the causal structure
of a DLCMDP to more efficiently learn performant policies. We compare our approach to several
state-of-the-art meta-RL baselines, showing significantly better evaluation returns.

Environments. We test DynaMITE-RL on a suite of standard meta-RL benchmark tasks including a
didactic gridworld navigation, continuous control, and human-in-the-loop robot assistance as shown
in Figure 4. Gridworld navigation and MuJoCo [41] locomotion tasks are considered by Zintgraf
et al. [47], Dorfman et al. [12], and Choshen and Tamar [10]. We modify these environments to
incorporate temporal shifts in the reward function and/or environment dynamics. To achieve good
performance under these conditions, a learned policy must adapt to the latent state dynamics. More
details about the environments and hyperparameters can be found in Appendix A.4 and A.5.

Gridworld. We modify the Gridworld environment used by Zintgraf et al. [47]. In a 5× 5 gridworld,
two possible goals are sampled uniformly at random in each episode. One of the two goals has a
+1 reward while the other has 0 reward. The rewarding goal location changes after each session
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according to a predefined transition function. Goal locations are provided to the agent in the state—the
only latent information is which goal has positive reward.

Continuous Control. We experiment with two tasks from OpenAI Gym [6]: Reacher and HalfCheetah.
Reacher is a two-jointed robot arm tasked with reaching a 2D goal location that moves along a
circular path according to some unknown transition function. HalfCheetah is a locomotion task which
we modify to incorporate changing latent contexts w.r.t. the target direction (HalfCheetah-Dir), target
velocity (HalfCheetah-Vel), and target velocity with opposing wind forces (HalfCheetah-Wind+Vel).

Assistive Itch Scratching. Assistive Itch Scratch is part of the Assistive-Gym benchmark [15]
consisting of a human and a wheelchair-mounted 7-degree-of-freedom (DOF) Jaco robot arm. The
human has limited-mobility and requires robot assistance to scratch an itch. We simulate stochastic
latent context by moving the itch location—unobserved by the agent—along the human’s right arm.

Meta-RL Baselines. We compare DynaMITE-RL to several state-of-the-art (approximately) Bayes-
optimal meta-RL methods including RL2 [13], VariBAD [47], BORel [12], SecBAD [8], and Contra-
BAR [10]. RL2 [13] is an RNN-based policy gradient method which encodes environment transitions
in the hidden state and maintains them across episodes. VariBAD reduces to RL2 without the decoder
and the variational reconstruction objective for environment transitions. BORel primarily investigates
offline meta-RL (OMRL) and proposes a few modifications such as reward relabelling to address the
identifiability issue in OMRL. We evaluate the off-policy variant of BORel, trained using Soft-Actor
Critic (SAC) in our DLCMDP environments. Chen et al. [8] proposes the latent situational MDP
(LS-MDP), in which there is non-stationary latent contexts that are sampled i.i.d., and SecBAD, an
algorithm for learning in an LS-MDP. However, they do not consider latent dynamics which a crucial
aspect in many applications. ContraBAR employs a contrastive learning objective to discriminate
future observations from negative samples to learn an approximate sufficient statistic of the history.
As Zintgraf et al. [47] already demonstrate better performance by VariBAD than posterior sampling
methods (e.g., PEARL [34]) we exclude such methods from our comparison.

Figure 6: Ablating individual components of
DynaMITE-RL. We observe that modelling latent
dynamics is crucial in achieving good performance
in a DLCMDP. Additionally, both consistency reg-
ularization and session reconstruction are critical
for improving the sample efficiency and conver-
gence to a better performing policy.

DynaMITE-RL outperforms prior meta-RL
methods in a DLCMDP in both online and
offline RL settings. In Figure 5, we show the
learning curves for DynaMITE-RL and baseline
methods. We first observe that DynaMITE-RL
significantly outperforms the baselines across
all domains in sample efficiency and average
environment returns. RL2, VariBAD, BORel,
SecBAD, and ContraBAR all perform poorly in
the DLCMDP, converging to a suboptimal pol-
icy. VariBAD and BORel perform comparably
as both share similar architecture, the only dif-
ference being the RL algorithm. By contrast,
DynaMITE-RL accurately models the latent dy-
namics and consistently achieves high returns
despite the nonstationary latent context. We also
evaluate an oracle with access to ground-truth
session terminations and find that DynaMITE-RL
with learned session terminations effectively re-
covers session boundaries and matches oracle
performance with sufficient training. Our em-
pirical results validate that DynaMITE-RL learns
a policy robust to changing latent contexts at
inference time, while the baseline methods fail
to adapt and are ultimately stuck in suboptimal
behavior. We further demonstrate that DynaMITE-RL outperforms BORel in an offline RL setting in
Table 2 across all environments. This highlights the importance of DynaMITE-RL training objectives
in learning a more accurate posterior belief model even without online environment interactions. We
also experimented with a Transformer encoder to parameterize our belief model and find that a more
powerful model further improves the evaluation performance.
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Table 2: Average single episode returns with offline RL. Results are averaged across 5 random seeds.
Algorithm with the highest average return are shown in bold. We present results for an oracle agent
trained with goal information for reference.

Gridworld Reacher HC-Dir HC-Vel HC-Dir+Vel ScratchItch
BORel 31.4±3.5 −102.0±5.8 −245.0±12.4 −354.0±8.3 −170.0±5.4 72.5±4.6

w/o Consistency 38.2±1.2 −33.2±2.7 −206.0±5.6 −212.0±6.4 −120.0±12.4 105.8±8.5

w/o Sess. Dynamics 33.4±1.3 −95.0±5.2 −244.0±6.0 −342.0±8.6 −166.0±9.5 74.1±2.3

DynaMITE-RL 41.8±0.6 −15.5±3.2 −154.0±8.6 −156.0±4.8 −48.0±8.6 225.5±10.6

w/ Transformer 43.8±0.6 −8.4±2.8 −132.0±7.4 −144.0±6.5 −33.0±5.8 242.5±7.4

Oracle (w/ goal) 44.6 −4.8 −112.0 −132.2 −24.4 245.3

General

POMDP

DLCMDP
Latent

MDP

Figure 7: Ablation studies on various frequencies
of latent context switches within an episode in
the HalfCheetah-Vel environment. The boxplot
shows the distribution over evaluation returns for
25 rollouts of trained policies with VariBAD and
DynaMITE-RL . When p = 0, we have a latent
MDP and when p = 1 this is equivalent to a gen-
eral POMDP.

Each component of DynaMITE-RL con-
tributes to efficient learning in a DLCMDP.
We ablate the three key components of
DynaMITE-RL to understand their impact on the
resulting policy. We compare full DynaMITE-RL
to: (i) DynaMITE-RL w/o Consistency, which
does not include consistency regularization;
(ii) DynaMITE-RL w/o Conditioning, which
does not include latent conditioning; and (iii)
DynaMITE-RL w/o SessRecon, which does not
include session reconstruction. In Figure 6, we
report the performance for each of these ab-
lations and vanilla VariBAD for comparisons.
First, without prior latent belief conditioning,
the model converges to a suboptimal policy
slightly better than VariBAD, confirming the im-
portance of modeling the latent transition dy-
namics of a DLCMDP. Second, we find that
session consistency regularization reinforces the
inductive bias of changing dynamics and im-
proves the sample efficiency of learning an ac-
curate posterior model in DLCMDPs. Finally,
session reconstruction masking also improves
the sample efficiency by neglecting terms that
are irrelevant and potentially biased. Similar
ablation studies in the offline RL setting can be
found in Table 2, reinforcing the importance of
our proposed training objectives.

DynaMITE-RL is robust to varying levels of latent stochasticity. We study the effect of varying
the number of latent context switches over an episode of fixed time horizon. For the HalfCheetah-Vel
environment, we fix the episode horizon H = 400 to create multiple problems. We introduce a
Bernoulli random variable, e.g dt ∼ Bernoulli(p) where p is a hyperparameter we set to determine
the probability that the latent context changes at timestep t. If p = 0, the latent context remains
unchanged throughout the entire episode, corresponding to a latent MDP. If p = 1, the latent
context changes at every timestep, which is equivalent to a general POMDP. As shown in Figure 7,
DynaMITE-RL performs better, on average, than VariBAD, with lower variance in a latent MDP. We
hypothesize that, in the case of latent MDP, consistency regularization helps learn a more accurate
posterior model by enforcing the inductive bias that the latent is static. Otherwise, there is no inherent
advantage in modeling the latent dynamics if it is stationary.

As we gradually increase the number of context switches, the problem becomes more difficult and
closer to a general POMDP. VariBAD performance decreases drastically because it is unable to model
the changing latent dynamics while DynaMITE-RL is less affected, highlighting the robustness of
our approach to changing latent contexts. When we set the number of contexts equal to the episode
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horizon length, we recreate a fully general POMDP and again the performance between VariBAD
and DynaMITE-RL converges.

6 Related Work

POMDPs provide a general framework modeling non-stationality and partial observability in sequen-
tial decision problems. Many model variants have been introduced, defining a rich spectrum between
episodic MDPs and POMDPs. The Bayes-Adaptive MDP (BAMDP) [14] and hidden parameter
MDP (HiP-MDP) [25] are both special cases of POMDPs in which environment parameters are
unknown and the goal is to infer these parameters online during an episode. The BAMDP model
treats unknown parameters as latent variables, which are updated based on the agent’s observations,
while the HiP-MDP assumes that the environment dynamics depend on hidden parameters that must
be learned over time. However, neither framework addresses the dynamics of the latent parameters
across sessions, but rather assumes it is constant throughout an episode.

On the other hand, models like the Latent Situational MDP (LSMDP) [8] and Dynamic Parameter
MDP (DP-MDP) [44] do investigate nonstationary latent contexts. LSMDP [8] samples the latent
contexts independently and identically distributed (i.i.d.) at each episode. While it introduces
variability, it does not model the temporal dynamics or dependencies of these latent parameters. The
DP-MDP framework addresses these dynamics by assuming that the latent parameters change at
fixed intervals (fixed session lengths), making it less flexible when sessions are variable lengths. By
contrast, DLCMDPs models the dynamics of the latent state and simultaneously infers when the
transition occurs, allowing better posterior updates at inference time.

DynaMITE-RL shares conceptual similarities with other meta-RL algorithms. Firstly, optimization-
based techniques [16, 11, 36] learn neural network policies that can quickly adapt to new tasks at test
time using policy gradient updates. This is achieved using a two-loop optimization structure: in the
inner loop, the agent performs task-specific updates where it fine-tunes the policy with a few gradient
steps using the task’s reward function. In the outer loop, the meta-policy parameters are updated
based on the performance of these fine-tuned policies across different tasks. However, these methods
do not optimize for Bayes-optimal behavior and generally exhibit suboptimal test-time adaptation.
Context-based meta-RL techniques aim to learn policies that directly infer task parameters at test
time, conditioning the policy on the posterior belief. Such methods include recurrent memory-based
architectures [13, 43, 30, 2] and variational approaches [20, 47, 12]. VariBAD, closest to our work,
uses variational inference to approximate Bayes-optimal policies. However, we have demonstrated
above the limitations of VariBAD in DLCMDPs, and have developed several crucial modifications to
drive effective learning a highly performant policies in our setting.

7 Conclusion

We developed DynaMITE-RL, a meta-RL method to approximate Bayes-optimal behavior using
a latent variable model. We presented the dynamic latent contextual Markov Decision Process
(DLCMDP), a model in which latent context information changes according to an unknown transition
function, that captures many natural settings. We derived a graphical model for this problem setting
and formalized it as an instance of a POMDP. DynaMITE-RL is designed to exploit the causal
structure of this model, and in a didactic GridWorld environment and several challenging continuous
control tasks, we demonstrated that it outperforms existing meta-RL methods w.r.t. both learning
efficiency and test-time adaptation in both online and offline-RL settings.

There are a number of exciting directions for future research building on the DLCMDP model. While
we only consider Markovian latent dynamics in this work (i.e. future latent states are independent of
prior latent states given the current latent state), we plan to investigate richer non-Markovian latent
dynamics. We are also interested in exploring hierarchical latent contexts in which contexts change
at different timescales. Finally, we hope to extend DynaMITE-RL to other real-world applications
including recommender systems (RS), autonomous driving, multi-agent coordination, etc. DLCMDPs
are a good model for RS as recommender agents often interact with users over long periods of time
during which the user’s latent context changes irregularly, directly influencing their preferences.
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A Appendix / supplemental material

A.1 ELBO Derivation for DLCMDP

We will define a full trajectory τ = {s0, a0, r1, s1, a1, . . . , rH−1, sH} where H is the horizon. τ:t is
the history of interactions up to a global timestep t, i.e. τ:t = {s0, a0, r1, s1, a1, . . . rt−1, st}.
Let Z = {m0, . . . ,mK−1} be the collection of latent contexts in a trajectory where K is a random
variable representing the number of switches the latent variable will have until time H , i.e., K =∑H−1

t=0 dt. Additionally, we denote dt as the session termination prediction at timestep t but dH−1 ≡
1.

We divide a full trajectory into sessions and define a discrete random variable ti ∈ {0, . . . ,H − 1}
be a random variable denoting the last timestep of session i ∈ {0, . . . ,K−1}, i.e., ti = min{t′ ∈
Z≥0 :

∑t′

t=0 dt = i+ 1}, with t−1 ≡ −1 . We also denote the next session index i′ = i+ 1.

An arbitrary session i′ can then be represented as, {sti+1, ati+1, rti+1, sti+2, . . . , sti′−1, ati′−1, rti′}.
At any time-step t, we want to maximize the log-likelihood of the full dataset of trajectories, D,
collected following policy π, e.g. Eπ[log pθ(τ)]. However, with the presence of latent variables,
whose samples cannot be observed in the training data, estimating the empirical log-likelihood is
generally intractable. Instead, we optimize for the evidence lower bound (ELBO) of this function
with a learned approximate posterior, qφ.

We then define the posterior inference model, qφ(Z, d:H | τ:t), which outputs the posterior distribution
for the latent context and session termination predictions conditioned on the trajectory history up
until timestep t.

Below we provide the derivation for the variational lower bound of the log-likelihood function
log pθ(τ) for a single trajectory:

log pθ(τ) = log

∫
Z,Ω

pθ(τ,Z,Ω)

= log

∫
Z,Ω

pθ(τ,Z,Ω)
qφ(Z,Ω | τ:t)
qφ(Z,Ω | τ:t)

= logEqφ(Z,Ω|τ:t)

[
pθ(τ,Z,Ω)

qφ(Z,Ω | τ:t)

]
= logEqφ(Z,Ω|τ:t)

[
pθ(τ | Z,Ω) pθ(Z,Ω)

qφ(Z,Ω | τ:t)

]
≥ Eqφ(Z,Ω|τ:t)

[
log pθ(τ | Z,Ω) + log pθ(Z,Ω)− log(qφ(Z,Ω | τ:t))

]
= Eqφ(Z,Ω|τ:t)

[
log pθ(τ | Z,Ω)

]︸ ︷︷ ︸
reconstruction

−DKL(qφ(Z,Ω | τ:t)) || pθ(Z,Ω))︸ ︷︷ ︸
regularization

= ELBOt(θ, φ)

We extend this to derive the lower bound for all trajectories in dataset D.

Eτ∼D
[

log pθ(τ)

]
= Eτ∼D

[
Eqφ(Z,Ω|τ:t)

[
log pθ(τ | Z,Ω)

]
−DKL(qφ(Z,Ω | τ:t)) || pθ(Z,Ω))

]

Prior:

pθ(Z,Ω) = pθ(m
0 | d:t0)pθ(d:t0)

K−2∏
i=0

pθ(m
i′ | mi, dti+1:ti′ )pθ(dti+1:ti′ )
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Variational Posterior:

qφ(Z,Ω | τ:t) = qφ(m0 | τ:t0 , d:t0)qφ(d:t0)

K−2∏
i=−1

qφ(mi′ | τti+1:ti′ ,m
i, dti+1:ti′ )qφ(dti+1:ti′ )

Reconstruction Term:

log pθ(τ | Z,Ω) = log pθ(s0, r1, . . . , rH−1, sH | Z,Ω, a:H−1)

= log

K−2∏
i=−1

pθ({(st, rt)}ti′t=ti+1 | Z,Ω, a:H−1)

= log

K−2∏
i=−1

[
pθ(sti+1)

ti′∏
t=ti+1

pθ(st+1 | st, at,Z, dt) pθ(rt+1 | st, at,Z, dt)
]

=

K−2∑
i=−1

[
log pθ(sti+1) +

ti′∑
t=ti+1

log pθ(st+1, rt+1 | st, at,Z, dt)
]

Putting it all together:

log pθ(τ) ≥ Eqφ(Z,Ω|τ:t)
[

log pθ(τ | Z,Ω)
]︸ ︷︷ ︸

reconstruction

−DKL(qφ(Z,Ω | τ:t)) || pθ(Z,Ω))︸ ︷︷ ︸
regularization

= Eqφ(Z,Ω|τ:t){
K−2∑
i=−1

[
log pθ(sti+1 | Z, dti) +

ti′∑
t=ti+1

log pθ(st+1, rt+1 | st, at,Z, dt)
]
}

−DKL(qφ(m0 | τ:t0 , d:t0) ‖ pθ(m0 | d:H)

−
K−2∑
i=0

DKL(qφ(mi′ | τti+1:ti′ ,m
i, dti+1:ti′ ) ‖ pθ(m

i′ | mi, dti+1:ti′ ))

−
K−2∑
i=0

DKL(qφ(dti+1:ti′ ) ‖ pθ(dti+1:ti′ ))

A.2 Pseudocode for DynaMITE-RL

Here we provide the pseudocode for training DynaMITE-RL and for rolling out the policy during
inference time.

Algorithm 1 DynaMITE-RL

1: Input: env, αψ, αω
2: Randomly initialize policy πψ(a | s,m), critic Qω(s, a,m) decoder pθ(s′, r′ | s, a,m), encoder
qφ(m′ | ·), and replay buffer D = ∅

3: for i = 1 to N do
4: D[i]← COLLECT_TRAJECTORY(πψ, qφ, env)
5: . Train VAE
6: Sample batches of trajectories from D
7: Compute ELBO with Eq. 2 and update θ, φ
8: . Update actor and critic using PPO
9: ψ ← ψ − αψ∇ψJπ

10: ω ← ω − αω∇ωJQ
11: end for
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Algorithm 2 COLLECT_TRAJECTORY

1: Input: πθ, qφ, env
2: (s0,m0) ∼ ν0 {sample initial state and belief}
3: k = 0 {session index}
4: for t = 0 to H − 1 do
5: at ∼ πψ(at | st,mt) {get action}
6: (st+1, rt+1) = env.step(at) {env step}
7: . Posterior update
8: if k == 0 then
9: mt+1, dt+1 ∼ qφ(· | τ:t+1, dt)

10: else
11: mt+1, dt+1 ∼ qφ(· | τ:t+1,mtk−1

, dt)
12: end if
13: if session-terminate then
14: k += 1 {increment session index}
15: (st+1,mt+1) ∼ ν0 {reset the state}
16: end if
17: end for

A.3 Additional Experimental Results

Following Zintgraf et al. [47], we measure test-time performance of meta-trained policies by evaluat-
ing per-episode return for 5 consecutive episodes, see Figure 8. DynaMITE-RL and all of the baselines
are designed to maximize reward within a single rollout hence they generally plateau after a single
episode.
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Figure 8: Average test-time performance on MuJoCo tasks and ScratchItch task, trained separately
with 5 seeds for MuJoCo tasks and 3 for itching task. The meta-trained policies are rolled out for
5 episodes to show how they adapt to the task. The returns averaged across the task with 95%
confidence intervals shaded. We demonstrate that in our DLCMDP setting, the baseline methods
struggle to adapt to the changing dynamics of the environment while our method learns the latent
transitions and achieves good performance across all domains.

The β hyperparameter is a weight term for the consistency objective in DynaMITE-RL, which
enforces an increase in information in subsequent timesteps. We run an ablation study over different
values of β for the Half-Cheetah-Vel environment in our DLCMDP setting and find that in terms of
final performance, our model is robust to the different value of β.

β Episode Return
0.01 −69.5 ±2.6

0.1 −70.2 ±2.5

1 −68.5 ±2.3

5 −69.4 ±3.0

Table 3: Ablation study over different values of β in the HalfCheetah-Vel environment.
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A.4 Evaluation Environment Description

In this section, we describe the details of the domains we used for our experiments. We provide
visualizations of each simulation environment in Figure 4.

A.4.1 Gridworld Navigation with Alternating Goals

Following [47], we extend the 5× 5 gridworld environment as shown in Figure 2. For each episode,
two goal locations are selected randomly. However, only one of the goal locations provide a positive
reward when the agent arrives at the location. The rewarding goal location changes between sessions
according to some transition dynamics. In our experiments, we simulate latent dynamics using a

simple transition matrix:
[
0.2 0.8
0.8 0.2

]
. Between each session, the goal location has a 20% chance of

remaining the same as the previous session and 80% chance of switching to the other location. The
agent receives a reward of -0.1 on non-goal cells and +1 at the goal cell, e.g.

rt =

{
1 if st = g

−0.1 otherwise

where st is the current state and g is the current rewarding goal cell. Similar to [47], we set the
maximum episode horizon to 60 and the Bernoulli probabilty for latent context switch to 0.25 such
that in expectation each episode should have 4 sessions.

A.4.2 MuJoCo Continuous Control

For our study, we use the Brax [17] simulator, a physics engine for large scale rigid body simulation
written in JAX. We use JAX [2], a machine learning framework which has just-in-time (jit) compi-
lation that perform operations on GPU and TPU for faster training and can optimize the execution
significantly. We evaluate the capacity of our method to perform continuous control tasks with
high-dimensional observation spaces and action spaces.

Reacher is a two-joint robot arm task part of OpenAI’s MuJoCo tasks [6]. The goal is to move
the robot’s end effector to a target 2D location. The goal locations change between each session
following a circular path defined by: [x, y] = [rcos(α · i), rsin(α · i)] where i is the session index,
α ∼ U(0, 2π) is the initial angle, and r ∼ U(0.1, 0.2) is the circle’s radius. The observation space is
11 dimensional consisting of information about the joint locations and angular velocity. We remove
the target location from the observation space. The action space is 2 dimension representing the
torques applied at the hinge joints. The reward at each timestep is based on the distance from the
reacher’s fingertip to the target: rt = −||sf − sg||2 − 0.05 · ||at||2 where sf is the (x, y) location of
the fingertip and sg for the target location.

Half-Cheetah builds off of the Half-Cheetah environment from OpenAI gym [6], a MuJoCo locomo-
tion task. In these tasks, the challenge is to move legged robots by applying torques to their joints via
actuators. The state space is 17-dimensional, position and velocity of each joint. The initial state for
each joint is randomized. The action space is a 6-dimensional continuous space corresponding to the
torque applied to each of the six joints.

Half-Cheetah Dir(ection): In this environment, the agent has to run either forward or backward and
this varies between session following a transition function. At the first session, the task is decided
with equal probability. The reward is dependent on the goal direction:

rt =

{
vt + 0.5 · ||at||2 if task = forward
−vt + 0.5 · ||at||2 otherwise

where vt is the current velocity of the agent.

Half-Cheetah Vel(ocity): In this environment, the agent has to run forward at a target velocity, which
varies between sessions. The task reward is: rt = −||vs−vg||2−0.05 · ||at||2, where vs is the current
velocity of the agent and vg is the target velocity. The second term penalizes the agent for taking
large actions. The target velocity varies between session according to: vg = 1.5 + 1.5sin(0.2 · i).
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Half-Cheetah Wind + Vel: The agent is additionally subjected to wind forces which is applied to
the agent along the x-axis. Every time the agent takes a step, it drifts by the wind vector. The force is
changing between sessions according to: fw = 10 + 10 sin(0.3 · i).

A.4.3 Assistive Gym

Our assistive itch scratching task is adapted from Assistive Gym [15], similar to [39]. Assistive Gym
is a simulation environment for commercially available robots to perform 6 basic activities of daily
living (ADL) tasks - itch scratching, bed bathing, feeding, drinking, dressing, and arm manipulation.
We extend the itch scratching task in Assistive Gym.

The itch scratching task contains a human and a wheelchair-mounted 7-DOF Jaco robot arm. The
robot holds a small scratching tool which it uses to reach a randomly target scratching location along
the human’s right arm. The target location gradually changes along the right arm according to a
predefined function, x = 0.5 + sin(0.2 · i) where x is then projected onto a 3D point along the
arm. Actions for each robot’s 7-DOF arm are represented as changes in joint positions, R7. The
observations include, the 3D position and orientation of the robot’s end effector, the 7D joint positions
of the robot’s arm, forces applied at the robot’s end effector, and 3D positions of task relevant joints
along the human body. Again, the target itch location is unobserved to the agent.

The robot is rewarded for moving its end effector closer to the target and applying less than 10 N
of force near the target. Assistive Gym considers a person’s preferences when receiving care from
a robot. For example, a person may prefer the robot to perform slow actions or apply less force
on certain regions of the body. Assistive Gym computes a human preference reward, rH(s), based
on how well the robot satisfies the human’s preferences at state s. The human preference reward
is combined with the robot’s task success reward rR(s) to form a dense reward at each timestep,
r(s) = rR(s) + rH(s).

The full human preference reward is defined as:

rH(s) = −α · ω[Cv(s), Cf (s), Chf (s), Cfd(s), Cfdv(s), Cd(s), Cp(s)]

where α is a vector of activations in {0, 1} depicting which components of the preference are used
and ω is a vector of weights for each preference category. C•(s) is the cost for deviating from the
human’s preference.

Cv(s) for high end effector velocities. Cf (s) for applying force away from the target location. Chf (s)
for applying high forces near the target (> 10 N). Cfd(s) for spilling food or water. Cfdv(s) for
food / water entering mouth at high velocities. Cd(s) for fabric garments applying force to the body.
Cp(s) for applying high pressure with large tools.

For our itch-scratching task, we set α = [1, 1, 1, 0, 0, 0, 0] and ω = [0.25, 0.01, 0.05, 0, 0, 0, 0].

A.5 Implementation Details and Training Hyperparameters

In this section, we provide the hyperparameter values used for training each of the baselines and
DynaMITE-RL. We also provide more detailed explanation of the model architecture used for each
method.

A.5.1 Online RL

We used Proximal Policy Optimization (PPO) training. The details of important hyperparameters use
to produce the experimental results are presented in Table 4.
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Table 4: Training hyperparameters. Dashed entries means the same value is used across all environ-
ments.

Gridworld Reacher HalfCheetah ScratchItch

Max episode length 60 400 400 200
Bernoulli probability (p) for context switch 0.07 0.01 0.01 0.02
Number of parallel processes 16 2048 2048 32
Value loss coefficient 0.5 - - -
Entropy coefficient 0.01 0.05 0.05 0.1
Learning rate 3e-4 - - -
Discount factor (γ) 0.99 - - -
GAE lambda (λGAE) 0.95 - - -
Max grad norm 0.5 - - -
PPO clipping epsilon 0.2 - - -
Latent embedding dimension 5 16 16 16
Policy learning rate 3e-4 - - -
VAE learning rate 3e-4 - - -
State/action/reward FC embed size 8 32 32 32
Consistency loss weight (β) 0.5 - - -
Variational loss weight (λ) 0.01 - -

Table 5: Hyperparameters for Transformer Encoder

Hyperparameter Value

Embedding dimension 128
Num layers 2
Num attention head 8
Activation GELU
Dropout 0.1

We also employ several PPO training tricks detailed in [19], specifically normalizing advantage
computation, using Adam epsilon 1e− 8, clipping the value loss, adding entropy bonus for better
exploration, and using separate MLP networks for policy and value functions.

We use the same hyperparameters as above for RL2 and VariBAD if applicable. For RL2, the state
and reward are embedded through fully connected (FC) layers, concatenated, and then passed to a
GRU. The output is fed through another FC layer and then the network outputs the actions.

ContraBAR: Code based on the author’s original implementation:
https://github.com/ec2604/ContraBAR (MIT License). ContraBAR uses contrastive learning,
specifically Contrastive Predictive Coding (CPC) [32], to learn an information state representation of
the history. They use CPC to discriminate between positive future observations o+

t+k and K negative
observations {o−t+k}Ki=1 given the latent context ct. The latent context is generated by encoding a
sequence of observations through an autoregressive model. They apply an InfoNCE loss to train the
latent representation.

DynaMITE-RL: The VAE architecture consists of a recurrent encoder, which at each timestep t
takes as input the tuple (at−1, rt, st). The state, action, and reward are each passed through a different
linear layers followed by ReLU activations to produce separate embedding vectors. The embedding
outputs are concatenated, inputted through an MLP with 2 fully-connected layers of size 64, and
then passed to a GRU to produce the hidden state. Fully-connected linear output layers generate
the parameters of a Gaussian distribution: (µ(τ:t),Σ(τ:t)) for the latent embedding m. Another
fully-connected layer produces the logit for the session termination. The reward and state decoders
are MLPs with 2 fully-connected layers of size 32 with ReLU activations. They are trained my
minimizing a Mean Squared Error loss against the ground truth rewards and states. The policy and
critic networks are MLPs with 2 fully-connected layers of size 128 with ReLU activations. For the
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domains where the reward function is changing between sessions, we only train the reward-decoder.
For HalfCheetah Wind + Vel, we also train the transition decoder.

A.5.2 Offline RL

We use IQL [28] for offline RL training. IQL approximates the optimal value function through
temporal difference learning by using expectile regression. IQL has a separate policy extraction
step using advantage weighted regression (AWR) [33]. There are two main hyperparameters in IQL:
τ ∈ (0, 1), the expectile of a random variable, and β ∈ [0,∞), an inverse temperature term for AWR.
We use τ = 0.9 and β = 10.0 and following [28], we use a cosine schedule for the actor learning rate.
For each task, we train an oracle goal-conditioned PPO agent for data collection. The agent’s initial
state is randomly initialized. We collect an offline dataset of 1M environment transitions, roughly
2500 trajectories. We train IQL for 25000 offline gradient steps and report the average episode return
across 5 random seeds.

A.6 Compute Resources and Runtime

All experiments can be run on a single Nvidia RTX A6000 GPU. Implementation is written com-
pletely in JAX. The following are rough estimates of average run-time for DynaMITE-RL and each
baseline method for the online RL experiments with the HalfCheetah and ScratchItch environment.
These numbers vary depending on the environment; JAX-based environments (e.g. Reacher and
HalfCheetah) are highly parallelized and the runtimes are orders of magnitude lower than ScratchItch.
We also run multiple experiments on the same device so runtimes may be overestimated.

• RL2: 4 hour, 16 hours
• VariBAD: 3 hours, 8 hours
• BORel: 3 hours, 8 hours
• SecBAD: 3 hours, 10 hours
• ContraBAR: 2.5 hours, 7 hours
• DynaMITE-RL: 3 hour, 8 hours
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 5 demonstrates, while VariBAD and other meta-RL methods struggle
to learn good policies given nonstationary latent contexts, DynaMITE-RL exploits the causal
structure of a DLCMDP to more efficiently learn performant policies in both online and
offline-RL settings.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We only consider Markovian latent dynamics here (i.e. future latent states are
independent of prior latent states given the current latent state). It would be interesting to
explore complex non-Markovian latent dynamics.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

21



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not derive new theoretical results in this work.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present all the information needed in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Not at this point but we will release the code along with the camera ready
version of the paper. We will integrate several other meta-RL environments in addition to
the ones discussed in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As said, we present all the information needed in the Appendix. We disclose
hyperparameters in Appendix A.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables 1 and 2 have error bars. Figures 6 and 7 also have error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section A.5.2 provides information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that this paper conforms the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is about foundational research and not tied to particular applications
currently. In the future, DynaMITE-RL can be used in assistive robots to improve healthcare
delivery and patient satisfaction as we demonstrate in the experiments with Assistive Itch
Scratch.

Guidelines:

24

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the creators of code used in the paper are credited and VariBAD, RL2,
BORel, SecBAD, and ContraBAR are under MIT License.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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