
Self-conditioning pre-trained language models

Anonymous ACL submission

Abstract

We present a method to condition pre-trained001
Transformer-based Language Models without002
fine-tuning or using additional parameters. Our003
approach leverages the presence of existing ex-004
pert units in the model that can be used to steer005
text generation. We describe how to identify006
such expert units, and propose an inference007
time intervention upon them at that allows con-008
ditioning. Results show that our method is ef-009
fective for conditioning, even on fine-grained010
homograph concepts. Furthermore, we use a011
large corpus of contexts that highlights the pres-012
ence of inherited gender bias in the output gen-013
erated by an unconditioned model. Our experi-014
ments show that our method can be used to cor-015
rect this behaviour and to achieve gender parity016
for all of the contexts. We compare our method017
with PPLM-BoW (Dathathri et al., 2020), and018
show that our approach is able to achieve par-019
ity at a much lower perplexity. The proposed020
method is accessible to a wide audience thanks021
to its simplicity and minimal compute needs.022

1 Introduction023

Natural Language Processing (NLP) has evolved at024

a fast pace. Language models (Bengio et al., 2003)025

based on the Transformer architecture (TLMs)026

(Vaswani et al., 2017) achieve impressive perfor-027

mance in many tasks, including text generation028

(Radford et al., 2019; Brown et al., 2020). How-029

ever, TLMs present a couple of inconveniences: (1)030

conditioning these models to constrain the content031

of their generation requires expensive re-training032

(Keskar et al., 2019) or the use of additional pa-033

rameters (Dathathri et al., 2020; Zhang et al., 2020;034

Zeldes et al., 2020); (2) TLMs might inherit and035

perpetuate biases present in the training data cor-036

pora, which can have a negative social impact037

(Sheng et al., 2019; Abid et al., 2021), especially038

when TLMs are used in commercial systems.039

We propose a method to condition the generation040

of TLMs without fine-tuning or using additional041

parameters and show that such conditioning can 042

be used to study and mitigate biases. We show 043

that pre-trained TLMs already contain expert units 044

that are responsible for inducing a specific concept 045

in the generated text. Previous work has already 046

identified specialized units in pre-trained NLP mod- 047

els (Radford et al., 2017) as well as in the image 048

domain (Bau et al., 2017, 2019). Our approach 049

shows how these expert units can be found in a 050

scalable manner for a variety of concepts, and used 051

to condition pre-trained TLMs. To the best of our 052

knowledge, PPLM (Dathathri et al., 2020) in its 053

Bag-of-Words version (PPLM-BoW) is the only 054

work that achieves conditional generation without 055

adding additional parameters. In Sec. 2 we discuss 056

how our approach compares with PPLM-BoW and 057

other related works. 058

We use the noun concept as per its OxfordLan- 059

guages1 definition: “an abstract idea”. For the 060

purpose of this work a concept is anything that can 061

be described with a set of examples that contain 062

(positive examples) or do not contain (negative ex- 063

amples) that concept. Concepts can be broad such 064

as “sport” or more precise one such as “football”, 065

“world cup”, “National football team”, “player”, etc. 066

In Sec. 3 we explain how concepts are formally rep- 067

resented. 068

In Sec. 4 we propose an algorithm to identify 069

TLM expert units (neurons) responsible for gen- 070

erating text that contains a specific concept. We 071

propose in Sec. 5 a post-hoc intervention upon them 072

that increases the presence of a concept in the gen- 073

erated text without requiring fine-tuning or addi- 074

tional parameters. Qualitative generation results 075

are presented in Sec. 6.1. 076

We show how gender bias is propagated in TLMs 077

generated text and that our technique can be used to 078

mitigate it. More precisely, we assess on how many 079

expert units one must intervene upon to achieve 080

generative parity (i.e., the TLM generates sen- 081

1https://languages.oup.com

1

tences with equal probability of containing specific082

concepts). Results in Sec. 6.2 show that our ap-083

proach achieves generative parity by intervening084

on very few expert units (a median of 6 units, repre-085

senting 0.007% of the model units analyzed), while086

still producing sentences with a median increase087

in perplexity smaller than 20% with respect to the088

unconditional model. In contrast, PPLM-BoW’s089

output distribution collapses at the parity points,090

producing sentences with a median perplexity in-091

crease greater than 180%. Finally, in Sec. 7 we092

discuss the limitations and potential improvements093

of our work.094

2 Related work095

Conditioned text generation. Most methods096

tackling conditioned text generation are based on097

training dedicated architectures. If the concepts098

that one wants to control are known at training time,099

than these could be viable solutions. In (Chen et al.,100

2019), two latent embeddings representing syntax101

and semantics are inferred enforcing disentangle-102

ment. This allows conditioning on an arbitrary103

combination of syntax and semantics. Similarly,104

(Romanov et al., 2019) disentangle meaning and105

form with an adversarial training approach. The106

work in (Hu et al., 2017) combines a VAE (Kingma107

and Welling, 2014) with discriminators of specific108

attributes, and shows results controlling sentiment109

and tense. In (Peng et al., 2018), human specified110

control factors are extracted from data by an ana-111

lyzer model. Such factors are used at generation112

time to control the story ending valence (sad or113

happy endings). In CTRL (Keskar et al., 2019),114

training sentences are prepended with a control115

code, which allows conditioning at test time. The116

work in (Schiller et al., 2020) builds on (Keskar117

et al., 2019) allowing the controlled generation of118

arguments for specific contexts and aspects.119

Although effective, all these methods need the120

conditioning to be known before the model is121

trained, require large amounts of data, and suf-122

fer from the computational complexities typical of123

TLMs training. One of the advantages of our ap-124

proach is that a concept can be anything that can be125

described with examples. This allows defining con-126

cepts to the desired degree of complexity: e.g., con-127

cepts can be generically sport; or can be a specific128

one, like soccer; or a specific soccer competition,129

team, player or player role. Extending the number130

of controllable concepts (at any time) is as simple131

as collecting positive and negative exemplars for 132

the new concepts. 133

Product of Experts. Some recent works propose 134

conditioning strategies with minimal intervention 135

on the TLM. PPLM (Dathathri et al., 2020) ex- 136

ploits the Product of Experts (PoE) formulation 137

(Hinton, 1999) and does not require re-training. 138

They steer the latent variables during generation 139

to maximize both a conditional expert (modelled 140

with an external attribute network) and the uncon- 141

ditional expert. The steering is performed using 142

the gradients from the attribute network. In their 143

PPLM-BoW form, the conditional expert is a Bag- 144

of-Words model, which does not require any train- 145

ing parameter. Side tuning (Zhang et al., 2020) 146

adds a side model that learns a residual on top of 147

the original model. Similarly, (Zeldes et al., 2020) 148

supplements the pre-trained TLM with an external 149

model that shifts the output distribution. Recently, 150

FUDGE (Yang and Klein, 2021) adjusts the out- 151

put probabilities of a LM by learning an adjuster 152

model. All these methods follow the PoE frame- 153

work (explicitly, or implicitly). Our formulation 154

also adopts the PoE framework, with a key differ- 155

ence: we consider that the conditional PoE expert 156

already exists in the TLM rather than using exter- 157

nal models, and we propose a way to identify it 158

that does not involve computing gradients or using 159

additional parameters. This makes the proposed 160

solution simple and accessible to a wider audience. 161

Expert units. The use of expert units has been 162

previously explored in the image domain (Bau 163

et al., 2017, 2019; Fong and Vedaldi, 2018). Our 164

work is inspired by this body of research. However, 165

adapting it to the NLP domain has required redefin- 166

ing what an expert unit is, how to find it, and how 167

to control it. (Radford et al., 2017) finds an expert 168

unit for sentiment (the sentiment neuron) in LSTM 169

(Hochreiter and Schmidhuber, 1997) representa- 170

tions. It does so via L1 regularization of a logistic 171

regression classifier on top of the representations. 172

Our work is not limited to sentiment, and it can 173

scale to much larger models such as TLMs. 174

3 Representing concepts with binary 175

sentence datasets 176

We extend (Kim et al., 2018) to the NLP domain by 177

describing a concept c with a dataset {xc
i , b

c
i}Ni=1 178

of N = N+
c + N−

c sentences. The N+
c positive 179

sentences contain c (i.e., bci = 1), and the N−
c 180

2

negative sentences do not contain c (i.e., bci = 0).181

Each sentence xc
i is padded to a common length T .182

A concept can represent any idea, as long as it183

can be described with exemplars. For example, if184

the concept is sentiment, all positive examples will185

contain the desired sentiment. Negative sentences186

can be randomly sampled from some large data187

corpus (e.g., Wikipedia). Following the same pro-188

cedure, we can represent ideas using keywords with189

a specific WordNet (Princeton University) sense. In190

this case, positive examples are sentences that con-191

tain such sense. One interesting aspect of this rep-192

resentation is that we can distinguish homographs,193

e.g., we can represent the concept note “a reminder”194

differently from note “a tone of certain pitch”.195

4 Expert Units196

We consider a neuron to be an expert unit for a197

given concept if its output can be used as a predictor198

for the presence of that concept. Formally, let zc
m,i199

be the output of neuron m given the sentence xc
i .200

We treat zc
m,i as a binary classifier for the task201

bc = {bci}Ni=1. Thus, we measure the expertise of a202

unit m for the task bc with its the Average Precision203

(i.e., area under the precision-recall curve), APc
m ∈204

[0, 1]. For each concept c we measure the APc
m205

for all units and layers and rank them from the206

highest to the lowest level of expertise. Note that,207

to be agnostic with respect to the sequence length,208

the output of each layer is max-pooled across the209

temporal dimension (ignoring pad tokens).210

In order to induce the presence of a concept c dur-211

ing text generation, we manipulate the responses212

of the top experts, irrespective of their input, to213

be equal to their typical values measured when c214

is present. Borrowing from the causality litera-215

ture (Pearl, 2009), we define the intervention on k216

expert units as a do(c, k) operation on the model217

responses at inference time. Let Qk be the indices218

of the top-k experts, then the operation in Eq. (1)219

manipulates the responses of the top-k experts by220

setting them to their expected value for concept c:221

do(c, k) : {zc
m := Exc

[
zc
m | bc = 1

]
∀m ∈ Qk}. (1)222

Note that the expectation in Eq. (1) can be approx-223

imated as Exc

[
zc
m | bc = 1

]
≈

∑N+
c

i zc
m,i/N

+
c .224

See Appendix A for a Pytorch (Paszke et al., 2019)225

code example that implements Eq. (1).226

5 Self-conditioning pre-trained Language 227

Models 228

Language models are generative models that can 229

generate text consistent with linguistic rules. More 230

formally, autoregressive language models maxi- 231

mize the probability of a sentence x as p(x) = 232

p(x1, . . . ,xT) =
∏T

t=1 p(xt|x<t) (Bengio et al., 233

2003). 234

A conditional generative model maximizes the 235

joint distribution p(x, y) = p(y|x)p(x), where x 236

is the generated sentence and y is a latent condi- 237

tional variable (i.e., a specific concept in x). As 238

proposed in (Hinton, 1999), this equation can be 239

interpreted as a product of experts. The same inter- 240

pretation was adopted in (Dathathri et al., 2020) for 241

conditioned text generation, where p(y|x) is the 242

expert model that determines the condition for gen- 243

eration, while p(x) is the expert that ensures that 244

the generated sequence lies within the manifold of 245

sentence distributions. In conditioned generation, 246

rather than jointly sampling x and y, we define the 247

condition y = c before sampling x, thus 248

p(x|y = c) ∝ p(y = c|x)p(x). (2) 249

As opposed to (Dathathri et al., 2020) that model 250

p(y = c|x) with an external network, we hypoth- 251

esize that the condition expert p(y = c|x) al- 252

ready exists within the same model, and that the 253

model is able to maximize p(x|y = c) by exploit- 254

ing its internal condition expert. This means that 255

we condition the model using its own knowledge 256

(self-conditioning), without the use of any external 257

model or auxiliary training variables, and without 258

the need to re-train or fine-tune the model. If we 259

can identify selective neurons that contribute to the 260

condition expert p(y = c|x), we can control the 261

“amount” of concept c in the generated sentences. 262

The quality of the conditional expert model will dic- 263

tate the extent to which a concept can be controlled 264

during generation. On the other hand, a good p(x) 265

is also required to ensure that the generated text 266

stays within the language manifold; failing to do so 267

would lead to sentences that maximize p(x|y = c) 268

but are not linguistically correct. 269

In order to maximize Eq. (2) one can maximize 270

p(y = c|x) while keeping p(x) unchanged. This is 271

the case for pre-trained models, since we can hardly 272

improve p(x) without re-training or fine-tuning the 273

model. We propose to maximize p(y = c|x) by 274

increasing the number of experts k when apply- 275

ing the do(c, k) intervention, Eq. (1). Such in- 276

3

tervention modifies the model behavior, however,277

since k << M (M being the total number of278

units available), p(x) should be minimally affected.279

Larger values of k will eventually degrade p(x)280

over p(y = c|x) and the conditioned generative281

probability p(x|y = c) will collapse.282

Sequential decoding ties the input and the output283

of a TLM. Indeed, the presence of a concept in284

the context x<t will translate to the presence of285

the concept in the generated text xt. For example,286

words related to football are more likely when the287

context is about football. We apply the do(c, k)288

operation in Eq. (1) to artificially simulate the289

presence of a concept in the context, as summarized290

in Alg. 1. By setting the responses of expert units291

to the values they typically have when the concept292

is present, we induce the model to “believe” that293

the concept is present in the context.294

The results in Sec. 6 confirm our hypothesis that295

the conditional expert exists within the model, and296

that the model leverages it to self-condition genera-297

tion. Specific results in Sec. 6.3 also validate our298

ranking of expert units.299

Algorithm 1 Self-conditioned text generation for
concept c

Require: Model responses zc
m,i to data {xc

i}, la-
bels bc, units conditioned k, units analyzed M .

procedure FINDEXPERTS(zc
m,i, b

c, k)
APc

m ← AP(zc
m, bc) ∀m ∈M ▷ Sec. 4

QM ← argsort(APc
m)

return QM

end procedure
procedure SELFCONDGEN(QM , zc

m,i, b
c, k)

Qk ← QM[:-k]

zc
m ←

∑N+
c

i zc
m,i/N

+
c ∀m ∈ Qk ▷ Eq. (1)

GenerateSentence()
end procedure

6 Experimental results300

We divide the experimental results in three sec-301

tions. First in Sec. 6.1 we show examples of self-302

conditioned generation. In Sec. 6.2 we show how303

our technique can be used to achieve gender parity304

in TLMs text generation and we compare it with305

PPLM-BoW (Dathathri et al., 2020). Lastly, in306

Sec. 6.3 we show that the way we identify and rank307

expert units is effective to control text generation.308

In all our experiments the decoding strategy is309

by nucleus sampling (Holtzman et al., 2019) with 310

p = 0.9 in all experiments. Details on the lay- 311

ers analyzed in TLM architectures are shown in 312

Appendix B. 313

We construct our concept dataset leveraging the 314

OneSec dataset (Scarlini et al., 2019), which con- 315

tains sentences with one keyword annotated with 316

a WordNet sense. We chose OneSec because it is 317

composed of Wikipedia articles, a corpus that was 318

not used for the training of the models used in our 319

experiments (GPT2 and GPT2-L (Radford et al., 320

2019)). Note that our method is not limited by the 321

choice of a specific data source. 322

We limit the data per concept to 100 ≤ N+
c ≤ 323

1000 and 100 ≤ N−
c ≤ 1000, randomly sampling 324

when more than 1000 sentences are available. We 325

use N−
c > N+

c to account for the much larger vari- 326

ance of negatives than positives examples. The 327

choice of N+
c , N−

c is arbitrary, and it is usually 328

a trade-off between the compute resources avail- 329

able and the quality of the concept representation 330

needed. We leave the analysis on the effects of the 331

dataset size as future work. 332

6.1 Self-conditioned generation and 333

saturation 334

In this section we show and analyze some qualita- 335

tive results on self-conditioning using the GPT2-L 336

model from the Huggingface Transformers reposi- 337

tory (Wolf et al., 2019). More examples of success- 338

ful and unsuccessful self-conditioned generation 339

are shown in Appendix D. 340

In Table 1 we report generated sentences using 341

GPT2-L while applying the do(c, k) operation for 342

WordNet concept c =bird%1:05:00, as explained 343

in Sec. 5. Note that the presence of the concept 344

gradually increases with k, and that it saturates at 345

about k = 200 experts intervened upon (0.048% 346

of the 414720 units analyzed for GPT2-L). This 347

result empirically supports Eq. (2), showing that in- 348

creasing k maximizes p(y = c|x) until the collapse 349

of p(x|y = c), when the effect of p(x) (generate 350

plausible sentences) is no longer evident. 351

Table 2 shows examples with the known context 352

introduced by OpenAI in (Radford et al., 2019), 353

conditioned on concepts elevator%1:06:00 and frus- 354

tration%1:12:00. The generated text is still coher- 355

ent with the context, while including the condi- 356

tioned concepts. 357

In Table 3 we include generated sentences 358

for homograph concepts lead%1:27:00 and 359

4

http://wordnetweb.princeton.edu/perl/webwn?s=bird&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=elevator&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=frustration&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=frustration&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=frustration&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=lead&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=lead&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000

Table 1: Generated sentences using GPT2-L with
context Once upon a time, sorted by the number k
of top experts intervened upon for WordNet concept
bird%1:05:00 (warm-blooded egg-laying vertebrates).
In parenthesis the percentage of experts intervened upon
out of 414720 units analyzed.

k = 0 (0%) Once upon a time, I had a friend who used
to teach high school English and he was like,
"Oh, all you have to do is just get out

k = 40 (0.009%) Once upon a time, many of these treasures
were worth hundreds of thousands of dollars.
But this isn’t the first time that a horse

k = 60 (0.015%) Once upon a time, through a freak occur-
rence, an invasion of house sparrows, which
so often reduces the black-browed this

k = 80 (0.019%) Once upon a time, our own ancestors rode
about on chicken-like air wings. But this won-
der of the air has no such wings.

k = 200 (0.048%) Once upon a time of year, birds chase each
and watching. flot racing form, bird, bird bird
bird bird bird bird bird bird bird bird bird

lead%1:07:02. These results show that our condi-360

tioning does not rely on the presence of a keyword361

but on its meaning.362

Note that, the above experiments, the number of363

experts k required to make a concept appear is a364

small fraction (in parenthesis) of all available units.365

6.2 Controlling generative parity366

In this section we explore how conditioning in-367

ternal expert units can help to understand model368

biases, and how intervening on a small number of369

units can be effective to achieve generative parity370

for specific contexts. For this task we compare our371

method with PPLM-BoW. Since PPLM-BoW is372

computationally intensive in this set of experiments373

we use the GPT2 model for both algorithms.374

We focus on the important case of gender bias.375

As in (Vig et al., 2020), we measure the probabil-376

ity of generating words he and she given specific377

contexts. We use the contexts also used in (Vig378

et al., 2020), obtained combining specific context379

templates with occupations that induce different380

degrees of cultural bias (definitional occupations381

are discarded). In total we analyze 1037 contexts,382

that we call the occupations set (see Appendix C383

for more details). While we have analyzed gender384

using man/women this does not imply a binary cat-385

egorization and this analysis could be extended to386

include a broader categorization.387

In Fig. 1 we report the difference in probabili-388

ties ∆p(c, k) ≜ p(she|do(c, k)) − p(he|do(c, k))389

for all occupation contexts as we intervene on an390

increasing number of expert units via the do(c, k)391

operation in Eq. (1). To compute the probabili-392

ties we generate 500 sentences at each intervention393

Figure 1: Evolution of the difference in probabilities
∆p(c, k) ≜ p(she|do(c, k)) − p(he|do(c, k)) as more
experts are intervened upon for concepts c = woman
(top) and c = man (bottom). Each line represents
an occupational context, ∆p = 0 denotes the parity
point. 100% of the contexts that were initially biased
(at k = 0) favoring he (∆ < 0) are corrected when
applying do(woman, k) (top), and vice-versa (bottom).
In color we show those contexts with an initial bias in
contradiction with the concept being induced.

level k, using different random seeds. We use con- 394

cepts c = {woman,man}2 (Fig. 1.top and bottom 395

respectively). The unconditional bias of the model 396

is visible at ∆p(c, 0), where a positive value favors 397

she and a negative value favors he. 398

Generative parity is achieved when ∆p(c, k) = 399

0. A positive result for these interventions would 400

be that that all contexts that start (k = 0) below (for 401

the top plot) and above (for the bottom plot) the par- 402

ity line can cross ∆p(c, k) = 0 for some k. We see 403

that 100% of the contexts that are unconditionally 404

biased towards he achieve parity when inducing 405

concept woman (Fig. 1.top). Similarly, 100.0% of 406

the contexts unconditionally biased towards she 407

achieve parity when inducing man. 408

The distribution of the parity points (k, so that 409

∆p(c, k) = 0) is different, as shown in Fig. 2. All 410

contexts achieve parity for k < 20 when applying 411

do(woman, k); however, 18 contexts achieve par- 412

ity for k > 20 when applying do(man, k). These 413

2woman =woman%1:18:00 and man =man%1:18:00
in WordNet.

5

http://wordnetweb.princeton.edu/perl/webwn?s=bird&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=lead&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=woman&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=man&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000

Table 2: Generated sentences using GPT2-L with the context used by OpenAI (Radford et al., 2019) (in gray) for 2
different concepts. Note the presence of the concept in the generated text, and how the overall context is still taken
into account.

k = 60 (0.014%)
c =elevator%1:06:00

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns
spoke perfect English. The two scientists were unable to solve a problem in their research when they
started a great deal of unusual levitation and deceleration, which blew them up a few hundred feet and
dropped them back to the ground.

k = 60 (0.014%)
c =frustration%1:12:00

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns
spoke perfect English. Even though we had spent a lot of time just to find the path that could lead to the
species, we did not have success," has an Indian scientist, taking measurements from a lone unicorn on
the walls of a remote mountain

Table 3: Generated sentences using GPT2-L with
context Once upon a time, for homograph concepts
lead%1:07:02 (an advantage held by a competitor in a
race) and lead%1:27:00 (a soft heavy toxic malleable
metallic element). Our method allows for successful
conditioning on specific fine-grained word senses.

lead%1:07:02

k = 50 (0.012%) Once upon a time the left-hander would
always start at the front in the first two in-
stances, but when Mauricio Gaponi rose
to the podium,

lead%1:27:00

k = 100 (0.024%) Once upon a time a crust layer was ap-
plied to a partially fortified nickel base,
thereby causing to zinc- and copper-
ground element cob. The occurrence
of those metal and chrome

Figure 2: Distribution of contexts according to their
parity point. The majority of contexts achieves parity
with k < 20.

18 contexts either correspond to occupations nurse414

(14) or dancer (4). Note that these occupations are415

stereotypically associated to women, hinting that416

the unconditional bias of the model is related to the417

“effort” required to achieve parity. In order to assess418

such relationship, in Fig. 3 we plot the parity point419

averaged across all contexts and seeds for a given420

occupation as function of the initial bias of the421

model (also averaged by occupation). We observe422

a strong correlation (r = −0.921 and r = 0.833423

for woman and man respectively) adding evidence424

Figure 3: Parity point as a function of the model’s un-
conditional bias. A clear correlation is observed, hinting
that the unconditional bias is a proxy for the number of
expert units required to achieve parity.

that the model’s unconditional bias is a strong indi- 425

cator of the number of experts required to achieve 426

parity. This correlation could be used in future 427

works to automatically identify the value k needed 428

to achieve parity as a function of the unconditional 429

model bias. 430

It is important to ensure that the perplexity for 431

those k that induce parity remains as close as pos- 432

sible to that of k = 0. We measure the perplexity 433

of the generated sentences and observe that inter- 434

ventions with k < 50 do not cause degradation 435

generated text quality. For k > 50, the perplexity 436

increases more sharply, showing that the correct- 437

ness is degraded due to the collapse of p(x|y = c) 438

in Eq. (2). In Table 6 (Appendix E) we show some 439

examples of generated sentences at the parity points 440

found in Fig. 1. 441

6.2.1 Comparison with PPLM-BoW 442

To the best of our knowledge, our proposal and 443

PPLM-BoW are the only methods that achieve con- 444

ditioning of TLMs without requiring fine-tuning 445

or using additional parameters. We use the de- 446

fault parameters in the PPLM-BoW repository, and 447

a BoW composed of a single word (woman or 448

6

http://wordnetweb.princeton.edu/perl/webwn?s=elevator&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=frustration&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=lead&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=lead&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=lead&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=lead&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
https://github.com/uber-research/PPLM

man). We induce the presence of each concept449

by increase k from 0 to 300 for our approach and450

the stepsize from 0.0 to 1.0 for PPLM-BoW. We451

compute ∆p(woman, ·) and ∆p(man, ·) for all452

the occupational contexts. Our approach achieves453

generative parity when conditioning on woman454

at k = 5.57, (1.43, 8.45) (median, (quantile 0.1,455

quantile 0.9)); and at k = 3.48, (0.37, 45.41)456

for concept man. The measured perplexity is457

32.71, (29.60, 34.37) and 34.43, (30.03, 66.36) re-458

spectively (+13.25% and +19.19% compared to459

the unconditional model). Conversely, PPLM-BoW460

achieves parity at stepsize = 0.24, (0.03, 0.29)461

and stepsize = 0.08, (0.00, 0.25) respectively,462

with a perplexity of 99.54, (41.42, 139.00) and463

74.81, (27.12, 122.69) respectively (+238.41%464

and +183.21% compared to the unconditional465

model). These results show that our method is able466

to achieve generative parity at much lower perplex-467

ity than PPLM-BoW. Through human inspection,468

we observe that the PPLM-BoW sentences at par-469

ity point are saturated with words woman and man,470

for example when conditioning for woman with471

stepsize = 0.24 the sentences are similar to this472

one: “The doctor said that year woman woman473

woman”. This effect is not present at the parity474

points obtained by our method (Appendix E).475

This phenomenon could be explained by a key476

difference between the two approaches. In PPLM-477

BoW, the output distribution of the model is di-478

rectly steered to maximize the words in the Bag-479

of-Words that represents a concept (in this case480

woman or man). For strong conditioning values481

(large stepsize), the probability of using those ex-482

act words increases quickly. In our approach, we483

intervene on units that are good classifiers of a484

concept, so the whole contextual meaning in the485

sentences is taken into account. This, together with486

the fact that we do not act on the probabilities di-487

rectly, maintains higher stochasticity that prevents488

deterministic collapse at the parity points regime.489

It is fair to say that a more complex BoW could490

lead to improved PPLM-BoW results. However,491

it is not obvious how the BoW should be curated.492

When analyzing the most frequent words in our493

c = man dataset we found a considerable overlap494

with opposite concept (woman): men (532 occur-495

rences), man (280), women (277) and woman (56).496

Given such ambiguity, we preferred to use a single497

clear word to represent each concept. Note that498

our method achieves good results even with the499

frequent presence of ambiguous words in the data. 500

As shown in Table 3, our method can easily con- 501

dition on homograph concepts. Such fine-grained 502

conditioning is harder to achieve with PPLM-BoW 503

given the Bag-of-Words construction, which omits 504

the word sense. PPLM could achieve homograph 505

conditioning using trainable external models, but 506

such comparison is out of scope in this work since 507

we focus on a comparison without using additional 508

parameters. 509

Furthermore, conditioned generation using our 510

method is 7.3× faster than PPLM-BoW on the 511

same GPU setting (details in Sec. 7). 512

6.3 On the choice of expert units 513

The self-conditioning method in Sec. 5 relies on 514

selecting the top-k experts. With these experiments 515

we show that the way we select and rank expert 516

units leads to effective conditioning. The choice 517

of the experts involved in the conditioning is cru- 518

cial, and the possible choices are incredibly large. 519

For example, for GPT2-L the possible groupings 520

of k = 30 are
(
M
k

)
= 1.28 × 10136, which is pro- 521

hibitive for any search algorithm. 522

We show in Fig. 4 how the probabilities 523

p(he|do(man, 30)) and p(she|do(woman, 30)) 524

(for contexts "The nurse said that" and "The doctor 525

said that" respectively) evolve as we intervene on 526

different subsets of expert units. If the proposed 527

technique for finding experts is effective, with these 528

two interventions we should see that the use of the 529

top-30 experts leads to the highest probability of 530

the concept man and woman, respectively. Sub- 531

sets are selected by moving away from the top-30 532

in groups of 30 (in terms of APc
m). We also include 533

the probabilities obtained by selecting 10 random 534

subsets of 30 units (Rand 30) and the unconditional 535

probability (i.e., without any intervention, k = 0). 536

The top-30 group of experts obtains the highest 537

probability, supporting our choice of ranking ex- 538

pert units by APc
m. 539

In Fig. 4 we observe probability peaks for groups 540

121-150 (left) and 91-120 (right). This might indi- 541

cate that the ranking can be further refined (good 542

experts are missing in the top-30) or that we should 543

consider a joint distribution of experts in Eq. (1), 544

instead of intervening on them independently. 545

7 Discussion and Limitations 546

The data We have proposed a data-driven ap- 547

proach to represent concepts, thus being limited 548

7

Figure 4: Probabilities p(he|do(man, 30)) and p(she|do(woman, 30)) for contexts "The nurse said that" and "The
doctor said that" respectively. We intervene on different subsets of experts, starting by the top-30 (1-30), and we
show their mean APc

m. Note how the top-30 experts achieve a the highest probability (better concept conditioning),
and probabilities trend down as we move away from the top-30. We also include the mean and standard deviation
intervening on 10 random subsets of 30 experts (Rand 30) and the probability with no conditioning (k = 0).

to the available data. Our concept representation549

might suffer from inconsistencies inherent in the550

source OneSec dataset. The more diverse and accu-551

rate the concept datasets, the better they will help552

identify expert units.553

Individual expert units By selecting the top-k554

expert units in a greedy way, we implicitly consider555

them to be independent. Studying the joint distri-556

bution of expert units might lead to better condi-557

tioning, and open the door to capture more abstract558

concepts such as poetry or formal style. Moreover,559

the quality of the top experts is also important. Ex-560

ploring the impact of poor experts (low APc
m) in561

generation is another interesting future work.562

Turning off experts We have experimentally563

found that setting expert units to 0 is not an effec-564

tive approach to remove a concept. Interestingly,565

expert units are useful to induce a concept, but not566

to remove it. Using expert units to mitigate spe-567

cific concepts (e.g., aggressive language) is also a568

promising research direction.569

Compute requirements We discuss the com-570

pute requirements of the FindExperts algorithm in571

Alg. 1. According to the benchmark in the Trans-572

formers repository, the average inference time for573

GPT2 for sentences of 128 tokens is 16ms on GPU574

(single V100 GPU, 16GB VRAM) and 67ms on575

CPU (Intel Xeon @ 2.3GHz CPU with 32 vCPU).576

On average, we represent concepts with 1.5K sen-577

tences, which results in 24s (GPU) and 100s (CPU)578

required to obtain the responses of all the units. The579

computation of APc
m ∀m requires an extra 13s on580

CPU. Therefore, we can obtain the top experts in581

about 37s (GPU) or 113s (CPU). For comparison,582

fine-tuning GPT2 on 40K sentences takes about583

15min per epoch on GPU.584

Social implications Our method is easy to imple- 585

ment and does not require training a model, which 586

makes it available for a much larger audience. We 587

believe that our technique adds more value and flex- 588

ibility to current TLMs. While this is extremely 589

interesting for many applications, more malicious 590

actors could benefit from it to produce offensive, 591

inappropriate, or untruthful statements. In contrast, 592

we have achieved gender parity for specific con- 593

cepts by just intervening on a minimal amount of 594

experts. While being a seminal work, our method 595

is a step towards bias mitigation in deployed mod- 596

els. Such application is of paramount importance 597

for everyone who uses TLMs. 598

8 Conclusions 599

The main contribution of this work is a method to 600

self-condition a pre-trained TLM by intervention 601

on the expert units (neurons) that are responsible 602

for inducing the presence of a desired concept. Ex- 603

pert units are ranked according to their expertise to 604

predict a concept in the model input. 605

We presented examples of successful condition- 606

ing on different concepts (including homograph) 607

and discussed the limitations of the method. We 608

further showed that intervening on experts units 609

can condition a TLM to generate sentences with 610

equal probability with respect to a given concept 611

for a large range of contexts. We showed how this 612

can be used to mitigate gender bias in the generated 613

sentences and compared our results with PPLM- 614

BoW; in comparison our method is able to achieve 615

generative parity at much lower perplexity. Finally, 616

we showed that intervening on the neurons that we 617

identify as experts, compared to any other set of 618

neurons, yields the highest concept probability in 619

the generated text. 620

8

https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit#gid=0
https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit#gid=0
https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit#gid=0

References621

Abubakar Abid, Maheen Farooqi, and James Zou. 2021.622
Large language models associate muslims with vio-623
lence. Nature Machine Intelligence, 3.624

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and625
Antonio Torralba. 2017. Network dissection: Quanti-626
fying interpretability of deep visual representations.627
CVPR.628

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Zhou Bolei,629
Joshua B. Tenenbaum, William T. Freeman, and An-630
tonio Torralba. 2019. Gan dissection: Visualizing631
and understanding generative adversarial networks.632
ICLR.633

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and634
Christian Janvin. 2003. A neural probabilistic lan-635
guage model. Journal of Machine Learning Re-636
search, pages 1137–1155.637

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie638
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind639
Neelakantan, Pranav Shyam, Girish Sastry, Amanda640
Askell, et al. 2020. Language models are few-shot641
learners. arXiv preprint arXiv:2005.14165.642

Mingda Chen, Qingming Tang, Sam Wiseman, and643
Kevin Gimpel. 2019. A multi-task approach for dis-644
entangling syntax and semantics in sentence repre-645
sentations. NAACL.646

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane647
Hung, Eric Frank, Piero Molino, Jason Yosinski, and648
Rosanne Liu. 2020. Plug and play language models:649
A simple approach to controlled text generation. In650
ICLR.651

Ruth Fong and Andrea Vedaldi. 2018. Net2vec: Quan-652
tifying and explaining how concepts are encoded by653
filters in deep neural networks. CVPR.654

Geoffrey E. Hinton. 1999. Products of experts. ICANN.655

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long656
short-term memory. Neural computation, 9(8):1735–657
1780.658

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin659
Choi. 2019. The curious case of neural text degener-660
ation. arXiv preprint arXiv:1904.09751.661

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan662
Salakhutdinov, and Eric P. Xing. 2017. Toward con-663
trolled generation of text. ICML.664

Nitish Shirish Keskar, Bryan McCann, Lav Varshney,665
Caiming Xiong, and Richard Socher. 2019. CTRL666
- A Conditional Transformer Language Model for667
Controllable Generation. arXiv preprint.668

Been Kim, Martin Wattenberg, Justin Gilmer, Car-669
rie Cai, James Wexler, Fernanda Viegas, and Rory670
Sayres. 2018. Interpretability beyond feature attri-671
bution: Quantitative testing with concept activation672
vectors (tcav).673

Diederik P Kingma and Max Welling. 2014. Auto- 674
encoding variational bayes. ICLR. 675

Adam Paszke, Sam Gross, Francisco Massa, Adam 676
Lerer, James Bradbury, Gregory Chanan, Trevor 677
Killeen, Zeming Lin, Natalia Gimelshein, Luca 678
Antiga, Alban Desmaison, Andreas Kopf, Edward 679
Yang, Zachary DeVito, Martin Raison, Alykhan Te- 680
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, 681
Junjie Bai, and Soumith Chintala. 2019. Pytorch: 682
An imperative style, high-performance deep learning 683
library. 684

Judea Pearl. 2009. Causality: Models, Reasoning and 685
Inference. Cambridge University Press. 686

Nanyun Peng, Marjan Ghazvininejad, Jonathan May, 687
and Kevin Knight. 2018. Towards controllable story 688
generation. In Proceedings of the First Workshop on 689
Storytelling. ACL. 690

Princeton University. Wordnet: A lexical database for 691
english. https://wordnet.princeton.edu. 692

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. 693
2017. Learning to generate reviews and discovering 694
sentiment. arXiv preprint arXiv:1704.01444. 695

Alec Radford, Jeff Wu, Rewon Child, David Luan, 696
Dario Amodei, and Ilya Sutskever. 2019. Language 697
models are unsupervised multitask learners. arXiv 698
preprint. 699

Alexey Romanov, Anna Rumshisky, Anna Rogers, and 700
David Donahue. 2019. Adversarial decomposition of 701
text representation. NAACL. 702

Bianca Scarlini, Tommaso Pasini, and Roberto Navigli. 703
2019. Just “onesec” for producing multilingual sense- 704
annotated data. ACL. 705

Benjamin Schiller, Johannes Daxenberger, and Iryna 706
Gurevych. 2020. Aspect-controlled neural argument 707
generation. EMNLP. 708

Emily Sheng, Kai-Wei Chang, Premkumar Natara- 709
jan, and Nanyun Peng. 2019. The woman worked 710
as a babysitter: On biases in language generation. 711
EMNLP. 712

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 713
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz 714
Kaiser, and Illia Polosukhin. 2017. Attention is all 715
you need. NIPS. 716

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, 717
Sharon Qian, Daniel Nevo, Simas Sakenis, Jason 718
Huang, Yaron Singer, and Stuart Shieber. 2020. 719
Causal mediation analysis for interpreting neural nlp: 720
The case of gender bias. NeurIPS. 721

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 722
Chaumond, Clement Delangue, Anthony Moi, Pier- 723
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 724
and Jamie Brew. 2019. Huggingface’s transformers: 725
State-of-the-art natural language processing. ArXiv 726
preprint, abs/1910.03771. 727

9

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

Kevin Yang and Dan Klein. 2021. Fudge: Controlled728
text generation with future discriminators. NAACL.729

Yoel Zeldes, Dan Padnos, Or Sharir, and Barak Pe-730
leg. 2020. Technical report: Auxiliary tuning and731
its application to conditional text generation. arXiv732
preprint arXiv:2006.16823.733

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas734
Guibas, and Jitendra Malik. 2020. Side-tuning: A735
baseline for network adaptation via additive side net-736
works. In ECCV, pages 698–714.737

10

Appendices 738

A Pytorch code implementing the do(c, k) intervention 739

The code in Listing 1 shows how to extend a Pytorch (Paszke et al., 2019) nn.Module with the 740

functionalities to implement the do(c, k) operation in Eq. (1) using forward hooks. 741

This is the main specific functionality of our work. The remaining steps in Alg.1 require reading 742

intermediate responses of layers in Pytorch (also achievable with forward hooks) and computing AP. 743

1 744
2 import typing as t 745
3 import torch 746
4 from torch import nn 747
5 748
6 class IntervenedTorchModel(nn.Module): 749
7 """ 750
8 Class wrapping a Torch model so that we can apply a do() 751
9 intervention on selected units. 752

10 753
11 Example of code setting the first 5 units of layer 754
12 ‘conv1‘ to zeros.: 755
13 756
14 .. code-block:: python 757
15 import torch 758
16 759
17 model = IntervenedTorchModel(**your_args) 760
18 761
19 # Apply a do() intervention in units 0 to 4 of layer ‘conv1‘ 762
20 # by setting them to 0. 763
21 unit_indices = torch.tensor(range(0, 5), dtype=torch.int64) 764
22 values = torch.zeros_like(unit_indices, dtype=torch.float32) 765
23 model.set_units_in_layer(766
24 layer=’conv1’, 767
25 units=unit_indices, 768
26 values=values 769
27) 770
28 771
29 # run inference, where the intervened units 772
30 # ‘unit_indices‘ take values 0. 773
31 output = model.forward(your_data) 774
32 775
33 # Restore the model for non-intervened inference. 776
34 model.restore_units() 777
35 ... 778
36 """ 779
37 780
38 def __init__(781
39 self, 782
40 **your_args, 783
41) -> None: 784
42 super().__init__() 785
43 # Holds the do() intervention hooks 786
44 self._forward_hooks = [] 787
45 788
46 def _set_units_hook_wrapper(789
47 self, 790
48 units: torch.Tensor, 791
49 values: torch.Tensor 792
50) -> t.Callable: 793
51 assert len(units) == len(values), ’Number of values must match number of units.’ 794
52 assert units.dtype == torch.int64, ’Unit indices must be int64.’ 795
53 assert values.dtype == torch.float32, ’Values must be float32.’ 796
54 797
55 def forward_hook(module, input, output) -> None: 798
56 # Modify the output of the layer. 799
57 for i in range(len(output)): 800
58 output[i][units] = values 801
59 802
60 return forward_hook 803
61 804
62 def set_units_in_layer(805
63 self, 806
64 layer_name: str, 807
65 units: torch.Tensor, 808
66 values: torch.Tensor 809
67) -> None: 810
68 """ 811
69 Sets the indexed ‘‘units‘‘ in ‘‘layer‘‘ with the 812
70 ‘‘values‘‘ passed. 813
71 814
72 Performs the do(c, k) operation in the paper, 815
73 where k=len(‘‘units‘‘) and c is defined by 816
74 the ‘‘values‘‘ we pass. 817

11

75818
76 After this call, the forward() pass will be done819
77 with ‘‘units‘‘ intevened (fixed output to ‘‘values‘‘).820
78821
79 Args:822
80 layer_name: The layer (Tensor) name to be modified.823
81 units: Indices to the units to be set.824
82 values: Values to set the units to.825
83 """826
84 layer_name = layer_name.replace(’:0’, ’’)827
85 for iter_name, layer in self._pytorch_module.named_modules():828
86 if iter_name == layer_name:829
87 handle = layer.register_forward_hook(830
88 self._set_units_hook_wrapper(831
89 units=units,832
90 values=values,833
91)834
92)835
93 self._forward_hooks.append(handle)836
94837
95 def restore_units(self):838
96 """839
97 Removes the do() operation.840
98841
99 After this call, the forward() pass will behave842

100 with no intervention.843
101 """844
102 for h in self._forward_hooks:845
103 h.remove()846
104 self._forward_hooks.clear()847
105848
106 def forward(self, x):849
107 """850
108 Your custom forward pass.851
109 """852
110 ...853

Listing 1: Python code

B Layers analyzed in TLMs854

Figure 5: Schema of a Transformer block (Vaswani et al., 2017). In this work we analyze the units in the linear
layers A, Aproj, B and Bproj of each block (red dots), where D is the dimensionality of the embedding. For example,
in GPT2-large (D = 1280 and 36 blocks) we analyze 36 · 9D = 414720 units.

C Occupational contexts855

The occupational contexts set used in the paper borrows from (Vig et al., 2020). In that work, occupations856

are labelled either culturally biased towards male, female or neutral. We choose the same amount of857

occupations labelled as man and woman to have a balanced set of contexts. The occupations are combined858

with a set of templates, producing a total of 1034 contexts.859

Female: advocate, aide, artist, baker, clerk, counselor, dancer, educator, instructor, nurse, observer,860

performer, photographer, planner, poet, protester, psychiatrist, secretary, singer, substitute, teacher,861

teenager, therapist, treasurer, tutor.862

Male: critic, boss, technician, doctor, principal, priest, warrior, filmmaker, magistrate, officer, strategist,863

cleric, campaigner, prosecutor, prisoner, guitarist, promoter, assassin, bartender, cop, manager, footballer,864

trooper, saint, ambassador, politician.865

12

Neutral: acquaintance, character, citizen, correspondent, employee, musician, novelist, psychologist, 866

student, writer. 867

Templates: 868

The <occupation> said that, 869

The <occupation> yelled that, 870

The <occupation> whispered that, 871

The <occupation> wanted that, 872

The <occupation> desired that, 873

The <occupation> wished that, 874

The <occupation> ate because, 875

The <occupation> ran because, 876

The <occupation> drove because, 877

The <occupation> slept because, 878

The <occupation> cried because, 879

The <occupation> laughed because, 880

The <occupation> went home because, 881

The <occupation> stayed up because, 882

The <occupation> was fired because, 883

The <occupation> was promoted because, 884

The <occupation> yelled because. 885

13

D Self-conditioned generation extended results886

Table 4 shows sentences generated by conditioning on concepts with high maxm{APc
m}. That is, the887

model has some expert units with enough expertise. We see that the sentences are linguistically correct,888

and that they contain the concept being forced. On the other hand, Table 5 contains sentences obtained by889

conditioning on concepts with low maxm{APc
m}. We see how these sentences either do not contain the890

concept for low k or they are linguistically wrong for larger values of k.891

Table 4: Extended results on successful conditioned generation. All the concepts shown have a high maxm{APc
m}.

We borrow the context from the OpenAI GPT2 work (Radford et al., 2019)
.

k forced WordNet concept maxm{APc
m} Context + Generated (conditioned to concept)

60 smoke%1:19:00 0.9999 In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unex-
plored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that
the unicorns spoke perfect English. The experiment in Alto Allegro was conducted in the sloping
Man-of-War Mountain. This was a truly historic event! Researchers had to use three fresh, fresh
inhalations to extract all of the smoke. The study has been approved by the Spanish government

60 gold%1:21:00 0.9996 In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unex-
plored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that
the unicorns spoke perfect English. Our researcher found the magical ’Slab Silver’, which is one
of the most beautiful forms of gold we have ever had our eyes on. It’s a beautiful shimmer that’s
truly exceptional," said Peter Kieper, the Executive Chairman of Canadian Gold Corporation in The
Vancouver Sun.

60 retirement%1:26:00 0.9981 In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unex-
plored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the
unicorns spoke perfect English. The longest lived of the bunch, 45 year old Count of Ivory (Count
Monte) was found to be suffering from a brain tumour. Yet the Tibetan leviathan didn’t receive the
huge retirement pension provided by the CIA. He died peacefully at the age of 75 in April in a spa

Table 5: Extended results on unsuccessful conditioned generation on concept work%1:06:00, which obtains a low
maxm{APc

m}. We observe how the model struggles to produce linguistically correct sentences.
.

k forced WordNet concept maxm{APc
m} Context + Generated (conditioned to concept)

40 work%1:06:00 0.8508 Once upon a time, in an ancient palace at the heart of history, a was on. Magic, symbolism,
decadence and tragedy. Everything had come up, balancing with the architect’s.\n\nA madman’s
museum. A thing of daub. Now, it’s hide and clay and mud and dirt

70 work%1:06:00 0.8508 Once upon a time-spotted bench). Now I met my tools„„, work, work.<|endoftext|>Raw Products
Kretzer Top Tube Process\n\nPROTECT SHOP:\n\nDay 1: Screening on the work bench.\n\n\n1.
Beaksiewerk procedure - drill build

100 work%1:06:00 0.8508 Once upon a time of WARD will i means to out out any.\n:,. So! Work- WORK WORK WORK
WORK W WORK WORK WORK WORK\n WORK WORK\n work work work\n work\n work work
work work work work work work work work work work. work work work work work work work work
work

200 work%1:06:00 0.8508 Once upon a time of that done by... uses of such done object\n\n of.\n 28, 37\n WORK WORK
WORK.... work article... delivery... (bench work\n call really work\n out\n work work work 40 work
product if 5 40 work work 50\n work work 35 means 34 twenty block 29 individual

14

http://wordnetweb.princeton.edu/perl/webwn?s=smoke&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=gold&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=retirement&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=work&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=work&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=work&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=work&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=work&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000

Table 6: Sentences generated at the generative parity points in Fig. 1 that continue "The nurse said that" with he and
"The doctor said that" with she. The sentences are still valid from a linguistic perspective, showing that p(x|y = c)
in Eq. (1) has not collapsed at these parity points.

Context "The nurse said that" + do(man, 45) Context "The doctor said that" + do(woman, 6)

The nurse said that he was assaulted because he didn’t... The doctor said that she had no idea she was engaged...
The nurse said that he would cut her hair... The doctor said that she should have never used the game...
The nurse said that he was working at his desk ... The doctor said that she saw former presidential candidate...
The nurse said that he didn’t really know what... The doctor said that she did not have a right to perform...
The nurse said that he had met his wife at a house party... The doctor said that she had treated the woman...

E Perplexity 892

Figure 6: Perplexity as a function of number of units intervened upon (k) for concepts man and woman. We report
the mean and standard deviation across all the occupational contexts. The perplexity stays within reasonable values
for k < 50 for both concepts. Beyond that, the model saturates.

In Table 6 we show examples of generated sentences at the parity points found in Fig. 1. For illustration 893

purposes, we select sentences opposed to the model bias, that is, sentences continued with he for "The 894

nurse said that" and with she for "The doctor said that". The generated sentences are linguistically valid, 895

showing that p(x|y = c) in Eq. (2) has not collapsed at these parity points. 896

15

F Comparison with PPLM-BoW: Extra figures897

In Fig.7 we show the evolution of probabilities as a comparison between our method and PPLM-BoW.898

Fig. 8 shows the histogram of parity points, showing that most of them appear at stepsize ≈ 0.2. However,899

as shown in Fig.10, the perplexity at stepsize = 0.2 is very high, showing that the generated sentences900

are strongly degraded.901

Fig. 9 shows the correlation between parity point and unconditional bias of the model. The correlations902

measured are much lower than the ones obtained using our method (see Fig. 3).903

Figure 7: PPLM-BoW ∆p(c, stepsize) evolution.

Figure 8: PPLM-BoW histogram of parity points per occupational context.

Figure 9: PPLM-BoW correlation between unconditional bias and parity point).

16

Figure 10: PPLM-BoW average perplexity when conditioning on woman and man at different stepsize levels.

G About OneSec annotations 904

Note that the meaning of the concept is important. For example, concept one%1:23:00 (the smallest whole 905

number or a numeral representing this number, e.g.he has the one but will need a two and three to go with 906

it"; "they had lunch at one") achieves a maxm{APc
m} = 0.9885, while concept one%1:09:00 (a single 907

person or thing, e.g."he is the best one"; "this is the one I ordered") only achieves maxm{APc
m} = 0.8779. 908

Details on the annotations Each sentence in the OneSec dataset (Scarlini et al., 2019) is annotated as 909

in the following example: 910

<instance docsrc="Indigenous architecture" id="shelter.00002"> 911

<answer instance="shelter.00002" senseid="shelter%1:06:00::" /> 912

<context> 913

Types There are three traditional types of igloos , 914

all of different sizes and used for different purposes. 915

The smallest were constructed as temporary 916

<head>shelters</head> 917

, usually only used for one or two nights . 918

</context> 919

</instance> 920

The senseid label is the one of the marked word (shelters in this example, between <head> and 921

</head>). We use the senseid as follows. The part before the % is called lemma, while the remaining 922

numbers uniquely identify the concept in WordNet. We parse all the sentences for a given senseid to 923

create the positive sentences of each concept, only keeping those senseid with more than 100 sentences. 924

As explained in Sec. 3, the negative sentences for a concept are randomly selected from all the senseid 925

with different lemma than the positive ones. 926

OneSec license: The OneSec dataset has a license of type Creative Commons 927

Attribution-Noncommercial-Share Alike 4.0 License. 928

17

http://wordnetweb.princeton.edu/perl/webwn?s=one&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=one&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000

