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Abstract

We consider the problem of finding stationary
points in Bilevel optimization when the lower-
level problem is unconstrained and strongly con-
vex. The problem has been extensively studied
in recent years; the main technical challenge is
to keep track of lower-level solutions y∗(x) in re-
sponse to the changes in the upper-level variables
x. Subsequently, all existing approaches tie their
analyses to a genie algorithm that knows lower-
level solutions and, therefore, need not query any
points far from them. We consider a dual ques-
tion to such approaches: suppose we have an ora-
cle, which we call y∗-aware, that returns an O(ϵ)-
estimate of the lower-level solution, in addition
to first-order gradient estimators locally unbiased
within the Θ(ϵ)-ball around y∗(x). We study the
complexity of finding stationary points with such
an y∗-aware oracle: we propose a simple first-
order method that converges to an ϵ stationary
point using O(ϵ−6), O(ϵ−4) access to first-order
y∗-aware oracles. Our upper bounds also apply to
standard unbiased first-order oracles, improving
the best-known complexity of first-order methods
by O(ϵ) with minimal assumptions. We then pro-
vide the matching Ω(ϵ−6), Ω(ϵ−4) lower bounds
without and with an additional smoothness as-
sumption on y∗-aware oracles, respectively. Our
results imply that any approach that simulates an
algorithm with an y∗-aware oracle must suffer the
same lower bounds.
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1. Introduction
Bilevel optimization (Colson et al., 2007) is a fundamen-
tal optimization problem that abstracts the core of various
critical applications characterized by two-level hierarchi-
cal structures, including meta-learning (Rajeswaran et al.,
2019), hyper-parameter optimization (Franceschi et al.,
2018; Bao et al., 2021), model selection (Kunapuli et al.,
2008; Giovannelli et al., 2021), adversarial networks (Good-
fellow et al., 2020; Gidel et al., 2018), game theory (Stack-
elberg et al., 1952) and reinforcement learning (Konda &
Tsitsiklis, 1999; Sutton & Barto, 2018). In essence, Bilevel
optimization can be abstractly described as the subsequent
minimization problem:

min
x∈Rdx

F (x) := f(x, y∗(x))

s.t. y∗(x) ∈ arg min
y∈Rdy

g(x, y), (P)

where f, g : Rdx×Rdy → R are continuously-differentiable
functions. The hyperobjective F (x) depends on x both
directly and indirectly via y∗(x), which is a solution for
the lower-level problem of minimizing another function
g, which is parametrized by x. Throughout the paper, we
assume that the lower-level problem is strongly-convex, i.e.,
g(x̄, y) is strongly convex in y for all x̄ ∈ Rdx .

Our goal is to find an ϵ-stationary point of (P): an x that
satisfies ∥∇F (x)∥ ≤ ϵ. Here the explicit expression of
∇F (x) can be derived from the implicit function theorem
(Krantz & Parks, 2002):

∇F (x) = ∇xf(x, y
∗(x)) (1)

−∇2
xyg(x, y

∗(x))∇2
yyg(x, y

∗(x))−1∇yf(x, y
∗(x)).

Following the standard black-box optimization model (Ne-
mirovskij & Yudin, 1983), we consider the first-order al-
gorithm class that accesses functions through first-order
oracles that return estimators of first-order derivatives
∇̂f(x, y; ζ), ∇̂g(x, y; ξ) for a given query point (x, y) such
that the following holds:

E[∇̂f(x, y; ζ)] = ∇f(x, y),
E[∇̂g(x, y; ξ)] = ∇g(x, y), (2)

E[∥∇̂f(x, y; ζ)− E[∇f(x, y; ζ)]∥2] ≤ σ2
f ,

E[∥∇̂g(x, y; ξ)− E[∇g(x, y; ξ)]∥2] ≤ σ2
g , (3)
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E[∥∇̂g(x, y1; ξ)− ∇̂g(x, y2; ξ)∥2] ≤ l̃g,1∥y1 − y2∥2, (4)

where σ2
f , σ

2
g > 0 are the variance of gradient estimators,

l̃g,1 ∈ (0,∞] is the stochastic smoothness parameter, and
ζ, ξ are independently sampled random variables. The com-
plexity of an algorithm is measured by the worst-case ex-
pected number of calls for the first-order oracles until an
ϵ-stationary point of (P) is found.

y∗(x)-Aware Oracles. As we can see in the expres-
sion of hypergradients (1), two main challenges distin-
guish (stochastic) Bilevel optimization from the more stan-
dard single-level optimization: at every kth iteration at a
query point xk, we need to estimate (i) y∗(xk), and then
estimate (ii) ∇F (xk), which involves the estimation of
Hessian-inverse using yk. The vast volume of literature
has been dedicated to resolving these two issues, starting
from double-loop implementations which wait until yk to
be sufficiently close to y∗(xk) (Ghadimi & Wang, 2018), to
recent fully single-loop approaches that updates all variables
within O(1)-oracle access with incremental improvement
of y∗(xk) estimators (Dagréou et al., 2022; Yang et al.,
2023). Notably, all existing approaches require reasonable
estimators of y∗(x) for designing an algorithm for Bilevel
optimization.

From a practical perspective, while it is standard in Bilevel
literature to assume that the inner objective g is strongly
convex everywhere, many problems are globally noncon-
vex, and only locally strongly convex near y∗(x). In such
cases, a common practice is to obtain a good initialization of
y∗(x) via more computationally expensive methods before
running faster iterative algorithms to obtain more accurate
estimates of lower-level solutions (Jain et al., 2010; Kwon
& Caramanis, 2020; Han et al., 2022).

From these motivations, we formulate the following math-
ematical question: if we can directly obtain a sufficiently
good estimator ŷ(x) of y∗(x) without additional complexity
(e.g., an oracle additionally provides an ϵ-accurate estimate
of y∗(x) for a given x), and if we can only query gradients
at points (x, y) near (x, y∗(x)), what is the fundamental
complexity of Bilevel problems? Formally, we consider the
following oracle model which we refer to y∗-aware oracle:

Definition 1.1 (y∗-Aware Oracle). An oracle O(·) is y∗-
aware, if there exists r ∈ (0,∞] such that for every query
point (x, y), the following conditions hold. (i) in addition to
stochastic gradients, the oracle also returns ŷ(x) such that
∥ŷ(x)− y∗(x)∥ ≤ r/2; (ii) Gradient estimators satisfy (2),
(3) and (4) only if ∥y−y∗(x)∥ ≤ r; otherwise, the returned
gradient estimators can be arbitrary.

Note that, if we take r = ∞ in the above definition, then
we recover the usual first-order stochastic gradient oracle
that can be queried at any (x, y) with the additional a priori

estimator ŷ(x) being uninformative. Thus, our oracle model
subsumes the models conventionally assumed.

Conceptually, the complexity of any algorithm paired with
an y∗-aware oracle can be considered as the lower limit of
the problem, unless we can extract significant information
from an arbitrary point (x, y) where y is far away from
y∗. However, existing approaches view the information
obtained at y as meaningful only for the purpose of reaching
y∗(x), otherwise containing non-informative biases of size
O(∥y∗− y∥). For such approaches, one would expect faster
convergence if sufficiently accurate estimates of y∗(x) are
provided for free. In this paper, we study lower bounds with
such y∗(x)-aware oracles, providing a partial answer to the
fundamental limits of the problem.

Prior Art. Recent years have witnessed a rapid devel-
opment of a body of work studying non-asymptotic con-
vergence rates of iterative algorithms to ϵ-stationary points
of (P) under various assumptions on the stochastic oracles
(see Section 1.3 for the detailed overview). A major por-
tion of existing literature assumes access to second-order
information of g via Jacobian/Hessian-vector product ora-
cles (which we call second-order oracles) as the stationarity
measure ∥∇F (x)∥ naturally requires computation of these
quantities; see (1). The best-known complexity results with
second-order oracles give an O(ϵ−4) upper bound (Ji et al.,
2021; Chen et al., 2021), and it can be improved to O(ϵ−3)
with variance-reduction when the oracles have additional
stochastic smoothness assumptions (Khanduri et al., 2021;
Dagréou et al., 2022).

A few recent works have shown that ϵ-stationarity can
also be achieved only with first-order oracles (Kwon et al.,
2023b; Chen et al., 2023a;b; Lu & Mei, 2023; Yang et al.,
2023). With stochastic noises, (Kwon et al., 2023b) pro-
poses an algorithm that finds ϵ-stationary point within
O(ϵ−7) access to first-order oracles, and O(ϵ−5) when the
gradient estimators are (mean-squared) Lipschitz in expec-
tation. Very recently, (Yang et al., 2023) has shown that an
O(ϵ−3) upper-bound is possible only with first-order ora-
cles if we further have an additional second-order stochas-
tic smoothness This result matches the best-known rate
achieved by second-order baselines under the same con-
dition. We close the remaining gap between first-order
methods and second-order methods when we have fewer
assumptions on stochastic oracles, i.e., with the standard
unbiased, variance-bounded, and possibly (mean-squared)
gradient-Lipschitz oracles.

1.1. Overview of Main Results

We first provide high-level ideas on the expected conver-
gence rates of first-order methods. To begin with, suppose
for every x, we can directly access y∗(x) and estimators of
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Jacobian/Hessian of g without any cost. Then the problem
becomes equivalent to finding a stationary point of F (x)
with (unbiased) estimators of∇F (x). After this reduction to
single-level optimization, from the rich literature of noncon-
vex stochastic optimization (Arjevani et al., 2023), the best
achievable complexities are given as Θ(ϵ−4) and Θ(ϵ−3)
without and with stochastic smoothness, respectively.

When we only have first-order oracles, the complex-
ity can be similarly inferred from the previous bounds
and simulating second-order oracles using first-order or-
acles. Indeed, observe that first-order oracles can simulate
Jacobian/Hessian-vector product oracles (with a vector v)
through finite differentiation with a precision parameter
δ > 0. Namely, E

[
∇̂2

xyg(x, y
∗; ξ)⊤v

]
can be estimated as

E

[
∇̂xg(x, y

∗ + δv; ξ)− ∇̂xg(x, y
∗; ξ)

δ

]
+O(δ∥v∥2).

However, without further assumptions, estimators of
Jacobian-vector products obtained via the finite differentia-
tion have O(δ)-bias and O(δ−2)-amplified variance. Thus,
we can use δ at most O(ϵ) to keep the bias less than ϵ (hence
the “oracle-reliability radius” should also satisfy r = Ω(ϵ)),
and require Ω(ϵ−2) times more oracle access to cancel out
the variance amplification to approximately simulate the
second-order methods, resulting in total O(ϵ−6) iterations.

When we have stochastic smoothness, i.e., gradient estima-
tors are (mean-squared) Lipschitz as in (4) (with l̃g,1 <∞),
then variances of finite-differentiation estimators are still
bounded by O(1), and we can obtain the O(ϵ−4) upper
bound as if we can access second-order oracles.

Upper Bound. Given the above discussion, we derive up-
per bounds of O(ϵ−6), O(ϵ−4), without (l̃g,1 = ∞) and
with (l̃g,1 <∞ in (4)) stochastic smoothness, respectively,
with the y∗-aware oracle as long as r = Ω(ϵ). In particular,
with r = ∞, our results improve the best-known upper
bounds given in (Kwon et al., 2023b) by the order of O(ϵ)
with minimal assumptions on stochastic oracles. Further-
more, perhaps surprisingly, our result shows that first-order
methods are not necessarily worse than second-order meth-
ods under nearly the same assumption (as the stochastic
smoothness assumption allows us to simulate second-order
oracles with no additional cost in ϵ).

Lower Bound. Next, we turn our focus to lower bounds
for finding an ϵ-stationary point. For the lower bound, we
assume y∗(x)-aware oracles with sufficiently good accuracy
r = Θ(ϵ) and we do not pursue lower bounds for the r ≫ ϵ
case in this work (see Conjecture 1). We prove that any
black-box algorithms with y∗(x)-aware oracles must suffer
at least Ω(ϵ−6),Ω(ϵ−4) access to oracles without and with
stochastic smoothness, respectively. As an implication, if an
algorithm (or analysis), including ours, does not introduce

a slowdown by projecting y-coordinates of all query points
onto a Θ(ϵ)-ball around y∗(x), then its iteration complexity
cannot be less than the proposed lower bounds.

1.2. Our Approach

Here, we overview our approaches for deriving the claimed
upper and lower bounds.

1.2.1. UPPER BOUND: PENALTY METHOD

In proving the upper bounds, our starting point is to con-
sider an alternative reformulation of (P) through the penalty
method used in (Kwon et al., 2023b). Specifically, consider
a function Lλ with a penalty parameter λ > 0:

Lλ(x, y) := f(x, y) + λ(g(x, y)− g(x, y∗(x))).

In (Kwon et al., 2023b), it was shown that the hyperobjective
can be approximated by the following surrogate

L∗
λ(x) := min

y
Lλ(x, y) (5)

in the sense that ∥∇F (x) − ∇L∗
λ(x)∥ ≤ O(1/λ), where

∇L∗
λ(x) is given by

∇L∗
λ(x) = ∇xf(x, y

∗
λ(x)) +

λ(∇xg(x, y
∗
λ(x))−∇xg(x, y

∗(x))), (6)

with y∗λ(x) := argminy
(
λ−1f(x, y) + g(x, y)

)
. There-

fore, we can instead find an ϵ-stationary point of L∗
λ(x),

e.g., by running a stochastic gradient descent (SGD) style
method on L∗

λ(x) with λ = O(ϵ−1).

For now, suppose y∗λ(x), y
∗(x) are immediately accessible

once x is given. Then, we can construct the unbiased esti-
mator ∇̂L∗

λ(x) with first-order oracles:

∇̂L∗
λ(x) = ∇̂f(x, y∗λ(x); ζ) +

λ(∇̂g(x, y∗λ(x); ξy)− ∇̂g(x, y∗(x); ξz)).

However, with the above construction, the variance of
∇̂L∗

λ(x) is amplified by λ2 so we need O(λ2) = O(ϵ−2)
batch of samples at every iteration to cancel out the ampli-
fied variance (similarly to finite-differentation for simulating
Jacobian-vector products). Together with the standard sam-
ple complexity of SGD (which is O(Var(∇̂L∗

λ)ϵ
−4)), in

total O(ϵ−6) oracle access should be sufficient.

When we have stochastic smoothness (4), and if the oracle
allows two query points for the same randomness (see Sec-
tion 2) we can keep the variance controlled by coupling y∗λ
and y∗ with the same random variable ξy = ξz = ξ as

Var
(
∇̂xg(x, y

∗
λ(x); ξ)− ∇̂xg(x, y

∗(x); ξ)
)

≤ l̃2g,1∥y∗λ(x)− y∗(x)∥2.
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(Kwon et al., 2023b) has shown that ∥y∗λ(x)− y∗(x)∥ is al-
ways bounded by O(1/λ), and thus, the variance of ∇̂L∗

λ(x)

is bounded by O(σ2+l̃2g,1). Hence, the O(ϵ−4) upper bound
can be achieved by running e.g., standard SGD with smooth
stochastic oracles.

The key challenge in obtaining upper bounds in both cases is
to control the bias. As we cannot directly access y∗λ(x) and
y∗(x), we must compute estimators of them (say y and z)
by, e.g., running additional gradient steps on y, z in the inner
loop before updating x. Then bias comes from the error
∥y−y∗λ(x)∥ and ∥z−y∗(x)∥ after the inner-loop iterations,
and thus, our analysis requires tight control of overall bias
to keep the number of inner-loop iterations optimal.

1.2.2. LOWER BOUND: SLOWER PROGRESS

Our lower bound builds on the construction of probabilistic
zero-chains by Arjevani et al. (Arjevani et al., 2023) for
(single-level) stochastic nonconvex optimization. The key
idea of zero-chain is to create a function in a way that,
when making a query to an oracle, it discloses only up to
one new coordinate. With stochastic oracles, the required
number of iterations can be amplified by constructing an
oracle that exposes the next new coordinate only with a
small probability p ≪ 1. The result from (Arjevani et al.,
2023) constructs such an oracle with p = O(ϵ2), achieving
the Ω(ϵ−4) lower bound for single-level optimization.

In Bilevel optimization, obtaining the right lower-bound
dependency on ϵ requires care, otherwise, we easily end
up with vacuous lower bounds no better than the known
lower bounds for single-level optimization. In the noiseless
setting, recent work in (Chen et al., 2023a) has achieved
O(ϵ−2) upper bound, which is optimal in ϵ (the known lower
bound of Ω(ϵ−2) in deterministic single-level optimization
(Carmon et al., 2020) also applies here). This implies that
objective functions of the hard-instance cannot have a zero-
chain longer than O(ϵ−2). In turn, with variance-bounded
stochastic oracles, the Ω(ϵ−6) lower bound must result from
the slowdown of progression in zero-chains by stochastic
noises due to the smaller probability of showing the next
coordinate.

Our key observation is that we can set the probability p
of progression much smaller if the progress in x comes
indirectly from g. Specifically, we design y∗(x) such that
y∗(x) = F (x) where F (x) is the hard instance given in
(Arjevani et al., 2023) (see (17) for the explicit construction),
and let f, g such that

f(x, y) = y, g(x, y) = (y − F (x))2. (7)

With the oracle model in Definition 1.1 with r = Θ(ϵ), the
probability of progression can be set p = O(ϵ4) over the
length Ω(ϵ−2) zero-chain, and we obtain the desired Ω(ϵ−6)
lower bound for first-order methods with variance-bounded

stochastic oracles. The Ω(ϵ−4) lower bound with additional
stochastic smoothness can be shown on the same construc-
tion with minor modifications on scaling parameters.

1.3. Related Work

Due to the vast volume of stochastic optimization, we only
review the most relevant lines of work.

Upper Bounds for Bilevel Optimization. Bilevel opti-
mization has a long history since its introduction in (Bracken
& McGill, 1973). Beyond classical studies on asymptotic
landscapes and convergence rates (White & Anandalingam,
1993; Vicente et al., 1994; Colson et al., 2007), initiated
by (Ghadimi & Wang, 2018), there has been a surge of
interest in developing iterative optimization methods in
large-scale problems for solving (P). Most convergence
analysis have been performed on the standard setting of
unconstrained and strongly-convex lower-level optimization
with various assumptions on the oracle access to gradients
and Hessians (Ghadimi & Wang, 2018; Hong et al., 2020; Ji
et al., 2021; Chen et al., 2021; Khanduri et al., 2021; Chen
et al., 2022; Sow et al., 2022; Dagréou et al., 2022; Ji et al.,
2021; Kwon et al., 2023b; Liu et al., 2021; Sow et al., 2022;
Ye et al., 2022; Yang et al., 2023). We mention that there are
also a few recent works that study an extension to noncon-
vex and/or constrained lower-level problems with certain
regularity assumptions on the landscape of g around the
lower-level solutions, similar to the local strong-convexity
of the lower-level problems (Kwon et al., 2023a; Chen et al.,
2023b; Lu & Mei, 2023; Shen & Chen, 2023; Xiao et al.,
2023).

Lower Bounds for Bilevel Optimization. There are rela-
tively few studies on lower bounds for the Bilevel optimiza-
tion. While the lower bounds for the single-level stochastic
optimization (Carmon et al., 2020; Arjevani et al., 2023)
also imply the lower bounds of Bilevel optimization, the
lower complexity could be much higher than single-level
optimization. To our best knowledge, only the work in (Ji
& Liang, 2023; Dagréou et al., 2023) has studied the funda-
mental limits of finding ϵ-stationary points of (P). However,
(Ji & Liang, 2023) only considers the noiseless setting when
the hyperobjective F (x) is convex (note that this is different
from assuming f or g is convex). The work in (Dagréou
et al., 2023) only considers the case when objective func-
tions are in the form of finite-sum and the second-order
oracles are available, and they only provide a lower-bound
of single-level finite-sum optimization (Zhou & Gu, 2019).

Stochastic Nonconvex Optimization. There exists a long
and rich history of stochastic (single-level) optimization
for smooth nonconvex functions. With unbiased first-order
gradient oracles, it is well-known that vanilla stochastic
gradient descent (SGD) converges to a ϵ-stationary point
with at most O(ϵ−4) oracle access (Ghadimi & Lan, 2013),
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which is shown to be optimal recently by Arjevani et al. (Ar-
jevani et al., 2023). With smooth stochastic oracles, the rate
has been improved to O(ϵ−3) (Fang et al., 2018; Cutkosky
& Orabona, 2019), which is also shown to be optimal in
(Arjevani et al., 2023). These results are the counterparts
to convergence rates of second-order methods for (P) with
unbiased and smooth Jacobian/Hessian stochastic oracles
(Chen et al., 2021; Khanduri et al., 2021). The same rate
O(ϵ−3) can also be achieved only with first-order oracles,
as shown in (Yang et al., 2023) with assuming higher-order
stochastic smoothness.

2. Preliminaries
Throughout the paper, we specify the assumptions on the
smoothness of objective functions. The first one is the global
smoothness properties:

Assumption 1. The functions f and g satisfy the following
smoothness conditions.

1. f, g are continuously-differentiable and lf,1, lg,1-
smooth respectively, jointly in (x, y) over Rdx×dy .

2. For every (x, y) ∈ Rdx×dy , ∥∇yf(x, y)∥ ≤ lf,0.

3. For every x̄ ∈ Rdx , g(x̄, ·) is µg-strongly convex in y.

In addition to the smoothness of individual objective func-
tions, in Bilevel optimization, we also desire the hyperob-
jective to be smooth. This can be indirectly assumed by the
Lipschitzness of derivatives of g:

Assumption 2. ∇2
xyg,∇2

yyg are well-defined and lg,2-
Lipschitz jointly in (x, y) for all (x, y) ∈ Rdx×dy .

Oracle Classes. We assume that we can access first-order
information of objective functions only through stochastic
oracles O that are y∗(x)-aware for some radius r = Ω(ϵ)
(see Definition 1.1). Note that if we take r =∞, these ora-
cles become the usual first-order stochastic gradient oracles
that can be queried at any (x, y) and ŷ(x) is uninformative.
Thus our assumption on the oracles includes the conven-
tional ones. We consider that stochastic oracles allow N -
simultaneous query: the oracle takes N -simultaneous query
points (x,y) = {(xn, yn)}Nn=1 with N ≥ 2, and the ora-
cle returns {(∇̂f(xn, yn; ζ), ∇̂g(xn, yn; ξ), ŷn(xn))}Nn=1,
where ŷn(xn) is an estimator of y∗(xn). We denote the
oracle class as O(N, σ2, l̃g,1, r). We note that l̃g,1 ≥ lg,1
must always hold.

Additional Notation Throughout the paper, ∥ · ∥ denotes
the Euclidean norm for vectors and operator norm for matri-
ces, and Var(·) denotes the variance of a random vector. We
often denote a ≲ b when the inequality holds up to some ab-
solute constant. B(x, r) is a Euclidean ball of radius r > 0
around a point x.

3. Upper Bounds
In this section, we prove the O(ϵ−6) and O(ϵ−4) upper
bounds without and with stochastic smoothness (4), respec-
tively. We mainly focus on finding a stationary point of
the surrogate hyperobjective L∗

λ(x) defined in (5). Thanks
to ∥F (x) − L∗

λ(x)∥ = O(λ−1) given in Lemma 3.1 from
(Kwon et al., 2023b), we get ϵ-starionarity of F (x) with
a choice of λ = O(ϵ−1). We mention here that our upper
bounds do not depend on the ‘reliability radius’ of the oracle
r as long as r ≥ 6lf,0

µgλ
, hence the readers may assume the

standard oracle model with r =∞.

3.1. O(ϵ−6) Upper Bound

We show that double-loop F2SA introduced in (Kwon et al.,
2023b) can be improved by O(ϵ) from O(ϵ−7) to O(ϵ−6)
with suitable choice of outer-loop batch-size M and inner-
loop iterations T .

As in (Kwon et al., 2023b), the main challenge comes from
handling the bias raised every iteration by using approxima-
tions of y∗λ(x) and y∗(x). Specifically, let yk+1 and zk+1

be the estimates of y∗λ(x
k) and y∗(xk) at the kth iteration,

respectively. Using these estimates we may approximate
∇L∗

λ(x
k) by (see (6))

Gk := ∇xf(x
k, yk+1)

+ λ(∇xg(x
k, yk+1)−∇xg(x

k, zk+1)). (8)

Comparing∇L∗
λ(x

k) and Gk, it is natural to consider

λ(∥yk+1 − y∗λ(x
k)∥+ ∥zk+1 − y∗(xk)∥) (9)

as the order of bias of approximating ∇L∗
λ(x

k) by Gk. For
this bias to be less than ϵ, we need O(ϵ/λ) = O(ϵ2) accu-
racy of yk+1 and zk+1, which in turn requesting T ≍ ϵ−4

inner-loop iterations (with SGD on strongly-convex func-
tions) before updating xk with an unbiased estimate of Gk.
A similar idea has been used in (Chen et al., 2023a) where
Õ(ϵ−3) bound in the deterministic setting shown in (Kwon
et al., 2023b) has been improved to Õ(ϵ−2) with a choice
of T ≍ log(λ).

In Algorithm 1, we use the following notations:

hk,t
y = λ−1∇̂yf(x

k, yk,t; ζk,t) + ∇̂yg(x
k, yk,t; ξk,t),

hk,t
z = ∇̂yg(x

k, zk,t; ξk,t),

hk,m
x = ∇̂xf(x

k, yk+1; ζxk,m) +

λ(∇̂xg(x
k, yk+1; ξk,mx )− ∇̂xg(x

k, zk+1; ξk,mx )).

In the outer loop, we have xk+1 = xk − αĜk where

Ĝk := M−1∑M
m=1 h

k,m
x . (10)

Under (2) and (3), Var(Ĝk) := E[∥Gk − Ĝk∥2)] =
O(λ2/M) as shown in Lemma A.2. Thus, the variance can
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Algorithm 1 Penalty Methods with Lower-Level Coupling
Input: total outer-loop iterations: n, batch size: M , step
sizes: α, {γt}t, penalty parameter: λ, Oracle reliability
radius: r, Trust-region radius for (y− z): rλ, initializations:
x0, y0, z0

1: for k = 0...n− 1 do
2: # Initialize Lower-Level Iteration Variables
3: Get ŷ(xk) such that ∥ŷ(xk)− y∗(xk)∥ ≤ r

2 .
4: yk,0, zk,0 ← Proj(ŷ(xk), yk, zk, r, rλ)
5: # Lower-Level Iteration with Coupling y, z
6: for t = 0, ..., T − 1 do
7: ȳk,t ← yk,t − γth

k,t
y , z̄k,t ← zk,t − γth

k,t
z

8: yk,t+1, zk,t+1 ← Proj(ŷ(xk), ȳk,t, z̄k,t, r, rλ)
9: end for

10: yk+1, zk+1 ← yk,T , zk,T

11: # Upper-Level Iteration with Coupling y, z
12: xk+1 ← xk − α

M

∑M
m=1 h

k,m
x

13: end for

Algorithm 2 Proj
1: Input: y∗-estimator: ŷ, lower-level variables: y, z,

radius parameters: r, rλ
2: y′ ← ΠB(ŷ, 2r3 ){y}, ∆y = y′ − y

3: (If l̃g,1 =∞): z′ ← ΠB(ŷ, r2 ) {z}
4: (Else): z′ ← ΠB(y′,rλ) {z +∆y}
5: Return y′, z′

be handled with M ≍ ϵ−4, which suffices to get the O(ϵ−6)
upper bound. The proof can be found in Appendix A.2.

Note that Algorithm 1 is a first-order method that has per-
sample computational cost bounded by that for computing
the gradient estimators ∇̂xf , ∇̂yf , ∇̂xg, and ∇̂yg.

Theorem 3.1. Suppose Assumptions 1 and 2 hold and let
λ = max

(
λ0

ϵ ,
6lf,0
µgr

)
≍ ϵ−1, rλ =

lf,0
µgλ

where λ0 :=

4lf,0lg,1
µ2
g

(
lf,1 +

2lf,0lg,2
µg

)
. Under (2) and (3), Algorithm 1

with α ≪ 1
lg,1

, T ≍ ϵ−4, and γt =
(

2
µg

+ λ
lf,1+λlg,1

)
1

1+t

finds an ϵ-stationary point of (P) within O(ϵ−6) oracle
calls.

See (58) for an explicit expression of the bound with implied
constants in the O(ϵ−6) bound in the above theorem. It
is worth mentioning that compared to the O(ϵ−7) results
in (Kwon et al., 2023b), we improve the upper bound to
O(ϵ−6), and do not require additional assumption on the
Hessian-Lipschitzness of f .

3.2. O(ϵ−4) Upper Bound

If we aim to get O(ϵ−4) upper bound with first-order smooth
oracles, T ≍ ϵ−4 inner-loop iterations are too many to

achieve the goal. When we have stochastic smoothness (i.e.,
l̃g,1 <∞), we show that choosing T ≍ ϵ−2 is sufficient to
obtain the desired convergence rate. The proof can be found
in Appendix A.3.

Theorem 3.2. Suppose that Assumptions 1-2, (2), (3), and
(4) hold. Let the algorithm parameters satisfy the following:

λ ≥ max

(
λ0

ϵ
,
6lf,0
µgr

)
, rλ =

lf,0
µgλ

, α≪ 1. (11)

Then, Algorithm 1 with λ ≍ ϵ−1, γ ≍ ϵ2, T ≍ ϵ−2, M ≍
ϵ−2, and n ≍ ϵ−2 finds an ϵ-stationary point of (P) within
O(ϵ−4) oracle calls.

To our best knowledge, the best known results under the
similar setting achieve the O(ϵ−5) upper bound with the
stochastic smoothness of both objective functions f and
g jointly in (x, y) (Kwon et al., 2023b). We show that the
upper bound can be improved O(ϵ−4) with the only required
additional assumption being the stochastic smoothness in y.

Our new observation here is that the estimation for the bias
can be tightened by using

vk := yk − zk and v∗(x) := y∗λ(x)− y∗(x).

The following lemma is the key to tighten the bias in terms
of y and v:

Lemma 3.3. Suppose that Assumptions 1-2, (2), (3), (4),
and rλ =

lf,0
µgλ

hold. Then,

∥∇L∗
λ(x

k)−Gk∥ ≤ ly∥yk+1 − y∗λ(x
k)∥

+ λlg,1∥vk+1 − v∗(xk)∥+ lf,0ly
µgλ

,

where ly := lf,1 +
lg,2lf,0

µg
.

The proof is given in Appendix A. In comparison to (9), the
term ∥yk+1 − y∗λ(x

k)∥ on the upper bound does not depend
on λ. As a consequence, T = O(ϵ−2) (with γ = O(ϵ2) is
enough to obtain O(ϵ) accuracy of yk+1 and zk+1.

On the other hand, we observe that the variance of stochas-
tic noises in updating vk = yk − zk can be bounded by
O(∥yk − zk∥2), which can be bounded by O(1/λ2) (in-
stead of O(σ2) = O(1)) with a forced projection step. We
observe that the projection makes the distance between vk

and v∗ smaller. Let v̄k,t := ȳk,t − z̄k,t.

Proposition 3.4. Suppose that Assumptions 1-2, (2), (3),
and (4) hold. Then, for all k, t with rλ =

lf,0
λµg

:

∥vk,t+1 − v∗k∥ ≤ ∥v̄k,t − v∗k∥. (12)

Hence, it suffices to have O(ϵ−2) inner-loop iterations to
make the bias in vk less than O(ϵ/λ), giving O(ϵ−4) upper
bound with first-order smooth oracles.
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Proposition 3.5. Under Assumptions 1-2, (2), (3), (4), (11),
and γT > 1/µg , the iterates of Algorithm 1 satisfy:

α

n

n−1∑
k=0

E[∥∇L∗
λ(x

k)∥2

≤ O(n−1) +
α

n

n−1∑
k=0

Var(Ĝk) +O(λ−2) +O(γ). (13)

Lastly, we obtain the tighter estimation of Var(Ĝk) =
O(M−1) shown in Lemma A.2. Choosing T ≍ ϵ−2, M ≍
ϵ−2, and n ≍ ϵ−2, we conclude the theorem.

4. Lower Bounds
In our lower bound construction, we mainly focus on the
iteration complexity dependence on ϵ, and we consider a
subset of the function class in which smoothness parameters
are absolute constants:

F(1) :={(f, g) satisfy Assumptions 1, 2 |
lf,0, lf,1, µg, lg,1, lg,2 = O(1)}. (14)

Throughout the section, we consider the smoothness param-
eters as O(1) quantities and assume that ϵ > 0 is sufficiently
small such that ϵ−1 dominates any polynomial factors of
smoothness parameters. Before we proceed, we describe
additional preliminaries for the lower bound.

Algorithm Class. We consider algorithms that access an
unknown pair of functions (f, g) via a first-order stochastic
oracle O. Following the black-box optimization model (Ne-
mirovskij & Yudin, 1983), we consider an algorithm A ∈ A
paired with O ∈ O(N, σ2, l̃g,1, rϵ) where l̃g,1 ≥ 100 and
rϵ := 100ϵ. At any iteration step t ∈ N, A takes the first
(t−1) oracle responses and generates the next (randomized)
query points:

(xt,yt) = A
(
ξA, (x

0,y0),O(x0,y0; ζ0, ξ0), ...,

(xt−1,yt−1),O(xt−1,yt−1; ζt−1, ξt−1)
)
,

where ξA is a random seed generated at the beginning of
the optimization procedure. For simplicity, we assume that
σf = σg = σ in this section.

Zero-Respecting Algorithms. An important subclass of
randomized algorithm class A is the zero-respecting algo-
rithm class Azr which preserves the support of gradients
with respect to x at the queried points:

Definition 4.1. Suppose ∇̂xf = 0. An algorithm A is zero-
respecting if for all t ≥ 0 and n ∈ [N ] generated by A,

supp(xt,n) ⊆
⋃

t′<t,n′∈[N ]

supp
(
∇̂xg(x

t′,n′
, yt

′,n′
; ξt

′
)
)
.

Zero-respecting algorithm class plays a critical role in
dimension-free lower-bound arguments, as we can construct
a family of hard instances for all randomized black-box
algorithms from one hard example (see Section 4.3).

Probabilistic Zero-Chains. At the core of the lower-
bound construction is the construction of a hard example for
all zero-respecting algorithms. To study the iteration com-
plexity of a general randomized algorithm class, (Arjevani
et al., 2023) introduced the notion of progress defined as the
following:

progα(x) := max{i ≥ 0||xi| > α}, (x0 ≡ 1). (15)

Here, α ∈ [0, 1) controls the effective threshold of values
that would be considered as zero. We also adopt the notion
of probabilistic zero-chains from (Arjevani et al., 2023):

Definition 4.2. A function g(x, y), paired with gradient es-
timators ∇̂g(x, y; ξ) with an independent random variable
ξ, is a probability-p zero-chain in x if there exists α > 0
such that for all (x, y):

P(prog0(∇̂xg(x, y; ξ)) > progα(x) + 1) = 0,

P(prog0(∇̂xg(x, y; ξ)) = progα(x) + 1) ≤ p. (16)

4.1. Hard Instance

We start with the base construction from (Carmon et al.,
2020) for single-level nonconvex optimization:

F (x) = ϵ2
∑dx

i=1 fi(x),

fi(x) := Ψϵ(xi−1)Φϵ(xi)−Ψϵ(−xi−1)Φϵ(−xi), (17)

where dx = ⌊ϵ−2⌋, x0 ≡ ϵ, and Ψ(x),Φ(x) are a scalar
function defined as the following:

Ψ(t) :=

{
0, if t ≤ 1/2

exp
(
1− 1

(2t−1)2

)
, otherwise

,

Φ(t) :=
√
e

∫ t

−∞
e−τ2/2dτ, (18)

Ψs(t),Φs(t) are short-hands of Ψ(t/s),Φ(t/s). The above
construction satisfies the required smoothness and initial
value-gap F (0) − infx F (x) = O(1). We set the hyper-
objective to be defined as (17), but the progression of an
algorithm is slowed down when the ∇F (x) is only indi-
rectly accessed via ∇̂xg(x, y; ξ) for ∥y − y∗(x)∥ ≤ rϵ.

To set up the Bilevel objectives, we let f(x, y) = y and
g(x, y) = (y − F (x))2 as in (7). It is straight-forward to
see that y∗(x) = F (x) and f(x, y∗(x)) = F (x). Next, we
design the expectation of gradient estimators that the oracle
returns. To simplify discussion, let ∇̂f are deterministic,

7
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i.e., ∇̂f(x, y; ζ) = ∇f(x, y) with probability 1. We define
the stochastic gradients to be

E[∇̂xg(x, y; ξ)] = ∇x

(
r2ϵ · ϕ

(
y − F (x)

rϵ

)2
)
, (19)

where ϕ(t) is a smooth clipping function:

ϕ(t) :=


t, if |t| ≤ 1/2,

t− 1
e

∫ t

1/2
Ψ(τ)dτ, else if t > 1/2

t+ 1
e

∫ −t

1/2
Ψ(τ)dτ, else

. (20)

With the above construction, gradient estimators are unbi-
ased for |y−y∗(x)| ≤ rϵ. Let∇xgb(x, y) be the short-hand
of (19).

Next, we design the coordinate-wise gradient estimators of
g w.r.t x as the following. Let ξ ∼ Ber(p), and

∇̂xi
g(x, y; ξ) = ∇xi

gb(x, y) · (1 + hi(x)(ξ/p− 1)) ,

where hi(x) is a smooth version of the indicator function
1{i>progϵ/4(x)} (see details in Appendix, Lemma B.4). Fi-
nally, we design stochastic gradients w.r.t y and ŷ:

∇̂yg(x, y; ξ) = 2

(
y − ϵ2 ·

dx∑
i=1

fi(x) (1 + hi(x)(ξ/p− 1))

)
,

ŷ(x) = ϵ2
∑progϵ/2(x)

i=1 fi(x).

The next step is to show the lower complexity bounds of
“activating” the last coordinate of x for zero-respecting al-
gorithms. We note that additional noises in ∇̂yg and ŷ are
only required when extending to randomized algorithms,
and ∇̂yg, ŷ satisfy the following:

Lemma 4.3. There exists some absolute constant c > 0
such that for x ∈ Rdx , y ∈ R:

Var
(
∇̂yg(x, y; ξ)

)
≲

ϵ4

p
≲ σ2,

E[∥∇̂2
yyg(x, y; ξ)∥2] ≤ 2.

Furthermore, it holds that E[∇̂yg(x, y; ξ)] = ∇yg(x, y)
and |ŷ(x) − F (x)| = O(ϵ2) ≪ rϵ for all x ∈ Rdx and
y ∈ R.

4.2. Lower Bounds for Zero-Respecting Algorithms

We start by showing that the construction (f, g) with the
oracle ∇̂g(x, y; ξ) forms a probabilistic zero-chain. The
intuition behind the probabilistic zero-chain argument is
to amplify the required number of iterations to progress
toward the next coordinate from 1 to O(1/p), which gives
the overall lower bound of Ω (dx/p). Thus, as we set p
smaller, the more iterations all zero-respecting algorithms

would need to reach the last coordinate of x. The minimum
possible value of p is decided by (3) on bounded variances:

Var
(
∇̂xg(x, y; ξ)

)
≲
∥∇xgb(x, y)∥2∞

p
≲ σ2,

and the smoothness condition (4):

E[∥∇̂2
xyg(x, y; ξ)∥2] ≲ ∥∇F (x)∥2 + ∥∇F (x)∥2∞

p
≲ l̃2g,1.

The crucial feature of our construction is the upper bound
on ∥∇xgb(x, y)∥∞, which is much smaller than the single-
level optimization case:

Lemma 4.4. There exists some absolute constant c > 0
such that for all x ∈ Rdx , y ∈ R,

∥∇xgb(x, y)∥∞ ≤ crϵϵ = O(ϵ2),

∥∇F (x)∥∞ ≤ cϵ = O(ϵ).

Therefore, (16) holds with p = max
(
ϵ4/σ2, ϵ2/l̃2g,1

)
and

α = ϵ/4.

Note that the scenario only with bounded-variance can
be explained by setting l̃g,1 = ∞. Thus, with dx =
O(ϵ−2), we obtain the lower bound of Ω(ϵ−6),Ω(ϵ−4) for
all zero-respecting algorithms without and with the stochas-
tic smoothness assumption, respectively.

4.3. Lower Bounds for Randomized Algorithms

To convert the lower bound for all zero-respecting algo-
rithms to randomized algorithm classes, our construction
can adopt the “randomized coordinate-embedding” argu-
ment from (Carmon et al., 2020). We define a class of hard
instances for randomized algorithms:

fU (x, y) := y +
1

10
∥x∥2,

gU (x, y) := (y − F (U⊤ρ(x))2, (21)

where U is a random orthonormal matrix sampled from
Ortho(d, dx) := {U ∈ Rd×dx |U⊤U = I} with d ≫ dx
(with a slight abuse in notation, the true dimension of x is d
instead of dx), and

ρ(x) := x/
√

1 + ∥x∥2/R2, (22)

where R = 250ϵ
√
dx. Then we consider the family of hard

instances as the following:

Fhard := {(fU , gU )|U ∈ Ortho(d, dx),
fU , gU defined in (21)}. (23)

Intuition for the above construction is that for every ran-
domized algorithm A ∈ A, if we select the low-dimensional
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embedding U uniformly randomly from a unit sphere, the
sequence of query points generated by A behaves as if it is
generated by a zero-respecting algorithm in the embedding
space. The corresponding stochastic gradient estimator is
now given by

∇̂xgU (x, y; ξ) = J(x)⊤U∇̂xg(U
⊤ρ(x), y; ξ),

∇̂ygU (x, y; ξ) = ∇̂yg(U
⊤ρ(x), y; ξ),

ŷU (x) = ŷ(U⊤ρ(x)). (24)

where J(x) ∈ Rd×d is a Jacobian of ρ(x). As the remaining
steps follow the same arguments in (Arjevani et al., 2023),
we conclude our lower bound for the randomized algorithms
with the oracle model in Definition 1.1:

Theorem 4.5. Let K be the minimax oracle complexity for
the function class F(1) and oracle class O(N, σ2, l̃2g,1, rϵ)

where l̃g,1 ≥ 100 and rϵ = 100ϵ:

K := inf
A

sup
F(1)

O(N,σ2,l̃g,1,rϵ)

inf
{
K ∈ N|E[∥∇F (xK,1)∥] ≤ ϵ

}
.

Then the minimax oracle complexity must be at least:

K ≳ min

(
σ2

ϵ6
,
l̃2g,1
ϵ4

)
.

Lastly, we leave the following conjecture for the lower
bound for future investigation.

Conjecture 1 (Lower bound with globally unbiased oracles).
The current Ω(ϵ−6) lower bound only holds with rϵ = Θ(ϵ).
For fully general results, the main challenge is to construct
a hard-instance where g(x, y) is strongly-convex in y for all
(x, y) ∈ Rdx×dy , while at the same time ∥∇xg(x, y)∥∞ is
globally bounded by the same order of ∥∇xg(x, y

∗(x))∥∞
for all y ∈ Rdy . We conjecture that lower bounds remain the
same with standard stochastic oracles (i.e., with r =∞).

5. Concluding Remarks
In this work, we have studied the complexity of first-order
methods for Bilevel optimization with y∗-aware oracles.
When the oracle gives rϵ = Θ(ϵ) estimates of y∗(x)
along with O(rϵ)-locally reliable gradients, we establish
O(ϵ−6), O(ϵ−4) upper bounds without and with stochastic
smoothness, along with the matching Ω(ϵ−6),Ω(ϵ−4) lower
bounds. Our upper bound analysis also holds with standard
oracles (i.e., with r =∞), improving the best-known results
given in (Kwon et al., 2023b). The remaining complexity
questions include Conjecture 1, and tight bounds in terms
of other smoothness parameters. We conjecture that obtain-
ing such results would require theoretical breakthroughs
beyond existing techniques, thereby leaving them as unre-
solved challenges.
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Supplementary Materials for “On the Complexity of First-Order
Methods in Stochastic Bilevel Optimization"

A. First-order analysis for the upper bound
In this section, we establish the upper bounds on the convergence rate claimed in Theorems 3.1 and 3.2. We use the following
notations for filtration: for k = 0, 1, · · · , n− 1 and t = 0, 1, · · · , T − 1

• Fk: the σ-algebra generated by xi, yi, zi, yi,t, zi,t for all i = 0, 1, · · · , k − 1 and t = 0, 1, · · · , T − 1.

• Fk,s: the σ-algebra generated by Fk and yk,t, zk,t for all t = 0, 1, · · · , s− 1.

• F ′
k := Fk,T .

A.1. Preliminaries

Following (Kwon et al., 2023b), we reformulate (P) as the following constrained single-level problem:

min
x∈X

F (x) := f(x, y∗(x)) s.t. g(x, y)− g∗(x) ≤ 0, (P’)

where g∗(x) := g(x, y∗(x)). The Lagrangian Lλ for (P’) with multiplier λ > 0 is given as

Lλ(x, y) = f(x, y) + λ(g(x, y)− g∗(x)). (25)

For each x ∈ Rdx , recall that

y∗(x) := argmin
y∈Rdy

g(x, y), y∗λ(x) := argmin
y∈Rdy

Lλ(x, y), L∗
λ(x) := Lλ(x, y

∗
λ(x)). (26)

Algorithm 1 seeks to optimize L∗
λ(x), instead of the hyperobjective F (x) given in (P’). By the first-order optimality

condition for y∗λ(x), we have

0 = ∇yLλ(x, y
∗
λ(x)) = ∇yf(x, y

∗
λ(x)) + λ∇yg(x, y

∗
λ(x)). (27)

According to Lemma 3.1 in (Kwon et al., 2023b), for any x ∈ Rdx and λ ≥ 2lf,1/µg ,

∇L∗
λ(x) = ∇xf(x, y

∗
λ(x)) + λ (∇xg(x, y

∗
λ(x))−∇xg(x, y

∗(x))) . (28)

Hence, in order to estimate ∇L∗
λ(x), one needs to estimate y∗λ(x) and y∗(x). This are achieved by the inner loop so that

yk,T ≈ y∗λ(x
k) and zk,T ≈ y∗(xk).

Here, we establish two preliminary lemmas that will be used in the subsequent sections. Lemma A.1 below bounds the bias
of the expected gradient estimator Gk in (8) for the gradient ∇L∗

λ(x
k) of the surrogate hyperobjective. Note that the second

part of this lemma is the restatement of Lemma 3.3.

Denote

v∗(x) := y∗λ(x)− y∗(x) and vk = yk − zk.

Also, we often use a short-hand y∗λ,k = y∗λ(x
k), y∗k = y∗(xk), and v∗k = v∗(xk). Recall that xk+1 = xk − αĜk where Ĝk

is given in (10). We denote

Gk := ∇xf(x
k, yk+1) + λ(∇xg(x

k, yk+1)−∇xg(x
k, zk+1)). (29)

Lemma A.1. Suppose that Assumptions 1-2, (2), and (3) hold.

(i) Then, we have

∥∇L∗
λ(x

k)−Gk∥ ≤ (lf,1 + λlg,1)
(
∥yk+1 − y∗λ(x

k)∥+ ∥zk+1 − y∗(xk)∥
)
. (30)

12
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(ii) For rλ =
lf,0
µgλ

, we have

∥∇L∗
λ(x

k)−Gk∥ ≤ ly∥yk+1 − y∗λ(x
k)∥+ λlg,1∥vk+1 − v∗(xk)∥+ lf,0ly

µgλ

where ly := lf,1 +
lg,2lf,0

µg
.

Proof. The first part directly follows from the smoothness properties of f(x, ·) and g(x, ·).

Let us show the second part. Using (28), we directly estimate the difference between∇L∗
λ(x

k) and Gk:

∥∇L∗
λ(x

k)−Gk∥ ≤ ∥∇xf(x, y
∗
λ,k)−∇xf(x

k, yk+1)∥
+ λ∥∇xg(x

k, y∗λ,k)−∇xg(x
k, y∗k)−∇xg(x

k, yk+1) +∇xg(x
k, zk+1)∥.

Using the regularity of f and g from Assumptions 1 and 2, we have

∥∇L∗
λ(x

k)−Gk∥ ≤ lf,1∥yk+1 − y∗λ,k∥+ λ∥∇2
xyg(x, y

∗
λ,k)v

∗
k −∇2

xyg(x, y
k+1)vk+1∥+ λlg,2

(
∥v∗k∥2 + ∥vk+1∥2

)
where v∗k = y∗λ,k − y∗k and vk+1 = yk+1 − zk+1. Next, note that

∇2
xyg(x, y

∗
λ,k)v

∗
k −∇2

xyg(x, y
k+1)vk+1 = (∇2

xyg(x, y
∗
λ,k)−∇2

xyg(x, y
k+1))v∗k +∇2

xyg(x, y
k+1)(v∗k − vk+1),

which yields

∥∇2
xyg(x, y

∗
λ,k)v

∗
k −∇2

xyg(x, y
k+1)vk+1∥ ≤ lg,2∥y∗λ,k − yk+1∥∥v∗k∥+ lg,1∥v∗k − vk+1∥.

Finally, note that ∥v∗k∥, ∥vk∥ < rλ =
lf,0
µgλ

for all k due to the projection step, and thus

∥∇L∗
λ(x

k)−Gk∥ ≤ (lf,1 + lg,2λrλ)∥yk+1 − y∗λ,k∥+ λlg,1∥v∗k − vk+1∥+ lg,2λr
2
λ.

As the last term lg,2λr
2
λ = lg,2λ

(
lf,0
µgλ

)2
≤ lf,0

µgλ
lg,2lf,0

µg
≤ lf,0ly

µgλ
, we conclude.

Next, the following lemma gives a bound on the variance of the stochastic gradient estimator Ĝk in (10).

Lemma A.2. Suppose that Assumptions 1-2, (2), and (3) hold. Then, the variance of Ĝk is bounded for all k:

Var(Ĝk) := E[∥Ĝk −Gk∥2] ≤
1

M

(
2σ2

f + 8λ2σ2
g

)
.

If we further assume (4) and rλ =
lf,0
µgλ

,

Var(Ĝk) := E[∥Ĝk −Gk∥2] ≤
1

M

(
2σ2

f +
8l̃2g,1l

2
f,0

µ2
g

)
.

Proof. Under (2), and (3), we can bounded the vairance as the following:

ME[∥Ĝk −Gk∥2] ≤ 2E[∥∇̂xf(x
k, yk+1; ζxk )−∇xf(x

k, yk+1)∥2]︸ ︷︷ ︸
≤σ2

f

+ 4λ2 E[∥∇̂xg(x
k, yk+1; ζxk )−∇xg(x

k, yk+1)∥2]︸ ︷︷ ︸
≤σ2

g

+ 4λ2 E[∥∇̂xg(x
k, zk+1; ζxk )−∇xg(x

k, zk+1)∥2]︸ ︷︷ ︸
≤σ2

g

.

13
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Under (4) and rλ =
lf,0
µgλ

, we can use different inequality:

ME[∥Ĝk −Gk∥2] ≤ 2E[∥∇̂xf(x
k, yk+1; ζxk )−∇xf(x

k, yk+1)∥2]︸ ︷︷ ︸
≤σ2

f

+ 4λ2 E[∥∇̂xg(x
k, yk+1; ζxk )− ∇̂xg(x

k, zk+1; ζxk )∥2]︸ ︷︷ ︸
≤l̃g,1∥yk+1−zk+1∥2≤l̃g,1r2λ

+ 4λ2 E[∥∇xg(x
k, yk+1)−∇xg(x

k, zk+1)∥2]︸ ︷︷ ︸
≤lg,1∥yk+1−zk+1∥2≤lg,1r2

λ

.

Nothing that l̃g,1 ≥ lg,1, we have the lemma.

A.2. O(ϵ−6) upper bound

In this subsection, we establish the O(ϵ−6) upper bound on the complexity of Algorithm 1 as stated in Theorem 3.1.

We begin with the standard argument that starts with estimating the one-step change in the (surrogate) objective L∗
λ(x

k+1)−
L∗
λ(x

k).

Proposition A.3. Under the step size rule αk ∈ (0, 1
2L ) for a constant L give in Lemma C.2, we have

E[L∗
λ(x

k+1)|F ′
k]− L∗

λ(x
k) ≤ −αk

2
∥∇L∗

λ(x
k)∥2 − αk

4
∥Ĝk∥2 + αkVar(Ĝk) + αk∥∇L∗

λ(x
k)−Gk∥2.

Proof. The L-smoothness of L∗
λ(x) given in Lemma C.2 and xk+1 = xk − αkĜk yield that

L∗
λ(x

k+1)− L∗
λ(x

k) ≤ ⟨∇L∗
λ(x

k), xk+1 − xk⟩+ L

2
∥xk+1 − xk∥2,

= −αk⟨∇L∗
λ(x

k), Ĝk⟩+
α2
kL

2
∥Ĝk∥2.

= −αk

2
∥∇L∗

λ(x
k)∥2 + α2

kL− αk

2
∥Ĝk∥2 +

αk

2
∥∇L∗

λ(x
k)− Ĝk∥2.

Rearranging the right-hand side and using our step size rule αk ∈ (0, 1
2L ),

L∗
λ(x

k+1)− L∗
λ(x

k) ≤ −αk

2
∥∇L∗

λ(x
k)∥2 − αk

4
∥Ĝk∥2 +

αk

2
∥∇L∗

λ(x
k)− Ĝk∥2. (31)

By Young’s inequality, the last term on the right-hand side is bounded by

αk∥∇L∗
λ(x

k)−Gk∥2 + αk∥Ĝk −Gk∥2. (32)

Taking the expectation on both sides, we conclude our claim.

Next, denote

Jk := ∥yk,0 − y∗λ(x
k)∥2 + ∥zk,0 − y∗(xk)∥2. (33)

We derive a recursive inequality for the above quantity to obtain the following bound on the weighted sum of the squared
norm of the expected gradients.

Proposition A.4. Under the same setting as in Theorem 3.1, we have

n−1∑
k=0

αk

2
E[∥∇L∗

λ(x
k)∥2] ≤ E[L∗

λ(x
0)]− inf

x∈Rdx
E[L∗

λ(x)] + σ2
x

n−1∑
k=0

αk + (E[J0] +A)

n−1∑
k=0

αk
16C3/λ

µg(1 + T )
, (34)

where A =
(µg+2lg,1)

2σ2
g

µ2
glg,1

+O(λ−1).
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Proof. From Proposition A.3, we get

n−1∑
k=0

αk

2
E[∥∇L∗

λ(x
k)∥2 ≤ E[L∗

λ(x
0)]− inf

x∈Rdx
E[L∗

λ(x)] (35)

− 1

4

n−1∑
k=0

(
α−1
k E[∥xk+1 − xk∥2]− 2αkE[∥Ĝk −∇L∗

λ(x
k)∥2]

)
︸ ︷︷ ︸

(∗)

.

Below, we will show that the sum (∗) above is uniformly lower bounded, which is enough to conclude.

Note that Gk is the estimated gradient ∇L∗
λ(x

k) with the only source of error being approximation errors in yk,T ≈ y∗λ(x
k)

and zk,T ≈ y∗(xk). The second quantity, Ĝk, is the actual estimated gradient we use in Algorithm 1, with independent
random noise ξxk,T , ξ

xy
k,T , ξ

xz
k,T being the additional source of error.

Using (30) in Lemma A.1, and Lemma A.2,

E[∥Ĝk −∇L∗
λ(x

k) | Fk∥2] ≤ 2σ2
x + 4C2

(
E
[
∥y∗λ(xk)− yk,T ∥2 | Fk

]
+ E

[
∥y∗(xk)− zk,T ∥2 | Fk

])
(36)

where σ2
x :=

σ2
f+2λ2σ2

g

M and C = lf,1 + λlg,1. Recall that yk+1 = yk,T is obtained by minimizing λ−1Lλ(x, ·) using PSGD
with an unbiased gradient estimator with variance λ−2σ2

f + σ2
g = O(1) (see Algorithm 1). The objective λ−1Lλ(x, ·) is

(µg/2)-strongly convex (by Lemma C.3) and C/λ = O(1)-smooth where C := lf,1+λlg,1. Then, we choose the inner-loop
step-size

γt =

(
2

µg
+

λ

C

)
1

1 +
√
3 + t

. (37)

We then apply Lemma C.1 with µ = µg/2, L = C/λ = lg,1+O(ϵ), β = 2
µg

+ λ
C = O(1), σ2 = λ−2σ2

f +σ2
g = σ2

g+O(ϵ2),

γ = 1 +
√
3 (this value of γ was chosen so that (γ + 1)(1− 2

γ ) ≤ 1) and the constraint set B to be the radius 2r/3-ball
around ŷ(x), which contains y∗(x) by the hypothesis. (When r =∞, B becomes the whole space.) This gives us

E[∥yk,T − y∗λ(x
k)∥2 | Fk] ≤

max
{
C̃, ∥yk,0 − y∗λ(x

k)∥2
}

1 + T
, (38)

where C̃ :=
(µg+lg,1)

2σ2
g(lg,1+2−1)

2µ2
gl

2
g,1

+O(ϵ).

Similarly, since g(x, ·) is µg-strongly convex and lg,1-smooth,

E[∥zk,T − y∗(xk)∥2 | Fk] ≤
max

{
C̃, ∥zk,0 − y∗(xk)∥2

}
1 + T

. (39)

for the same constant C̃ as above. Then bounding the maximum of nonnegative quantities by their sum and combining (36),
(38), and (39),

E
[
∥Gk −∇L∗

λ(x
k)∥2

∣∣∣∣Fk

]
≤ 8C3/λ

µg(1 + T )

[
2C̃ + Jk

]
, (40)

Next, we derive a recursion for E[Jk]. By Young’s inequality, (38), and that y∗λ is (4lg,1/µg)-Lipschitz continuous (see
Lemma C.5), we obtain

E[∥yk+1,0 − y∗λ(x
k+1)∥2 | Fk] (41)

≤ 2E[∥yk,T − y∗λ(x
k)∥2 | Fk] + 2E[∥y∗λ(xk+1)− y∗λ(x

k)∥2 | Fk] (42)

≤
8(C/λ)max

{
C̃, ∥yk,0 − y∗λ(x

k)∥2
}

µg(1 + T )
+

32l2g,1
µ2
g

E[∥xk+1 − xk∥2 | Fk]. (43)
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Similarly, we also have

E[∥zk+1,0 − y∗(xk+1)∥2 | Fk] (44)

≤
4lg,1 max

{
C̄, ∥zk,0 − y∗(xk)∥2

}
µg(1 + T )

+
2l2g,1
µ2
g

E[∥xk+1 − xk∥2 | Fk]. (45)

Suppose T is large enough so that µg(1 + T ) ≥ 16C/λ. Then using (38) and (39),

E[Jk+1 | Fk] ≤
Jk
2

+ C̃ +
34l2g,1
µ2
g

E[∥xk+1 − xk∥2 | Fk], (46)

where A is the constant defined in (40). Taking the full expectation and by induction, we get

E[Jk] ≤ 2−k(E[J0] + 2C̃) +
34l2g,1
µ2
g

k∑
i=0

(
1

2

)k−1−i

E[∥xi+1 − xi∥2]. (47)

It follows that, combining (40) and (47), we get

µg

8C3/λ

n−1∑
k=0

αkE
[
∥Gk −∇L∗

λ(x
k)∥2

]
≤

n−1∑
k=0

αk

(1 + T )

(
2C̃ + E[Jk]

)
(48)

≤ (E[J0] + 2C̃)

n−1∑
k=0

2αk

(1 + T )
+

68l2g,1
µ2
g

n−1∑
k=0

αk∥xk+1 − xk∥2. (49)

Thus, we deduce for αk sufficiently small,

(∗) ≥ −(E[J0] + 2C̃)

n−1∑
k=0

16α2
kC

3/λ

µg(1 + T )
+ σ2

x

n−1∑
k=0

αk (50)

+

n−1∑
k=0

α−1
k E[∥xk+1 − xk∥2]

(
1−

4 · 8 · 68C3l2g,1/λ

µ3
g

α2
k

)
(51)

≥ −(E[J0] + 2C̃)

n−1∑
k=0

16α2
kC

3/λ

µg(1 + T )
+ σ2

x

n−1∑
k=0

αk. (52)

Combining the above with (35), we conclude (34).

Now, we prove the upper bound O(ϵ−6).

Proof of Theorem 3.1: Since λ = O(ϵ−1), by Lemma C.5, ∥∇L∗
λ(x

k)∥ = O(ϵ) implies ∥∇F (xk)∥ = O(ϵ). Hence it is
enough to show that Algorithm 1 finds an ϵ-stationary point of the surrogate objective L∗

λ within O(ϵ−6) iterations.

For M ≍ λ4 = ϵ−4, we have σ2
x =

σ2
f+2λ2σ2

g

M = O(σ2
gϵ

2), Then, by Proposition A.4, to obtain ϵ-stationary point, it is
enough to have (recall that C = Θ(λ), A = O(1), and σ2

x = Θ(ϵ2))

C1∑n−1
k=0 αk

+
σ2
x

∑n−1
k=0 αk∑n−1

k=0 αk

+
C2λ

2
∑n−1

k=0
αk

T∑n−1
k=0 αk

≤ ϵ2, (53)

where

C1 = L∗
λ(x

0)− inf
x∈Rdx

L∗
λ(x), C2 =

l3g,1
µg

(
J0 +

(µg + 2lg,1)
2σ2

g

µ2
glg,1

+O(λ−1)

)
. (54)

Recalling λ = ϵ−1, note that (53) follows from

C1∑n−1
k=0 αk

+
C2ϵ

−2

T
+

σ2
f + 2ϵ−2σ2

g

M
≤ ϵ2. (55)
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Hence it is enough to set each of the three terms in the left-hand side above is at most ϵ2/3. This is the case when

αk ≡ α ∈ (0, 1
2L ) where L =

6lg,1
µg

(
lf,1 +

l2g,1
µg

+
lf,0lg,1lg,2

µ2
g

)
as is in Lem. C.2 and

C1

nα
≤ ϵ2/3, 3C2ϵ

−2 ≤ ϵ2T, 3(σ2
f + 2ϵ−2σ2

g) ≤Mϵ2, (56)

so we can set

n = 3(C1/α)ϵ
−2, T = 3C2ϵ

−4, M = 3ϵ−2(σ2
f + 2ϵ−2σ2

g). (57)

Thus the total sample complexity is at most

n(T +M) ≤
9C1(C2 + 2σ2

g)

α
ϵ−6 +

9C1σ
2
g

α
ϵ−4 = O(ϵ−6). (58)

In particular, is we set α ≥ cL for some constant c > 0, then the leading term is of order LC1(C2 + 2σ2
g)ϵ

−6.

□

A.3. O(ϵ−4) upper bound

In this section, we provide the proofs of Theorem 3.2 and Proposition 3.5. Throughout this section, we assume that
Assumptions 1-2, (2), (3), and (4) hold and let γt ≡ γ for all t.

As illustrated in Section 3.2, our new key observation in Lemma A.1 is the estimation of ∥∇L∗
λ(x

k) − Gk∥ in terms of
∥yk+1 − y∗λ(x

k)∥ and ∥vk+1 − v∗(xk)∥. In the subsequent section, we estimate each term. Let

Ik := ∥yk − y∗λ(x
k)∥2 andWk := ∥vk − v∗(xk)∥2, (59)

On the other hand, we have the additional projection step for z in the inner loop of Algorithm 1:

zk,t+1 ← ΠB(yk,t+1,rλ)

{
z̄k,t +∆y

}
,

where ∆y = yk,t+1 − ȳk,t+1 and therefore ȳk,t − z̄k,t = yk,t+1 − (z̄k,t +∆y). In Appendix A.3.2, we verify that with the
appropriate choice of rλ the projection step makes ∥vk+1 − v∗(xk)∥ smaller, which yields the desired result.

A.3.1. DESCENT LEMMA FOR y

Proposition A.5. For given β ≥ 2, assume that

λ >
lf,1
lg,1

, γ ∈
(
0,

1

4lg,1

)
and

(
1− µgγ

2

)T
<

1

2β
. (60)

Then, we have

E[∥yk+1 − y∗λ(x
k)∥2 | Fk] ≤

1

2β
Ik +

4γ

µg
Var(∇̂yLλ)

1

λ2
(61)

where

Var(∇̂yLλ) := sup
x,y

Var(∇̂yf(x, y; ζ) + λ∇̂yg(x, y; ξ)). (62)

Furthermore,

n∑
k=0

E[Ik] ≤ 2I0 +
8γ

µg
Var(∇̂yLλ)

n

λ2
+

64l2g,1
µ2
g

n−1∑
k=0

E[∥Ĝk∥2]. (63)
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Proof. Recall from Lemma C.3 that Lλ(x, ·) is (λµg/2)-strongly convex. In addition, for given x, Lλ(x, ·) is (lf,1 +λlg,1)-
smooth in y. Then, Applying Lemma C.1 with the objective function y 7→ λ−1Lλ(x, y), µ = µg/2, σ2 = Var(∇̂yLλ),
L = 4lg,1 and the constraint set B to be the radius 2r/3-ball around ŷ(x), which contains y∗(x) by the hypothesis, we get

E[∥yk,T − y∗λ(x
k)∥2 | Fk] ≤

(
1− µgγ

2

)T
∥yk,0 − y∗λ(xk)∥2 +

4γ

λ2µg
Var(∇̂yLλ). (64)

Thanks to our assumptions in (60), we conclude (61).

Next, let us estimate Ik+1 in terms of Ik. Young’s inequality, the (4lg,1/µg)-Lipschitz continuity of y∗λ in Lemma C.5, and
(61) yield

E[Ik+1 | Fk] ≤ 2E[∥yk+1 − y∗λ(x
k)∥2 | Fk] + 2E[∥y∗λ(xk+1)− y∗λ(x

k)∥2 | Fk] (65)

≤ 1

β
Ik +

4γ

λ2µg
Var(∇̂yLλ) +

32l2g,1α
2

µ2
g

E[∥Ĝk∥2 | Fk]. (66)

Taking the full expectation and by induction, we get

E[Ik] ≤ β−kI0 +
k−1∑
i=0

β−k+1+i

(
32l2g,1α

2

µ2
g

E[∥Ĝi∥2] +
4γ

λ2µg
Var(∇̂yLλ)

)
, (67)

≤ β−kI0 +
1

1− 1/β

4γ

λ2µg
Var(∇̂yLλ) +

32l2g,1α
2

µ2
g

k−1∑
i=0

β−k+1+iE[∥Ĝi∥2]. (68)

As β > 2, we have 1
1−1/β ≤ 2 and we conclude (63).

A.3.2. ESTIMATES FOR v∗k

Next, we prove Proposition 3.4. Recall that z̄k,t = zk,t − γt∇̂yg(x
k, zk,t; ξyk,t) (before projection to the ball around yk+1),

and v̄k,t := ȳk,t − z̄k,t. Also recall that ∆y = yk,t+1 − ȳk,t+1 and therefore v̄k,t = yk,t+1 − (z̄k,t +∆y). Note that for an
appropriate choice of t satisfying ∥u∥ ≤ t ≤ ∥v∥, the projection of v to a ball of radius t makes the distance to u smaller.

Lemma A.6. For any u, v ∈ Rdy with ∥v∥ ≥ t and ∥u∥ ≤ t for some r > 0, the following holds:∥∥∥∥ tv

∥v∥
− u

∥∥∥∥ ≤ ∥v − u∥.

Proof of Proposition 3.4: First of all, if for v̄k,t = ȳk,t − z̄k,t, ∥v̄k,t∥ ≤ rλ, then the equality holds in (12). Otherwise,
suppose that

∥v̄k,t∥ > rλ.

Recall from Lemma C.4 that for all x ∈ Rdx ,

∥v∗(x)∥ = ∥y∗λ(x)− y∗(x)∥ ≤ lf,0
λµg

= rλ. (69)

Applying Lemma A.6 with r = rλ, we conclude (12). □

Next, we obtain the contraction of v∗k+1 − v∗k.

Lemma A.7. For all k, we have

∥v∗(xk+1)− v∗(xk)∥2 = ∥v∗k+1 − v∗k∥2 ≲
l2g,1l

2
v

µ4
gλ

2
∥xk+1 − xk∥2 +

l2g,2l
4
f,0

µ6
gλ

4

where lv := lg,1 +
lf,0lg,2

µg
.
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Proof. We first show that

v∗(x) = y∗λ(x)− y∗(x) = − 1

λ
(∇2

yyg(x, y
∗(x)))−1∇yf(x, y

∗(x)) +O

(
lg,2l

2
f,0

µ3
gλ

2

)
. (70)

To see this, note that

∇yg(x, y
∗(x)) = 0, ∇yg(x, y

∗
λ(x)) + λ−1∇yf(x, y

∗
λ(x)) = 0,

and thus,

− 1

λ
∇yf(x, y

∗
λ(x)) = ∇yg(x, y

∗
λ(x))−∇yg(x, y

∗(x))

= ∇2
yyg(x, y

∗(x))(y∗λ(x)− y∗(x)) +O(lg,2∥y∗(x)− y∗λ(x)∥2)

= ∇2
yyg(x, y

∗(x))(y∗λ(x)− y∗(x)) +O

(
lg,2l

2
f,0

µ3
gλ

2

)
.

Multiplying both sides by∇2
yyg(x, y

∗(x)) gives (70). Thus, v∗k+1 − v∗k can be expressed as

v∗k+1 − v∗k

= v∗(xk+1)− v∗(xk)

=
1

λ

(
∇2

yyg(x
k, y∗(xk))−1∇yf(x

k, y∗(xk))−∇2
yyg(x

k+1, y∗(xk+1))−1∇yf(x
k+1, y∗(xk+1))

)
+O

(
lg,2l

2
f,0

µ3
gλ

2

)

=
1

λ
∇2

yyg(x
k, y∗(xk))−1

(
∇yf(x

k, y∗(xk))−∇yf(x
k+1, y∗(xk+1))

)
+

1

λ

(
∇2

yyg(x
k, y∗(xk))−1 −∇2

yyg(x
k+1, y∗(xk+1))−1

)
∇yf(x

k, y∗(xk)) +O

(
lg,2l

2
f,0

µ3
gλ

2

)

=
1

λ

(
lg,1
µg

+
lg,2lf,0
µ2
g

)
·O
(
∥xk − xk+1∥+ ∥y∗(xk)− y∗(xk+1)∥

)
+O

(
lg,2l

2
f,0

µ3
gλ

2

)
.

Finally, using that ∥y∗(xk)− y∗(xk+1)∥ ≤ 3lg,1
µg
∥xk − xk+1∥, we have

∥v∗k+1 − v∗k∥ ≲
lg,1
λµ2

g

(
lg,1 +

lg,2lf,0
µg

)
︸ ︷︷ ︸

lv

∥xk − xk+1∥+
lg,2l

2
f,0

µ3
gλ

2
.

Having squares on both sides gives the lemma.

Lemma A.8. Suppose that

γ ∈

(
0,

µg

4l̃2g,1

)
. (71)

For all k and t = 1, 2, · · · , T − 1, we have

E[∥v̄k,t − v∗k∥2|Fk,t] ≤ (1− µgγ/2)∥vk,t − v∗k∥2 +O(γ2)
l̃2g,1l

2
f,0

λ2µ2
g

. (72)

Proof. In this proof, we only consider the projection step

zk,t+1 ← ΠB(yk,t+1,rλ)

{
z̄k,t +∆y

}
.
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Other projections can be handled by a small modification of Lemma C.1. By direct computation, we have

E[∥v̄k,t − v∗k∥2|Fk,t]

= E[∥v∗k − v̄k,t∥2 + ∥vk+1 − v̄k,t∥2 − 2⟨v∗k − vk,t, v̄k,t − vk,t⟩|Fk,t]

≤ ∥v∗k − vk,t∥2 + γ2 · E[∥λ−1∇yf(x
k, yk; ζyk,t) +∇yg(x

k, yk,t; ξyk,t)−∇yg(x
k, zk,t; ξyk,t)∥

2|Fk,t]

− 2γ⟨v∗k − vk,t, λ−1∇yf(x
k, yk,t) +∇yg(x

k, yk,t)−∇yg(x
k, zk,t)⟩

≤ (1− µgγ)∥v∗k − vk∥2 + γ2

λ2
(σ2

f + l2f,0) + γ2 l̃2g,1∥yk,t − zk,t∥2.

where in the last line, we used co-covercivity of strongly-convex functions ⟨x− y,∇g(x)−∇g(y)⟩ ≥ µg∥x− y∥2. Finally,
note that

∥yk,t − zk,t∥2 ≤ 2(∥vk,t − v∗k∥2 + ∥v∗k∥2) ≤ 2∥vk,t − v∗k∥2 + 2r2λ.

Using (71), we conclude (72).

Lastly, we have the desired estimates for ∥vk+1 − v∗(xk)∥ andWk.
Proposition A.9. For given β > 2, assume that (71) and(

1− µgγ

2

)T
<

1

2β
. (73)

Then,

E[∥vk+1 − v∗(xk)∥2 | Fk] ≤
1

2β
E[Wk] +O(γ)

l̃2g,1l
2
f,0

λ2µ3
g

. (74)

Furthermore,

λ2

n

n∑
k=0

E[Wk] ≤
1

n
2W0λ

2 +
l2g,1l

2
vα

2

µ4
g

1

n

n−1∑
k=0

∥Ĝk∥2 + C
l̃2g,1l

2
f,0

µ3
g

γ +
l2g,2l

4
f,0

µ6
g

1

λ2
. (75)

Proof. Proposition 3.4 and Lemma A.8 yield

E[∥vk,t+1 − v∗(xk)∥2|Fk,t] ≤ (1− µgγ/2)∥vk,t − v∗(xk)∥2 +O(γ2) ·
l̃2g,1l

2
f,0

λ2µ2
g

. (76)

for all t and k. By iterating this for t = 0, 1, · · · , T − 1, we have

E[∥vk+1 − v∗(xk)∥2|Fk] = E[∥vk,T − v∗(xk)∥2|Fk] ≤ (1− µgγ/2)
T ∥vk,t − v∗k∥2 +O(γ)

l̃2g,1l
2
f,0

λ2µ3
g

. (77)

Using the assumption (73), the above yields the first inequality (74).

On the other hand, using Young’s inequality,

Wk+1 = ∥vk+1 − v∗(xk+1)∥2 ≤ 2∥vk+1 − v∗(xk)∥2 + 2∥v∗(xk+1)− v∗(xk)∥2.

Applying (74) and Lemma A.7, we obtain that

E[Wk+1|Fk] ≤ 2E[∥vk+1 − v∗(xk)∥2|Fk] +
l2g,1l

2
vα

2

µ4
gλ

2
∥Ĝk∥2 +

l2g,2l
4
f,0

µ6
gλ

4
, (78)

≤ 1

β
Wk +

l2g,1l
2
vα

2

µ4
g

∥Ĝk∥2
1

λ2
+ C

l̃2g,1l
2
f,0

λ2µ3
g

γ

λ2
+

l2g,2l
4
f,0

µ6
g

1

λ4
, (79)

for some constant C > 0. The assumption (73) was used in the last inequality.

Using the parallel argument as in Proposition A.5, we conclude (75).
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A.3.3. PROOFS OF THEOREM 3.2 AND PROPOSITION 3.5

The following statement is the detailed version of Proposition 3.5.

Proposition A.10. Suppose that Assumptions 1-2, (2), (3), and (4). In addition, let the algorithm parameters satisfy (71),
(73),

rλ =
lf,0
µgλ

, α≪ 1, r ∈ [6rλ,∞] (80)

and

−1

4
+ C1α

2 < 0 where C1 = l2y
64l2g,1
µ2
g

+
l2g,1l

2
v

µ4
g

(81)

hold true. Then,

α

2

n−1∑
k=0

E[∥∇L∗
λ(x

k)∥2 − L∗
λ(x

0) + inf
x∈Rdx

E[L∗
λ(x)] ≤ αl2yI0 + αl2g,1W0λ

2 + α

n−1∑
k=0

Var(Ĝk) + nO(λ−2) + nO(γ).

(82)

Proof. Let Bk := E[L∗
λ(x

k+1)|Fk]− L∗
λ(x

k) + α
2 ∥∇L

∗
λ(x

k)∥2. Recall from Proposition A.3 that

Bk ≤ −
α

4
∥Ĝk∥2 + αVar(Ĝk) + 2α

(
lf,0ly
µg

)2
1

λ2
+ 2αl2y∥yk+1 − y∗λ(x

k)∥2 + 2αλ2l2g,1∥vk+1 − v∗(xk)∥2.

The upper bounds of the last two terms, ∥yk+1 − y∗λ(x
k)∥2 and ∥vk+1 − v∗(xk)∥2, are given in Proposition A.5, and

Proposition A.9, respectively. Using them, we obtain that

Bk ≤ −
α

4
∥Ĝk∥2 + αVar(Ĝk) + 2α

(
lf,0ly
µg

)2
1

λ2

+ αl2yE[Ik]
1

β
+

8αlyγ

µg
Var(∇̂Lλ)

1

λ2

+ αl2g,1E[λ2Wk]
1

β
+ 2αl2g,1

l̃2g,1l
2
f,0

µ3
g

O(γ) + 2αl2g,1
l2g,2l

4
f,0

µ6
g

1

λ2

Choosing β = 2, taking the full expectation and telescoping over k = 0, . . . , n− 1,

n−1∑
k=0

Bk ≤ αl2yI0 + αl2g,1W0λ
2 + α

(
−1

4
+ C1α

2

) n−1∑
k=0

∥Ĝk∥2 + α

n−1∑
k=0

Var(Ĝk) (83)

+

(
2α

(
lf,0ly
µg

)2
1

λ2
+

8

µg

Var(∇̂Lλ)γ

λ2
+ 2αl2g,1

l̃2g,1l
2
f,0

µ3
g

γ + 2αl2g,1
l2g,2l

4
f,0

µ6
g

1

λ2

)
n (84)

for C1 given in (81).

On the other hand,

α

2

n−1∑
k=0

E[∥∇L∗
λ(x

k)∥2 − L∗
λ(x

0) + inf
x∈Rdx

E[L∗
λ(x)] ≤

n−1∑
k=0

Bk. (85)

Thanks to (81), and the fact that Var(∇̂Lλ) = O(λ2), we conclude.
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Proof of Theorem 3.2: Since λ = O(ϵ−1), by Lemma C.5, ∥∇L∗
λ(xk)∥ = O(ϵ) implies ∥∇F (xk)∥ = O(ϵ). Hence

it is enough to show that Algorithm 1 finds an ϵ-stationary point of the surrogate objective L∗
λ within O(ϵ−4) iterations,

respectively.

After the projection steps before entering the inner loop, we have ∥yk,0 − zk,0∥ ≤ rλ for all k ≥ 0. From Proposition A.10,
we have

α

2

1

n

n−1∑
k=0

E[∥∇L∗
λ(x

k)∥2 ≤ C

n
+

α

n

n−1∑
k=0

Var(Ĝk) +O(λ−2) +O(γ). (86)

where C = L∗
λ(x

0)− infx∈Rdx E[L∗
λ(x)] + αl2yI0 + αl2g,1W0λ

2.

For M ≍ O(ϵ−2), Lemma A.2 yields that Var(Ĝk) = 1
M

(
2σ2

f +
8l̃2g,1l

2
f,0

µ2
g

)
= O(ϵ2). Choosing γ ≍ O(ϵ2) and

n ≍ O(ϵ−2),

α

2

1

n

n−1∑
k=0

E[∥∇L∗
λ(x

k)∥2 = O(ϵ2).

For T ≍ O(ϵ−2), the step size rule is satisfied (60). Thus, we conclude that the total complexity is O(n·(M+T )) = O(ϵ−4).

B. Proofs for Lower Bounds
In this section, we establish Theorem 4.5.

B.1. Auxiliary Lemmas for Lower Bounds

Lemma B.1 ((Carmon et al., 2020), Lemma 1). Suppose Ψ(t),Φ(t) is defined as in (18):

Ψ(t) =

{
0, t ≤ 1/2,

exp
(
1− 1

(2t−1)2

)
, t > 1/2,

Φ(t) =
√
e

∫ t

−∞
e−

1
2 τ

2

dτ.

They satisfy the following properties:

1. Both Ψ and Φ are infinitely differentiable.

2. For all t ∈ R,

0 ≤ Ψ(t) ≤ e, 0 ≤ Ψ′(t) ≤
√

54/e, |Ψ′′(t)| ≤ 32.5

0 ≤ Φ(t)
√
2πe, 0 ≤ Φ′(t) ≤

√
e, |Φ′′(t)| ≤ 1.

3. For all t ≥ 1 and |u| ≤ 1, Ψ(t)Φ′(u) ≥ 1.

Lemma B.2 ((Carmon et al., 2020), Lemma 1, 2). If there exists 0 ≤ i < dx such that |xi| ≥ ϵx and |xi+1| < ϵx, then
|∇iF (x)| > ϵ. Furthermore, for all x ∈ Rdx , ∥∇F (x)∥∞ ≤ 23ϵ.

Lemma B.3. Suppose ϕ(t) is as defined in (20):

ϕ(t) =


t+ 1

e

∫ −t

1/2
Ψ(τ)dτ, t < −1/2,

t, −1/2 ≤ t ≤ 1/2,

t− 1
e

∫ t

1/2
Ψ(τ)dτ, t > 1/2.

It satisfies the following properties:

1. ϕ(t) is infinitely differentiable.
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2. For all t ∈ R,

|ϕ(t)| < 2, 0 ≤ ϕ′(t) ≤ 1, |ϕ′′(t)| ≤
√

54/e3, |ϕ′′′(t)| ≤ 32.5/e.

Proof. Other properties come immediately from Lemma B.1, we only prove |ϕ(t)| < 2. To see this, for t ≥ 1/2,

ϕ(t) =
1

2
+

∫ t

1/2

1− 1

e
Ψ(τ)dτ ≤ 1 +

∫ t

1

1

(2τ − 1)2
dτ ≤ 2.

where in the first inequality, we used 1− x ≤ exp(−x). The same holds for t ≤ −1/2.

Lemma B.4. Let fi(x), hi(x) be defined as the following:

fi(x) := Ψϵ(xi−1)Φϵ(xi)−Ψϵ(−xi−1)Φϵ(−xi),

hi(x) := Γ

(
1−

(∑dx

j=i Γ
2(|xj |/ϵ)

)1/2)
, (87)

where Γ(t) is given by

Γ(t) :=

∫ t

1/4
Λ(τ)dτ∫ 1/4

1/2
Λ(τ)dτ

, where Λ(t) =

{
0, t ≤ 1/4 or t ≥ 1/2,

exp
(
− 1

100(t−1/4)(1/2−t)

)
, otherwise

.

Then, hi(x) satisfies 1{i>progϵ/4(x)} ≤ hi(x) ≤ 1{i>progϵ/2(x)}, O(1)-Lipschitzness and the following:

f
(k)
i (x)hi(x) = 0, ∀i ̸= progϵ/2(x) + 1, k ∈ N+.

Proof. The construction of hi(x) is brought from (Arjevani et al., 2023) where the boundedness and O(1)-Lipschitzness are
guaranteed from the proof of Lemma 4 in (Arjevani et al., 2023). The last property follows from the fact that any kth order
derivative of Ψ(t) for t ≤ 1/2 is 0, and thus,

Ψ(k)
ϵ (xi−1) = 0, ∀i > progϵ/2(x) + 1,

and

hi(x) ≤ 1{i>progϵ/2(x)} = 0, ∀i < progϵ/2(x) + 1.

Lemma B.5 ((Arjevani et al., 2023), Lemma 15). For all x ∈ Rd, ρ(x) is 1-Lipschitz and (3/R)-smooth, that is,

∥J(x)∥ ≤ 1, ∥J(x1)− J(x2)∥ ≤ 3

R
∥x1 − x2∥, ∀x1, x2 ∈ Rd.

The following lemma is the key to converting the zero-chain argument to general randomized algorithms (Arjevani et al.,
2023):

Lemma B.6 ((Arjevani et al., 2023), General Version of Lemma 5). Let A ∈ A be a randomized algorithm that accesses
functions f, g : Rdx×dy → R through a stochastic oracle, and generates batched queries with norm-bounded x, i.e.,
∥xt,n∥ ≤ R for all t ∈ N, n ∈ [N ], with some R > 0. Let U be a random matrix uniformly distributed on Ortho(d, dx)

with d ≳ R2Ndx

p log
(

Nd2
x

pδ

)
and p, δ > 0, and let uj be the jth column of U . Additionally, let OU be an oracle that takes

a batched query (x,y) := {(xn, yn)}Nn=1, and returns GU (x,y; ξ) where ξ is a random variable and GU is the oracle
response to (x,y) and ξ parameterized by U . Suppose the following holds for GU with probability 1:

GU (x,y; ξ) = GU ′(x,y; ξ), ∀U ′ ∈ Ortho(d, dx) : u′
j = uj for all j = 1, 2, ...,max

n
prog1/4(U

⊤xn) + 1.
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and with probability at least 1− p:

GU (x,y; ξ) = GU ′(x,y; ξ), ∀U ′ ∈ Ortho(d, dx) : u′
j = uj for all j = 1, 2, ...,max

n
prog1/4(U

⊤xn).

When A is paired with OU , with probability at least 1− δ,

max
n∈[N ]

prog1/4

(
U⊤xt,n

)
< dx, ∀t < dx − log(1/δ)

2p
.

Proof. The original proof in (Arjevani et al., 2023) uses the progress of returned gradient estimators directly as the overall
progress of an algorithm:

γt
x = max

t′≤t,n∈[N ]

(
prog0(∇̂xg(U

⊤xt′,n, yt
′,n; ξt

′
)
)
.

Our definition is a generalization of the above measure to include other signals ∇̂yg and ŷ in the oracle response. Specifically,
we define

γt = arg min
i∈[dx]

: GU (x
t′ ,yt′ ; ξt

′
) = GU ′(xt′ ,yt′ ; ξt

′
), ∀t′ ≤ t, ∀U ′ ∈ Ortho(d, dx) : u′

j = uj for all j ∈ [i].

With the above definition, under the event Bt := {maxn prog1/4(U
⊤xt,n) ≤ γt−1} and filtration Gt−1:

Gt−1 := σ(ξA, (x
0,y0), GU (x

0,y0; ξ0), ..., (xt−1,yt−1), GU (x
t−1,yt−1; ξt−1)),

we can check that

P(γt − γt−1 /∈ {0, 1},Bt|Gt−1) = 0,

P(γt − γt−1 = 1,Bt|Gt−1) ≤ p.

The rest follows the same steps in (Arjevani et al., 2023), hence we refer the readers to Appendix B.1 in the reference.

B.2. Proof of Lemma 4.3

We first note that E[∇̂yg(x, y; ξ)] = ∇yg(x, y), and

∇yg(x, y) = −2
(
y − ϵ2

∑dx

i=1 fi(x)
)
= −2

(
y − ϵ2

∑progϵ/2(x)+1

i=1 fi(x)
)
.

Furthermore, from Lemma B.4, we can observe that

∇̂yg(x, y; ξ)−∇yg(x, y) = 2ϵ2 · fprogϵ/2(x)+1(x)hprogϵ/2(x)+1(x)(ξ/p− 1).

Since both fi(x) and hi(x) are bounded by O(1) for all i and x, we have Var(∇̂yg(x, y; ξ)) ≲ ϵ4/p. The remaining
properties follow straightforwardly from the construction.

B.3. Proof of Lemma 4.4

We start with writing down the explicit formula for∇xgb(x, y):

∇xgb(x, y) = −rϵϕ
(
y − F (x)

rϵ

)
ϕ′
(
y − F (x)

rϵ

)
∇F (x),

Thus,

∥∇xgb(x, y)∥∞ ≲ rϵ∥∇F (x)∥∞ ≲ rϵϵ,

where we use Lemma B.2 for the last inequality.
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Now we show that probabilitic zero-chain property. Recall that we define

∇̂xi
g(x, y; ξ) = ∇xi

gb(x, y) · (1 + hi(x)(ξ/p− 1)),

and note that from Lemma B.4,

∇xi
F (x)hi(x) = O(ϵ) · ∇xi

(fi−1(x) + fi(x))hi(x) = 0, ∀i ̸= prog1/2(x) + 1.

Therefore, the probabilistic zero-chain property is satisfied, and Var
(
∇̂xg(x, y; ξ)

)
≲ ∥∇xgb(x,y)∥2

∞
p which must be less

than O(σ2). We also check the stochastic smoothness:

∥∇̂xg(x, y
1; ξ)− ∇̂xg(x, y

2; ξ)∥ ≲
(
max

y
∥∇2

xygb(x, y)∥+max
y
∥∇2

xygb(x, y)∥∞(ξ/p)

)
∥y1 − y2∥

≲
(
max

x
∥F (x)∥+max

x
∥F (x)∥∞(ξ/p)

)
∥y1 − y2∥

≲ (1 + ϵξ/p)∥y1 − y2∥.

Thus, we have E[∥∇̂xg(x, y
1; ξ)− ∇̂xg(x, y

2; ξ)∥2] ≲ ϵ2

p ∥y
1 − y2∥2, and this must be less than l̃2g,1∥y1 − y2∥2. Thus, we

conclude that p = Ω
(
max(r2ϵ ϵ

2/σ2, ϵ2/l̃2g,1)
)

.

B.4. Proof of Theorem 4.5

We first reiterate the initial value-gap and smoothness properties of the modified hard instance: for any U ∈ Ortho(d, dx),
let FU be the hyperobjective constructed with (fU , gU ) defined in (21), paired with oracle responses defined in (24). Then,

1. FU (0)− F ∗
U ≤ O(1).

2. fU , gU satisfies Assumption 1, 2 with O(1) smoothness parameters.

3. ∥∇FU (x)∥ > O(ϵ) if progϵ/4(U
⊤x) < dx.

4. For all (x, y) ∈ Rdx×dy ,

E[∥∇̂xgU (x, y; ξ)− E[∇̂xgU (x, y; ξ)]∥2] ≤ O(rϵϵ)
2/p.

5. For all (x, y) ∈ Rdx×dy ,

E[∥∇̂xgU (x, y
1; ξ)− ∇̂xgU (x, y

2; ξ)∥2] ≤ O

(
1 +

ϵ2

p

)
· ∥y1 − y2∥2.

The first property immediately follows from the fact that F (0) = FU (0) and F ∗
U ≥ F ∗, and the fact that F ∗ = O(ϵ2dx) =

O(1). Property 2 is trivial given our construction and Lemma B.1. The third property follows from the proof of Lemma 6 in
(Arjevani et al., 2023). For rest two properties, note that

E[∇̂xgU (x, y; ξ)] = J(x)⊤U∇̂xgb(U
⊤ρ(x), y; ξ),

and since ∥J(x)∥ = O(1) by Lemma B.5, we can similarly show the bounded-variance and smoothness as in Lemma 4.4.
Finally, we can invoke Lemma B.6, and we get the theorem.

C. Auxiliary Lemmas
In Lemma C.1 below, we obtain convergence rate of the projected gradient descent (PSGD) algorithm with either fixed or
diminishing step sizes. These statements are adapted from the analogous statements for unconstrained SGD for strongly
convex objectives (Thm. 5.7 in (Garrigos & Gower, 2023) for fixed step sizes and Thm. 4.7 in (Bottou, 2010) for diminishing
step sizes).
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Lemma C.1 (Convergence rate of PSGD for strongly convex objectives). Let f : Rp → R be a L-smooth and µ-
strongly convex function for some µ,L > 0. Suppose f∗ := infx f(x) > −∞ and denote x∗ := argminx f(x).
Furthermore, let B be a convex set containing x∗. Suppose G(x, ξ) is an unbiased stochastic gradient estimator for f ,
that is, E[G(x, ξ)] = ∇f(x) for all x ∈ B. Further assume that the variance of the gradient estimation error is bounded:
E[∥G(x, ξ)−∇f(x)∥2] ≤ σ2 for all x ∈ B. Let ρ := 2µL

µ+L . Consider the following PSGD iterates:

xt+1 ← ΠB {xt − αtG(xt, ξt)} . (88)

Then the following hold:

(i) (fixed step size) Suppose αt ≡ α < 2L/(µ+ L). Fix T > 4L log(L/µ)
µ . Then for all 0 ≤ t ≤ T ,

E[∥xt − x∗∥2] ≤ (1− µα)t∥x0 − x∗∥2 + ασ2

µ
. (89)

Taking α = 8 log T
µT , we have E[∥xT − x∗∥2] ≤ 1

T 4 ∥x0 − x∗∥2 + 8 log T
µ2T σ2.

(ii) (diminishing step size) Suppose αt =
β

γ+t , where β > 1/ρ, γ > 0 are constants. Then for all t ≥ 0,

E[∥xt − x∗∥2] ≤ ν

γ + t
, (90)

where

ν := max

{
β2σ2L

2(βρ− 1)
+

(γ + 1)β2σ2

γ2
, (γ + 1)

(
1− 2βµL

γ(µ+ L)

)
∥x0 − x∗∥2

}
. (91)

Proof. Let x̄t := xt − αG(xt; ξt). Then

∥x̄t − x∗∥2 = ∥x̄t − xt∥2 + ∥xt − x∗∥2 + 2⟨x̄t − xt, xt − x∗⟩
= α2

t ∥G(xt; ξt)∥2 + ∥xt − x∗∥2 − 2αt⟨xt − x∗, G(xt; ξt)⟩.

Let Ft = σ(ξ1, . . . , ξt−1) denote the σ-algebra generated by the random variables ξ1, . . . , ξt−1. Then xt is measurable w.r.t.
Ft, so taking conditional expectation with respect to Ft and using the co-coercivity of strongly convex functions, we have

E[∥x̄t − x∗∥2 | Ft] = α2
tσ

2 + α2
t ∥∇f(xt)∥2 + ∥xt − x∗∥2 − 2αt ⟨xt − x∗,∇f(xt)⟩︸ ︷︷ ︸

≥ µL
µ+L∥xt−x∗∥2+ 1

µ+L∥∇f(xt)∥2

(92)

≤
(
1− 2αtµL

µ+ L

)
∥xt − x∗∥2 + α2

tσ
2, (93)

given that αt ≤ 2/(µ+ L). Then by the projection lemma and taking the full expectation, we have

E[∥xt+1 − x∗∥2] ≤ E[∥x̄t − x∗∥2] ≤ (1− αtρ)E[∥xt − x∗∥2] + α2
tσ

2,

where we have denoted ρ := 2µL
µ+L .

To derive (i), suppose αt ≡ α < 2L/(µ+ L). Then applying (92) recursively, we have

E[∥xt − x∗∥2] ≤ (1− µα)t∥x0 − x∗∥2 + 2σ2
t∑

j=0

(1− αµ)jα2

≤ (1− µα)t∥x0 − x∗∥2 + ασ2

µ
.

Next, we show (ii) by induction. We will show that, for all t ≥ 1, that

E[∥xt − x∗∥2] ≤ ν̃

γ + t
, (94)
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where

ν̃ := max

{
β2σ2L

2(βρ− 1)
, (γ + 1)E[∥x1 − x∗∥2]

}
. (95)

This is enough to conclude since ν̃ ≤ ν, which follows by (92):

E[∥x̄1 − x∗∥2] ≤
(
1− 2βµL

γ(µ+ L)

)
∥x0 − x∗∥2 + β2

γ2
σ2. (96)

Indeed, (94) holds for t = 1 by the choice of ν̃. Denoting t̂ := γ + t, by the induction hypothesis and by the choices of step
size αt and ν̃,

E[∥xt+1 − x∗∥2] ≤
(
1− βρ

t̂

)
ν̃

t̂
+

Lσ2β2

2t̂2
(97)

≤
(
t̂− 1

t̂2

)
ν̃−

(
βρ− 1

t̂2

)
ν̃ +

Lσ2β2

2t̂2︸ ︷︷ ︸
≤0

(98)

≤ t̂− 1

(t̂− 1)(t̂+ 1)
ν̃ ≤ ν̃

γ + 1 + t
. (99)

This shows the assertion.

Lemma C.2. L∗
λ(x) is L-smooth with L :=

6lg,1
µg

(
lf,1 +

l2g,1
µg

+
lf,0lg,1lg,2

µ2
g

)
.

Proof. See Lemma B.8 in (Chen et al., 2023a).

Lemma C.3. For λ ≥ 2lf,1/µg , Lλ(x, ·) is (λµg/2)-strongly convex for each x ∈ Rdx .

Proof. Since f(x, ·) is lf,1-smooth and g(x, ·) is µg-strongly convex,

Lλ(x, y
′)− Lλ(x, y) ≥ ⟨∇yLλ(x, y), y

′ − y⟩+ λµg − lf,1
2

∥y′ − y∥2. (100)

Hence if λµg ≥ 2lf,1, then Lλ(x, ·) is (λµg/2)-strongly convex.

Lemma C.4. For λ ≥ 2lf,1/µg , it holds that for each x ∈ Rdx ,

∥y∗λ(x)− y∗(x)∥ ≤ 2lf,0
λµg

= O(λ−1). (101)

Proof. Note that if a function w 7→ h(w) is µ-strongly convex and is minimized at w∗, then for any w,

0 ≥ h(w∗)− h(w) ≥ ⟨∇h(w), w∗ − w⟩+ µ

2
∥w∗ − w∥2. (102)

Using Cauchy-Schwarz inequality, the above inequality implies

∥w∗ − w∥ ≤ 2

µ
∥∇h(w)∥. (103)

Apply the above inequality for h(y) = g(x, y) and the first-order optimality condition for y∗λ(x) in (27) to get

∥y∗(x)− y∗λ(x)∥ ≤
2

µg
∥∇yg(x, y

∗
λ(x))∥ =

2

λµg
∥∇yf(x, y

∗
λ(x))∥ ≤

2lf,0
λµg

, (104)

as desired.
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Lemma C.5. For λ ≥ 2lf,1/µg , it holds that

|L∗
λ(x)− F (x)| ≤ D0λ

−1 = O(λ−1), (105)

where D0 :=
(
lf,1 +

l2f,1
µg

)
lf,1
µg

.

Proof. See Lemma B.3 in (Chen et al., 2023a).
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