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Abstract

We present a method to condition pre-trained
Transformer-based Language Models without
fine-tuning or using additional parameters. Our
approach leverages the presence of existing ex-
pert units in the model that can be used to steer
text generation. We describe how to identify
such expert units, and propose an inference
time intervention upon them at that allows con-
ditioning. Results show that our method is ef-
fective for conditioning, even on fine-grained
homograph concepts. Furthermore, we use a
large corpus of contexts that highlights the pres-
ence of inherited gender bias in the output gen-
erated by an unconditioned model. Our experi-
ments show that our method can be used to cor-
rect this behaviour and to achieve gender parity
for all of the contexts. We compare our method
with PPLM-BoW (Dathathri et al., 2020), and
show that our approach is able to achieve par-
ity at a much lower perplexity. The proposed
method is accessible to a wide audience thanks
to its simplicity and minimal compute needs.

1 Introduction

Natural Language Processing (NLP) has evolved at
a fast pace. Language models (Bengio et al., 2003)
based on the Transformer architecture (TLMs)
(Vaswani et al., |2017) achieve impressive perfor-
mance in many tasks, including text generation
(Radford et al., 2019 [Brown et al.l 2020). How-
ever, TLMs present a couple of inconveniences: (1)
conditioning these models to constrain the content
of their generation requires expensive re-training
(Keskar et al., [2019) or the use of additional pa-
rameters (Dathathri et al.,[2020; Zhang et al., [2020;
/eldes et al.l [2020); (2) TLMs might inherit and
perpetuate biases present in the training data cor-
pora, which can have a negative social impact
(Sheng et al.| 2019; |Abid et al.,|2021)), especially
when TLMs are used in commercial systems.

We propose a method to condition the generation
of TLMs without fine-tuning or using additional

parameters and show that such conditioning can
be used to study and mitigate biases. We show
that pre-trained TLMs already contain expert units
that are responsible for inducing a specific concept
in the generated text. Previous work has already
identified specialized units in pre-trained NLP mod-
els (Radford et al.l [2017) as well as in the image
domain (Bau et al.| 2017} [2019). Our approach
shows how these expert units can be found in a
scalable manner for a variety of concepts, and used
to condition pre-trained TLMs. To the best of our
knowledge, PPLM (Dathathri et al., [2020) in its
Bag-of-Words version (PPLM-BoW) is the only
work that achieves conditional generation without
adding additional parameters. In Sec. 2| we discuss
how our approach compares with PPLM-BoW and
other related works.

We use the noun concept as per its OxfordLan-
guagesﬂ definition: “an abstract idea”. For the
purpose of this work a concept is anything that can
be described with a set of examples that contain
(positive examples) or do not contain (negative ex-
amples) that concept. Concepts can be broad such
as “sport” or more precise one such as “football”,
“world cup”, “National football team”, “player”, etc.
In Sec.[3|we explain how concepts are formally rep-
resented.

In Sec. d] we propose an algorithm to identify
TLM expert units (neurons) responsible for gen-
erating text that contains a specific concept. We
propose in Sec.[5|a post-hoc intervention upon them
that increases the presence of a concept in the gen-
erated text without requiring fine-tuning or addi-
tional parameters. Qualitative generation results
are presented in Sec. [6.1]

We show how gender bias is propagated in TLMs
generated text and that our technique can be used to
mitigate it. More precisely, we assess on how many
expert units one must intervene upon to achieve
generative parity (i.e., the TLM generates sen-
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tences with equal probability of containing specific
concepts). Results in Sec. [6.2] show that our ap-
proach achieves generative parity by intervening
on very few expert units (a median of 6 units, repre-
senting 0.007% of the model units analyzed), while
still producing sentences with a median increase
in perplexity smaller than 20% with respect to the
unconditional model. In contrast, PPLM-BoW’s
output distribution collapses at the parity points,
producing sentences with a median perplexity in-
crease greater than 180%. Finally, in Sec. [/| we
discuss the limitations and potential improvements
of our work.

2 Related work

Conditioned text generation. Most methods
tackling conditioned text generation are based on
training dedicated architectures. If the concepts
that one wants to control are known at training time,
than these could be viable solutions. In (Chen et al.,
2019)), two latent embeddings representing syntax
and semantics are inferred enforcing disentangle-
ment. This allows conditioning on an arbitrary
combination of syntax and semantics. Similarly,
(Romanov et al., [2019) disentangle meaning and
form with an adversarial training approach. The
work in (Hu et al.|[2017) combines a VAE (Kingma
and Welling, [2014)) with discriminators of specific
attributes, and shows results controlling sentiment
and tense. In (Peng et al., 2018)), human specified
control factors are extracted from data by an ana-
lyzer model. Such factors are used at generation
time to control the story ending valence (sad or
happy endings). In CTRL (Keskar et al. 2019),
training sentences are prepended with a control
code, which allows conditioning at test time. The
work in (Schiller et al.l [2020) builds on (Keskar
et al., 2019) allowing the controlled generation of
arguments for specific contexts and aspects.
Although effective, all these methods need the
conditioning to be known before the model is
trained, require large amounts of data, and suf-
fer from the computational complexities typical of
TLMs training. One of the advantages of our ap-
proach is that a concept can be anything that can be
described with examples. This allows defining con-
cepts to the desired degree of complexity: e.g., con-
cepts can be generically sport; or can be a specific
one, like soccer; or a specific soccer competition,
team, player or player role. Extending the number
of controllable concepts (at any time) is as simple

as collecting positive and negative exemplars for
the new concepts.

Product of Experts. Some recent works propose
conditioning strategies with minimal intervention
on the TLM. PPLM (Dathathn et al., 2020) ex-
ploits the Product of Experts (PoE) formulation
(Hinton, [1999) and does not require re-training.
They steer the latent variables during generation
to maximize both a conditional expert (modelled
with an external attribute network) and the uncon-
ditional expert. The steering is performed using
the gradients from the attribute network. In their
PPLM-BoW form, the conditional expert is a Bag-
of-Words model, which does not require any train-
ing parameter. Side tuning (Zhang et al., [2020)
adds a side model that learns a residual on top of
the original model. Similarly, (Zeldes et al., [2020)
supplements the pre-trained TLM with an external
model that shifts the output distribution. Recently,
FUDGE (Yang and Klein, 2021]) adjusts the out-
put probabilities of a LM by learning an adjuster
model. All these methods follow the PoE frame-
work (explicitly, or implicitly). Our formulation
also adopts the PoE framework, with a key differ-
ence: we consider that the conditional PoE expert
already exists in the TLM rather than using exter-
nal models, and we propose a way to identify it
that does not involve computing gradients or using
additional parameters. This makes the proposed
solution simple and accessible to a wider audience.

Expert units. The use of expert units has been
previously explored in the image domain (Bau
et al., 2017, 2019; |[Fong and Vedaldi, [2018)). Our
work is inspired by this body of research. However,
adapting it to the NLP domain has required redefin-
ing what an expert unit is, how to find it, and how
to control it. (Radford et al.,[2017) finds an expert
unit for sentiment (the sentiment neuron) in LSTM
(Hochreiter and Schmidhuber, [1997) representa-
tions. It does so via L1 regularization of a logistic
regression classifier on top of the representations.
Our work is not limited to sentiment, and it can
scale to much larger models such as TLMs.

3 Representing concepts with binary
sentence datasets

We extend (Kim et al.,2018)) to the NLP domain by
describing a concept ¢ with a dataset {x{, bf f\i 1

of N = N} + N sentences. The N positive
sentences contain ¢ (i.e., b§ = 1), and the N



negative sentences do not contain c (i.e., b5 = 0).
Each sentence x{ is padded to a common length 7.

A concept can represent any idea, as long as it
can be described with exemplars. For example, if
the concept is sentiment, all positive examples will
contain the desired sentiment. Negative sentences
can be randomly sampled from some large data
corpus (e.g., Wikipedia). Following the same pro-
cedure, we can represent ideas using keywords with
a specific WordNet (Princeton University) sense. In
this case, positive examples are sentences that con-
tain such sense. One interesting aspect of this rep-
resentation is that we can distinguish homographs,
e.g., we can represent the concept note “a reminder”
differently from note “a tone of certain pitch”.

4 Expert Units

We consider a neuron to be an expert unit for a
given concept if its output can be used as a predictor
for the presence of that concept. Formally, let z7, ;
be the output of neuron m given the sentence .
We treat z;, ; as a binary classifier for the task
b¢ = {b¢}Y . Thus, we measure the expertise of a
unit m for the task b¢ with its the Average Precision
(i.e., area under the precision-recall curve), AP;,, €
[0,1]. For each concept ¢ we measure the AP{,
for all units and layers and rank them from the
highest to the lowest level of expertise. Note that,
to be agnostic with respect to the sequence length,
the output of each layer is max-pooled across the
temporal dimension (ignoring pad tokens).

In order to induce the presence of a concept ¢ dur-
ing text generation, we manipulate the responses
of the top experts, irrespective of their input, to
be equal to their typical values measured when ¢
is present. Borrowing from the causality litera-
ture (Pearl, 2009), we define the intervention on k
expert units as a do(c, k) operation on the model
responses at inference time. Let Q. be the indices
of the top-k experts, then the operation in Eq.
manipulates the responses of the top-k experts by
setting them to their expected value for concept c:

do(c, k) : {zp, = Exe [z, |b° = 1] Ym € Qx}. (1)

Note that the expectation in Eq. (I)) can be approx-
imated as Ege |25, |b° = 1] ~ wa 25, /N
See Appendix [A]for a Pytorch (Paszke et al., 2019)
code example that implements Eq. (I).

5 Self-conditioning pre-trained Language
Models

Language models are generative models that can
generate text consistent with linguistic rules. More
formally, autoregressive language models maxi-
mize the probability of a sentence x as p(x) =
p(x1, ..., er) = [[~, p(x:|x;) (Bengio et al.,
2003).

A conditional generative model maximizes the
joint distribution p(x,y) = p(y|x)p(x), where x
is the generated sentence and y is a latent condi-
tional variable (i.e., a specific concept in x). As
proposed in (Hinton, [1999)), this equation can be
interpreted as a product of experts. The same inter-
pretation was adopted in (Dathathri et al.| [2020) for
conditioned text generation, where p(y|x) is the
expert model that determines the condition for gen-
eration, while p(x) is the expert that ensures that
the generated sequence lies within the manifold of
sentence distributions. In conditioned generation,
rather than jointly sampling  and y, we define the
condition y = ¢ before sampling @, thus

p(xly = c) < p(y = clx)p(x). (2)

As opposed to (Dathathri et al.,|2020) that model
p(y = c|x) with an external network, we hypoth-
esize that the condition expert p(y = c|x) al-
ready exists within the same model, and that the
model is able to maximize p(x|y = c) by exploit-
ing its internal condition expert. This means that
we condition the model using its own knowledge
(self-conditioning), without the use of any external
model or auxiliary training variables, and without
the need to re-train or fine-tune the model. If we
can identify selective neurons that contribute to the
condition expert p(y = c|x), we can control the
“amount” of concept c in the generated sentences.
The quality of the conditional expert model will dic-
tate the extent to which a concept can be controlled
during generation. On the other hand, a good p(x)
is also required to ensure that the generated text
stays within the language manifold; failing to do so
would lead to sentences that maximize p(x|y = c)
but are not linguistically correct.

In order to maximize Eq. (2) one can maximize
p(y = c|x) while keeping p(x) unchanged. This is
the case for pre-trained models, since we can hardly
improve p(a) without re-training or fine-tuning the
model. We propose to maximize p(y = c|x) by
increasing the number of experts k£ when apply-
ing the do(c, k) intervention, Eq. (I). Such in-



tervention modifies the model behavior, however,
since k << M (M being the total number of
units available), p(x) should be minimally affected.
Larger values of k will eventually degrade p(x)
over p(y = c|x) and the conditioned generative
probability p(x|y = ¢) will collapse.

Sequential decoding ties the input and the output
of a TLM. Indeed, the presence of a concept in
the context o, will translate to the presence of
the concept in the generated text x;. For example,
words related to football are more likely when the
context is about football. We apply the do(c, k)
operation in Eq. (1) to artificially simulate the
presence of a concept in the context, as summarized
in Alg.[I] By setting the responses of expert units
to the values they typically have when the concept
is present, we induce the model to “believe” that
the concept is present in the context.

The results in Sec. [ confirm our hypothesis that
the conditional expert exists within the model, and
that the model leverages it to self-condition genera-
tion. Specific results in Sec. [6.3]also validate our
ranking of expert units.

Algorithm 1 Self-conditioned text generation for
concept ¢

Require: Model responses z;,, ; to data {z{}, la-
bels b, units conditioned k, units analyzed M.

procedure FINDEXPERTS(Z,,, ;, b, k)
APS, + AP(25,,b°) Vme M > Sec.[q

Qu < argsort (AP))
return Q)

end procedure

procedure SELFCONDGEN(Qy, Zp s b, k)
Qk Q]V[£ 1 k]
28 Zf\[c 25, /NSVYm € Qp > Eq.
GenerateSentence()

end procedure

6 Experimental results

We divide the experimental results in three sec-
tions. First in Sec. [6.1| we show examples of self-
conditioned generation. In Sec. [6.2] we show how
our technique can be used to achieve gender parity
in TLMs text generation and we compare it with
PPLM-BoW (Dathathri et al., [2020). Lastly, in
Sec.[6.3|we show that the way we identify and rank
expert units is effective to control text generation.

In all our experiments the decoding strategy is

by nucleus sampling (Holtzman et al.,|2019) with
p = 0.9 in all experiments. Details on the lay-
ers analyzed in TLM architectures are shown in
Appendix [B]

We construct our concept dataset leveraging the
OneSec dataset (Scarlini et al., [2019]), which con-
tains sentences with one keyword annotated with
a WordNet sense. We chose OneSec because it is
composed of Wikipedia articles, a corpus that was
not used for the training of the models used in our
experiments (GPT2 and GPT2-L (Radford et al.
2019)). Note that our method is not limited by the
choice of a specific data source.

We limit the data per concept to 100 < N <
1000 and 100 < N. < 1000, randomly sampling
when more than 1000 sentences are available. We
use N, > N to account for the much larger vari-
ance of negatives than positives examples. The
choice of N, N is arbitrary, and it is usually
a trade-off between the compute resources avail-
able and the quality of the concept representation
needed. We leave the analysis on the effects of the
dataset size as future work.

6.1 Self-conditioned generation and
saturation

In this section we show and analyze some qualita-
tive results on self-conditioning using the GPT2-L
model from the Huggingface Transformers reposi-
tory (Wolf et al.||2019). More examples of success-
ful and unsuccessful self-conditioned generation
are shown in Appendix

In Table[T] we report generated sentences using
GPT2-L while applying the do(c, k) operation for
WordNet concept ¢ =bird%1:05:00, as explained
in Sec.[5] Note that the presence of the concept
gradually increases with k, and that it saturates at
about £ = 200 experts intervened upon (0.048%
of the 414720 units analyzed for GPT2-L). This
result empirically supports Eq. (2)), showing that in-
creasing k maximizes p(y = c|x) until the collapse
of p(x|y = c¢), when the effect of p(x) (generate
plausible sentences) is no longer evident.

Table [2] shows examples with the known context
introduced by OpenAl in (Radford et al., 2019),
conditioned on concepts elevator%1:06:00 and frus-
tration%1:12:00. The generated text is still coher-
ent with the context, while including the condi-
tioned concepts.

In Table 3] we include generated sentences
for homograph concepts lead%1:27:00 and
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Table 1: Generated sentences using GPT2-L with
context Once upon a time, sorted by the number k
of top experts intervened upon for WordNet concept
bird%1:05:00 (warm-blooded egg-laying vertebrates).
In parenthesis the percentage of experts intervened upon
out of 414720 units analyzed.

k=0(0%) Once upon a time, | had a friend who used
to teach high school English and he was like,

"Oh, all you have to do is just get out

Once upon a time, many of these treasures
were worth hundreds of thousands of dollars.
But this isn’t the first time that a horse

Once upon a time, through a freak occur-
rence, an invasion of house sparrows, which
so often reduces the black-browed this

Once upon a time, our own ancestors rode
about on chicken-like air wings. But this won-
der of the air has no such wings.

Once upon a time of year, birds chase each
and watching. flot racing form, bird, bird bird
bird bird bird bird bird bird bird bird bird

k = 40 (0.009%)
k =60 (0.015%)
k = 80(0.019%)

k = 200 (0.048%)

lead%1:07:02. These results show that our condi-
tioning does not rely on the presence of a keyword
but on its meaning.

Note that, the above experiments, the number of
experts k required to make a concept appear is a
small fraction (in parenthesis) of all available units.

6.2 Controlling generative parity

In this section we explore how conditioning in-
ternal expert units can help to understand model
biases, and how intervening on a small number of
units can be effective to achieve generative parity
for specific contexts. For this task we compare our
method with PPLM-BoW. Since PPLM-BoW is
computationally intensive in this set of experiments
we use the GPT2 model for both algorithms.

We focus on the important case of gender bias.
As in (Vig et al.,[2020), we measure the probabil-
ity of generating words he and she given specific
contexts. We use the contexts also used in (Vig
et al., 2020)), obtained combining specific context
templates with occupations that induce different
degrees of cultural bias (definitional occupations
are discarded). In total we analyze 1037 contexts,
that we call the occupations set (see Appendix [C|
for more details). While we have analyzed gender
using man/women this does not imply a binary cat-
egorization and this analysis could be extended to
include a broader categorization.

In Fig. [I] we report the difference in probabili-
ties Ap(c, k) £ p(she|do(c, k)) — p(he|do(c, k))
for all occupation contexts as we intervene on an
increasing number of expert units via the do(c, k)
operation in Eq. (I). To compute the probabili-
ties we generate 500 sentences at each intervention

do(woman, k)

Ap(woman, k)

Number of units intervened upon (k)

do(man, k)

Ap(man, k)

0 1 3 10 30 60 100 200 300
Number of units intervened upon (k)

Figure 1: Evolution of the difference in probabilities
Ap(c, k) £ p(she|do(c, k)) — p(he|do(c, k)) as more
experts are intervened upon for concepts ¢ = woman
(top) and ¢ = man (bottom). Each line represents
an occupational context, Ap = 0 denotes the parity
point. 100% of the contexts that were initially biased
(at k = 0) favoring he (A < 0) are corrected when
applying do(woman, k) (top), and vice-versa (bottom).
In color we show those contexts with an initial bias in
contradiction with the concept being induced.

level k, using different random seeds. We use con-
cepts ¢ = {woman, man}ﬂ (Fig. top and bottom
respectively). The unconditional bias of the model
is visible at Ap(c, 0), where a positive value favors
she and a negative value favors he.

Generative parity is achieved when Ap(c, k) =
0. A positive result for these interventions would
be that that all contexts that start (k = 0) below (for
the top plot) and above (for the bottom plot) the par-
ity line can cross Ap(c, k) = 0 for some k. We see
that 100% of the contexts that are unconditionally
biased towards /e achieve parity when inducing
concept woman (Fig. [[ltop). Similarly, 100.0% of
the contexts unconditionally biased towards she
achieve parity when inducing man.

The distribution of the parity points (k, so that
Ap(c, k) = 0) is different, as shown in Fig.[2] All
contexts achieve parity for £ < 20 when applying
do(woman, k); however, 18 contexts achieve par-
ity for k£ > 20 when applying do(man, k). These

2woman =woman%]1:18:00/ and man =man%1:18:00
in WordNet.


http://wordnetweb.princeton.edu/perl/webwn?s=bird&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=lead&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=woman&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=man&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000

Table 2: Generated sentences using GPT2-L with the context used by OpenAl (Radford et al.| [2019) (in gray) for 2
different concepts. Note the presence of the concept in the generated text, and how the overall context is still taken

into account.

k =60 (0.014%)
¢ =elevator%1:06:00

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns
spoke perfect English. The two scientists were unable to solve a problem in their research when they
started a great deal of unusual levitation and deceleration, which blew them up a few hundred feet and
dropped them back to the ground.

k =60 (0.014%)

¢ =frustration%1:12:00

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns
spoke perfect English. Even though we had spent a lot of time just to find the path that could lead to the
species, we did not have success," has an Indian scientist, taking measurements from a lone unicorn on

the walls of a remote mountain

Table 3: Generated sentences using GPT2-L with
context Once upon a time, for homograph concepts
lead%1:07:02| (an advantage held by a competitor in a
race) and lead%1:27:00) (a soft heavy toxic malleable
metallic element). Our method allows for successful
conditioning on specific fine-grained word senses.

lead%1:07:02

k =50(0.012%) Once upon a time the left-hander would
always start at the front in the first two in-
stances, but when Mauricio Gaponi rose

to the podium,
lead%1:27:00

k =100 (0.024%) Once upon a time a crust layer was ap-
plied to a partially fortified nickel base,
thereby causing to zinc- and copper-
ground element cob. The occurrence
of those metal and chrome

) —— do(woman, k)
E 102
% 10 do(man, k)
hs]
510!
z

10()
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Parity point (k at which Ap = 0)

Figure 2: Distribution of contexts according to their
parity point. The majority of contexts achieves parity
with k& < 20.

18 contexts either correspond to occupations nurse
(14) or dancer (4). Note that these occupations are
stereotypically associated to women, hinting that
the unconditional bias of the model is related to the
“effort” required to achieve parity. In order to assess
such relationship, in Fig.[3] we plot the parity point
averaged across all contexts and seeds for a given
occupation as function of the initial bias of the
model (also averaged by occupation). We observe
a strong correlation (r = —0.921 and r = 0.833
for woman and man respectively) adding evidence

—~ do(woman, k) 5 do(man, k)

110" {ew & o L
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Figure 3: Parity point as a function of the model’s un-
conditional bias. A clear correlation is observed, hinting
that the unconditional bias is a proxy for the number of
expert units required to achieve parity.

that the model’s unconditional bias is a strong indi-
cator of the number of experts required to achieve
parity. This correlation could be used in future
works to automatically identify the value k£ needed
to achieve parity as a function of the unconditional
model bias.

It is important to ensure that the perplexity for
those k that induce parity remains as close as pos-
sible to that of £ = 0. We measure the perplexity
of the generated sentences and observe that inter-
ventions with £ < 50 do not cause degradation
generated text quality. For k > 50, the perplexity
increases more sharply, showing that the correct-
ness is degraded due to the collapse of p(x|y = ¢)
in Eq. (Z). In Table[6] (Appendix [E) we show some
examples of generated sentences at the parity points
found in Fig.[I]

6.2.1 Comparison with PPLM-BoW

To the best of our knowledge, our proposal and
PPLM-BoW are the only methods that achieve con-
ditioning of TLMs without requiring fine-tuning
or using additional parameters. We use the de-
fault parameters in the PPLM-BoW repository, and
a BoW composed of a single word (woman or
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http://wordnetweb.princeton.edu/perl/webwn?s=lead&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=lead&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=lead&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
https://github.com/uber-research/PPLM

man). We induce the presence of each concept
by increase k£ from O to 300 for our approach and
the stepsize from 0.0 to 1.0 for PPLM-BoW. We
compute Ap(woman, ) and Ap(man,-) for all
the occupational contexts. Our approach achieves
generative parity when conditioning on woman
at k = 5.57,(1.43,8.45) (median, (quantile 0.1,
quantile 0.9)); and at & = 3.48,(0.37,45.41)
for concept man. The measured perplexity is
32.71,(29.60, 34.37) and 34.43, (30.03, 66.36) re-
spectively (+13.25% and +19.19% compared to
the unconditional model). Conversely, PPLM-BoW
achieves parity at stepsize = 0.24,(0.03,0.29)
and stepsize = 0.08,(0.00,0.25) respectively,
with a perplexity of 99.54,(41.42,139.00) and
74.81,(27.12,122.69) respectively (4238.41%
and +183.21% compared to the unconditional
model). These results show that our method is able
to achieve generative parity at much lower perplex-
ity than PPLM-BoW. Through human inspection,
we observe that the PPLM-BoW sentences at par-
ity point are saturated with words woman and man,
for example when conditioning for woman with
stepsize = (.24 the sentences are similar to this
one: “The doctor said that year woman woman
woman”. This effect is not present at the parity
points obtained by our method (Appendix [E).

This phenomenon could be explained by a key
difference between the two approaches. In PPLM-
BoW, the output distribution of the model is di-
rectly steered to maximize the words in the Bag-
of-Words that represents a concept (in this case
woman or man). For strong conditioning values
(large stepsize), the probability of using those ex-
act words increases quickly. In our approach, we
intervene on units that are good classifiers of a
concept, so the whole contextual meaning in the
sentences is taken into account. This, together with
the fact that we do not act on the probabilities di-
rectly, maintains higher stochasticity that prevents
deterministic collapse at the parity points regime.
It is fair to say that a more complex BoW could
lead to improved PPLM-BoW results. However,
it is not obvious how the BoW should be curated.
When analyzing the most frequent words in our
¢ = man dataset we found a considerable overlap
with opposite concept (woman): men (532 occur-
rences), man (280), women (277) and woman (56).
Given such ambiguity, we preferred to use a single
clear word to represent each concept. Note that
our method achieves good results even with the

frequent presence of ambiguous words in the data.

As shown in Table 3] our method can easily con-
dition on homograph concepts. Such fine-grained
conditioning is harder to achieve with PPLM-BoW
given the Bag-of-Words construction, which omits
the word sense. PPLM could achieve homograph
conditioning using trainable external models, but
such comparison is out of scope in this work since
we focus on a comparison without using additional
parameters.

Furthermore, conditioned generation using our
method is 7.3x faster than PPLM-BoW on the
same GPU setting (details in Sec.[7).

6.3 On the choice of expert units

The self-conditioning method in Sec. [5]relies on
selecting the top-k experts. With these experiments
we show that the way we select and rank expert
units leads to effective conditioning. The choice
of the experts involved in the conditioning is cru-
cial, and the possible choices are incredibly large.
For example, for GPT2-L the possible groupings
of k = 30 are (]‘,f) = 1.28 x 10'35, which is pro-
hibitive for any search algorithm.

We show in Fig. @] how the probabilities
p(he|ldo(man, 30)) and p(she|do(woman, 30))
(for contexts "The nurse said that" and "The doctor
said that" respectively) evolve as we intervene on
different subsets of expert units. If the proposed
technique for finding experts is effective, with these
two interventions we should see that the use of the
top-30 experts leads to the highest probability of
the concept man and woman, respectively. Sub-
sets are selected by moving away from the top-30
in groups of 30 (in terms of AP;,). We also include
the probabilities obtained by selecting 10 random
subsets of 30 units (Rand 30) and the unconditional
probability (i.e., without any intervention, k = 0).
The top-30 group of experts obtains the highest
probability, supporting our choice of ranking ex-
pert units by APy, .

In Fig. [ we observe probability peaks for groups
121-150 (left) and 91-120 (right). This might indi-
cate that the ranking can be further refined (good
experts are missing in the top-30) or that we should
consider a joint distribution of experts in Eq. (I)),
instead of intervening on them independently.

7 Discussion and Limitations

The data We have proposed a data-driven ap-
proach to represent concepts, thus being limited
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Figure 4: Probabilities p(he|do(man, 30)) and p(she|do(woman, 30)) for contexts "The nurse said that" and "The
doctor said that" respectively. We intervene on different subsets of experts, starting by the top-30 (1-30), and we
show their mean AP;,,. Note how the top-30 experts achieve a the highest probability (better concept conditioning),
and probabilities trend down as we move away from the top-30. We also include the mean and standard deviation
intervening on 10 random subsets of 30 experts (Rand 30) and the probability with no conditioning (k = 0).

to the available data. Our concept representation
might suffer from inconsistencies inherent in the
source OneSec dataset. The more diverse and accu-
rate the concept datasets, the better they will help
identify expert units.

Individual expert units By selecting the top-k
expert units in a greedy way, we implicitly consider
them to be independent. Studying the joint distri-
bution of expert units might lead to better condi-
tioning, and open the door to capture more abstract
concepts such as poetry or formal style. Moreover,
the quality of the top experts is also important. Ex-
ploring the impact of poor experts (low AP;,) in
generation is another interesting future work.

Turning off experts We have experimentally
found that setting expert units to 0 is not an effec-
tive approach to remove a concept. Interestingly,
expert units are useful to induce a concept, but not
to remove it. Using expert units to mitigate spe-
cific concepts (e.g., aggressive language) is also a
promising research direction.

Compute requirements We discuss the com-
pute requirements of the FindExperts algorithm in
Alg.[I] According to the benchmark in the Trans<
formers repository, the average inference time for
GPT?2 for sentences of 128 tokens is 16ms on GPU
(single V100 GPU, 16GB VRAM) and 67ms on
CPU (Intel Xeon @ 2.3GHz CPU with 32 vCPU).
On average, we represent concepts with 1.5K sen-
tences, which results in 24s (GPU) and 100s (CPU)
required to obtain the responses of all the units. The
computation of AP{, Vm requires an extra 13s on
CPU. Therefore, we can obtain the top experts in
about 37s (GPU) or 113s (CPU). For comparison,
fine-tuning GPT2 on 40K sentences takes about
15min per epoch on GPU.

Social implications Our method is easy to imple-
ment and does not require training a model, which
makes it available for a much larger audience. We
believe that our technique adds more value and flex-
ibility to current TLMs. While this is extremely
interesting for many applications, more malicious
actors could benefit from it to produce offensive,
inappropriate, or untruthful statements. In contrast,
we have achieved gender parity for specific con-
cepts by just intervening on a minimal amount of
experts. While being a seminal work, our method
is a step towards bias mitigation in deployed mod-
els. Such application is of paramount importance
for everyone who uses TLMs.

8 Conclusions

The main contribution of this work is a method to
self-condition a pre-trained TLM by intervention
on the expert units (neurons) that are responsible
for inducing the presence of a desired concept. Ex-
pert units are ranked according to their expertise to
predict a concept in the model input.

We presented examples of successful condition-
ing on different concepts (including homograph)
and discussed the limitations of the method. We
further showed that intervening on experts units
can condition a TLM to generate sentences with
equal probability with respect to a given concept
for a large range of contexts. We showed how this
can be used to mitigate gender bias in the generated
sentences and compared our results with PPLM-
BoW; in comparison our method is able to achieve
generative parity at much lower perplexity. Finally,
we showed that intervening on the neurons that we
identify as experts, compared to any other set of
neurons, yields the highest concept probability in
the generated text.


https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit#gid=0
https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit#gid=0
https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit#gid=0
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Appendices

A Pytorch code implementing the do(c, k) intervention

The code in Listing [I] shows how to extend a Pytorch (Paszke et al) [2019) nn.Module with the
functionalities to implement the do(c, k) operation in Eq. (I)) using forward hooks.

This is the main specific functionality of our work. The remaining steps in Alg[I] require reading
intermediate responses of layers in Pytorch (also achievable with forward hooks) and computing AP.

import typing as t
import torch
from torch import nn

class IntervenedTorchModel (nn.Module) :
nnn
Class wrapping a Torch model so that we can apply a do()
intervention on selected units.

Example of code setting the first 5 units of layer
‘convl' to zeros.:

code-block:: python
import torch

model = IntervenedTorchModel (xxyour_args)

# Apply a do() intervention in units 0 to 4 of layer ‘convl‘
# by setting them to 0.
unit_indices = torch.tensor (range (0, 5), dtype=torch.int64
values = torch.zeros_like (unit_indices, dtype=torch.float32)
model.set_units_in_layer (

layer='convl’,

units=unit_indices,

values=values

)

# run inference, where the intervened units
# ‘unit_indices‘ take values 0.
output = model.forward (your_data)

# Restore the model for non-intervened inference.
model .restore_units ()

nun

def _ _init_ (
self,
**your_args,
) —> None:
super () .__init__ ()
# Holds the do() intervention hooks

self._forward_hooks = []

def _set_units_hook_wrapper (
self,
units: torch.Tensor,
values: torch.Tensor

) —> t.Callable:
assert len(units) == len(values), ’'Number of values must match number of units.’
assert units.dtype == torch.int64, ’'Unit indices must be int64.’
assert values.dtype == torch.float32, ’Values must be float32.’
def forward_hook (module, input, output) -> None:

# Modify the output of the layer.
for i in range(len (output)):
output [i] [units] = values

return forward_hook

def set_units_in_layer (
self,
layer_name: str,
units: torch.Tensor,
values: torch.Tensor
) —> None:
wnn
Sets the indexed ‘‘units‘' in ‘‘layer'' with the
‘‘values ‘' passed.

Performs the do(c, k) operation in the paper,

where k=len(‘'‘units‘‘) and c is defined by
the ‘‘values'' we pass.

11
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After this call, the forward() pass will be done
with “‘units'‘ intevened (fixed output to ‘‘values‘‘).

Args:
layer_name: The layer (Tensor) name to be modified.
units: Indices to the units to be set.
values: Values to set the units to.
wnn
layer_name = layer_name.replace(’:0’, '')
for iter_name, layer in self._pytorch_module.named_modules () :
if iter_name == layer_name:
handle = layer.register_forward_hook (
self._set_units_hook_wrapper (
units=units,
values=values,
)
)
self._forward_hooks.append (handle)

def restore_units(self):

nun

Removes the do() operation.

After this call, the forward() pass will behave

with no intervention.
W

for h in self._forward_hooks:
h.remove ()
self._forward_hooks.clear (

def forward(self, x):

Your custom forward pass.

nun

Listing 1: Python code

B Layers analyzed in TLMs
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Figure 5: Schema of a Transformer block (Vaswani et al., 2017). In this work we analyze the units in the linear
layers A, Aproj, B and Bproj of each block (red dots), where D is the dimensionality of the embedding. For example,
in GPT2-large (D = 1280 and 36 blocks) we analyze 36 - 9D = 414720 units.

C Occupational contexts

The occupational contexts set used in the paper borrows from 2020). In that work, occupations
are labelled either culturally biased towards male, female or neutral. We choose the same amount of
occupations labelled as man and woman to have a balanced set of contexts. The occupations are combined
with a set of templates, producing a total of 1034 contexts.

Female: advocate, aide, artist, baker, clerk, counselor, dancer, educator, instructor, nurse, observer,
performer, photographer, planner, poet, protester, psychiatrist, secretary, singer, substitute, teacher,
teenager, therapist, treasurer, tutor.

Male: critic, boss, technician, doctor, principal, priest, warrior, filmmaker, magistrate, officer, strategist,
cleric, campaigner, prosecutor, prisoner, guitarist, promoter, assassin, bartender, cop, manager, footballer,
trooper, saint, ambassador, politician.

12



Neutral: acquaintance, character, citizen, correspondent, employee, musician, novelist, psychologist,
student, writer.

Templates:

The <occupation> said that,

The <occupation> yelled that,

The <occupation> whispered that,

The <occupation> wanted that,

The <occupation> desired that,

The <occupation> wished that,

The <occupation> ate because,

The <occupation> ran because,

The <occupation> drove because,

The <occupation> slept because,

The <occupation> cried because,

The <occupation> laughed because,
The <occupation> went home because,
The <occupation> stayed up because,
The <occupation> was fired because,
The <occupation> was promoted because,
The <occupation> yelled because.

13



D Self-conditioned generation extended results

Table |4/ shows sentences generated by conditioning on concepts with high max,,, { AP, }. That is, the
model has some expert units with enough expertise. We see that the sentences are linguistically correct,
and that they contain the concept being forced. On the other hand, Table [5| contains sentences obtained by
conditioning on concepts with low max,,{ AP, }. We see how these sentences either do not contain the
concept for low k or they are linguistically wrong for larger values of k.

Table 4: Extended results on successful conditioned generation. All the concepts shown have a high max,, { AP}, }.
We borrow the context from the OpenAl GPT2 work (Radford et al.,[2019)

k forced WordNet concept ~ maxm {APS,} Context 4 Generated (conditioned to concept)

60 smoke%1:19:00 0.9999 In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unex-
plored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that
the unicorns spoke perfect English. The experiment in Alto Allegro was conducted in the sloping
Man-of-War Mountain. This was a truly historic event! Researchers had to use three fresh, fresh
inhalations to extract all of the smoke. The study has been approved by the Spanish government

60 gold%1:21:00 0.9996 In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unex-
plored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that
the unicorns spoke perfect English. Our researcher found the magical 'Slab Silver’, which is one
of the most beautiful forms of gold we have ever had our eyes on. It's a beautiful shimmer that’s
truly exceptional," said Peter Kieper, the Executive Chairman of Canadian Gold Corporation in The
Vancouver Sun.

60 retirement%1:26:00 0.9981 In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unex-
plored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the
unicorns spoke perfect English. The longest lived of the bunch, 45 year old Count of Ivory (Count
Monte) was found to be suffering from a brain tumour. Yet the Tibetan leviathan didn’t receive the
huge retirement pension provided by the CIA. He died peacefully at the age of 75 in April in a spa

Table 5: Extended results on unsuccessful conditioned generation on concept work%1:06:00, which obtains a low
max,, {AP; }. We observe how the model struggles to produce linguistically correct sentences.

k forced WordNet concept maxm, {APS,} Context 4+ Generated (conditioned to concept)

40 work% 1:06:00 0.8508 Once upon a time, in an ancient palace at the heart of history, a was on. Magic, symbolism,
decadence and tragedy. Everything had come up, balancing with the architect’s.\n\nA madman’s
museum. A thing of daub. Now, it's hide and clay and mud and dirt

70 work% 1:06:00 0.8508 Once upon a time-spotted bench). Now | met my tools,,, work, work.<|endoftext|>Raw Products
Kretzer Top Tube Process\n\nPROTECT SHOP:\n\nDay 1: Screening on the work bench.\n\n\n1.
Beaksiewerk procedure - drill build

100 work%1:06:00 0.8508 Once upon a time of WARD will i means to out out any.\n:,. So! Work- WORK WORK WORK
WORK W WORK WORK WORK WORK\n WORK WORK\n work work work\n work\n work work
work work work work work work work work work work. work work work work work work work work
work

200 work%1:06:00 0.8508 Once upon a time of that done by... uses of such done object\n\n of.\n 28, 37\n WORK WORK
WORK.... work article... delivery... ( bench work\n call really work\n out\n work work work 40 work
product if 5 40 work work 50\n work work 35 means 34 twenty block 29 individual
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http://wordnetweb.princeton.edu/perl/webwn?s=smoke&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=gold&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=retirement&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=work&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=work&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=work&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=work&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=work&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000

Table 6: Sentences generated at the generative parity points in Fig.|l|that continue "The nurse said that” with he and
"The doctor said that" with she. The sentences are still valid from a linguistic perspective, showing that p(x|y = ¢)
in Eq. (T) has not collapsed at these parity points.

Context "The nurse said that” + do(man, 45) Context "The doctor said that" + do(woman, 6)

The nurse said that he was assaulted because he didn’t... The doctor said that she had no idea she was engaged...

The nurse said that he would cut her hair... The doctor said that she should have never used the game...
The nurse said that he was working at his desk ... The doctor said that she saw former presidential candidate...
The nurse said that he didn’t really know what... The doctor said that she did not have a right to perform...

The nurse said that he had met his wife at a house party... ~ The doctor said that she had treated the woman...
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Figure 6: Perplexity as a function of number of units intervened upon (k) for concepts man and woman. We report
the mean and standard deviation across all the occupational contexts. The perplexity stays within reasonable values
for k£ < 50 for both concepts. Beyond that, the model saturates.

In Table [6] we show examples of generated sentences at the parity points found in Fig.[I] For illustration
purposes, we select sentences opposed to the model bias, that is, sentences continued with ke for "The
nurse said that" and with she for "The doctor said that”. The generated sentences are linguistically valid,
showing that p(z|y = ¢) in Eq. (Z) has not collapsed at these parity points.
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F Comparison with PPLM-BoW: Extra figures

In Fig[7)we show the evolution of probabilities as a comparison between our method and PPLM-BoW.
Fig.[§shows the histogram of parity points, showing that most of them appear at stepsize ~ 0.2. However,
as shown in Fig[T0} the perplexity at stepsize = 0.2 is very high, showing that the generated sentences
are strongly degraded.

Fig.[9]shows the correlation between parity point and unconditional bias of the model. The correlations
measured are much lower than the ones obtained using our method (see Fig. [3).
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Figure 7: PPLM-BoW Ap(c, stepsize) evolution.
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Figure 8: PPLM-BoW histogram of parity points per occupational context.
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Figure 9: PPLM-BoW correlation between unconditional bias and parity point).
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Figure 10: PPLM-BoW average perplexity when conditioning on woman and man at different stepsize levels.

G About OneSec annotations

Note that the meaning of the concept is important. For example, concept one%1:23:00 (the smallest whole
number or a numeral representing this number, e.g.he has the one but will need a two and three to go with
it"; "they had lunch at one") achieves a max,,, { AP{,} = 0.9885, while concept one%1:09:00 (a single
person or thing, e.g. "he is the best one"; "this is the one I ordered") only achieves max,,{AP¢, } = 0.8779.

Details on the annotations FEach sentence in the OneSec dataset (Scarlini et al., 2019)) is annotated as
in the following example:

<instance docsrc="Indigenous architecture" id="shelter.00002">
<answer instance="shelter.00002" senseid="shelter%1:06:00::" />
<context>
Types There are three traditional types of igloos ,
all of different sizes and used for different purposes.
The smallest were constructed as temporary
<head>shelters</head>
, usually only used for one or two nights
</context>
</instance>
The senseid label is the one of the marked word (shelters in this example, between <head> and
</head>). We use the senseid as follows. The part before the % is called lemma, while the remaining
numbers uniquely identify the concept in WordNet. We parse all the sentences for a given senseid to
create the positive sentences of each concept, only keeping those senseid with more than 100 sentences.
As explained in Sec.[3] the negative sentences for a concept are randomly selected from all the senseid
with different lemma than the positive ones.

OneSec license: The OneSec dataset has a license of type Creative Commons
Attribution—-Noncommercial-Share Alike 4.0 License.
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http://wordnetweb.princeton.edu/perl/webwn?s=one&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000
http://wordnetweb.princeton.edu/perl/webwn?s=one&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=1&o3=&o4=&h=0000000

