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ABSTRACT

Estimating the Conditional Average Treatment Effect (CATE) is essential to per-
sonalized decision-making in causal inference. However, in real-world prac-
tices, CATE models often suffer degraded performance when faced with unknown
distribution shifts between training and deployment environments. To tackle
this challenge, we introduce Causal Adversarial Reinforcement-guided Diffusion
(CARD), a model-agnostic framework that can be wrapped around any exist-
ing CATE learner to improve its robustness against unknown distribution shifts.
CARD formulates the CATE modeling process as a minimax game: a reinforce-
ment learning agent guides a diffusion model to generate adversarial data aug-
mentations that maximize the CATE learner’s loss, and then the learner is trained
to minimize this worst-case loss, creating a principled robust optimization pro-
cedure. The comprehensive experimental results demonstrate that CARD con-
sistently improves the robustness of diverse CATE learners against challenging
data corruptions, including measurement error, missing values, and unmeasured
confounding, confirming its broad applicability and effectiveness.

1 INTRODUCTION

Estimating the Conditional Average Treatment Effect (CATE) is a core problem in causal infer-
ence, as it quantifies how an intervention would differentially affect subgroup-level (or approxi-
mated individual-level) as a function of observed covariates, enabling personalized decision-making
in various domains such as (Farrell, 2015; Chernozhukov et al., 2018; Kitagawa & Tetenov, 2018;
Abadie et al., 2023), statistics (Wager & Athey, 2018; Li & Wager, 2022; Foster & Syrgkanis, 2023;
Kennedy, 2023), clinical (Zhang et al., 2019; Qian et al., 2021; Bica et al., 2021; Kinyanjui & Jo-
hansson, 2022; Feuerriegel et al., 2024; Ma et al., 2025), and financial application (Li et al., 2023;
Huang et al., 2023b; Fernández-Lorı́a et al., 2023; Wu et al., 2025a). The practical of CATE mod-
els often hinges on a crucial but fragile assumption: external validity (or transportability) (Pearl &
Bareinboim, 2011; Bareinboim & Pearl, 2016). That is, causal conclusions derived from a source
environment must remain valid when the model is deployed in a different target population.

However, in real-world practice, this external validity assumption is often violated. CATE mod-
els can suffer a degraded performance when confronted when unknown distribution shifts between
the training and deployment environments present, which is often incurred by data imperfections
(Kallus et al., 2018; Agarwal & Singh, 2021; Zhang et al., 2023), such as measurement error (Imai
& Yamamoto, 2010; Battistin & Chesher, 2014; Kuroki & Pearl, 2014; Pei et al., 2019), missing val-
ues (Rubin, 1976; Bang & Robins, 2005; Mohan et al., 2013; Yang et al., 2019; Mayer et al., 2020),
and unmeasured confounding (Kallus et al., 2019; Ding et al., 2022; Oprescu et al., 2023; Xiao
et al., 2024; Dorn et al., 2025). Such data imperfections signify structural discrepancies between the
source and target domains, thereby rendering the direct transfer of causal conclusions invalid. We
demonstrate this challenge with the following motivating example.

Motivating example. Suppose a technical company trains a CATE model on its proprietary clean
and well structured dataset, and intend to license it to a hospital system. The model must be val-
idated on the hospital’s own Electronic Health Record (EHR) data, which constitutes an unseen
target domain as it was unavailable during the initial training phase. The EHR data reflects a dif-
ferent data generating process with systematic imperfections that induce a distribution shift from
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the source data (Ruan et al., 2024): (i) measurement error, arising from device inaccuracies, re-
porting biases, or procedural variability; (ii) missing values, caused by privacy restrictions, legal
constraints, or transcription errors; and (iii) unmeasured confounders, such as socioeconomic sta-
tus, environmental exposures, or genetic predispositions, can trigger severe concept drift. These
uncertain data imperfections significantly hinder the generalization of the CATE model trained in
the source domain to the EHR data.

To tackle the distribution shift problem in causal inference, existing methods develop specialized
causal estimators for specific data shift types. Examples include CATE learners that aim to be robust
to covariate shift (Kern et al., 2024) or to concept drift (Zhang et al., 2024), and policy learning
methods that seek robustness under combined and unknown shifts (Kallus et al., 2022; Mu et al.,
2022; Si et al., 2023). Most of these studies are grounded in structural assumptions about the shift
or the estimator itself, and their advancements in robust causal learning motivates a complementary
question: Can we develop a method that is capable to enhance the robustness of any existing CATE
learner to unknown distribution shifts without requiring additional structural assumptions?

Inspired by this question, we propose Causal Adversarial Reinforcement-guided Diffusion (CARD),
a model-agnostic framework that strengthens the robustness of any existing CATE learner without
redesigning its internal architecture. CARD frames robust CATE training as a minimax game be-
tween an adversarial generator and a CATE learner. In CARD, specifically, a reinforcement learning
agent guides a diffusion model to produce adversarial proxies that maximally challenge the CATE
learner, and the learner then adapts by minimizing the worst-case error over these generated aug-
mentations, yielding a principled robust optimization routine tailored to CATE estimation.

Our main contributions are threefold:

• We propose a novel model-agnostic framework, CARD, which can be flexibly integrated
with any existing CATE learner to enhance its robustness against a wide range of unknown
distribution shifts, without requiring additional structural assumptions or prior knowledge
of target information.

• To the best of our knowledge, we are the first to introduce a reinforcement-learning guided
diffusion model in causal inference literature. This might bring new possibilities for other
causal inference tasks, such as counterfactual generation (Yoon et al., 2018), dimension
reduction (Liu et al., 2024), and model evaluation (Athey et al., 2024), among others.

• We empirically demonstrate that CARD consistently improves the robustness of popular
CATE learners when deployed in challenging target data corruptions, involving measure-
ment error, missing values, and unmeasured confounding, confirming its reliability and
adaptability to real-world causal inference tasks.

2 RELATED WORK

Data combination and external validity. A central challenge in causal inference is to generalize
effects learned in the source dataset to a target population. This problem is formalized under ex-
ternal validity (or transportability) (Pearl & Bareinboim, 2011; Bareinboim & Pearl, 2016). Data
combination frameworks specify when and how evidence from multiple sources can be fused across
populations to identify causal quantities, explicitizing the role of distributional differences across
domains (Bareinboim & Pearl, 2016; Dahabreh & Hernán, 2019). When the transportability as-
sumption holds, combining data can improve the precision and efficiency of treatment effect estima-
tion (Hatt et al., 2022; Dahabreh et al., 2023; Huang et al., 2023a; Wu et al., 2025b; Rudolph et al.,
2025). In practice, however, the transportability assumption is often violated due to unobserved
heterogeneity between the source and target domains. To address this, statistical work develops sen-
sitivity analysis and partial identification tools for average treatment effects (Nie et al., 2021; Huang,
2024; Yadlowsky et al., 2022). On the modeling side, there is growing interest in conditional effect
estimation without assuming transportability. Several studies address latent confounding by com-
bining RCT and observational data, proposing methods such as the integrative R-learner (Wu &
Yang, 2022) and the MetaDebias neural network (Xiao et al., 2024).

Causal inference under distribution shift. A growing body of research has examined how to
make causal inference methods robust when the deployment distribution differs from the training
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environment. Existing approaches can be broadly categorized into two lines. The first line focuses
on robust CATE estimation under specific types of shifts. For example, recent work addresses co-
variate shift by controlling worst-case bias across target covariate distributions (Jeong & Namkoong,
2020) or by enforcing multi-accuracy constraints on CATE learners (Kern et al., 2024). Other stud-
ies primarily focus on concept drift, for instance, by optimizing the CATE function within an un-
certainty set over convex combinations of multisite CATE functions under a known target covariate
distribution (Zhang et al., 2024). The second line of work emphasizes causal decision making via
robust optimization, which aims to learn treatment assignment rules that remain effective to unseen
confounding scenarios or target environments (Kallus & Zhou, 2021; Kallus et al., 2022; Mu et al.,
2022; Kido, 2022; Si et al., 2023; Shen et al.; Wang et al.; Hess et al., 2025). While powerful for de-
riving robust policies, these approaches are primarily designed for policy learning rather than CATE
estimation. This gap underscores the necessity of developing methods specifically tailored for gen-
eralizing CATE estimation to unseen target domains without requiring prior knowledge of covariate
distributions or treatment effect heterogeneity.

3 PROBLEM SETUP

This study is grounded in the potential outcome framework (Rubin, 1974; 2005). Let
{(Xi, Ai, Yi)}ni=1 denote an observational sample of n i.i.d. units drawn from a source popula-
tion. For unit i, Xi ∈ X ⊂ Rd is a d-dimensional pre-treatment covariate vector, Ai ∈ {0, 1} is a
binary treatment indicator, and {Y 0

i , Y
1
i } are the corresponding potential outcomes. The observed

(factual) outcome is Yi = Y Ai
i , and the unobserved (counterfactual) outcome is Y 1−Ai

i . Our target
estimand is the CATE, which captures the sub-population treatment heterogeneity:

τ(x) := E
[
Y 1 − Y 0

∣∣X = x
]
. (1)

Estimating τ(x) from observational data presents a key challenge, due to the fundamental problem
of causal inference: for any unit, only one potential outcome can be observed. To identify the CATE
from observational data in the source domain, we rely on the following standard assumptions.
Assumption 1 (SUTVA, Consistency, and Overlap). For all units in the source domain, we have the
following assumptions: Consistency & SUTVA: The observed outcome for unit i receiving treatment
a is the potential outcome Y a, and potential outcomes of this unit are not affected by the treatment
assignments of other units. Overlap (Positivity): The probability of receiving treatment is bounded
away from 0 and 1 for all covariate profiles, i.e., 0 < P (A = 1|X = x) < 1 for all x ∈ X . Internal
validity (Unconfoundedness): The treatment assignment is independent of the potential outcomes,
conditional on the observed covariates, i.e., {Y 1, Y 0} ⊥⊥ A | X .

3.1 GENERALIZING CATE UNDER DISTRIBUTION SHIFT

A critical generalization challenge arises when an estimator τ̂(x), trained on the source domain
(PS ), must be deployed in an unseen target domain (PT ). The CATE model’s performance in this
new domain is threatened by potential distribution shifts in two main types.

Covariate shift. The most common and well-studied type of distribution shift is covariate shift,
where the marginal distribution of covariates differs across domains, i.e., PS(X) ̸= PT (X). Gen-
eralization under this shift is made possible by the transportability assumption.
Assumption 2 (External validity (Transportability)). The conditional distribution of potential out-
comes given covariates is invariant across domains, i.e., PS(Y

a|X) = PT (Y
a|X) for a ∈ {0, 1}.

This assumption implies that the underlying causal mechanisms are stable across domains, and thus
the true CATE function is the same in both domains: τS(x) = τT (x). Nevertheless, even with
transportability, CATE model performance can deteriorate when deploying τ̂ in the target domain
due to the covariate distribution mismatch, which is a common issue in machine learning studies.

Concept drift. A more severe challenge arises from concept drift, where the transportability as-
sumption is violated, meaning PS(Y

a|X) ̸= PT (Y
a|X). As highlighted in our motivating exam-

ple, such drift is often caused by unmeasured confounders present only in the target domain, which
alter the treatment heterogeneity. Under concept drift, the true CATE function is no longer invariant
across domains, i.e., τS(x) ̸= τT (x), making out-of-domain CATE estimation substantially more
challenging than the covariate-shift-only setting.
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4 METHOD

In this section, we introduce our proposed framework, Causal Adversarial Reinforcement-guided
Diffusion (CARD). We begin by formulating robust CATE estimation as a minimax optimization
problem. We then detail how a reinforcement learning agent guides a diffusion model to generate
adversarial proxies that realize this objective. Finally, we present the detailed training pipeline for
integrating CARD with any CATE estimator.

4.1 A MINIMAX OBJECTIVE FOR ROBUST CATE ESTIMATION

Given source data samples (X,A, Y ) ∼ PS , a standard CATE learner fϕ with parameters ϕ is
trained by minimizing an objective Linf(ϕ) = E[ℓ(X,A, Y ; fϕ)], where ℓ is the loss function asso-
ciated with the chosen meta-learner. To protect the estimator against unknown distribution shifts in
the target domain, we optimize fϕ with a new objective Linf(ϕ,Z) in a robust optimization manner:

min
ϕ

max
Z∈Ω

Linf(ϕ,Z) := E(X,A,Y )∼PS

[
ℓ(X ⊕ Z,A, Y ; fϕ)

]
, (2)

where Ω is an uncertainty set defining the space of learnable adversarial proxies. Conceptually,
solving this objective forces the inferencer fϕ to be robust against the most harmful proxies in
Ω. While some causal inference studies formulate similar adversarial problems as distributionally
robust optimization (DRO), they often define Ω based on statistical distances or strong structural
assumptions, as discussed in Section 2. Our key departure is that the inferencer fϕ is trained on
covariates augmented by learned adversarial proxies, creating a more flexible robustness mechanism
without loss of original covariate information.

4.2 ROBUST CATE ESTIMATION WITH CARD

Instead of constraining the adversary to a predefined uncertainty set Ω (e.g., a KL-ball (Kallus et al.,
2022; Si et al., 2023)), we design a framework that learns to generate worst-case proxies Z using a
score-based diffusion model guided by a reinforcement learning (RL) agent.

Score-based diffusion. A score-based diffusion model (Song et al.) consists of a forward process
that progressively adds noise to data Z0 over a time interval t ∈ [0, T ], governed by a stochastic
differential equation (SDE):

dZ = f(Z, t)dt+ g(t)dWt, (3)
where f(Z, t) is the drift coefficient, g(t) is the diffusion coefficient, and Wt is a standard Wiener
process. The corresponding reverse process generates data by traversing time from T to 0. Using
the Fokker-Planck equation of the marginal density (Suh et al.), the reverse-time SDE is:

dZ =
[
f(Z, t)− g(t)2 ∇z log pt(Z)

]
dt+ g(t) dW̄t, (4)

where W̄t is a Wiener process running backward from t = T to t = 0. The score ∇z log pt(Z) is
approximated by a neural network gθ(z, t), pretrained with the standard score-matching objective:

Ldiff(θ) = EZ0, Zt∼pt(·|Z0), t∼U [ε,T ]

[
λ(t)2∥gθ(Zt, t)−∇z log pt(Zt | Z0)∥22

]
, (5)

where λ(t) > 0 weights time steps and ε > 0 ensures numerical stability. In practice, the diffusion
model is often applied on a low-dimensional latent code Z obtained from an autoencoder.

Reinforcement-guided adversarial generation. To solve the inner maximization of Eqn. (2), we
frame the reverse diffusion process as a Markov Decision Process (MDP) (Black et al.) and use
an RL agent to steer the generation toward adversarial proxies. The objective is to guide the score
model gθ to maximize the expected cumulative reward along the denoising trajectory:

J (θ) = E
[ T∑
t=1

log gθ(Zt−1|Zt)
Gt − µG

σG

]
, where Gt =

T∑
k=t

γk−t Linf(ϕ,Z). (6)

Here, Linf(ϕ,Z) is the immediate reward at step t, Gt is the discounted return from step t with
discount factor γ ∈ (0, 1], and the returns are standardized per-trajectory with the mean µG and
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Figure 1: An overview of the proposed CARD training pipeline for robust CATE estimation.

standard deviation σG. To maintain generation quality and stabilize training, we combine this RL
objective with the original score-matching loss, yielding the final objective for the generator:

max
θ

Lfull(θ) = J (θ) − αLdiff(θ), (7)

where α > 0 is a balancing hyperparameter. This fine-tuning process transforms the diffusion model
from a simple data generator into a sophisticated adversary capable of generating worst-case proxies
that approximate the solution to the inner maximization in our minimax objective (2).

Algorithm of CATE learning with CARD. The complete procedure of training CATE with
CARD, which alternates between updating the generator and the inferencer, is outlined in Algo-
rithm 1. We also inllustrate the corresponding pipeline in Figure 1.

Algorithm 1 CATE model training with CARD
Require: Source data (X,A, Y ) ∼ PS , inferencer (base CATE learner) fϕ, Autoencoder

(Encψ,Decψ), diffusion model gθ.
1: Phase 1: Pre-training
2: Train autoencoder on covariates X to learn a latent space Z.
3: Pre-train diffusion model gθ on latent representations Z = Encψ(X) via Eqn. (5).
4: Phase 2: CATE model training with minimax
5: for each training epoch e = 1, . . . , E do
6: Sample ZT ∼ N (0, I) and generate a denoising trajectory (ZT , . . . , Z0) using gθ.
7: For each sample, compute trajectory returns Gt via Eqn. (6).
8: Update generator parameters θ by maximizing Lfull(θ) from Eqn. (7).
9: Update inferencer parameters ϕ by minimizing Linf(ϕ,Z0) from Eqn. (2).

Ensure: Generator gθ for Z0 generation, and inferencer fϕ(X ⊕ Z0, A, Y ) for CATE estimation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

CATE learners. Our evaluation includes eight prominent CATE estimation methods, comprising
five meta-learners and three specialized neural network models. The meta-learners represent a di-
verse set of strategies, including indirect-type (S-learner and T-Learner) and direct-type (X-learner
(Künzel et al., 2019), DR-learner (Kennedy, 2023; Foster & Syrgkanis, 2023), and R-Learners (Nie
& Wager, 2021)) approaches. The representation-based models consist of widely-recognized archi-
tectures: TARNet & CFR-Wass (Shalit et al., 2017; Johansson et al., 2022) and DragonNet (Shi
et al., 2019). The specific details of implementing these CATE learners with CARD are presented
in Section A.1, and detailed parameter configurations for all models are provided in Appendix A.2.
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Experimental settings. Evaluating CATE estimators requires access to ground-truth treatment
effects, which are unavailable in real-world data. Therefore, following established practice in
causal inference research (Curth & Van der Schaar, 2021; Curth & Van Der Schaar, 2023; Huang
et al., 2024), we employ a semi-synthetic data generating process with covariates collected from
ACIC2016 dataset (Dorie et al., 2019). The dataset contains 4802 samples with d = 22 continuous
covariates. The treatment assignment Ai is generated from a Bernoulli distribution based on the
covariates Ai|Xi ∼ Bern (1/(1 + exp(−(β′

TXi)))). The potential outcome generation is based on
a additive interaction terms, with a complex quadratic heterogeneous treatment effects:

Yi =

d∑
j

β′
jXi;j +

d∑
j=1

d∑
k=j

β′
j,kXi;jXi;k +Ai

d∑
j=1

d∑
k=j

γi,jXi;jXi;k + ϵi. (8)

The coefficients are set as: β′
T ∼ Bern(0.1), β′

j ∼ Bern(0.5), β′
j,k ∼ Bern(0.5), γi,j ∼

Bern(0.1), and the noise term ϵi is sampled from N (0, 0.1). We repeat the above data generat-
ing process to generate 30 distinct datasets, each partitioned into training/validation/testing ratio of
49%/21%/30%.

Distribution shift settings. To evaluate the robustness of CARD, we introduce three types of
distribution shifts exclusively in the test set:

• Measurement error: We simulate measurement error by adding Gaussian noise to the
covariates of the test set, while the underlying data generating process remains unchanged.
The observed covariates become Xobs

i = Xi+N (0, δ2Id), where δ controls the shift level
incurred by measurement error and varies across {0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}.

• Missing values: This setting introduces missingness to the covariates of the test set, while
the the underlying data generating process remains unchanged. We apply a binary mask to
the covariates, where each element is independently set to 0 with probability ρ. We use the
MICE algorithm (Kallus et al., 2018) to enable CATE to be deployed on incomplete test
data. The missingness rate ρ controls the shift level incurred by missing values and varies
across {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

• Unmeasured confounding: This scenario introduces a shift in the outcome generation
mechanism for the test set. The observed covariates Xobs remain unchanged, but the po-
tential outcomes are generated by a new model that includes both observed confounders
Xobs and hidden confounders U , i.e., X = (Xobs, U) in Eqn. (8). The unmeasured con-
founders are drawn from uniform distribution Ui,j ∼ U(−3, 3), and the dimension of
hidden confounders dU is varied across {1, 5, 10, 15, 20, 25, 30}.

Evaluation criteria. We evaluate model performances using the Precision in Estimation of Het-
erogeneous Effect (PEHE) (Hill, 2011), a standard metric that measures the root mean squared error
between the estimated and true CATE values, denoted by ϵPEHE(τ̂). And we use ϵRI(τ̂) to denote
the relative improvement of a base CATE learner τ̂ when it is trained with CARD, i.e., the CATE
learner with CARD τ̂CARD, denoted by ϵRI(τ̂).

ϵPEHE(τ) =

√√√√ 1

n

n∑
i=1

(τ(Xi)− τtrue(Xi))
2
,

where τ and τtrue are arbitrary CATE model and the ground-truth CATE function, respectively. To
specifically quantify the benefit of our method, we also introduce the Relative Improvement (RI) in
PEHE. This metric calculates the percentage reduction in PEHE achieved by applying our CARD
framework to a base CATE estimator:

ϵRI(τ̂) =
ϵPEHE(τ̂)− ϵPEHE(τ̂

CARD)

ϵPEHE(τ̂)
,

where ϵPEHE(τ̂) is the PEHE of the original CATE learner and ϵPEHE(τ̂
CARD) is the PEHE of the

same estimator after being trained with CARD.
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Table 1: Comparison of average PEHE over 30 runs for various CATE learners, with and without
the CARD framework, under three distribution shift scenarios: measurement error, missing values,
and unmeasured confounding. Bold denotes the better results for each learner pair.

Settings Measurement error (controlled by δ) Missing values (controlled by ρ) Unmeasured confounding (controlled by dU )

Bias level 0.1 0.5 1.0 1.5 2.0 2.5 3.0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 1 5 10 15 20 25 30

S-learner 0.578 0.632 0.761 0.889 0.981 1.041 1.080 0.577 0.581 0.586 0.598 0.622 0.649 0.671 0.662 0.956 1.562 1.883 2.139 2.453 2.862
S+CARD 0.565 0.612 0.722 0.838 0.927 0.988 1.028 0.564 0.569 0.574 0.589 0.611 0.636 0.661 0.644 0.939 1.560 1.884 2.141 2.452 2.863

T-learner 1.105 1.283 1.833 2.669 3.653 4.705 5.792 1.096 1.085 1.072 1.056 1.065 1.057 1.014 1.240 1.420 1.902 2.187 2.396 2.693 3.069
T+CARD 1.043 1.201 1.687 2.416 3.290 4.243 5.239 1.039 1.031 1.005 0.994 1.006 1.001 0.967 1.207 1.381 1.873 2.133 2.355 2.651 3.034
X-learner 0.669 0.734 0.921 1.209 1.568 1.973 2.408 0.667 0.669 0.672 0.683 0.702 0.723 0.731 0.771 1.033 1.647 1.955 2.193 2.503 2.902
X+CARD 0.610 0.670 0.844 1.113 1.453 1.848 2.277 0.608 0.609 0.615 0.629 0.654 0.681 0.695 0.738 1.010 1.627 1.936 2.180 2.490 2.891
R-learner 0.825 0.889 1.082 1.379 1.741 2.143 2.567 0.822 0.819 0.815 0.813 0.818 0.820 0.818 0.847 1.053 1.746 2.051 2.267 2.549 2.962
R+CARD 0.760 0.818 0.983 1.234 1.542 1.887 2.258 0.759 0.761 0.761 0.763 0.775 0.785 0.794 0.820 1.027 1.722 2.025 2.242 2.538 2.949
DR-learner 0.755 0.861 1.169 1.632 2.193 2.810 3.460 0.751 0.747 0.746 0.752 0.766 0.782 0.783 0.906 1.142 1.701 2.001 2.237 2.546 2.939
DR+CARD 0.693 0.797 1.095 1.544 2.094 2.701 3.343 0.690 0.691 0.687 0.697 0.721 0.741 0.747 0.872 1.123 1.675 1.971 2.217 2.530 2.920

TARNet 0.675 0.776 1.080 1.559 2.164 2.843 3.564 0.670 0.670 0.671 0.683 0.708 0.731 0.731 0.842 1.109 1.612 1.903 2.173 2.499 2.881
TAR+CARD 0.643 0.728 0.984 1.376 1.879 2.452 3.074 0.639 0.639 0.642 0.657 0.684 0.710 0.717 0.811 1.077 1.598 1.896 2.163 2.486 2.875
CFR-Wass 0.707 0.765 0.965 1.336 1.840 2.409 3.009 0.693 0.694 0.705 0.715 0.728 0.746 0.744 0.771 1.040 1.617 1.936 2.187 2.498 2.898

CFR+CARD 0.675 0.736 0.927 1.258 1.722 2.270 2.856 0.666 0.664 0.671 0.684 0.707 0.727 0.733 0.767 1.036 1.620 1.934 2.176 2.493 2.894
DragonNet 0.689 0.780 1.058 1.502 2.059 2.682 3.343 0.686 0.685 0.683 0.695 0.716 0.736 0.738 0.832 1.084 1.640 1.945 2.193 2.512 2.910

Dragon+CARD 0.659 0.747 1.014 1.429 1.950 2.533 3.156 0.656 0.657 0.662 0.674 0.700 0.723 0.725 0.827 1.083 1.633 1.934 2.186 2.498 2.899

Figure 2: Performance gains from CARD: Relative Improvement in average PEHE over 30 runs
for various CATE learners under three distribution shift scenarios. The value is in percentage.

5.2 EXPERIMENTAL RESULTS

In this section, we evaluate the efficacy of CARD by investigating two primary research questions:
(1) whether CARD improves the average performance of CATE learners under distribution shifts,
and (2) whether it enhances their worst-case performance under distribution shifts.

5.2.1 AVERAGE PERFORMANCE ANALYSIS

The experimental results for average PEHE are presented in Table 1, with the Relative Improvement
(RI) from CARD visualized in Figure 2. Our analysis reveals several key insights into the CARD
framework’s effectiveness.

CARD consistently enhances performance across diverse learners and shifts. The results
demonstrate a near-universal improvement in average PEHE when CARD is applied. Across all
eight CATE learners and three distinct types of data corruption, the ”+CARD” variants consistently
outperform their standard counterparts. This broad applicability holds for both traditional meta-
learners (e.g., S-learner, T-learner) and more complex representation-based models (e.g., TARNet,
DragonNet). The framework’s benefits extend to models with varying degrees of baseline robust-
ness. For instance, under severe measurement error (δ = 3.0), CARD reduces the PEHE of the
highly vulnerable T-learner from 5.792 to 5.239 (a 9.5% relative improvement). Simultaneously, it
also enhances the relatively robust S-learner, reducing its PEHE from 1.080 to 1.028, highlighting
the general effectiveness of CARD.

The magnitude of CARD’s improvement is context-dependent. CARD yields benefits across
all evaluated settings, and more specifically, the magnitude of improvement depends on the type
and severity of the distribution shift. As shown in Figure 2, CARD produces its largest and most
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Table 2: Comparison of worst-case PEHE over 30 runs for various CATE learners, with and without
the CARD framework, under three distribution shift scenarios: measurement error, missing values,
and unmeasured confounding. Bold denotes the better results for each learner pair.

Settings Measurement error (controlled by δ) Missing values (controlled by ρ) Unmeasured confounding (controlled by dU )

Bias level 0.1 0.5 1.0 1.5 2.0 2.5 3.0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 1 5 10 15 20 25 30

S-learner 1.020 1.058 1.173 1.448 1.746 1.961 2.118 1.023 1.024 1.032 1.043 1.071 1.105 1.128 0.942 1.282 1.897 2.083 2.296 2.525 3.010
S+CARD 1.024 1.040 1.108 1.157 1.401 1.581 1.706 1.026 1.029 1.037 1.050 1.067 1.090 1.119 0.826 1.123 1.880 2.004 2.259 2.498 2.985

T-learner 2.507 2.781 3.617 4.953 6.574 8.315 10.109 2.483 2.470 2.395 2.335 2.406 2.250 2.064 2.473 2.541 2.948 3.122 3.269 3.585 3.792
T+CARD 1.453 1.631 2.252 3.207 4.386 5.659 7.008 1.463 1.451 1.413 1.404 1.440 1.366 1.374 1.558 1.624 2.037 2.279 2.550 2.906 3.203
X-learner 1.447 1.478 1.688 2.096 2.737 3.707 4.729 1.441 1.445 1.381 1.396 1.400 1.373 1.306 1.247 1.424 2.283 2.285 2.489 2.762 3.070
X+CARD 1.294 1.310 1.260 1.622 1.344 1.722 2.105 1.288 1.295 1.245 1.258 1.264 1.239 1.200 0.973 1.177 2.165 2.382 2.595 2.632 3.021
R-learner 1.389 1.473 2.053 2.986 4.110 5.327 6.598 1.386 1.385 1.354 1.375 1.395 1.388 1.351 1.368 1.398 2.309 2.613 2.719 2.829 3.331
R+CARD 1.190 1.563 1.818 2.400 3.177 4.048 5.008 1.187 1.207 1.164 1.151 1.166 1.157 1.137 1.444 1.628 2.406 2.580 2.764 2.909 3.245
DR-learner 1.598 1.677 2.097 2.723 3.463 4.809 6.251 1.592 1.594 1.500 1.529 1.533 1.495 1.398 1.498 1.645 2.410 2.298 2.534 2.899 3.137
DR+CARD 1.485 1.588 1.966 2.517 3.240 4.160 5.462 1.479 1.481 1.360 1.369 1.392 1.351 1.314 1.382 1.548 2.330 2.223 2.463 2.831 3.060

TARNet 1.214 1.234 1.607 2.837 4.566 6.568 8.715 1.213 1.213 1.172 1.174 1.177 1.176 1.156 1.394 1.621 2.112 2.193 2.372 2.698 3.122
TAR+CARD 1.192 1.224 1.034 1.623 2.479 3.516 4.686 1.193 1.195 1.175 1.178 1.186 1.178 1.163 0.943 1.244 2.030 2.032 2.343 2.540 3.015
CFR-Wass 1.495 1.536 1.656 2.956 4.953 7.314 9.834 1.489 1.487 1.391 1.398 1.384 1.364 1.339 1.502 1.724 2.336 2.180 2.423 2.658 3.095

CFR+CARD 1.401 1.436 1.535 1.738 2.814 4.131 5.565 1.399 1.397 1.319 1.335 1.324 1.309 1.265 0.976 1.288 2.175 1.940 2.261 2.446 2.927
DragonNet 1.508 1.539 1.659 2.481 3.547 4.867 6.447 1.505 1.503 1.396 1.412 1.415 1.388 1.320 1.265 1.634 2.326 2.277 2.424 2.738 3.100

Dragon+CARD 1.269 1.295 1.361 2.422 3.376 5.429 7.072 1.262 1.265 1.220 1.221 1.225 1.205 1.172 1.526 1.740 2.145 2.011 2.238 2.589 3.059

Figure 3: Performance gains from CARD: Relative Improvement in worst-case PEHE over 30 runs
for various CATE learners under three distribution shift scenarios. The value is in percentage.

consistent gains under measurement error: relative improvements often exceed 10% for flexible
learners such as TARNet and the R-learner at high noise levels, and TARNet’s RI rises monotonically
with noise to a peak of approximately 14% at δ = 2.5. This pattern is intuitive: small amounts
of noise leave a learner near its clean optimum so adversarial augmentation gives modest gains,
whereas larger noise exposes vulnerabilities that the RL-guided diffusion discovers and the learner
then learns to resist. By contrast, missing-value corruptions yield smaller but stable improvements,
with RI ranging from 2%-9%, likely because the pipeline applies imputation (MICE) (Kallus et al.,
2018), which already reduces extreme covariate variation and therefore narrows the space of harmful
yet realistic augmentations. Unmeasured confounding is the most challenging regime: relative gains
are smaller (0%-4%) but remain practically important because they help preserve performance when
treatment heterogeneity itself shifts. Overall, these results show that CARD offers stronger defense
against measurement error and missing values, and it also delivers consistent, constructive gains
when unseen shifts arise from latent confounders.

The magnitude of CARD’s improvement is model-specific. Results confirm that nearly every
base learner benefits, and more interestingly, the magnitude of this improvement is heterogeneous.
For instance, more flexible models like TARNet, R-learner, and X-learner are among the biggest
beneficiaries, particularly under measurement error. This model-specific efficacy can be attributed
to two main factors. First, learners possess different inductive biases (Curth & Van der Schaar,
2021). Models with more flexible function classes, such as TARNet, can better exploit the adversar-
ial augmentations to learn more robust CATE functions. In contrast, simpler or heavily regularized
learners may already exhibit some robustness, leaving less capacity for substantial improvement.
Second, baseline vulnerability plays a key role. The T-learner, for example, which is highly suscep-
tible to noise, still receives significant relative performance gains, suggesting that CARD effectively
enhances resilience even when baseline errors are large.
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5.2.2 WORST-CASE ROBUSTNESS ANALYSIS

In addition to the analysis of average PEHE, we also investigate whether CARD can improve the
worst-case PEHE, which is a critical measure of model stability and robustness. Relevant results are
reported in Table 2 and Figure 3.

CARD consistently enhances performance across diverse learners and shifts. A key finding
from Table 2 and Figure 3 is that CARD’s impact on a model’s worst-case performance is signif-
icantly larger than its effect on average performance, Averaged across learners, the mean worst-
case RI is substantial for measurement-error scenarios (around 21.1%), moderate for missing-value
scenarios (around 11.5%), and smaller but nontrivial for unmeasured confounding (around 8.0%).
Notably, the RI in worst-case PEHE is frequently three to five times greater than the improvement
observed in the average-case. For instance, while CARD consistently improves the T-learner’s aver-
age PEHE by approximately 10% in many high-noise settings, it enhances its worst-case PEHE by
a massive 30-40% under the same conditions. This disparity reveals CARD’s primary mechanism:
CARD not only shifts average behavior but also substantially reduces the tail risk.

The magnitude of CARD’s improvement is context-dependent. Similar to average-case results,
we also find CARD’s capabilities are dependent on type of distribution shifts in worst-case. As
shown in Figure 3, CARD delivers its most dramatic gains under measurement error, a scenario
that often causes covariate shifts due to additive noise in standard models. Here, CARD slashes
the worst-case PEHE of flexible learners CFR-Wass by 43.4% (from 9.834 to 5.565) and that of
TARNet by 46.2% (from 8.715 to 4.686) at the highest noise level (δ = 3.0). By contrast, missing-
ness produces smaller but stable improvements, which is consistent with our previous observation.
Under the more structured challenge of unmeasured confounding, the improvements, while smaller
or sometimes negative, are still effective for enhancing the worst-case performance. For example,
it reduces the T-learner’s worst-case PEHE by a substantial 20%-30% at the highest confounding
dimension. However, this results also highlights a fundamental problem in causal identification:
while data augmentations can significantly improve a model’s robustness, they cannot identify ora-
cle causal information that is actually absent.

The magnitude of CARD’s improvement is model-specific. The benefits of CARD are distinct
across base learners. As illustrated in Figure 3, for instance, some learners exhibit large worst-case
RI under measurement error: T-learner achieves worst-case RI averaged in all bias levels with about
36.0%, and X-learner with about 32.8%. Others show modest gains, such as DragonNet (5.1%) and
S-learner (12.2%). This heterogeneity can be attributed to two complementary factors: (i) learners
with higher worst-case baseline PEHE have more room for improvement; and (ii) flexible neural
architectures like TARNet can leverage adversarial augmentations to learn more stable conditional
effects. These two observations are aligned with previous average-case results. Interestingly, in a
few cases (e.g., R-learner and DragonNet under certain hidden confounding levels), CARD produces
marginally negative RI, which may be linked to their connections with targeted maximum likelihood
estimation (TMLE), where CARD’s perturbations interact with the targeted nuisance components.

6 CONCLUSION

In this work, we introduce CARD, a novel and model-agnostic framework that is capable to improve
the robustness of any existing CATE learner to unknown distribution shift, without requiring prior
knowledge or additional structural assumptions in the deployment domain. Rather than proposing
a new CATE estimation algorithm, our primary goal is to investigate how reinforcement learning
guided diffusion models can generate adversarial proxies that encourage the CATE learner to adapt
and remain resilient to unseen distribution shifts. Experiments across diverse learners and distri-
bution shift types show consistent gains from CARD, highlighting its potential effectiveness for
real-world deployment. The limitation of this work lies in the computational complexity, a common
challenge for diffusion models, as discussed in Section A.2. An interesting future research is the
complexity improvement with recent acceleration techniques (Chen et al., 2024). Simultaneously,
the success of this approach might open exciting future directions, including extending its applica-
tion to other causal tasks related to generative modeling, such as counterfactual generation (Yoon
et al., 2018), dimension reduction (Liu et al., 2024), and model evaluation (Athey et al., 2024).
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Reproducibility statement. We defer the implementation details of using CARD to train CATE
in Appendix A.1. The uploaded code can be directly used to reproduce our experimental results.
Additionally, we list all the referred and required resources with an instruction file in supplementary.
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A APPENDIX

A.1 CATE ESTIMATION WITH CARD

We now detail the construction of a CATE learner under the CARD framework, leveraging the
observed samples {(Xi, Ai, Yi)}ni=1. Since the CATE learner is trained on the training dataset, the
sample size n here corresponds to the size of the training sample. We denote nt as the sample size
of the treatment group and nc as that of the control group, with n = nt + nc. A key component
of the CARD framework is a time-dependent diffusion model gθ(z, t), which takes as inputs a time
step t ∼ U [ϵ, T ] and a noise variable z ∼ N (0, 1). The diffusion model’s reverse process initiates at
time step T and progresses iteratively. Upon reaching time step 0, it generates the latent variables Z0.

• S-learner: Let the predictors be (X,A) and the response be Y. We first initialize the
model µ̂(X,A) and then, under the CARD framework, employ ∥Y − µ̂(X ⊕ Z0, A)∥22 as
both the loss function and reward function to co-optimize µ̂(X,A) and the score-based
diffusion model gθ through an alternating training process. Using Z0 generated by gθ, we
obtain τ̂S(X):

τ̂S(X) = µ̂(X ⊕ Z0, 1)− µ̂(X ⊕ Z0, 0).

• T-learner: Let the predictors be XT (covariates in the treatment) and the response be
Y T (outcome in the treatment). Let the predictors be XC (covariates in the control) and
the response be Y C (outcome in the control). We first initialize the treatment outcome
model µ̂1(X

T ) and control outcome model µ̂0(X
C). Under the CARD framework, we then

employ
∥∥Y T − µ̂1(X

T ⊕ Z0)
∥∥2
2
+

∥∥Y C − µ̂0(X
C ⊕ Z0)

∥∥2
2

as both the loss function and
reward function to co-optimize µ̂1, µ̂0, and the diffusion model gθ through an alternating
training process. Using Z0 generated by gθ, we obtain τ̂T (X):

τ̂T (X) = µ̂1(X ⊕ Z0)− µ̂0(X ⊕ Z0).
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• X-learner: First-step: Initialize µ̂1(X) and µ̂0(X) using the the above-mentioned proce-
dure in T-learner. Let the predictors be X and the response be A. Initialize a propensity
score model π̂(X). Second-step: Let the predictors be XT and the response be µ̂1(X

T )−
Y T . Let the predictors be XC and the response be µ̂0(X

C) − Y C . Using these defined
predictors and responses, we initialize the models τ̂1(X

T ) and τ̂0(X
C). Next, we uti-

lize
∥∥Y T − µ̂1(X

T ⊕ Z0)
∥∥2
2
+
∥∥Y C − µ̂0(X

C ⊕ Z0)
∥∥2
2
+CrossEntropyLoss(X⊕Z,A)+∥∥µ̂1(X

T ⊕ Z)− Y T − τ̂1(X
T ⊕ Z0)

∥∥2
2
+

∥∥µ̂0(X
C ⊕ Z0)− Y C − τ̂0(X

C ⊕ Z0)
∥∥2
2

as
both the loss function and reward function to co-optimize µ̂1, µ̂0, π̂, τ̂1, τ̂0 and the dif-
fusion model gθ through an alternating training process. Using Z0 generated by gθ, we
obtain τ̂X(X):

τ̂X(X) = (1− π̂(X ⊕ Z0))τ̂1(X
T ⊕ Z0)− π̂(X ⊕ Z0)τ̂0(X

C ⊕ Z0).

• R-learner: First-step: Let the predictors be X and the response be Y .Initialize a model
µ̂(X) to approximate the conditional mean outcome E[Y |X]. Initialize a propensity score
model π̂(X) using the the above-mentioned procedure in X-learner. Second-step: Compute
the outcome residual ξ = Y − µ̂(X) and treatment residual ν = T − π̂(X). We then
initialize a model τ̂(X). Under the CARD framework, we utilize ∥Y − µ̂(X ⊕ Z0)∥22 +

CrossEntropyLoss(X⊕Z0, A)+∥ξ − ντ̂(X ⊕ Z0)∥22 as both the loss function and reward
function to co-optimize µ̂, π̂, τ̂ and the diffusion model gθ through an alternating training
process. Using Z0 generated by gθ, we obtain τ̂R(X):

τ̂R(X) = τ̂(X ⊕ Z0).

• DR-learner: First-step: Initialize µ̂1(X) and µ̂0(X) using the the above-mentioned proce-
dure in T-learner. Initialize a propensity score model π̂(X) using the the above-mentioned
procedure in X-learner. Second-step: Construct surrogate of CATE using pseudo-outcomes
with doubly robust (DR) formula: Y 0,1

DR = Y 1
DR−Y 0

DR, where Y 1
DR = µ̂1(X)+ T

π̂(X) (Y −
µ̂1(X)) and Y 0

DR = µ̂0(X) + 1−T
1−π̂(X) (Y − µ̂0(X)). Using these defined predictors and

responses, we initialize the models τ̂(X). Next, we utilize
∥∥Y T − µ̂1(X

T ⊕ Z0)
∥∥2
2
+∥∥Y C − µ̂0(X

C ⊕ Z0)
∥∥2
2
+ CrossEntropyLoss(X ⊕ Z0, A) +

∥∥∥Y 0,1
DR − τ̂(X ⊕ Z0)

∥∥∥2
2

as
both the loss function and reward function to co-optimize µ̂1, µ̂0, π̂, τ̂ and the diffusion
model gθ through an alternating training process. Using Z0 generated by gθ, we obtain
τ̂DR(X):

τ̂DR(X) = τ̂(X ⊕ Z0).

• TARNet: We first define the predictors as (X,A) and the response as Y, and construct
a representation model r̂(X) to encode covariate information. The model architecture
incorporates two outcome heads: µ̂1(r̂(X)) for the treatment group and µ̂0(r̂(X)) for
the control group, which share the underlying representation r̂(X) while learning sep-
arate outcome estimates. Under the CARD framework, we employ the composite
function

∥∥µ̂1(r̂(X ⊕ Z0))− Y T
∥∥2
2
+

∥∥µ̂0(r̂(X ⊕ Z0))− Y C
∥∥2
2
as both the loss function

and reward function to co-optimize r̂(X), µ̂1, µ̂0, and the diffusion model gθ through an
alternating training process. Using Z0 generated by gθ, we obtain τ̂TARNet(X):

τ̂TARNet(X) = µ̂1(r̂(X ⊕ Z0))− µ̂0(r̂(X ⊕ Z)).

• CFR WASS: Initialize r̂(X), µ̂1(X) and µ̂0(X) using the the above-mentioned
procedure in TARNet. Under the CARD framework, we employ the composite
function

∥∥µ̂1(r̂(X ⊕ Z0))− Y T
∥∥2
2
+

∥∥µ̂0(r̂(X ⊕ Z0))− Y C
∥∥2
2
+ IPMLoss(XT , XC) as

both the loss function and reward function to co-optimize r̂(X), µ̂1, µ̂0, and the diffusion
model gθ through an alternating training process. Using Z0 generated by gθ, we obtain
τ̂CFRWASS(X):

τ̂CFR−Wass(X) = µ̂1(r̂(X ⊕ Z0))− µ̂0(r̂(X ⊕ Z0)).

• DragonNet: Initialize r̂(X), µ̂1(X) and µ̂0(X) using the the above-mentioned procedure
in TARNet. The model architecture incorporates three outcome heads: µ̂1(r̂(X)) for the
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treatment group, µ̂0(r̂(X)) for the control group and π̂(X) for the propensity score, which
share the underlying representation r̂(X) while learning separate outcome estimates. Un-
der the CARD framework, we employ the composite function

∥∥µ̂1(r̂(X ⊕ Z0))− Y T
∥∥2
2
+∥∥µ̂0(r̂(X ⊕ Z0))− Y C

∥∥2
2
+ CrossEntropyLoss(X ⊕ Z0, A) as both the loss function and

reward function to co-optimize r̂(X), µ̂1, µ̂0, and the diffusion model gθ through an alter-
nating training process. Using Z0 generated by gθ, we obtain τ̂DragonNet(X):

τ̂DragonNet(X) = µ̂1(r̂(X ⊕ Z0))− µ̂0(r̂(X ⊕ Z0)).

A.2 EXPERIMENTAL DETAILS AND HYPERPARAMETERS

Implementation details. All meta-learners in this work are implemented using neural network
architectures. Specifically, the S-learner, T-learner, X-learner, R-learner, and DR-learner share a
unified three-layer neural network structure, with each layer containing 200 neurons. In contrast,
TARNet, CFR-Wass, and DragonNet adopt a two-component architecture: a representation network
with three layers (200 neurons per layer) and a prediction layer with three layers (100 neurons per
layer).

Hyperparameters. All model training processes are conducted on a Dell 3640 workstation with
an Intel Xeon W-1290P 3.60GHz CPU and NVIDIA GeForce RTX 2080 Ti GPU. For optimizing
the CATE learner, we used the Adam optimizer with a learning rate of 10−3 and weight decay
of 10−4. Model selection was based on the factual loss as the validation metric, with early stopping
implemented if no improvement was observed on the validation set for 20 consecutive epochs.In the
reinforcement fine-tuning phase, the AdamW optimizer was employed with a learning rate of 2 ×
10−5. The hyperparameters for fine-tuning varied by model type:

• For S-learner, T-learner, and DragonNet: α = 0.8 and fine-tuning frequency K = 10;

• For X-learner, R-learner, and DR-learner: α = 0.8 and K = 2;

• For TARNet and CFR WASS: α = 0.1 and 0.8, with K = 10 and 5 respectively.

Additionally, the imbalance loss coefficient for CFR-Wass and the BCE loss coefficient for Drag-
onNet were both set to 1.0. The discount factor γ was set to 0.99. The latent variable Z generated
by the diffusion model has a dimension half that of the covariate X .

Model architecture. The parameters of the autoencoder and score-based diffusion model largely
follow the default settings provided in (Suh et al.). Both models are trained for 10,000 epochs,
and the number of timesteps for the diffusion model is set to 50. The autoencoder adopts a multi-
layer perceptron (MLP) block-based architecture, with ReLU activation functions used in all hidden
layers. Its forward process is defined as:

MLPBlock(X) = ReLU (Linear(X)) ,

Z = Linear (· · ·MLPBlock(X)) ,

X̃ = Linear (· · ·MLPBlock(Z)) ,

(9)

where Z denotes the latent representation of the input X , and X̃ is the reconstruction output of the
autoencoder.

Let t denote a timestep in the diffusion process, and SinTimeEmb represent the sinusoidal time
embedding proposed in (Nichol & Dhariwal, 2021). For any fixed t, the time embedding temb and
the processed input to the score network (denoted Zt-emb) are computed as:

temb = LayerNorm (SiLU (Linear (SinTimeEmb(t)))) ,

Zt-emb = LayerNorm (Linear(Zt)) + temb,
(10)

where Zt is the latent variable at timestep t, and the addition of temb injects timestep-aware informa-
tion into the latent input.
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The time-dependent score network g is then constructed using MLP blocks with LayerNorm regu-
larization, and its calculation is given by:

MLPBlock(Zt-emb) = LayerNorm
(
ReLU

(
Linear(Zt-emb)

))
,

g(Zt-emb, t) = Linear
(
· · ·MLPBlock(Zt-emb)

)
.

(11)

Time complexity analysis. We compare the time complexity between CATE learners trained with
the CARD framework and those trained with standard procedures. We assume the CATE learner is
trained with E epochs, resulting in a complexity of O(E). In contrast, when training a CATE learner
using the CARD framework, each training epoch requires an additional T iterations for trajectory
generation in the diffusion model, leading to a time complexity of O(ET ). Thus, the improved
robustness of the CATE learner achieved via the CARD framework comes at the cost of increased
computational time, i.e., a tradeoff between model robustness and time cost. The practical users are
suggested to set T with early stop, and use new acceleration technique for training diffusion models.

A.3 ROLE OF LLM

In this paper, LLM was used to aid in writing and polish the texts. Importantly, we take full re-
sponsibility for the content of the manuscript, and we did not use LLM for idea generation, method
development, experimental coding. All research ideas, codes, experimental results, and experimen-
tal analysis are conducted by the authors. The contribution of LLM is only the linguistic quality
improvement.
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