

000 001 002 003 004 005 IMPROVING CAUSAL INFERENCE ROBUSTNESS VIA 006 REINFORCEMENT-GUIDED DIFFUSION MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

011 Estimating the Conditional Average Treatment Effect (CATE) is essential to per-
012 sonalized decision-making in causal inference. However, in real-world prac-
013 tices, CATE models often suffer degraded performance when faced with unknown
014 distribution shifts between training and deployment environments. To tackle
015 this challenge, we introduce **Causal Adversarial Reinforcement-guided Diffusion**
016 (**CARD**), a model-agnostic framework that can be wrapped around any exist-
017 ing CATE learner to improve its robustness against unknown distribution shifts.
018 CARD formulates the CATE modeling process as a minimax game: a reinfor-
019 cements learning agent guides a diffusion model to generate adversarial data aug-
020 mentations that maximize the CATE learner’s loss, and then the learner is trained
021 to minimize this worst-case loss, creating a principled robust optimization pro-
022 cedure. The comprehensive experimental results demonstrate that CARD con-
023 sistently improves the robustness of diverse CATE learners against challenging
024 data corruptions, including measurement error, missing values, and unmeasured
025 confounding, confirming its broad applicability and effectiveness.
026

1 INTRODUCTION

027 Estimating the Conditional Average Treatment Effect (CATE) is a core problem in causal infe-
028 rence, as it quantifies how an intervention would differentially affect subgroup-level (or approxi-
029 mated individual-level) as a function of observed covariates, enabling personalized decision-making
030 in various domains such as (Farrell, 2015; Chernozhukov et al., 2018; Kitagawa & Tetenov, 2018;
031 Abadie et al., 2023), statistics (Wager & Athey, 2018; Li & Wager, 2022; Foster & Syrgkanis, 2023;
032 Kennedy, 2023), clinical (Zhang et al., 2019; Qian et al., 2021; Bica et al., 2021; Kinyanui & Jo-
033 hansson, 2022; Feuerriegel et al., 2024; Ma et al., 2025), and financial application (Li et al., 2023;
034 Huang et al., 2023b; Fernández-Loría et al., 2023; Wu et al., 2025a). The practical of CATE mod-
035 els often hinges on a crucial but fragile assumption: *external validity (or transportability)* (Pearl &
036 Bareinboim, 2011; Bareinboim & Pearl, 2016). That is, causal conclusions derived from a source
037 environment must remain valid when the model is deployed in a different target population.
038

039 However, in real-world practice, this external validity assumption is often violated. CATE mod-
040 els can suffer a degraded performance when confronted when unknown *distribution shifts* between
041 the training and deployment environments present, which is often incurred by data imperfections
042 (Kallus et al., 2018; Agarwal & Singh, 2021; Zhang et al., 2023), such as measurement error (Imai
043 & Yamamoto, 2010; Battistin & Chesher, 2014; Kuroki & Pearl, 2014; Pei et al., 2019), missing val-
044 ues (Rubin, 1976; Bang & Robins, 2005; Mohan et al., 2013; Yang et al., 2019; Mayer et al., 2020),
045 and unmeasured confounding (Kallus et al., 2019; Ding et al., 2022; Oprescu et al., 2023; Xiao
046 et al., 2024; Dorn et al., 2025). Such data imperfections signify structural discrepancies between the
047 source and target domains, thereby rendering the direct transfer of causal conclusions invalid. We
048 demonstrate this challenge with the following motivating example.
049

050 **Motivating example.** Suppose a technical company trains a CATE model on its proprietary clean
051 and well structured dataset, and intend to license it to a hospital system. The model must be val-
052 idated on the hospital’s own Electronic Health Record (EHR) data, which constitutes an unseen
053 target domain as it was unavailable during the initial training phase. The EHR data reflects a dif-
ferent data generating process with systematic imperfections that induce a distribution shift from

054 the source data (Ruan et al., 2024): (i) measurement error, arising from device inaccuracies, re-
 055 porting biases, or procedural variability; (ii) missing values, caused by privacy restrictions, legal
 056 constraints, or transcription errors; and (iii) unmeasured confounders, such as socioeconomic sta-
 057 tus, environmental exposures, or genetic predispositions, can trigger severe concept drift. These
 058 uncertain data imperfections significantly hinder the generalization of the CATE model trained in
 059 the source domain to the EHR data.

060 To tackle the distribution shift problem in causal inference, existing methods develop specialized
 061 causal estimators for specific data shift types. Examples include CATE learners that aim to be robust
 062 to covariate shift (Kern et al., 2024) or to concept drift (Zhang et al., 2024), and policy learning
 063 methods that seek robustness under combined and unknown shifts (Kallus et al., 2022; Mu et al.,
 064 2022; Si et al., 2023). Most of these studies are grounded in structural assumptions about the shift
 065 or the estimator itself, and their advancements in robust causal learning motivates a complementary
 066 question: *Can we develop a method that is capable to enhance the robustness of any existing CATE*
 067 *learner to unknown distribution shifts without requiring additional structural assumptions?*

068 Inspired by this question, we propose **Causal Adversarial Reinforcement-guided Diffusion (CARD)**,
 069 a model-agnostic framework that strengthens the robustness of *any* existing CATE learner without
 070 redesigning its internal architecture. CARD frames robust CATE training as a minimax game be-
 071 tween an adversarial generator and a CATE learner. In CARD, specifically, a reinforcement learning
 072 agent guides a diffusion model to produce adversarial proxies that maximally challenge the CATE
 073 learner, and the learner then adapts by minimizing the worst-case error over these generated aug-
 074 mentations, yielding a principled robust optimization routine tailored to CATE estimation.

075 Our main **contributions** are threefold:

- 077 • We propose a novel model-agnostic framework, CARD, which can be flexibly integrated
 078 with any existing CATE learner to enhance its robustness against a wide range of unknown
 079 distribution shifts, without requiring additional structural assumptions or prior knowledge
 080 of target information.
- 081 • To the best of our knowledge, we are the first to introduce a reinforcement-learning guided
 082 diffusion model in causal inference literature. This might bring new possibilities for other
 083 causal inference tasks, such as counterfactual generation (Yoon et al., 2018), dimension
 084 reduction (Liu et al., 2024), and model evaluation (Athey et al., 2024), among others.
- 085 • We empirically demonstrate that CARD consistently improves the robustness of popular
 086 CATE learners when deployed in challenging target data corruptions, involving measure-
 087 ment error, missing values, and unmeasured confounding, confirming its reliability and
 088 adaptability to real-world causal inference tasks.

089 2 RELATED WORK

090 **Data combination and external validity.** A central challenge in causal inference is to generalize
 091 effects learned in the source dataset to a target population. This problem is formalized under ex-
 092 ternal validity (or transportability) (Pearl & Bareinboim, 2011; Bareinboim & Pearl, 2016). Data
 093 combination frameworks specify when and how evidence from multiple sources can be fused across
 094 populations to identify causal quantities, explicitizing the role of distributional differences across
 095 domains (Bareinboim & Pearl, 2016; Dahabreh & Hernán, 2019). When the transportability as-
 096 sumption holds, combining data can improve the precision and efficiency of treatment effect estima-
 097 tion (Hatt et al., 2022; Dahabreh et al., 2023; Huang et al., 2023a; Wu et al., 2025b; Rudolph et al.,
 098 2025). In practice, however, the transportability assumption is often violated due to unobserved
 099 heterogeneity between the source and target domains. To address this, statistical work develops sen-
 100 sitivity analysis and partial identification tools for average treatment effects (Nie et al., 2021; Huang,
 101 2024; Yadlowsky et al., 2022). On the modeling side, there is growing interest in conditional effect
 102 estimation without assuming transportability. Several studies address latent confounding by com-
 103 bining RCT and observational data, proposing methods such as the integrative R-learner (Wu &
 104 Yang, 2022) and the MetaDebias neural network (Xiao et al., 2024).

105 **Causal inference under distribution shift.** A growing body of research has examined how to
 106 make causal inference methods robust when the deployment distribution differs from the training

108 environment. Existing approaches can be broadly categorized into two lines. The first line focuses
 109 on robust CATE estimation under specific types of shifts. For example, recent work addresses
 110 covariate shift by controlling worst-case bias across target covariate distributions (Jeong & Namkoong,
 111 2020) or by enforcing multi-accuracy constraints on CATE learners (Kern et al., 2024). Other studies
 112 primarily focus on concept drift, for instance, by optimizing the CATE function within an un-
 113 certainty set over convex combinations of multisite CATE functions under a known target covariate
 114 distribution (Zhang et al., 2024). The second line of work emphasizes causal decision making via
 115 robust optimization, which aims to learn treatment assignment rules that remain effective to unseen
 116 confounding scenarios or target environments (Kallus & Zhou, 2021; Kallus et al., 2022; Mu et al.,
 117 2022; Kido, 2022; Si et al., 2023; Shen et al.; Wang et al.; Hess et al., 2025). While powerful for de-
 118 riving robust policies, these approaches are primarily designed for policy learning rather than CATE
 119 estimation. This gap underscores the necessity of developing methods specifically tailored for gen-
 120 eralizing CATE estimation to unseen target domains without requiring prior knowledge of covariate
 121 distributions or treatment effect heterogeneity.

3 PROBLEM SETUP

124 This study is grounded in the potential outcome framework (Rubin, 1974; 2005). Let
 125 $\{(X_i, A_i, Y_i)\}_{i=1}^n$ denote an observational sample of n i.i.d. units drawn from a *source* popula-
 126 tion. For unit i , $X_i \in \mathcal{X} \subset \mathbb{R}^d$ is a d -dimensional pre-treatment covariate vector, $A_i \in \{0, 1\}$ is a
 127 binary treatment indicator, and $\{Y_i^0, Y_i^1\}$ are the corresponding potential outcomes. The observed
 128 (factual) outcome is $Y_i = Y_i^{A_i}$, and the unobserved (counterfactual) outcome is $Y_i^{1-A_i}$. Our target
 129 estimand is the CATE, which captures the sub-population treatment heterogeneity:

$$\tau(x) := \mathbb{E}[Y^1 - Y^0 | X = x]. \quad (1)$$

130 Estimating $\tau(x)$ from observational data presents a key challenge, due to the fundamental problem
 131 of causal inference: for any unit, only one potential outcome can be observed. To identify the CATE
 132 from observational data in the source domain, we rely on the following standard assumptions.

133 **Assumption 1** (SUTVA, Consistency, and Overlap). *For all units in the source domain, we have the*
 134 *following assumptions: Consistency & SUTVA: The observed outcome for unit i receiving treatment*
 135 *a is the potential outcome Y^a , and potential outcomes of this unit are not affected by the treatment*
 136 *assignments of other units. Overlap (Positivity): The probability of receiving treatment is bounded*
 137 *away from 0 and 1 for all covariate profiles, i.e., $0 < P(A = 1 | X = x) < 1$ for all $x \in \mathcal{X}$. Internal*
 138 *validity (Unconfoundedness): The treatment assignment is independent of the potential outcomes,*
 139 *conditional on the observed covariates, i.e., $\{Y^1, Y^0\} \perp\!\!\!\perp A | X$.*

3.1 GENERALIZING CATE UNDER DISTRIBUTION SHIFT

140 A critical generalization challenge arises when an estimator $\hat{\tau}(x)$, trained on the source domain
 141 (P_S), must be deployed in an unseen target domain (P_T). The CATE model’s performance in this
 142 new domain is threatened by potential distribution shifts in two main types.

143 **Covariate shift.** The most common and well-studied type of distribution shift is covariate shift,
 144 where the marginal distribution of covariates differs across domains, i.e., $P_S(X) \neq P_T(X)$. Generalization
 145 under this shift is made possible by the transportability assumption.

146 **Assumption 2** (External validity (Transportability)). *The conditional distribution of potential out-
 147 comes given covariates is invariant across domains, i.e., $P_S(Y^a | X) = P_T(Y^a | X)$ for $a \in \{0, 1\}$.*

148 This assumption implies that the underlying causal mechanisms are stable across domains, and thus
 149 the true CATE function is the same in both domains: $\tau_S(x) = \tau_T(x)$. Nevertheless, even with
 150 transportability, CATE model performance can deteriorate when deploying $\hat{\tau}$ in the target domain
 151 due to the covariate distribution mismatch, which is a common issue in machine learning studies.

152 **Concept drift.** A more severe challenge arises from concept drift, where the transportability as-
 153 sumption is violated, meaning $P_S(Y^a | X) \neq P_T(Y^a | X)$. As highlighted in our motivating exam-
 154 ple, such drift is often caused by unmeasured confounders present only in the target domain, which
 155 alter the treatment heterogeneity. Under concept drift, the true CATE function is no longer invariant
 156 across domains, i.e., $\tau_S(x) \neq \tau_T(x)$, making out-of-domain CATE estimation substantially more
 157 challenging than the covariate-shift-only setting.

162 **4 METHOD**
 163

164 In this section, we introduce our proposed framework, **Causal Adversarial Reinforcement-guided**
 165 **Diffusion (CARD)**. We begin by formulating robust CATE estimation as a minimax optimization
 166 problem. We then detail how a reinforcement learning agent guides a diffusion model to generate
 167 adversarial proxies that realize this objective. Finally, we present the detailed training pipeline for
 168 integrating CARD with any CATE estimator.
 169

170 **4.1 A MINIMAX OBJECTIVE FOR ROBUST CATE ESTIMATION**
 171

172 Given source data samples $(X, A, Y) \sim P_S$, a standard CATE learner f_ϕ with parameters ϕ is
 173 trained by minimizing an objective $\mathcal{L}^{\text{inf}}(\phi) = \mathbb{E}[\ell(X, A, Y; f_\phi)]$, where ℓ is the loss function asso-
 174 ciated with the chosen meta-learner. To protect the estimator against unknown distribution shifts in
 175 the target domain, we optimize f_ϕ with a new objective $\mathcal{L}^{\text{inf}}(\phi, Z)$ in a robust optimization manner:
 176

$$\min_{\phi} \max_{Z \in \Omega} \mathcal{L}^{\text{inf}}(\phi, Z) := \mathbb{E}_{(X, A, Y) \sim P_S} [\ell(X \oplus Z, A, Y; f_\phi)], \quad (2)$$

178 where Ω is an uncertainty set defining the space of learnable adversarial proxies. Conceptually,
 179 solving this objective forces the inferencer f_ϕ to be robust against the most harmful proxies in
 180 Ω . While some causal inference studies formulate similar adversarial problems as distributionally
 181 robust optimization (DRO), they often define Ω based on statistical distances or strong structural
 182 assumptions, as discussed in Section 2. Our key departure is that the inferencer f_ϕ is trained on
 183 covariates augmented by learned adversarial proxies, creating a more flexible robustness mechanism
 184 without loss of original covariate information.
 185

186 **4.2 ROBUST CATE ESTIMATION WITH CARD**
 187

188 Instead of constraining the adversary to a predefined uncertainty set Ω (e.g., a KL-ball (Kallus et al.,
 189 2022; Si et al., 2023)), we design a framework that learns to generate worst-case proxies Z using a
 190 score-based diffusion model guided by a reinforcement learning (RL) agent.

191 **Score-based diffusion.** A score-based diffusion model (Song et al.) consists of a forward process
 192 that progressively adds noise to data Z_0 over a time interval $t \in [0, T]$, governed by a stochastic
 193 differential equation (SDE):
 194

$$dZ = f(Z, t)dt + g(t)dW_t, \quad (3)$$

195 where $f(Z, t)$ is the drift coefficient, $g(t)$ is the diffusion coefficient, and W_t is a standard Wiener
 196 process. The corresponding reverse process generates data by traversing time from T to 0. Using
 197 the Fokker-Planck equation of the marginal density (Suh et al.), the reverse-time SDE is:
 198

$$dZ = [f(Z, t) - g(t)^2 \nabla_z \log p_t(Z)] dt + g(t)d\bar{W}_t, \quad (4)$$

200 where \bar{W}_t is a Wiener process running backward from $t = T$ to $t = 0$. The score $\nabla_z \log p_t(Z)$ is
 201 approximated by a neural network $g_\theta(z, t)$, pretrained with the standard score-matching objective:
 202

$$\mathcal{L}^{\text{diff}}(\theta) = \mathbb{E}_{Z_0, Z_t \sim p_t(\cdot | Z_0), t \sim \mathcal{U}[\varepsilon, T]} [\lambda(t)^2 \|g_\theta(Z_t, t) - \nabla_z \log p_t(Z_t | Z_0)\|_2^2], \quad (5)$$

204 where $\lambda(t) > 0$ weights time steps and $\varepsilon > 0$ ensures numerical stability. In practice, the diffusion
 205 model is often applied on a low-dimensional latent code Z obtained from an autoencoder.
 206

207 **Reinforcement-guided adversarial generation.** To solve the inner maximization of Eqn. (2), we
 208 frame the reverse diffusion process as a Markov Decision Process (MDP) (Black et al.) and use
 209 an RL agent to steer the generation toward adversarial proxies. The objective is to guide the score
 210 model g_θ to maximize the expected cumulative reward along the denoising trajectory:
 211

$$\mathcal{J}(\theta) = \mathbb{E} \left[\sum_{t=1}^T \log g_\theta(Z_{t-1} | Z_t) \frac{G_t - \mu_G}{\sigma_G} \right], \quad \text{where } G_t = \sum_{k=t}^T \gamma^{k-t} \mathcal{L}^{\text{inf}}(\phi, Z). \quad (6)$$

212 Here, $\mathcal{L}^{\text{inf}}(\phi, Z)$ is the immediate reward at step t , G_t is the discounted return from step t with
 213 discount factor $\gamma \in (0, 1]$, and the returns are standardized per-trajectory with the mean μ_G and
 214

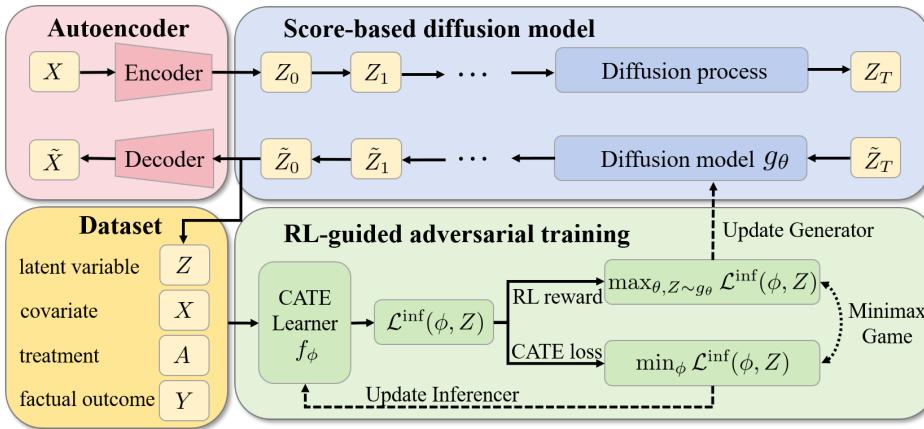


Figure 1: An overview of the proposed CARD training pipeline for robust CATE estimation.

standard deviation σ_G . To maintain generation quality and stabilize training, we combine this RL objective with the original score-matching loss, yielding the final objective for the generator:

$$\max_{\theta} \mathcal{L}^{\text{full}}(\theta) = \mathcal{J}(\theta) - \alpha \mathcal{L}^{\text{diff}}(\theta), \quad (7)$$

where $\alpha > 0$ is a balancing hyperparameter. This fine-tuning process transforms the diffusion model from a simple data generator into a sophisticated adversary capable of generating worst-case proxies that approximate the solution to the inner maximization in our minimax objective (2).

Algorithm of CATE learning with CARD. The complete procedure of training CATE with CARD, which alternates between updating the generator and the inferencer, is outlined in Algorithm 1. We also illustrate the corresponding pipeline in Figure 1.

Algorithm 1 CATE model training with CARD

Require: Source data $(X, A, Y) \sim P_S$, inferencer (base CATE learner) f_ϕ , Autoencoder $(\text{Enc}_\psi, \text{Dec}_\psi)$, diffusion model g_θ .

1: **Phase 1: Pre-training**

- 2: Train autoencoder on covariates X to learn a latent space Z .
- 3: Pre-train diffusion model g_θ on latent representations $Z = \text{Enc}_\psi(X)$ via Eqn. (5).
- 4: **Phase 2: CATE model training with minimax**

5: **for** each training epoch $e = 1, \dots, E$ **do**

- 6: Sample $Z_T \sim \mathcal{N}(0, I)$ and generate a denoising trajectory (Z_T, \dots, Z_0) using g_θ .
- 7: For each sample, compute trajectory returns G_t via Eqn. (6).
- 8: Update generator parameters θ by maximizing $\mathcal{L}^{\text{full}}(\theta)$ from Eqn. (7).
- 9: Update inferencer parameters ϕ by minimizing $\mathcal{L}^{\text{inf}}(\phi, Z_0)$ from Eqn. (2).

Ensure: Generator g_θ for Z_0 generation, and inferencer $f_\phi(X \oplus Z_0, A, Y)$ for CATE estimation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

CATE learners. Our evaluation includes eight prominent CATE estimation methods, comprising five meta-learners and three specialized neural network models. The meta-learners represent a diverse set of strategies, including indirect-type (S-learner and T-Learner) and direct-type (X-learner (Künzel et al., 2019), DR-learner (Kennedy, 2023; Foster & Syrgkanis, 2023), and R-Learners (Nie & Wager, 2021)) approaches. The representation-based models consist of widely-recognized architectures: TARNNet & CFR-Wass (Shalit et al., 2017; Johansson et al., 2022) and DragonNet (Shi et al., 2019). The specific details of implementing these CATE learners with CARD are presented in Section A.1, and detailed parameter configurations for all models are provided in Appendix A.2.

Evaluating CATE estimators requires access to ground-truth treatment effects, which are unavailable in real-world data. Therefore, following established practice in causal inference research (Curth & Van der Schaar, 2021; Curth & Van Der Schaar, 2023; Huang et al., 2024), we employ a semi-synthetic data generating process with covariates collected from ACIC2016 dataset (Dorie et al., 2019). The dataset contains 4802 samples with $d = 22$ continuous covariates. The treatment assignment A_i is generated from a Bernoulli distribution based on the covariates $A_i|X_i \sim \text{Bern}(1/(1 + \exp(-(\beta'_T X_i))))$. The potential outcome generation is based on additive interaction terms, with a complex quadratic heterogeneous treatment effects:

$$Y_i = \sum_j^d \beta'_j X_{i;j} + \sum_{j=1}^d \sum_{k=j}^d \beta'_{j,k} X_{i;j} X_{i;k} + A_i \sum_{j=1}^d \sum_{k=j}^d \gamma_{i,j} X_{i;j} X_{i;k} + \epsilon_i. \quad (8)$$

The coefficients are set as: $\beta'_T \sim \text{Bern}(0.1)$, $\beta'_j \sim \text{Bern}(0.5)$, $\beta'_{j,k} \sim \text{Bern}(0.5)$, $\gamma_{i,j} \sim \text{Bern}(0.1)$, and the noise term ϵ_i is sampled from $\mathcal{N}(0, 0.1)$. We repeat the above data generating process to generate 30 distinct datasets, each partitioned into training/validation/testing ratio of 49%/21%/30%.

Distribution shift settings. To evaluate the robustness of CARD, we introduce three types of distribution shifts exclusively in the test set:

- **Measurement error:** We simulate measurement error by adding Gaussian noise to the covariates of the test set, while the underlying data generating process remains unchanged. The observed covariates become $X_i^{obs} = X_i + \mathcal{N}(0, \delta^2 I_d)$, where δ controls the shift level incurred by measurement error and varies across $\{0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0\}$.
- **Missing values:** This setting introduces missingness to the covariates of the test set, while the underlying data generating process remains unchanged. We apply a binary mask to the covariates, where each element is independently set to 0 with probability ρ . We use the MICE algorithm (Kallus et al., 2018) to enable CATE to be deployed on incomplete test data. The missingness rate ρ controls the shift level incurred by missing values and varies across $\{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5\}$.
- **Unmeasured confounding:** This scenario introduces a shift in the outcome generation mechanism for the test set. The observed covariates X_{obs} remain unchanged, but the potential outcomes are generated by a new model that includes both observed confounders X_{obs} and hidden confounders U , i.e., $X = (X_{obs}, U)$ in Eqn. (8). The unmeasured confounders are drawn from uniform distribution $U_{i,j} \sim \mathcal{U}(-3, 3)$, and the dimension of hidden confounders d^U is varied across $\{1, 5, 10, 15, 20, 25, 30\}$.

Evaluation criteria. We evaluate model performances using the Precision in Estimation of Heterogeneous Effect (PEHE) (Hill, 2011), a standard metric that measures the root mean squared error between the estimated and true CATE values, denoted by $\epsilon_{\text{PEHE}}(\hat{\tau})$. And we use $\epsilon_{\text{RI}}(\hat{\tau})$ to denote the relative improvement of a base CATE learner $\hat{\tau}$ when it is trained with CARD, i.e., the CATE learner with CARD $\hat{\tau}^{\text{CARD}}$, denoted by $\epsilon_{\text{RI}}(\hat{\tau})$.

$$\epsilon_{\text{PEHE}}(\tau) = \sqrt{\frac{1}{n} \sum_{i=1}^n (\tau(X_i) - \tau_{\text{true}}(X_i))^2},$$

where τ and τ_{true} are arbitrary CATE model and the ground-truth CATE function, respectively. To specifically quantify the benefit of our method, we also introduce the Relative Improvement (RI) in PEHE. This metric calculates the percentage reduction in PEHE achieved by applying our CARD framework to a base CATE estimator:

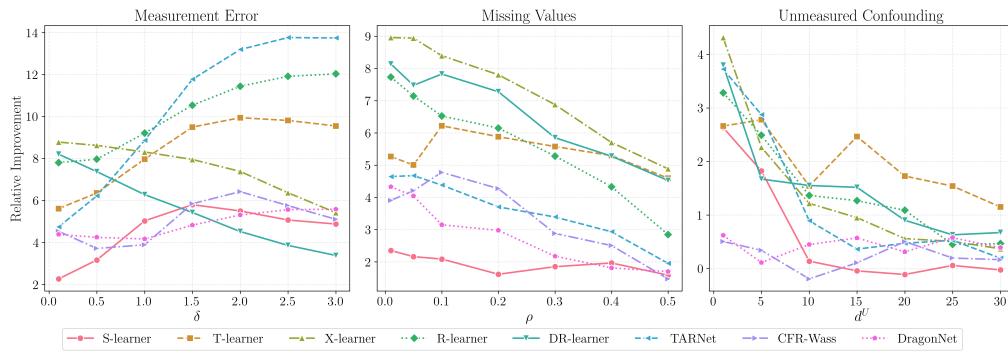
$$\epsilon_{\text{RI}}(\hat{\tau}) = \frac{\epsilon_{\text{PEHE}}(\hat{\tau}) - \epsilon_{\text{PEHE}}(\hat{\tau}^{\text{CARD}})}{\epsilon_{\text{PEHE}}(\hat{\tau})},$$

where $\epsilon_{\text{PEHE}}(\hat{\tau})$ is the PEHE of the original CATE learner and $\epsilon_{\text{PEHE}}(\hat{\tau}^{\text{CARD}})$ is the PEHE of the same estimator after being trained with CARD.

324

325
326
327
Table 1: Comparison of **average PEHE** over 30 runs for various CATE learners, with and without
the CARD framework, under three distribution shift scenarios: measurement error, missing values,
and unmeasured confounding. **Bold** denotes the better results for each learner pair.

Settings	Measurement error (controlled by δ)						Missing values (controlled by ρ)						Unmeasured confounding (controlled by d^U)								
Bias level	0.1	0.5	1.0	1.5	2.0	2.5	3.0	0.01	0.05	0.1	0.2	0.3	0.4	0.5	1	5	10	15	20	25	30
S-learner	0.578	0.632	0.761	0.889	0.981	1.041	1.080	0.577	0.581	0.586	0.598	0.622	0.649	0.671	0.662	0.956	1.562	1.883	2.139	2.453	2.862
S+CARD	0.565	0.612	0.722	0.838	0.927	0.988	1.028	0.564	0.569	0.574	0.589	0.611	0.636	0.661	0.644	0.939	1.560	1.884	2.141	2.452	2.863
T-learner	1.105	1.283	1.833	2.669	3.653	4.705	5.792	1.096	1.085	1.072	1.056	1.065	1.057	1.014	1.240	1.420	1.902	2.187	2.396	2.693	3.069
T+CARD	1.043	1.201	1.687	2.416	3.290	4.243	5.239	1.039	1.031	1.005	0.994	1.006	1.001	0.967	1.207	1.381	1.873	2.133	2.355	2.651	3.034
X-learner	0.669	0.734	0.921	1.209	1.568	1.973	2.408	0.667	0.669	0.672	0.683	0.702	0.723	0.731	0.771	1.033	1.647	1.955	2.193	2.503	2.902
X+CARD	0.610	0.670	0.844	1.113	1.453	1.848	2.277	0.608	0.609	0.615	0.629	0.654	0.681	0.695	0.738	1.010	1.627	1.936	2.180	2.490	2.891
R-learner	0.825	0.889	1.082	1.379	1.741	2.143	2.567	0.822	0.819	0.815	0.813	0.818	0.820	0.818	0.847	1.053	1.746	2.051	2.267	2.549	2.962
R+CARD	0.760	0.818	0.983	1.234	1.542	1.887	2.258	0.759	0.761	0.761	0.763	0.775	0.785	0.794	0.820	1.027	1.722	2.025	2.242	2.538	2.949
DR-learner	0.755	0.861	1.169	1.632	2.193	2.810	3.460	0.751	0.747	0.746	0.752	0.766	0.782	0.783	0.900	1.142	1.701	2.001	2.237	2.546	2.939
DR+CARD	0.693	0.797	1.095	1.544	2.094	2.701	3.343	0.690	0.691	0.687	0.697	0.721	0.741	0.747	0.872	1.123	1.675	1.971	2.217	2.530	2.920
TARNet	0.675	0.776	1.080	1.559	2.164	2.843	3.564	0.670	0.670	0.671	0.683	0.708	0.731	0.731	0.842	1.109	1.612	1.903	2.173	2.499	2.881
TAR+CARD	0.643	0.728	0.984	1.376	1.879	2.452	3.074	0.639	0.639	0.642	0.657	0.684	0.710	0.717	0.811	1.077	1.598	1.896	2.163	2.486	2.875
CFR-Wass	0.707	0.765	0.965	1.336	1.840	2.409	3.009	0.693	0.694	0.705	0.715	0.728	0.746	0.744	0.771	1.040	1.617	1.936	2.187	2.498	2.898
CFR+CARD	0.675	0.736	0.927	1.258	1.722	2.270	2.856	0.666	0.664	0.671	0.684	0.707	0.727	0.733	0.767	1.036	1.620	1.934	2.176	2.493	2.894
DragonNet	0.689	0.780	1.058	1.502	2.059	2.682	3.343	0.686	0.685	0.683	0.695	0.716	0.736	0.738	0.832	1.084	1.640	1.945	2.193	2.512	2.910
Dragon+CARD	0.659	0.747	1.014	1.429	1.950	2.533	3.156	0.656	0.657	0.662	0.674	0.700	0.723	0.725	0.827	1.083	1.633	1.934	2.186	2.498	2.899

351
352
353
354
355
Figure 2: Performance gains from CARD: Relative Improvement in **average PEHE** over 30 runs
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
399
398
397
396
395
394
393
392
391
390
389
388
387
386
385
384
383
382
381
380
379
378
377
376
375
374
373
372
371
370
369
368
367
366
365
364
363
362
361
360
359
358
357
356
355
354
353
352
351
350
349
348
347
346
345
344
343
342
341
340
339
338
337
336
335
334
333
332
331
330
329
328
327
326
325
324
323
322
321
320
319
318
317
316
315
314
313
312
311
310
309
308
307
306
305
304
303
302
301
300
299
298
297
296
295
294
293
292
291
290
289
288
287
286
285
284
283
282
281
280
279
278
277
276
275
274
273
272
271
270
269
268
267
266
265
264
263
262
261
260
259
258
257
256
255
254
253
252
251
250
249
248
247
246
245
244
243
242
241
240
239
238
237
236
235
234
233
232
231
230
229
228
227
226
225
224
223
222
221
220
219
218
217
216
215
214
213
212
211
210
209
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
399
398
397
396
395
394
393
392
391
390
389
388
387
386
385
384
383
382
381
380
379
378
377
376
375
374
373
372
371
370
369
368
367
366
365
364
363
362
361
360
359
358
357
356
355
354
353
352
351
350
350
349
348
347
346
345
344
343
342
341
340
340
339
338
337
336
335
334
333
332
331
330
330
329
328
327
326
325
324
324
323
322
321
320
320
319
318
317
316
315
314
313
312
311
310
310
309
308
307
306
305
304
303
302
301
301
300
300
299
298
297
296
295
294
293
292
291
291
290
290
289
288
287
286
285
284
283
282
281
281
280
280
279
278
277
276
275
274
273
273
272
272
271
271
270
270
269
268
267
266
265
264
263
263
262
262
261
261
260
260
259
258
257
256
255
254
254
253
253
252
252
251
251
250
250
249
248
247
246
245
245
244
244
243
243
242
242
241
241
240
240
239
238
237
236
235
235
234
234
233
233
232
232
231
231
230
230
229
228
227
226
225
225
224
224
223
223
222
222
221
221
220
220
219
219
218
218
217
217
216
216
215
215
214
214
213
213
212
212
211
211
210
210
209
209
208
208
207
207
206
206
205
205
204
204
203
203
202
202
201
201
200
200
199
199
198
198
197
197
196
196
195
195
194
194
193
193
192
192
191
191
190
190
189
189
188
188
187
187
186
186
185
185
184
184
183
183
182
182
181
181
180
180
179
179
178
178
177
177
176
176
175
175
174
174
173
173
172
172
171
171
170
170
169
169
168
168
167
167
166
166
165
165
164
164
163
163
162
162
161
161
160
160
159
159
158
158
157
157
156
156
155
155
154
154
153
153
152
152
151
151
150
150
149
149
148
148
147
147
146
146
145
145
144
144
143
143
142
142
141
141
140
140
139
139
138
138
137
137
136
136
135
135
134
134
133
133
132
132
131
131
130
130
129
129
128
128
127
127
126
126
125
125
124
124
123
123
122
122
121
121
120
120
119
119
118
118
117
117
116
116
115
115
114
114
113
113
112
112
111
111
110
110
109
109
108
108
107
107
106
106
105
105
104
104
103
103
102
102
101
101
100
100
99
99
98
98
97
97
96
96
95
95
94
94
93
93
92
92
91
91
90
90
89
89
88
88
87
87
86
86
85
85
84
84
83
83
82
82
81
81
80
80
79
79
78
78
77
77
76
76
75
75
74
74
73
73
72
72
71
71
70
70
69
69
68
68
67
67
66
66
65
65
64
64
63
63
62
62
61
61
60
60
59
59
58
58
57
57
56
56
55
55
54
54
53
53
52
52
51
51
50
50
49
49
48
48
47
47
46
46
45
45
44
44
43
43
42
42
41
41
40
40
39
39
38
38
37
37
36
36
35
35
34
34
33
33
32
32
31
31
30
30
29
29
28
28
27
27
26
26
25
25
24
24
23
23
22
22
21
21
20
20
19
19
18
18
17
17
16
16
15
15
14
14
13
13
12
12
11
11
10
10
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0

CARD consistently enhances performance across diverse learners and shifts. The

Table 2: Comparison of **worst-case PEHE** over 30 runs for various CATE learners, with and without the CARD framework, under three distribution shift scenarios: measurement error, missing values, and unmeasured confounding. Bold denotes the better results for each learner pair.

Settings	Measurement error (controlled by δ)						Missing values (controlled by ρ)						Unmeasured confounding (controlled by η^U)									
	Bias level	0.1	0.5	1.0	1.5	2.0	2.5	3.0	0.01	0.05	0.1	0.2	0.3	0.4	0.5	1	5	10	15	20	25	30
S-learner	1.020	1.058	1.173	1.448	1.746	1.961	2.118	1.023	1.024	1.032	1.043	1.071	1.105	1.128	0.942	1.282	1.897	2.083	2.296	2.525	3.010	
S+CARD	1.024	1.040	1.108	1.157	1.401	1.581	1.706	1.026	1.029	1.037	1.050	1.067	1.090	1.119	0.826	1.123	1.880	2.004	2.259	2.498	2.985	
T-learner	1.257	2.781	3.617	4.953	6.574	8.315	10.109	2.483	2.470	2.395	2.335	2.406	2.250	2.064	2.047	2.541	2.948	3.122	3.269	3.585	3.792	
T+CARD	1.453	1.631	2.252	3.207	4.386	5.659	7.008	1.463	1.451	1.413	1.404	1.400	1.366	1.374	1.558	1.624	2.037	2.279	2.550	2.906	3.203	
X-learner	1.447	1.478	1.688	2.096	2.737	3.707	4.729	1.441	1.445	1.381	1.396	1.400	1.373	1.306	1.247	1.424	2.283	2.285	2.489	2.762	3.070	
X+CARD	1.294	1.310	1.260	1.622	1.344	1.722	2.105	1.288	1.295	1.245	1.258	1.264	1.239	1.200	0.973	1.177	2.165	2.382	2.595	3.623	3.021	
R-learner	1.389	1.473	2.053	2.986	4.110	5.327	6.598	1.386	1.385	1.354	1.375	1.395	1.388	1.351	1.368	1.398	2.309	2.613	2.719	2.829	3.331	
R+CARD	1.190	1.563	1.818	2.400	3.177	4.048	5.008	1.187	1.207	1.164	1.151	1.166	1.157	1.137	1.444	1.628	2.406	2.580	2.764	2.909	3.245	
DR-learner	1.598	1.677	2.097	2.723	3.463	4.809	6.251	1.592	1.594	1.500	1.529	1.533	1.495	1.398	1.496	1.645	2.410	2.298	2.534	2.899	3.137	
DR+CARD	1.485	1.588	1.966	2.517	3.240	4.160	5.462	1.479	1.481	1.360	1.369	1.392	1.351	1.314	1.382	1.548	2.330	2.232	2.463	2.831	3.060	
TARNet	1.214	1.234	1.607	2.837	4.566	6.568	8.715	1.213	1.213	1.172	1.174	1.177	1.176	1.156	1.394	1.621	2.112	2.193	2.372	2.698	3.122	
TAR+CARD	1.192	1.224	1.034	1.623	2.479	3.516	4.686	1.193	1.195	1.175	1.178	1.186	1.178	1.163	0.943	1.244	2.030	2.032	2.343	2.540	3.015	
CFR-Wass	1.495	1.536	1.656	2.956	4.953	7.314	9.834	1.489	1.487	1.391	1.398	1.384	1.364	1.339	1.502	1.724	2.336	2.180	2.423	2.658	3.095	
CFR+CARD	1.401	1.436	1.535	1.738	2.814	4.131	5.565	1.399	1.397	1.319	1.335	1.324	1.309	1.265	0.976	1.288	2.175	1.940	2.261	2.446	2.927	
DragonNet	1.508	1.539	1.659	2.481	3.547	4.867	6.447	1.505	1.503	1.396	1.412	1.415	1.388	1.320	1.265	1.634	2.326	2.277	2.424	2.738	3.100	
Dragon+CARD	1.269	1.295	1.361	2.422	3.376	5.429	7.072	1.262	1.265	1.220	1.221	1.225	1.205	1.172	1.526	1.740	2.145	2.011	2.238	2.587	3.059	

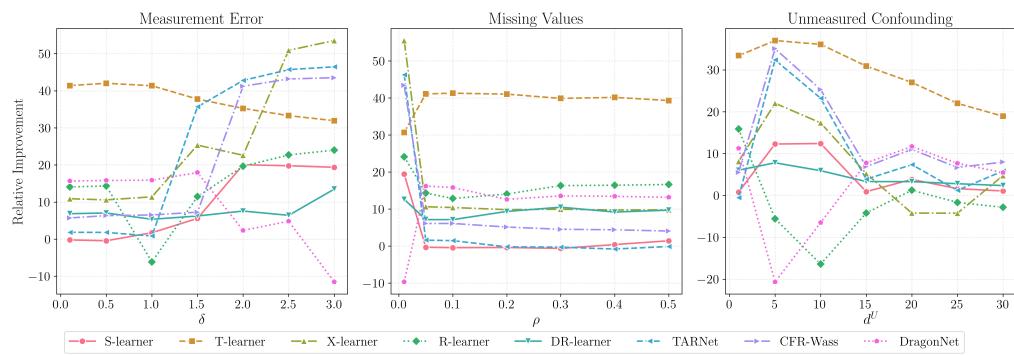


Figure 3: Performance gains from CARD: Relative Improvement in **worst-case PEHE** over 30 runs for various CATE learners under three distribution shift scenarios. The value is in percentage.

consistent gains under measurement error: relative improvements often exceed 10% for flexible learners such as TARNet and the R-learner at high noise levels, and TARNet’s RI rises monotonically with noise to a peak of approximately 14% at $\delta = 2.5$. This pattern is intuitive: small amounts of noise leave a learner near its clean optimum so adversarial augmentation gives modest gains, whereas larger noise exposes vulnerabilities that the RL-guided diffusion discovers and the learner then learns to resist. By contrast, missing-value corruptions yield smaller but stable improvements, with RI ranging from 2%-9%, likely because the pipeline applies imputation (MICE) (Kallus et al., 2018), which already reduces extreme covariate variation and therefore narrows the space of harmful yet realistic augmentations. Unmeasured confounding is the most challenging regime: relative gains are smaller (0%-4%) but remain practically important because they help preserve performance when treatment heterogeneity itself shifts. Overall, these results show that CARD offers stronger defense against measurement error and missing values, and it also delivers consistent, constructive gains when unseen shifts arise from latent confounders.

The magnitude of CARD’s improvement is model-specific. Results confirm that nearly every base learner benefits, and more interestingly, the magnitude of this improvement is heterogeneous. For instance, more flexible models like TARNet, R-learner, and X-learner are among the biggest beneficiaries, particularly under measurement error. This model-specific efficacy can be attributed to two main factors. First, learners possess different inductive biases (Curth & Van der Schaar, 2021). Models with more flexible function classes, such as TARNet, can better exploit the adversarial augmentations to learn more robust CATE functions. In contrast, simpler or heavily regularized learners may already exhibit some robustness, leaving less capacity for substantial improvement. Second, baseline vulnerability plays a key role. The T-learner, for example, which is highly susceptible to noise, still receives significant relative performance gains, suggesting that CARD effectively enhances resilience even when baseline errors are large.

432 5.2.2 WORST-CASE ROBUSTNESS ANALYSIS
433434 In addition to the analysis of average PEHE, we also investigate whether CARD can improve the
435 worst-case PEHE, which is a critical measure of model stability and robustness. Relevant results are
436 reported in Table 2 and Figure 3.437 **CARD consistently enhances performance across diverse learners and shifts.** A key finding
438 from Table 2 and Figure 3 is that CARD’s impact on a model’s worst-case performance is signif-
439 icantly larger than its effect on average performance. Averaged across learners, the mean worst-
440 case RI is substantial for measurement-error scenarios (around 21.1%), moderate for missing-value
441 scenarios (around 11.5%), and smaller but nontrivial for unmeasured confounding (around 8.0%).
442 Notably, the RI in worst-case PEHE is frequently three to five times greater than the improvement
443 observed in the average-case. For instance, while CARD consistently improves the T-learner’s aver-
444 age PEHE by approximately 10% in many high-noise settings, it enhances its worst-case PEHE by
445 a massive 30-40% under the same conditions. This disparity reveals CARD’s primary mechanism:
446 CARD not only shifts average behavior but also substantially reduces the tail risk.
447448 **The magnitude of CARD’s improvement is context-dependent.** Similar to average-case results,
449 we also find CARD’s capabilities are dependent on type of distribution shifts in worst-case. As
450 shown in Figure 3, CARD delivers its most dramatic gains under measurement error, a scenario
451 that often causes covariate shifts due to additive noise in standard models. Here, CARD slashes
452 the worst-case PEHE of flexible learners CFR-Wass by 43.4% (from 9.834 to 5.565) and that of
453 TARNNet by 46.2% (from 8.715 to 4.686) at the highest noise level ($\delta = 3.0$). By contrast, missing-
454 ness produces smaller but stable improvements, which is consistent with our previous observation.
455 Under the more structured challenge of unmeasured confounding, the improvements, while smaller
456 or sometimes negative, are still effective for enhancing the worst-case performance. For example,
457 it reduces the T-learner’s worst-case PEHE by a substantial 20%-30% at the highest confounding
458 dimension. However, this results also highlights a fundamental problem in causal identification:
459 while data augmentations can significantly improve a model’s robustness, they cannot identify ora-
460 cle causal information that is actually absent.461 **The magnitude of CARD’s improvement is model-specific.** The benefits of CARD are distinct
462 across base learners. As illustrated in Figure 3, for instance, some learners exhibit large worst-case
463 RI under measurement error: T-learner achieves worst-case RI averaged in all bias levels with about
464 36.0%, and X-learner with about 32.8%. Others show modest gains, such as DragonNet (5.1%) and
465 S-learner (12.2%). This heterogeneity can be attributed to two complementary factors: (i) learners
466 with higher worst-case baseline PEHE have more room for improvement; and (ii) flexible neural
467 architectures like TARNNet can leverage adversarial augmentations to learn more stable conditional
468 effects. These two observations are aligned with previous average-case results. Interestingly, in a
469 few cases (e.g., R-learner and DragonNet under certain hidden confounding levels), CARD produces
470 marginally negative RI, which may be linked to their connections with targeted maximum likelihood
471 estimation (TMLE), where CARD’s perturbations interact with the targeted nuisance components.472 6 CONCLUSION
473474 In this work, we introduce CARD, a novel and model-agnostic framework that is capable to improve
475 the robustness of any existing CATE learner to unknown distribution shift, without requiring prior
476 knowledge or additional structural assumptions in the deployment domain. Rather than proposing
477 a new CATE estimation algorithm, our primary goal is to investigate how reinforcement learning
478 guided diffusion models can generate adversarial proxies that encourage the CATE learner to adapt
479 and remain resilient to unseen distribution shifts. Experiments across diverse learners and distri-
480 bution shift types show consistent gains from CARD, highlighting its potential effectiveness for
481 real-world deployment. The limitation of this work lies in the computational complexity, a common
482 challenge for diffusion models, as discussed in Section A.2. An interesting future research is the
483 complexity improvement with recent acceleration techniques (Chen et al., 2024). Simultaneously,
484 the success of this approach might open exciting future directions, including extending its applica-
485 tion to other causal tasks related to generative modeling, such as counterfactual generation (Yoon
et al., 2018), dimension reduction (Liu et al., 2024), and model evaluation (Athey et al., 2024).

486 **Reproducibility statement.** We defer the implementation details of using CARD to train CATE
 487 in Appendix A.1. The uploaded code can be directly used to reproduce our experimental results.
 488 Additionally, we list all the referred and required resources with an instruction file in supplementary.
 489

490 REFERENCES
 491

492 Alberto Abadie, Susan Athey, Guido W Imbens, and Jeffrey M Wooldridge. When should you adjust
 493 standard errors for clustering? *The Quarterly Journal of Economics*, 138(1):1–35, 2023.

494 Anish Agarwal and Rahul Singh. Causal inference with corrupted data: Measurement error, missing
 495 values, discretization, and differential privacy. *arXiv preprint arXiv:2107.02780*, 2021.

496

497 Susan Athey, Guido W Imbens, Jonas Metzger, and Evan Munro. Using wasserstein generative
 498 adversarial networks for the design of monte carlo simulations. *Journal of Econometrics*, 240(2):
 499 105076, 2024.

500 Heejung Bang and James M Robins. Doubly robust estimation in missing data and causal inference
 501 models. *Biometrics*, 61(4):962–973, 2005.

502

503 Elias Bareinboim and Judea Pearl. Causal inference and the data-fusion problem. *Proceedings of
 504 the National Academy of Sciences*, 113(27):7345–7352, 2016.

505

506 Erich Battistin and Andrew Chesher. Treatment effect estimation with covariate measurement error.
 507 *Journal of Econometrics*, 178(2):707–715, 2014.

508

509 Ioana Bica, Ahmed M Alaa, Craig Lambert, and Mihaela Van Der Schaar. From real-world patient
 510 data to individualized treatment effects using machine learning: current and future methods to
 511 address underlying challenges. *Clinical Pharmacology & Therapeutics*, 109(1):87–100, 2021.

512

513 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
 514 models with reinforcement learning. In *The Twelfth International Conference on Learning Rep-
 515 resentations*.

516

517 Haoxuan Chen, Yinuo Ren, Lexing Ying, and Grant Rotskoff. Accelerating diffusion models with
 518 parallel sampling: Inference at sub-linear time complexity. *Advances in Neural Information Pro-
 519 cessing Systems*, 37:133661–133709, 2024.

520

521 Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney
 522 Newey, and James Robins. Double/debiased machine learning for treatment and structural pa-
 523 rameters, 2018.

524

525 Alicia Curth and Mihaela Van der Schaar. On inductive biases for heterogeneous treatment effect
 526 estimation. *Advances in Neural Information Processing Systems*, 34:15883–15894, 2021.

527

528 Alicia Curth and Mihaela Van Der Schaar. In search of insights, not magic bullets: Towards de-
 529 mystification of the model selection dilemma in heterogeneous treatment effect estimation. In
 530 *International conference on machine learning*, pp. 6623–6642. PMLR, 2023.

531

532 Issa J Dahabreh and Miguel A Hernán. Extending inferences from a randomized trial to a target
 533 population. *European journal of epidemiology*, 34(8):719–722, 2019.

534

535 Issa J Dahabreh, Sarah E Robertson, Lucia C Petito, Miguel A Hernán, and Jon A Steingrimsson.
 536 Efficient and robust methods for causally interpretable meta-analysis: Transporting inferences
 537 from multiple randomized trials to a target population. *Biometrics*, 79(2):1057–1072, 2023.

538

539 Sihao Ding, Peng Wu, Fuli Feng, Yitong Wang, Xiangnan He, Yong Liao, and Yongdong Zhang.
 540 Addressing unmeasured confounder for recommendation with sensitivity analysis. In *Proceedings
 541 of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 305–315,
 542 2022.

543

544 Vincent Dorie, Jennifer Hill, Uri Shalit, Marc Scott, and Dan Cervone. Automated versus do-it-
 545 yourself methods for causal inference: Lessons learned from a data analysis competition. *Statis-
 546 tical Science*, 34(1):43–68, 2019.

540 Jacob Dorn, Kevin Guo, and Nathan Kallus. Doubly-valid/doubly-sharp sensitivity analysis for
 541 causal inference with unmeasured confounding. *Journal of the American Statistical Association*,
 542 120(549):331–342, 2025.

543 Max H Farrell. Robust inference on average treatment effects with possibly more covariates than
 544 observations. *Journal of Econometrics*, 189(1):1–23, 2015.

545 Carlos Fernández-Loría, Foster Provost, Jesse Anderton, Benjamin Carterette, and Praveen Chandar.
 546 A comparison of methods for treatment assignment with an application to playlist generation.
 547 *Information Systems Research*, 34(2):786–803, 2023.

548 Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Ali-
 549 cia Curth, Stefan Bauer, Niki Kilbertus, Isaac S Kohane, and Mihaela van der Schaar. Causal
 550 machine learning for predicting treatment outcomes. *Nature Medicine*, 30(4):958–968, 2024.

551 Dylan J Foster and Vasilis Syrgkanis. Orthogonal statistical learning. *The Annals of Statistics*, 51
 552 (3):879–908, 2023.

553 Tobias Hatt, Jeroen Berrevoets, Alicia Curth, Stefan Feuerriegel, and Mihaela van der Schaar. Com-
 554 bining observational and randomized data for estimating heterogeneous treatment effects. *arXiv*
 555 preprint *arXiv:2202.12891*, 2022.

556 Konstantin Hess, Dennis Frauen, Valentyn Melnychuk, and Stefan Feuerriegel. Efficient and sharp
 557 off-policy learning under unobserved confounding. *arXiv preprint arXiv:2502.13022*, 2025.

558 Jennifer L Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational*
 559 *and Graphical Statistics*, 20(1):217–240, 2011.

560 Melody Huang, Naoki Egami, Erin Hartman, and Luke Miratrix. Leveraging population outcomes
 561 to improve the generalization of experimental results: Application to the jtpa study. *The Annals*
 562 *of Applied Statistics*, 17(3):2139–2164, 2023a.

563 Melody Y Huang. Sensitivity analysis for the generalization of experimental results. *Journal of the*
 564 *Royal Statistical Society Series A: Statistics in Society*, 187(4):900–918, 2024.

565 Yiyuan Huang, Cheuk Hang Leung, Shumin Ma, Zhiri Yuan, Qi Wu, Siyi Wang, Dongdong Wang,
 566 and Zhixiang Huang. Towards balanced representation learning for credit policy evaluation. In
 567 *International Conference on Artificial Intelligence and Statistics*, pp. 3677–3692. PMLR, 2023b.

568 Yiyuan Huang, Cheuk H Leung, Siyi Wang, Yijun Li, and Qi Wu. Unveiling the potential of robust-
 569 ness in selecting conditional average treatment effect estimators. *Advances in Neural Information*
 570 *Processing Systems*, 37:135208–135243, 2024.

571 Kosuke Imai and Teppei Yamamoto. Causal inference with differential measurement error: Non-
 572 parametric identification and sensitivity analysis. *American Journal of Political Science*, 54(2):
 573 543–560, 2010.

574 Sookyo Jeong and Hongseok Namkoong. Robust causal inference under covariate shift via worst-
 575 case subpopulation treatment effects. In *Conference on Learning Theory*, pp. 2079–2084. PMLR,
 576 2020.

577 Fredrik D Johansson, Uri Shalit, Nathan Kallus, and David Sontag. Generalization bounds and rep-
 578 resentation learning for estimation of potential outcomes and causal effects. *Journal of Machine*
 579 *Learning Research*, 23(166):1–50, 2022.

580 Nathan Kallus and Angela Zhou. Minimax-optimal policy learning under unobserved confounding.
 581 *Management Science*, 67(5):2870–2890, 2021.

582 Nathan Kallus, Xiaojie Mao, and Madeleine Udell. Causal inference with noisy and missing covari-
 583 ates via matrix factorization. *Advances in neural information processing systems*, 31, 2018.

584 Nathan Kallus, Xiaojie Mao, and Angela Zhou. Interval estimation of individual-level causal effects
 585 under unobserved confounding. In *The 22nd international conference on artificial intelligence*
 586 *and statistics*, pp. 2281–2290. PMLR, 2019.

594 Nathan Kallus, Xiaojie Mao, Kaiwen Wang, and Zhengyuan Zhou. Doubly robust distributionally
 595 robust off-policy evaluation and learning. In *International Conference on Machine Learning*, pp.
 596 10598–10632. PMLR, 2022.

597

598 Edward H Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects.
 599 *Electronic Journal of Statistics*, 17(2):3008–3049, 2023.

600

601 Christoph Kern, Michael P Kim, and Angela Zhou. Multi-accurate cate is robust to unknown co-
 602 variate shifts. *Transactions on Machine Learning Research*, 2024.

603

604 Daido Kido. Distributionally robust policy learning with wasserstein distance. *arXiv preprint*
 605 *arXiv:2205.04637*, 2022.

606

607 Newton Mwai Kinyanjui and Fredrik D Johansson. Adcb: An alzheimer’s disease simulator for
 608 benchmarking observational estimators of causal effects. In *Conference on Health, Inference,
 609 and Learning*, pp. 103–118. PMLR, 2022.

610

611 Toru Kitagawa and Aleksey Tetenov. Who should be treated? empirical welfare maximization
 612 methods for treatment choice. *Econometrica*, 86(2):591–616, 2018.

613

614 Sören R Küngel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heteroge-
 615 neous treatment effects using machine learning. *Proceedings of the national academy of sciences*,
 616 116(10):4156–4165, 2019.

617

618 Manabu Kuroki and Judea Pearl. Measurement bias and effect restoration in causal inference.
 619 *Biometrika*, 101(2):423–437, 2014.

620

621 Haoxuan Li, Chunyuan Zheng, Peng Wu, Kun Kuang, Yue Liu, and Peng Cui. Who should be
 622 given incentives? counterfactual optimal treatment regimes learning for recommendation. In
 623 *Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining*, pp.
 624 1235–1247, 2023.

625

626 Shuangning Li and Stefan Wager. Random graph asymptotics for treatment effect estimation under
 627 network interference. *The Annals of Statistics*, 50(4):2334–2358, 2022.

628

629 Qiao Liu, Zhongren Chen, and Wing Hung Wong. An encoding generative modeling approach
 630 to dimension reduction and covariate adjustment in causal inference with observational studies.
 631 *Proceedings of the National Academy of Sciences*, 121(23):e2322376121, 2024.

632

633 Yuchen Ma, Jonas Schweisthal, Hengrui Zhang, and Stefan Feuerriegel. A diffusion-based method
 634 for learning the multi-outcome distribution of medical treatments. In *Proceedings of the 31st ACM
 635 SIGKDD Conference on Knowledge Discovery and Data Mining* V. 2, pp. 2066–2077, 2025.

636

637 Imke Mayer, Erik Sverdrup, Tobias Gauss, Jean-Denis Moyer, Stefan Wager, and Julie Josse. Doubly
 638 robust treatment effect estimation with missing attributes. *The Annals of Applied Statistics*, 14(3):
 639 1409–1431, 2020.

640

641 Karthika Mohan, Judea Pearl, and Tian Jin. Missing data as a causal inference problem. In *Proceed-
 642 ings of the neural information processing systems conference (nips)*, 2013.

643

644 Tong Mu, Yash Chandak, Tatsunori B Hashimoto, and Emma Brunskill. Factored dro: Factored
 645 distributionally robust policies for contextual bandits. *Advances in Neural Information Processing
 646 Systems*, 35:8318–8331, 2022.

647

648 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 649 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

650

651 Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects.
 652 *Biometrika*, 108(2):299–319, 2021.

653

654 Xinkun Nie, Guido Imbens, and Stefan Wager. Covariate balancing sensitivity analysis for extrapo-
 655 lating randomized trials across locations. *arXiv preprint arXiv:2112.04723*, 2021.

648 Miruna Oprescu, Jacob Dorn, Marah Ghoummaid, Andrew Jesson, Nathan Kallus, and Uri Shalit. B-
 649 learner: Quasi-oracle bounds on heterogeneous causal effects under hidden confounding. In An-
 650 dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
 651 Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume
 652 202 of *Proceedings of Machine Learning Research*, pp. 26599–26618. PMLR, 23–29 Jul 2023.
 653 URL <https://proceedings.mlr.press/v202/oprescu23a.html>.

654 Judea Pearl and Elias Bareinboim. Transportability of causal and statistical relations: A formal
 655 approach. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 25, pp. 247–
 656 254, 2011.

657

658 Zhuan Pei, Jörn-Steffen Pischke, and Hannes Schwandt. Poorly measured confounders are more
 659 useful on the left than on the right. *Journal of Business & Economic Statistics*, 37(2):205–216,
 660 2019.

661 Zhaozhi Qian, Yao Zhang, Ioana Bica, Angela Wood, and Mihaela van der Schaar. Syncwin: Treat-
 662 ment effect estimation with longitudinal outcomes. *Advances in Neural Information Processing
 663 Systems*, 34:3178–3190, 2021.

664

665 Xinrui Ruan, Jingshen Wang, Yingfei Wang, and Waverly Wei. Electronic medical records assisted
 666 digital clinical trial design. In *International Conference on Artificial Intelligence and Statistics*,
 667 pp. 2836–2844. PMLR, 2024.

668 Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
 669 *Journal of educational Psychology*, 66(5):688, 1974.

670

671 Donald B Rubin. Inference and missing data. *Biometrika*, 63(3):581–592, 1976.

672

673 Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. *Journal
 674 of the American statistical Association*, 100(469):322–331, 2005.

675 Kara E Rudolph, Nicholas T Williams, Elizabeth A Stuart, and Ivan Diaz. Improving efficiency in
 676 transporting average treatment effects. *Biometrika*, pp. asaf027, 2025.

677 Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
 678 ization bounds and algorithms. In *International conference on machine learning*, pp. 3076–3085.
 679 PMLR, 2017.

680

681 Yi Shen, Pan Xu, and Michael Zavlanos. Wasserstein distributionally robust policy evaluation and
 682 learning for contextual bandits. *Transactions on Machine Learning Research*.

683

684 Claudia Shi, David Blei, and Victor Veitch. Adapting neural networks for the estimation of treatment
 685 effects. *Advances in neural information processing systems*, 32, 2019.

686

687 Nian Si, Fan Zhang, Zhengyuan Zhou, and Jose Blanchet. Distributionally robust batch contextual
 688 bandits. *Management Science*, 69(10):5772–5793, 2023.

689

690 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 691 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 692 national Conference on Learning Representations*.

693

694 Namjoon Suh, Xiaofeng Lin, Din-Yin Hsieh, Mehrdad Honarkhah, and Guang Cheng. Autodiff:
 695 combining auto-encoder and diffusion model for tabular data synthesizing. In *NeurIPS 2023
 696 Workshop on Synthetic Data Generation with Generative AI*.

697

698 Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
 699 random forests. *Journal of the American Statistical Association*, 113(523):1228–1242, 2018.

700

701 Jingyuan Wang, Zhimei Ren, Ruohan Zhan, and Zhengyuan Zhou. Distributionally robust policy
 702 learning under concept drifts. In *Forty-second International Conference on Machine Learning*.

Anpeng Wu, Haoxuan Li, Chunyuan Zheng, Kun Kuang, and Kun Zhang. Classifying treatment
 703 responders: Bounds and algorithms. In *Proceedings of the 31st ACM SIGKDD Conference on
 704 Knowledge Discovery and Data Mining V. 1*, pp. 1611–1622, 2025a.

702 Lili Wu and Shu Yang. Integrative r -learner of heterogeneous treatment effects combining ex-
 703 perimental and observational studies. In *Conference on Causal Learning and Reasoning*, pp.
 704 904–926. PMLR, 2022.

705 Peng Wu, Shanshan Luo, and Zhi Geng. On the comparative analysis of average treatment ef-
 706 fects estimation via data combination. *Journal of the American Statistical Association*, pp. 1–12,
 707 2025b.

708 Yanghao Xiao, Haoxuan Li, Yongqiang Tang, and Wensheng Zhang. Addressing hidden confound-
 709 ing with heterogeneous observational datasets for recommendation. *Advances in Neural Infor-
 710 mation Processing Systems*, 37:130358–130383, 2024.

712 Steve Yadlowsky, Hongseok Namkoong, Sanjay Basu, John Duchi, and Lu Tian. Bounds on the con-
 713 ditional and average treatment effect with unobserved confounding factors. *Annals of statistics*,
 714 50(5):2587, 2022.

715 Shu Yang, Linbo Wang, and Peng Ding. Causal inference with confounders missing not at random.
 716 *Biometrika*, 106(4):875–888, 2019.

718 Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: Estimation of individualized
 719 treatment effects using generative adversarial nets. In *International conference on learning rep-
 720 resentations*, 2018.

721 Linying Zhang, Yixin Wang, Anna Ostropolets, Jami J Mulgrave, David M Blei, and George Hripc-
 722 sak. The medical deconfounder: assessing treatment effects with electronic health records. In
 723 *Machine Learning for Healthcare Conference*, pp. 490–512. PMLR, 2019.

724 Yi Zhang, Melody Huang, and Kosuke Imai. Minimax regret estimation for generalizing heteroge-
 725 neous treatment effects with multisite data. *arXiv preprint arXiv:2412.11136*, 2024.

727 Zhiheng Zhang, Quanyu Dai, Xu Chen, Zhenhua Dong, and Ruiming Tang. Robust causal inference
 728 for recommender system to overcome noisy confounders. In *Proceedings of the 46th International
 729 ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2349–2353,
 730 2023.

731 A APPENDIX

732 A.1 CATE ESTIMATION WITH CARD

736 We now detail the construction of a CATE learner under the CARD framework, leveraging the
 737 observed samples $\{(X_i, A_i, Y_i)\}_{i=1}^n$. Since the CATE learner is trained on the training dataset, the
 738 sample size n here corresponds to the size of the training sample. We denote n_t as the sample size
 739 of the treatment group and n_c as that of the control group, with $n = n_t + n_c$. A key component
 740 of the CARD framework is a time-dependent diffusion model $g_\theta(z, t)$, which takes as inputs a time
 741 step $t \sim \mathcal{U}[\epsilon, T]$ and a noise variable $z \sim \mathcal{N}(0, 1)$. The diffusion model's reverse process initiates at
 742 time step T and progresses iteratively. Upon reaching time step 0, it generates the latent variables Z_0 .

- 743 • **S-learner:** Let the predictors be (X, A) and the response be Y . We first initialize the
 744 model $\hat{\mu}(X, A)$ and then, under the CARD framework, employ $\|Y - \hat{\mu}(X \oplus Z_0, A)\|_2^2$ as
 745 both the loss function and reward function to co-optimize $\hat{\mu}(X, A)$ and the score-based
 746 diffusion model g_θ through an alternating training process. Using Z_0 generated by g_θ , we
 747 obtain $\hat{\tau}_S(X)$:

$$748 \hat{\tau}_S(X) = \hat{\mu}(X \oplus Z_0, 1) - \hat{\mu}(X \oplus Z_0, 0).$$

- 749 • **T-learner:** Let the predictors be X^T (covariates in the treatment) and the response be Y^T
 750 (outcome in the treatment). Let the predictors be X^C (covariates in the control) and
 751 the response be Y^C (outcome in the control). We first initialize the treatment outcome
 752 model $\hat{\mu}_1(X^T)$ and control outcome model $\hat{\mu}_0(X^C)$. Under the CARD framework, we then
 753 employ $\|Y^T - \hat{\mu}_1(X^T \oplus Z_0)\|_2^2 + \|Y^C - \hat{\mu}_0(X^C \oplus Z_0)\|_2^2$ as both the loss function and
 754 reward function to co-optimize $\hat{\mu}_1$, $\hat{\mu}_0$, and the diffusion model g_θ through an alternating
 755 training process. Using Z_0 generated by g_θ , we obtain $\hat{\tau}_T(X)$:

$$756 \hat{\tau}_T(X) = \hat{\mu}_1(X \oplus Z_0) - \hat{\mu}_0(X \oplus Z_0).$$

756 • **X-learner:** First-step: Initialize $\hat{\mu}_1(X)$ and $\hat{\mu}_0(X)$ using the the above-mentioned procedure in T-learner. Let the predictors be X and the response be A . Initialize a propensity score model $\hat{\pi}(X)$. Second-step: Let the predictors be X^T and the response be $\hat{\mu}_1(X^T) - Y^T$. Let the predictors be X^C and the response be $\hat{\mu}_0(X^C) - Y^C$. Using these defined predictors and responses, we initialize the models $\hat{\tau}_1(X^T)$ and $\hat{\tau}_0(X^C)$. Next, we utilize $\|Y^T - \hat{\mu}_1(X^T \oplus Z_0)\|_2^2 + \|Y^C - \hat{\mu}_0(X^C \oplus Z_0)\|_2^2 + \text{CrossEntropyLoss}(X \oplus Z, A) + \|\hat{\mu}_1(X^T \oplus Z) - Y^T - \hat{\tau}_1(X^T \oplus Z_0)\|_2^2 + \|\hat{\mu}_0(X^C \oplus Z) - Y^C - \hat{\tau}_0(X^C \oplus Z_0)\|_2^2$ as both the loss function and reward function to co-optimize $\hat{\mu}_1$, $\hat{\mu}_0$, $\hat{\pi}$, $\hat{\tau}_1$, $\hat{\tau}_0$ and the diffusion model g_θ through an alternating training process. Using Z_0 generated by g_θ , we obtain $\hat{\tau}_X(X)$:

$$\hat{\tau}_X(X) = (1 - \hat{\pi}(X \oplus Z_0))\hat{\tau}_1(X^T \oplus Z_0) - \hat{\pi}(X \oplus Z_0)\hat{\tau}_0(X^C \oplus Z_0).$$

767 • **R-learner:** First-step: Let the predictors be X and the response be Y . Initialize a model $\hat{\mu}(X)$ to approximate the conditional mean outcome $\mathbb{E}[Y|X]$. Initialize a propensity score model $\hat{\pi}(X)$ using the the above-mentioned procedure in X-learner. Second-step: Compute the outcome residual $\xi = Y - \hat{\mu}(X)$ and treatment residual $\nu = T - \hat{\pi}(X)$. We then initialize a model $\hat{\tau}(X)$. Under the CARD framework, we utilize $\|Y - \hat{\mu}(X \oplus Z_0)\|_2^2 + \text{CrossEntropyLoss}(X \oplus Z_0, A) + \|\xi - \nu\hat{\tau}(X \oplus Z_0)\|_2^2$ as both the loss function and reward function to co-optimize $\hat{\mu}$, $\hat{\pi}$, $\hat{\tau}$ and the diffusion model g_θ through an alternating training process. Using Z_0 generated by g_θ , we obtain $\hat{\tau}_R(X)$:

$$\hat{\tau}_R(X) = \hat{\tau}(X \oplus Z_0).$$

778 • **DR-learner:** First-step: Initialize $\hat{\mu}_1(X)$ and $\hat{\mu}_0(X)$ using the the above-mentioned procedure in T-learner. Initialize a propensity score model $\hat{\pi}(X)$ using the the above-mentioned procedure in X-learner. Second-step: Construct surrogate of CATE using pseudo-outcomes with doubly robust (DR) formula: $Y_{DR}^{0,1} = Y_{DR}^1 - Y_{DR}^0$, where $Y_{DR}^1 = \hat{\mu}_1(X) + \frac{T}{\hat{\pi}(X)}(Y - \hat{\mu}_1(X))$ and $Y_{DR}^0 = \hat{\mu}_0(X) + \frac{1-T}{1-\hat{\pi}(X)}(Y - \hat{\mu}_0(X))$. Using these defined predictors and responses, we initialize the models $\hat{\tau}(X)$. Next, we utilize $\|Y^T - \hat{\mu}_1(X^T \oplus Z_0)\|_2^2 + \|Y^C - \hat{\mu}_0(X^C \oplus Z_0)\|_2^2 + \text{CrossEntropyLoss}(X \oplus Z_0, A) + \|Y_{DR}^{0,1} - \hat{\tau}(X \oplus Z_0)\|_2^2$ as both the loss function and reward function to co-optimize $\hat{\mu}_1$, $\hat{\mu}_0$, $\hat{\pi}$, $\hat{\tau}$ and the diffusion model g_θ through an alternating training process. Using Z_0 generated by g_θ , we obtain $\hat{\tau}_{DR}(X)$:

$$\hat{\tau}_{DR}(X) = \hat{\tau}(X \oplus Z_0).$$

791 • **TARNet:** We first define the predictors as (X, A) and the response as Y , and construct 792 a representation model $\hat{r}(X)$ to encode covariate information. The model architecture 793 incorporates two outcome heads: $\hat{\mu}_1(\hat{r}(X))$ for the treatment group and $\hat{\mu}_0(\hat{r}(X))$ for 794 the control group, which share the underlying representation $\hat{r}(X)$ while learning separate 795 outcome estimates. Under the CARD framework, we employ the composite 796 function $\|\hat{\mu}_1(\hat{r}(X \oplus Z_0)) - Y^T\|_2^2 + \|\hat{\mu}_0(\hat{r}(X \oplus Z_0)) - Y^C\|_2^2$ as both the loss function 797 and reward function to co-optimize $\hat{r}(X)$, $\hat{\mu}_1$, $\hat{\mu}_0$, and the diffusion model g_θ through an 798 alternating training process. Using Z_0 generated by g_θ , we obtain $\hat{\tau}_{TARNet}(X)$:

$$\hat{\tau}_{TARNet}(X) = \hat{\mu}_1(\hat{r}(X \oplus Z_0)) - \hat{\mu}_0(\hat{r}(X \oplus Z)).$$

801 • **CFR_WASS:** Initialize $\hat{r}(X)$, $\hat{\mu}_1(X)$ and $\hat{\mu}_0(X)$ using the the above-mentioned 802 procedure in TARNet. Under the CARD framework, we employ the composite 803 function $\|\hat{\mu}_1(\hat{r}(X \oplus Z_0)) - Y^T\|_2^2 + \|\hat{\mu}_0(\hat{r}(X \oplus Z_0)) - Y^C\|_2^2 + \text{IPMLoss}(X^T, X^C)$ as 804 both the loss function and reward function to co-optimize $\hat{r}(X)$, $\hat{\mu}_1$, $\hat{\mu}_0$, and the diffusion 805 model g_θ through an alternating training process. Using Z_0 generated by g_θ , we obtain 806 $\hat{\tau}_{CFR_{WASS}}(X)$:

$$\hat{\tau}_{CFR-Wass}(X) = \hat{\mu}_1(\hat{r}(X \oplus Z_0)) - \hat{\mu}_0(\hat{r}(X \oplus Z)).$$

807 • **DragonNet:** Initialize $\hat{r}(X)$, $\hat{\mu}_1(X)$ and $\hat{\mu}_0(X)$ using the the above-mentioned procedure 808 in TARNet. The model architecture incorporates three outcome heads: $\hat{\mu}_1(\hat{r}(X))$ for the 809

810 treatment group, $\hat{\mu}_0(\hat{r}(X))$ for the control group and $\hat{\pi}(X)$ for the propensity score, which
 811 share the underlying representation $\hat{r}(X)$ while learning separate outcome estimates. Under
 812 the CARD framework, we employ the composite function $\|\hat{\mu}_1(\hat{r}(X \oplus Z_0)) - Y^T\|_2^2 +$
 813 $\|\hat{\mu}_0(\hat{r}(X \oplus Z_0)) - Y^C\|_2^2 + \text{CrossEntropyLoss}(X \oplus Z_0, A)$ as both the loss function and
 814 reward function to co-optimize $\hat{r}(X)$, $\hat{\mu}_1$, $\hat{\mu}_0$, and the diffusion model g_θ through an alter-
 815 nating training process. Using Z_0 generated by g_θ , we obtain $\hat{\tau}_{\text{DragonNet}}(X)$:

$$\hat{\tau}_{\text{DragonNet}}(X) = \hat{\mu}_1(\hat{r}(X \oplus Z_0)) - \hat{\mu}_0(\hat{r}(X \oplus Z_0)).$$

819 A.2 EXPERIMENTAL DETAILS AND HYPERPARAMETERS

821 **Implementation details.** All meta-learners in this work are implemented using neural network
 822 architectures. Specifically, the S-learner, T-learner, X-learner, R-learner, and DR-learner share a
 823 unified three-layer neural network structure, with each layer containing 200 neurons. In contrast,
 824 TARNet, CFR-Wass, and DragonNet adopt a two-component architecture: a representation network
 825 with three layers (200 neurons per layer) and a prediction layer with three layers (100 neurons per
 826 layer).

828 **Hyperparameters.** All model training processes are conducted on a Dell 3640 workstation with
 829 an Intel Xeon W-1290P 3.60GHz CPU and NVIDIA GeForce RTX 2080 Ti GPU. For optimizing
 830 the CATE learner, we used the Adam optimizer with a learning rate of 10^{-3} and weight decay
 831 of 10^{-4} . Model selection was based on the factual loss as the validation metric, with early stopping
 832 implemented if no improvement was observed on the validation set for 20 consecutive epochs. In the
 833 reinforcement fine-tuning phase, the AdamW optimizer was employed with a learning rate of $2 \times$
 834 10^{-5} . The hyperparameters for fine-tuning varied by model type:

- 835 • For S-learner, T-learner, and DragonNet: $\alpha = 0.8$ and fine-tuning frequency $K = 10$;
- 836 • For X-learner, R-learner, and DR-learner: $\alpha = 0.8$ and $K = 2$;
- 837 • For TARNet and CFR_WASS: $\alpha = 0.1$ and 0.8 , with $K = 10$ and 5 respectively.

840 Additionally, the imbalance loss coefficient for CFR-Wass and the BCE loss coefficient for Dragon-
 841 Net were both set to 1.0. The discount factor γ was set to 0.99. The latent variable Z generated
 842 by the diffusion model has a dimension half that of the covariate X .

844 **Model architecture.** The parameters of the autoencoder and score-based diffusion model largely
 845 follow the default settings provided in (Suh et al.). Both models are trained for 10,000 epochs,
 846 and the number of timesteps for the diffusion model is set to 50. The autoencoder adopts a multi-
 847 layer perceptron (MLP) block-based architecture, with ReLU activation functions used in all hidden
 848 layers. Its forward process is defined as:

$$\begin{aligned} 849 \text{MLPBlock}(X) &= \text{ReLU}(\text{Linear}(X)), \\ 850 Z &= \text{Linear}(\dots \text{MLPBlock}(X)), \\ 851 \tilde{X} &= \text{Linear}(\dots \text{MLPBlock}(Z)), \end{aligned} \tag{9}$$

853 where Z denotes the latent representation of the input X , and \tilde{X} is the reconstruction output of the
 854 autoencoder.

856 Let t denote a timestep in the diffusion process, and SinTimeEmb represent the sinusoidal time
 857 embedding proposed in (Nichol & Dhariwal, 2021). For any fixed t , the time embedding t^{emb} and
 858 the processed input to the score network (denoted $Z^{t\text{-emb}}$) are computed as:

$$\begin{aligned} 859 t^{\text{emb}} &= \text{LayerNorm}(\text{SiLU}(\text{Linear}(\text{SinTimeEmb}(t)))), \\ 860 Z^{t\text{-emb}} &= \text{LayerNorm}(\text{Linear}(Z_t)) + t^{\text{emb}}, \end{aligned} \tag{10}$$

863 where Z_t is the latent variable at timestep t , and the addition of t^{emb} injects timestep-aware information
 864 into the latent input.

864 The time-dependent score network g is then constructed using MLP blocks with LayerNorm regu-
 865 larization, and its calculation is given by:
 866

$$\begin{aligned} 867 \text{MLPBlock}(Z^{t\text{-emb}}) &= \text{LayerNorm}(\text{ReLU}(\text{Linear}(Z^{t\text{-emb}}))), \\ 868 g(Z^{t\text{-emb}}, t) &= \text{Linear}(\dots \text{MLPBlock}(Z^{t\text{-emb}})). \end{aligned} \quad (11)$$

870 **Time complexity analysis.** We compare the time complexity between CATE learners trained with
 871 the CARD framework and those trained with standard procedures. We assume the CATE learner is
 872 trained with E epochs, resulting in a complexity of $O(E)$. In contrast, when training a CATE learner
 873 using the CARD framework, each training epoch requires an additional T iterations for trajectory
 874 generation in the diffusion model, leading to a time complexity of $O(ET)$. Thus, the improved
 875 robustness of the CATE learner achieved via the CARD framework comes at the cost of increased
 876 computational time, i.e., a tradeoff between model robustness and time cost. The practical users are
 877 suggested to set T with early stop, and use new acceleration technique for training diffusion models.
 878

879 A.3 ROLE OF LLM

880 In this paper, LLM was used to aid in writing and polish the texts. Importantly, we take full re-
 881 sponsibility for the content of the manuscript, and we did not use LLM for idea generation, method
 882 development, experimental coding. All research ideas, codes, experimental results, and experimen-
 883 tal analysis are conducted by the authors. The contribution of LLM is only the linguistic quality
 884 improvement.
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917