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S2TD-Face: Reconstruct a Detailed 3D Face with Controllable
Texture from a Single Sketch

Anonymous Authors

ABSTRACT
3D textured face reconstruction from sketches applicable in many
scenarios such as animation, 3D avatars, artistic design, missing
people search, etc., is a highly promising but underdeveloped re-
search topic. On the one hand, the stylistic diversity of sketches
leads to existing sketch-to-3D-face methods only being able to han-
dle pose-limited and realistically shaded sketches. On the other
hand, texture plays a vital role in representing facial appearance,
yet sketches lack this information, necessitating additional texture
control in the reconstruction process. This paper proposes a novel
method for reconstructing controllable textured and detailed 3D
faces from sketches, named S2TD-Face. S2TD-Face introduces a
two-stage geometry reconstruction framework that directly recon-
structs detailed geometry from the input sketch. To keep geometry
consistent with the delicate strokes of the sketch, we propose a
novel sketch-to-geometry loss that ensures the reconstruction accu-
rately fits the input features like dimples and wrinkles. Our training
strategies do not rely on hard-to-obtain 3D face scanning data or
labor-intensive hand-drawn sketches. Furthermore, S2TD-Face in-
troduces a texture control module utilizing text prompts to select
the most suitable textures from a library and seamlessly integrate
them into the geometry, resulting in a 3D detailed face with control-
lable texture. S2TD-Face surpasses existing state-of-the-art methods
in extensive quantitative and qualitative experiments. The code will
be publicly available.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.

KEYWORDS
3D Face Reconstruction, Face Sketch, Rendering

1 INTRODUCTION
Reconstructing 3D textured faces from sketches has been a valu-
able research topic, finding applications in custom-made 3D avatars,
artistic design, criminal investigation, etc. However, existing sketch-
to-3D-face methods [28, 61] suffer from the following issues. On the
one hand, the diverse styles of face sketches, ranging from realis-
tic representations with detailed shading to cartoon-like drawings
with simplified lines [60], pose challenges for existing methods
that typically focus on sketches with frontal poses [28] or rely
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Figure 1: S2TD-Face can reconstruct high-fidelity geometry
from face sketches. The texture control module seamlessly
applies suitable textures onto the geometry based on prompts.
The results can be re-lighted for various application scenes.

heavily on realistically shaded sketches as input [61]. On the other
hand, texture plays a crucial role in accurately portraying facial ap-
pearance, highlighting the necessity for texture control within the
sketch-to-3D-face process, while existing methods lack this capa-
bility. Furthermore, the absence of matching data between sketches
and 3D faces makes it hard to train the framework. This paper
proposes a method to reconstruct topology-consistent 3D faces
with fine-grained geometry that precisely matches the input sketch
and allows users to control the texture of reconstruction through
text prompts, named S2TD-Face (Sketch to controllable Textured
and Detailed Three-Dimensional Face). We introduce S2TD-Face
in three parts: geometry reconstruction, training strategies, and
texture control module.

One straightforward approach to reconstructing 3D faces from
sketches might involve first translating 2D sketches to 2D face
images [13, 40, 52], followed by utilizing existing 3D face recon-
struction methods [17, 19, 26, 31, 59, 66, 67] to obtain the 3D faces.
However, this approach suffers from the following shortcoming. It
heavily relies on the cooperation of both the sketch-to-image and
image-to-3D-face stages, where inherently sparse but important
geometric information like dimples or wrinkles in sketches is often
lost during the transformation process, as the two transformation
steps are independent, leaving sketches unable to directly constrain
the final 3D geometry. In contrast, S2TD-Face uses a direct and
efficient geometry reconstruction framework. It firstly predicts the
coefficients of 3DMMs [4, 5] from input sketches to reconstruct

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

coarse geometry and then utilizes coarse geometry and sketches in
UV space to generate displacement maps for detailed geometry.

To ensure the framework reconstructs 3D detailed faces that
accurately reflect the delicate features of the input, we introduce a
novel sketch-to-geometry loss function to supervise both coarse
and detailed geometry. This function combines differentiable ren-
dering techniques [34, 51] to extract sketches of different styles
from both geometry stages and compare them with ground truth
sketches, guiding geometry deformation, as shown in Fig. 4. To
ensure the robustness of the reconstruction framework across dif-
ferent sketch styles, we generate 5 different types of sketches for
each face image by using traditional filtering operators [6] and deep
learning methods [56, 57], as shown in Fig. 2 (a)-(e), with each sam-
ple randomly selecting a sketch type as input during training. The
framework is trained by 2D signals like landmarks, segmentation,
and perception features, as shown in Fig. 2 (f)-(h), without relying
on the 3D face scanning data. Based on the widely-used REALY
benchmark [9], we tailor it to better suit sketch-to-3D-face tasks for
geometry evaluation by transforming the test samples into different
styles of sketches, conducting fair evaluation on state-of-the-art
methods [17, 19, 20, 26, 28, 37, 54]. Extensive experiments indicate
that our method significantly outperforms existing methods.

S2TD-Face controls the texture of reconstructed 3D faces based
on a text-image module, offering the following capabilities: it can
search for suitable texture from a face library based on the text
prompt, transform the selected texture information to UV space,
and seamlessly apply the UV-texture to the reconstructed geometry.
As shown in the first row of Fig. 1, when the user provides a text
prompt describing the desired texture, S2TD-Face can reconstruct
3D textured faces in styles such as ’Cartoon Boy’ or ’Oil Painting’.

In summary, the main contributions of S2TD-Face are as follows:
• An effective framework for reconstructing 3D detailed high-
fidelity faces from sketches with a novel sketch-to-geometry
loss, which accurately captures the local strokes of the input.

• A novel texture control module for controlling the texture
of the reconstructions, resulting in textured 3D faces with
various styles ranging from cartoons to realistic appearances.

• Extensive experiments show that our method achieves ex-
cellent performance and outperforms the existing methods.

2 RELATEDWORK

3D Face Reconstruction. Reconstructing 3D faces from 2D images
has achieved widespread success. Methods such as [17, 19, 26, 37, 59,
66, 67] can generate realistic 3D faces from facial images captured
in various poses, environments, and expressions. These methods
typically utilize 2D landmarks, segmentation, texture information,
etc. to guide the deformation of 3DMMs [4, 5], and further lever-
age differentiable rendering techniques [14, 21, 34, 41, 51, 55] for
fine-grained reconstruction [19, 37]. These validated 2D-to-3D su-
pervision approaches are applicable for training sketch-to-3D-face
framework. Some methods [2, 18, 24, 35, 36] focus on texture recon-
struction. They typically decompose textures into components such
as diffuse, specular, ambient occlusion, normal, and translucency,
applicable in re-rendering in new environments or creating 3D
avatars. However, the textures provided by these methods lack di-
versity, missing complex styles such as cartoon styles or makeup as

(a) (b) (c) (d)

(e) (f) (h)(g)

Figure 2: Data samples of S2TD-Face. (a)-(e) are sketches in
different styles generated from the original image (f). (g) rep-
resents landmarks, and (h) represents segmentation. Inputs
of the pipeline include sketches (a)-(e) and (f)-(h) serve as
supervisory signals.

shown in Fig. 1, and still exhibit disparities in high-frequency details
compared to textures directly derived from image UV mapping.

Translate Sketches to Other Modalities. Some methods [3, 22,
25, 43, 62, 64] reconstruct 3D shapes from sketches of common
objects such as cups, chairs, cars, airplanes, etc. They typically su-
pervise the 3D geometry based on 2D silhouettes using differential
renderers [62], involving point set matching and optimization (such
as chamfer distance) [22, 25], or innovation in 3D representation
forms (such as Signed Distance Fields [46]) [43, 64]. These methods
are usually limited to specific types of objects, and a domain gap
exists when reconstructing faces. Fewmethods reconstruct 3D faces
from facial sketches, they either specialize in sketches with frontal
poses [28] or heavily depend on professional sketches with precise
shading as input [61], which may not align with practical require-
ments. Some methods [11–13, 23, 40, 52] translate facial sketches
into 2D face images, often utilizing frameworks such as Genera-
tive Adversarial Networks (GANs) [15] or Neural Radiance Fields
(NeRFs) [45] to synthesize face images. Combining these sketch-
to-face-image methods with image-to-3D-face methods [19, 59, 66]
seems like a straightforward solution. However, the local stroke
information of the original input sketch (such as dimples, wrinkles,
etc.) is easily lost in this process, leading to reconstruction results
that are not consistent with the input sketches.

3 METHODOLOGY
3.1 Preliminaries

Data Processing. For a given RGB face image 𝑰 ∈ R𝐻×𝑊 ×3, based
on the common practices in [13, 52, 56, 57], we generate 5 types of
sketches 𝑺𝑡𝑖 ∈ R𝐻×𝑊 ×3:

𝑺𝑡𝑖 = Φsketch (𝑰 , 𝑡𝑖 ) , (1)

where we integrate existing various sketch operations [7, 56, 57]
into a single function Φsketch (·). We make Φsketch (·) differentiable
and will also apply it to the sketch-to-geometry loss. 𝑡𝑖 represents
different sketch types, 𝑖 ∈ [1, · · · , 5], as illustrated in Fig. 2(a)-(e).
Following [59], we utilize landmark detectors [59] to obtain 2D
landmarks 𝒍𝒎𝒌 ∈ R2×240 and employ DML-CSR [63] to generate
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Figure 3: Overview of our method. (a) The input of S2TD-Face: a face sketch and a text prompt. (b): The geometry reconstruction
framework yields detailed 3D faces that accurately reflects the delicate features of the input sketches. (c): The texture control
module seamlessly applies the controllable texture to the geometry with text prompts. (d) The output of S2TD-Face: a detailed
3D face with controllable texture.

segmentation information 𝑪 for supervisory signals in geometry.
These data processing methods enable S2TD-Face to acquire train-
ing data from existing abundant face datasets [32, 38, 39, 42, 44, 53],
without relying on hard-to-collect 3D face scanning data or labor-
intensive hand-drawn sketches. In summary, during the training
process, each data sample consists of sketches {𝑺𝑡𝑖 }, original face
image 𝑰 , segmentation 𝑪 , and landmarks 𝒍𝒎𝒌 , as shown in Fig. 2.

Face Model. Based on [8, 27, 48], we define the coarse vertices and
albedo of a 3D face using the following formula:

𝑉3𝑑 = 𝑹 (𝜷𝑎) (𝑽 + 𝜷𝑖𝑑𝑩𝑖𝑑 + 𝜷𝑒𝑥𝑝𝑩𝑒𝑥𝑝 ) + 𝜷𝑡
𝑇𝑎𝑙𝑏 = 𝑻 + 𝜷𝑎𝑙𝑏𝑩𝑎𝑙𝑏

, (2)

where 𝑽 and 𝑻 are the mean geometry and the mean albedo, respec-
tively.𝑉3𝑑 ∈ R3×35709 is the coarse face vertices and𝑇𝑎𝑙𝑏 ∈ R3×35709
is the albedo. 𝜷𝑖𝑑 ∈ R80, 𝜷𝑒𝑥𝑝 ∈ R64 and 𝜷𝑎𝑙𝑏 ∈ R80 are the iden-
tity geometry parameter, the expression geometry parameter and
the albedo parameter, respectively. 𝑩𝑖𝑑 , 𝑩𝑒𝑥𝑝 and 𝑩𝑎𝑙𝑏 are the face
identity bases, the expression bases and the albedo bases, respec-
tively. We utilize angles 𝜷𝑎 ∈ R3 (pitch, yaw, and roll) to obtain the
rotation matrix 𝑹 (𝜷𝑎) ∈ R3×3, for the rotation of 𝑉3𝑑 . We employ
𝜷𝑡 ∈ R3 to control the translation of𝑉3𝑑 . Note that𝑇𝑎𝑙𝑏 is not the fi-
nal facial texture and it will not appear during the inference process
of the framework. 𝑇𝑎𝑙𝑏 solely assists in supervising the geometry
during the training process.

Face Attributes in UV Space. UV mapping is a reversible 3D mod-
eling process commonly used to project the attributes of 3D objects
into the 2D image plane. We can transfer facial geometry informa-
tion, facial texture information, and other attributes to UV space.

These techniques are employed in many 3D face reconstruction
methods [10, 18, 20], often combined with differentiable renderers
[34, 51], facial texture completion [2, 10, 18], and illumination esti-
mation [19]. In the following section, we denote the facial attribute
𝑿 in UV space as 𝑿𝑢𝑣 .

Camera. Following [17, 37, 59], we utilize a camera with a fixed
perspective projection for the re-projection of𝑉3𝑑 into the 2D image
plane, yielding 𝑉2𝑑 ∈ R2×35709.

Illumination Model. Based on [17, 19], we employ Spherical Har-
monics (SH) [50] to predict the shading information:

𝑆 (𝜷𝑠ℎ,𝑨,𝑵 ) = 𝑨 ⊙
9∑

𝑘=1
𝜷𝑘
𝑠ℎ
𝚿𝑘 (𝑵 ) , (3)

where ⊙ denotes the Hadamard product, 𝑵 is the surface normal
of 𝑉3𝑑 , 𝚿 : R3 → R is the SH basis function and 𝜷𝑘

𝑠ℎ
∈ R3 is

the corresponding SH parameter, 𝑘 ∈ [1, · · · , 9]. 𝑨 represents the
albedo information, which could be set as 𝑇𝑎𝑙𝑏 to calculate the
shaded texture. Following [19, 37], we also set 𝑨 to a fixed gray
value 𝑨𝑔𝑟𝑎𝑦 to display the geometry shading.

Detail Reconstruction.The coarse geometry𝑉3𝑑 based on 3DMMs
can not capture the high-frequency details of a 3D face. To address
this, we perform detail reconstruction based on [19, 37], which is
achieved by computing a displacement map:

𝑉 ′
3𝑑

𝑢𝑣 = 𝑉3𝑑
𝑢𝑣 + 𝜷𝐷𝑫

𝑢𝑣 ⊙ 𝑵𝑢𝑣 , (4)

where 𝑫𝑢𝑣 ∈ R256×256 represents the detail displacement map in
UV space. 𝑉3𝑑𝑢𝑣 ∈ R256×256×3 and 𝑉 ′

3𝑑
𝑢𝑣 ∈ R256×256×3 denote
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the coarse geometry and detail geometry in UV space, respectively.
𝑵𝑢𝑣 ∈ R256×256×3 represents the surface normal corresponding
to 𝑉3𝑑𝑢𝑣 . 𝜷𝐷 ∈ R+ is used to control the magnitude of the dis-
placement map 𝑫𝑢𝑣 . We denote the surface normal of the detail
geometry 𝑉 ′

3𝑑 as 𝑵 ′.

Rendering. Based on [19, 34, 51], we construct a differentiable
renderer Φrender (·) using the fixed camera, which could yield the
following results:

𝑰𝑎 = Φrender (𝑉3𝑑 , 𝑆 (𝜷𝑠ℎ,𝑇𝑎𝑙𝑏 ,𝑵 ))
𝑰𝑏 = Φrender (𝑉3𝑑 , 𝑆 (𝜷𝑠ℎ,𝑇𝑎𝑙𝑏 ,𝑵 ′))
𝑰𝑐 = Φrender (𝑉3𝑑 , 𝑆 (𝜷𝑠ℎ,𝑨𝑔𝑟𝑎𝑦,𝑵 ))
𝑰𝑑 = Φrender (𝑉3𝑑 , 𝑆 (𝜷𝑠ℎ,𝑨𝑔𝑟𝑎𝑦,𝑵 ′))

, (5)

where the input of the differentiable renderer Φrender (·) includes
coarse geometry and shading information, achieving detailed ren-
dering effects through the refinement of the normal map in the
shading information. The rendering results 𝑰𝑎 , 𝑰𝑏 , 𝑰𝑐 , and 𝑰𝑑 rep-
resent the coarse texture, detail texture, coarse geometry shading,
and detail geometry shading, respectively, which are used in sketch-
to-geometry loss, as shown in Fig. 4.

3.2 Geometry Reconstruction Framework
We aim to reconstruct detailed geometry consistent with the deli-
cate features of the input sketch. The sketch-to-3D-face process of
S2TD-Face is divided into two stages: coarse geometry reconstruc-
tion and detailed geometry reconstruction, as shown in Fig. 3(b).

Coarse Geometry Reconstruction. During the training process,
for each data sample, we randomly select a sketch 𝑺𝑡𝑖 of type 𝑡𝑖 as
input. We employ ResNet-50 [29] as the backbone Φcoarse to predict
parameters 𝜷𝑎 , 𝜷𝑡 , 𝜷𝑖𝑑 , 𝜷𝑒𝑥𝑝 , 𝜷𝑠ℎ , and 𝜷𝑎𝑙𝑏 . These parameters are
processed by the face model [8, 48] to generate coarse geometry
𝑉3𝑑 and the PCA albedo 𝑇𝑎𝑙𝑏 , as described in Eqn. 2. 𝑇𝑎𝑙𝑏 is used
for photometric loss Lpho, perception loss Lper, and sketch-to-
geometry loss Lsketch. Note that during the inference, there are
no restrictions on the sketch types, and neither 𝑇𝑎𝑙𝑏 nor 𝜷𝑎𝑙𝑏 are
involved. Additionally, 𝜷𝑠ℎ for controlling light can vary as shown
in Fig. 1. We utilize 𝑉3𝑑 to map the sketch image 𝑺𝑡𝑖 to UV space,
resulting in 𝑺𝑢𝑣𝑡𝑖 . 𝑺

𝑢𝑣
𝑡𝑖
. The UV space representation 𝑉𝑢𝑣

3𝑑 of 𝑉3𝑑 will
jointly serve as the input for reconstructing the detailed geometry.

Detailed Geometry Reconstruction. Using𝑉𝑢𝑣
3𝑑 and 𝑺𝑢𝑣𝑡𝑖 as input,

we employ a pix2pix network [30] Φdetail to predict the displace-
ment map 𝑫𝑢𝑣 for reconstructing the detailed geometry 𝑉 ′

3𝑑
𝑢𝑣 in

Eqn. 4. Throughout this process, 𝜷𝐷 serves as a learnable parameter
controlling the magnitude of 𝑫𝑢𝑣 , which is fixed during inference.

3.3 Training Strategies
To train Φcoarse and Φdetail in S2TD-Face, we employ the following
training methods and supervision loss functions.

Various Sketch Types. The facial sketch types are diverse, with
some containing realistic shading information, while others only
consist of simple lines. To ensure the robustness of Φcoarse and
Φdetail across different sketches, randomization is applied to all op-
erations involving sketch type selection during the training process.
Specifically, the training input employs a random sketch type 𝑡𝑖 , as

shown in Fig. 3(b), and in the sketch-to-geometry loss Lsketch, the
type 𝑡 𝑗 is also randomly selected, as shown in Fig. 4. These strate-
gies ensures that Φcoarse and Φdetail possess strong adaptability to
different sketch types.

Sketch-to-geometry Loss. Existing supervision methods fail to
accurately capture the local details of sketches (such as dimples,
wrinkles, etc.) and reflect them onto the geometry deformation. To
address this, we propose a novel sketch-to-geometry loss Lsketch
to ensure the geometry 𝑉3𝑑 and 𝑉 ′

3𝑑 fidelity to the sketch input
and supervise Φcoarse and Φdetail robustly across different sketch
types, as shown in Fig. 4. Based on the rendering results 𝑰𝑎 , 𝑰𝑏 , 𝑰𝑐 ,
and 𝑰𝑑 , we further utilize Φsketch (·) to generate the corresponding
sketches 𝑺𝑎𝑡 𝑗 , 𝑺

𝑏
𝑡 𝑗
, 𝑺𝑐𝑡 𝑗 , and 𝑺𝑑𝑡 𝑗 :

𝑺𝑛𝑡 𝑗 = Φsketch (𝑰𝑛, 𝑡 𝑗 ), for 𝑛 ∈ {𝑎, 𝑏, 𝑐, 𝑑} , (6)

where type 𝑡 𝑗 is randomly selected. Since Φcoarse, Φdetail, Φrender,
and Φsketch are all differentiable, and we have the sketch ground
truth 𝑺𝑡 𝑗 corresponding to the type 𝑡 𝑗 , we could compare the differ-
ences between

{
𝑺𝑛𝑡 𝑗

��𝑛 ∈ {𝑎, 𝑏, 𝑐, 𝑑}
}
and 𝑺𝑡 𝑗 by using photometric

loss and perception loss:

Lsketch = 𝜆1
∑︁

𝑛∈{𝑎,𝑏,𝑐,𝑑 }

𝑴𝑛 −𝑴

2︸                       ︷︷                       ︸

sketch−photometric

+ 𝜆2
∑︁

𝑛∈{𝑎,𝑏,𝑐,𝑑 }
(1 −

< Φper (𝑴𝑛),Φper (𝑴) >
| |Φper (𝑴𝑛) | |2 · | |Φper (𝑴) | |2

)︸                                                       ︷︷                                                       ︸
sketch−perception

, (7)

where Lsketch contains two error parts: photometric error and per-
ception error. The former computes L2-norm error, while the latter
computes the cosine distance. 𝜆1 and 𝜆2 are the corresponding
weights. Φper (·) is a face recognition network from [17], used to
extract features from the input, and < ·, · > denotes the vector
inner product. 𝑴𝑛 and 𝑴 respectively represent the mask-filtered
results of

{
𝑺𝑛𝑡 𝑗

��𝑛 ∈ {𝑎, 𝑏, 𝑐, 𝑑}
}
and 𝑺𝑡 𝑗 , i.e. 𝑴𝑛 = 𝑴𝐶 ⊙ 𝑴𝑟𝑒𝑛𝑑𝑒𝑟 ⊙

𝑺𝑛𝑡 𝑗 , for 𝑛 ∈ {𝑎, 𝑏, 𝑐, 𝑑} and 𝑴 = 𝑴𝐶 ⊙ 𝑴𝑟𝑒𝑛𝑑𝑒𝑟 ⊙ 𝑺𝑡 𝑗 . 𝑴𝐶 and
𝑴𝑟𝑒𝑛𝑑𝑒𝑟 respectively represent the masks obtained by segmenta-
tion information 𝑪 and Φrender, as shown in Fig. 4. Combining
with the mask-filtered results can eliminate interference caused by
occlusions and focus on the rendering object.

Photometric Loss and Perception Loss for 𝑰𝑏 . To enhance the
robustness of the training process, we supervise the detail texture
rendering result 𝑰𝑏 in Eqn. 5 similar to [19, 37]. Note that this
process operates at the rendering image level 𝑰𝑏 , while Lsketch
operates at the rendering sketch level. The photometric loss Lpho
and perception loss Lper used are defined as follows:

Lpho =
(𝑴𝑰𝑏 −𝑴𝑰 )


2 , (8)

Lper = 1 −
< Φper (𝑴𝑰𝑏 ),Φper (𝑴𝑰 ) >Φper (𝑴𝑰𝑏 )


2 ·

Φper (𝑴𝑰 )

2
, (9)

where 𝑴𝑰𝑏 = 𝑴𝐶 ⊙ 𝑴𝑟𝑒𝑛𝑑𝑒𝑟 ⊙ 𝑰𝑏 and 𝑴𝑰 = 𝑴𝐶 ⊙ 𝑴𝑟𝑒𝑛𝑑𝑒𝑟 ⊙ 𝑰 .
Similar to the operations in Lsketch, Φper (·) is a face recognition
network [17] and < ·, · > is the vector inner product. We emphasize
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Figure 4: Overview of sketch-to-geometry loss. Lsketch compares the predicted sketches {𝑺𝑎𝑡 𝑗 , 𝑺
𝑏
𝑡 𝑗
, 𝑺𝑐𝑡 𝑗 , 𝑺

𝑑
𝑡 𝑗
} with the ground truth

𝑺𝑡 𝑗 to supervise the geometry deformation, obtaining detailed geometry consistent with the delicate features of the input.

again that in Lsketch, Lpho, and Lper, the texture of 𝑰𝑎 or 𝑰𝑏 is
derived from 𝑇𝑎𝑙𝑏 , aims to supervise the geometry. 𝑇𝑎𝑙𝑏 is not the
final texture and will not appear in the inference process.

Landmark Loss. We employ landmark loss to compare the pre-
dicted 2D landmarks 𝒍𝒎𝒌

′
from 𝑉2𝑑 with the ground truth 𝒍𝒎𝒌

obtained by [59], adopting the dynamic landmark marching [65] to
address the non-correspondence between 2D and 3D cheek contour
caused by pose variations. The landmark loss Llmk is defined as:

Llmk =

240∑︁
𝑖=1

𝒍𝒎𝒌
′
𝑖 − 𝒍𝒎𝒌𝑖


2 . (10)

Part Re-projection Distance Loss. Since Llmk can only operate
on sparse vertices in 𝑉2𝑑 , we further utilize Part Re-projection
Distance Loss (PRDL) [59] Lprdl to supervise 𝑉2𝑑 . Lprdl leverages
the precise 2D part silhouettes provided by segmentation 𝑪 to
constrain the predicted geometry of facial features:

Lprdl =
∑︁
𝑝∈𝑃

𝜆𝑝

𝚪𝑝 (𝑉2𝑑 ) − 𝚪𝑝 (𝑪)


2, (11)

where 𝑷 represents the set of facial components, 𝑷 = {left_eye,
right_eye, left_eyebrow, right_eyebrow, up_lip, down_lip, nose,
skin}. 𝚪𝑝 (𝑉2𝑑 ) and 𝚪𝑝 (𝑪) respectively denote the shape descriptors
of PRDL defined for prediction and target in [59]. 𝜆𝑝 represents the
weight of each part 𝑝 . During training, specific parts 𝑝 of samples
may be occluded or invisible, we set 𝜆𝑝 = 0 for parts 𝑝 in these
samples and 𝜆𝑝 = 1 for the rest parts.

Overall Losses. In summary, we minimize the total loss L to opti-
mize the geometry reconstruction frameworks Φcoarse and Φdetail:

L = 𝜆sketchLsketch + 𝜆phoLpho + 𝜆perLper

+ 𝜆lmkLlmk + 𝜆prdlLprdl + 𝜆regLreg,
(12)

where Lreg is the regularization loss for parameters 𝜷 . 𝜆sketch = 1,
𝜆1 = 1.33, 𝜆2 = 0.1, 𝜆pho = 0.57, 𝜆per = 0.1, 𝜆lmk = 1.6𝑒 − 3,
𝜆prdl = 8𝑒 − 4, and 𝜆𝑟𝑒𝑔 = 3𝑒 − 4 are the corresponding weights.
Llmk and Lprdl are normalized by 𝐻 ×𝑊 .

Training Details. We firstly train Φcoarse, then freeze Φcoarse to
train Φdetail and finally train Φcoarse and Φdetail together. Therefore,
during the first training stage when using Lsketch, 𝑺𝑏𝑡 𝑗 and 𝑺𝑑𝑡 𝑗 are
not used, and 𝑰𝑏 in Lpho and Lper is replaced by 𝑰𝑎 .

3.4 Texture Control Module
We aim to design a texture control module for S2TD-Face that can
select appropriate samples from a given texture library based on
input text prompts, obtain textures in UV space, and seamlessly
map them onto the geometry 𝑉 ′

3𝑑 . As illustrated in the Fig. 3(c),
when the input prompt𝑇𝑒𝑥𝑡 is ’Cartoon Beard Man’, we use Φimage
and Φtext from CLIP [49] to encode the face images 𝑰 𝑖

𝐿𝑖𝑏
from the

known texture library 𝐿𝑖𝑏 and the input text 𝑇𝑒𝑥𝑡 :

𝐹 𝐼𝑖 = Φimage (𝑰 𝑖𝐿𝑖𝑏 ), 𝑖 = 1, 2, · · · , |𝐿𝑖𝑏 |

𝐹𝑇 = Φtext (𝑇𝑒𝑥𝑡)
, (13)

where 𝐹 𝐼
𝑖
and 𝐹𝑇 are the image encoding features and the text

encoding features, respectively. |𝐿𝑖𝑏 | is the image number in the
given texture library 𝐿𝑖𝑏. In the text-to-image matching process,
each 𝐹 𝐼

𝑖
is compared to 𝐹𝑇 to compute similarity, and S2TD-Face

can either select the image with maximum similarity to the input
text or randomly choose one from the top-k similar images. We
denote the final matching result as 𝑰𝑡𝑒𝑥 .

The role of Φuv−albedo in the texture control module is to trans-
form the texture of the face image into UV spcae that are com-
patible with 𝑉 ′

3𝑑 . We input the text-image matching result 𝑰𝑡𝑒𝑥
to Φuv−albedo to get the desired texture information in UV space.
Specifically, Φuv−albedo is based on the state-of-the-art monocular
3D face reconstruction method [59]. Φuv−albedo firstly estimates
the 3DMMs [8, 48] shape 𝑉𝑡𝑒𝑥 and the PCA albedo 𝑨𝑝𝑐𝑎 from 𝑰𝑡𝑒𝑥 ,
and then utilizes the shape information𝑉𝑡𝑒𝑥 to map the input image
𝑰𝑡𝑒𝑥 into UV space, obtaining𝑨𝑖𝑚𝑔 , as shown in the Fig. 3(c). Due to
the pose influence of𝑉𝑡𝑒𝑥 , some facial areas of 𝑰𝑡𝑒𝑥 are invisible and
the UV-texture information 𝑨𝑖𝑚𝑔 may not cover the entire facial
surface. Therefore, Φuv−albedo calculates the invisible areas accord-
ing to 𝑉𝑡𝑒𝑥 and complete UV-texture using 𝑨𝑝𝑐𝑎 , finally resulting
in the fusion texture 𝑨𝑓 𝑢𝑠𝑖𝑜𝑛 :

𝑨𝑓 𝑢𝑠𝑖𝑜𝑛 = 𝑴𝑖𝑚𝑔 ⊙ 𝑨𝑖𝑚𝑔 +𝑴𝑝𝑐𝑎 ⊙ 𝑨𝑝𝑐𝑎, (14)

where 𝑴𝑖𝑚𝑔 is a mask computed by the differentiable renderer
Φrender with the help of𝑉𝑡𝑒𝑥 , which represents the visible regions of
the reconstructed shape 𝑉𝑡𝑒𝑥 that consistent with the input texture
mapping 𝑨𝑖𝑚𝑔 .𝑴𝑝𝑐𝑎 = 1−𝑴𝑖𝑚𝑔 indicates the regions that require
further complement by the predicted 3DMMs PCA albedo 𝑨𝑝𝑐𝑎 . To
reduce visual differences at the fusion boundaries, we apply median
filtering [7] to 𝑴𝑖𝑚𝑔 . The texture control module finally applies
𝑨𝑓 𝑢𝑠𝑖𝑜𝑛 onto the geometry 𝑉 ′

3𝑑 through UV mapping, resulting
in a detailed and textured 3D face, as shown in the Fig. 3(d).
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Table 1: Quantitative comparison on Sketch-REALY benchmark. We transform the test samples from REALY [9] into two types
of sketches: ’Shading’ (realistic shaded sketches) and ’Line’ (sparse line sketches), as shown in Fig. 5, and perform quantitative
comparison respectively. Lower values indicate better results. The best and runner-up are highlighted in bold and underlined,
respectively. We also investigate the effect of removing the sketch-to-geometry loss Lsketch (denoted as ’Ours (w/o Lsketch)’) for
ablation study.

Types Methods
Frontal-view (mm) ↓ Side-view (mm) ↓

Nose Mouth Forehead Cheek Nose Mouth Forehead Cheek
avg.± std. avg.± std. avg.± std. avg.± std.

avg.
avg.± std. avg.± std. avg.± std. avg.± std.

avg.

Shading

PRNet [20]† 2.047±0.498 1.750±0.569 2.400±0.586 1.896±0.694 2.023 2.027±0.507 1.880±0.591 2.525±0.643 2.093±0.757 2.131
MGCNet [54]† 1.711±0.422 1.617±0.552 2.194±0.567 1.609±0.588 1.783 1.685±0.438 1.555±0.511 2.189±0.560 1.656±0.597 1.771
Deep3D[17]† 1.781±0.430 1.714±0.592 2.124±0.482 1.274±0.461 1.723 1.658±0.350 1.830±0.663 2.147±0.502 1.284±0.466 1.730

3DDFA-V2 [26]† 1.866±0.498 1.722±0.503 2.509±0.687 1.956±0.709 2.013 1.856±0.489 1.724±0.522 2.535±0.660 1.993±0.723 2.027
HRN [37]† 1.723±0.435 1.878±0.623 2.202±0.497 1.246±0.424 1.762 1.647±0.369 1.957±0.693 2.245±0.515 1.269±0.420 1.779
DECA [19]† 1.830±0.405 2.475±0.793 2.420±0.598 1.600±0.597 2.081 1.858±0.428 2.542±0.836 2.448±0.610 1.628±0.607 2.119

DeepSketch2Face [28] 3.896±0.774 2.808±1.392 5.091±0.899 6.450±0.972 4.561 3.950±0.810 3.250±1.669 5.489±1.069 6.746±1.038 4.859
Ours (w/o Lsketch) 1.621±0.323 1.454±0.487 2.021±0.492 1.288±0.378 1.596 1.594±0.317 1.482±0.509 2.041±0.565 1.299±0.385 1.604

Ours 1.630±0.348 1.324±0.412 1.986±0.418 1.191±0.343 1.533 1.559±0.329 1.357±0.469 1.960±0.471 1.149±0.336 1.506

Line

PRNet [20]† 2.166±0.553 2.127±0.648 2.714±0.787 2.164±0.798 2.293 2.138±0.552 2.243±0.821 3.071±0.985 2.422±0.894 2.468
MGCNet [54]† 2.114±0.632 2.257±0.851 2.881±0.946 1.714±0.630 2.241 2.039±0.532 2.019±0.730 2.840±0.994 1.800±0.689 2.175
Deep3D[17]† 2.230±0.513 1.865±0.646 2.290±0.550 1.487±0.542 1.968 1.975±0.483 1.876±0.650 2.354±0.605 1.475±0.549 1.920

3DDFA-V2 [26]† 1.965±0.561 2.045±0.685 2.632±0.798 1.931±0.752 2.143 1.968±0.551 2.056±0.672 2.681±0.838 1.976±0.805 2.170
HRN [37]† 2.152±0.553 1.974±0.654 2.579±0.720 1.614±0.692 2.080 2.057±0.547 2.089±0.736 2.669±0.839 1.580±0.609 2.099
DECA [19]† 2.121±0.490 2.598±0.914 2.703±0.606 1.641±0.573 2.266 2.071±0.482 2.559±0.947 2.757±0.696 1.630±0.573 2.254

DeepSketch2Face [28] 3.359±0.653 2.483±0.595 4.835±0.994 5.464±1.074 4.035 3.726±0.895 2.701±0.717 5.150±1.037 6.124±1.086 4.425
Ours (w/o Lsketch) 1.688±0.359 1.755±0.640 2.288±0.553 1.477±0.383 1.802 1.675±0.352 1.798±0.594 2.316±0.618 1.495±0.397 1.821

Ours 1.692±0.366 1.524±0.505 2.131±0.510 1.344±0.385 1.673 1.627±0.350 1.556±0.476 2.227±0.570 1.352±0.377 1.690

† There are two ways to reconstruct 3D faces from sketches based on existing SOTA methods [17, 19, 20, 26, 37, 54]: firstly translating 2D sketches to face
images [52] and subsequently reconstructing 3D faces or directly using sketches as input. For fairness, methods marked with † represent the best
results obtained from these two ways.

(a) Original Images from REALY

(b) Shading Sketches in Sketch-REALY

(d) Ground Truth Scannings for Evaluation

(c) Line Sketches in Sketch-REALY

Figure 5: The test samples (7/100) of Sketch-REALY. (a): The
original test images from REALY [9]. (b) and (c): The 2 styles
(Shading and Line) of the test images in Sketch-REALY. (d):
The face scanning for geometry evaluation in Sketch-REALY.

4 EXPERIMENTS
4.1 Experimental Settings

Implementation Details. We implement S2TD-Face based on
PyTorch [47]. The input sketches are resized into 224×224.𝑨𝑔𝑟𝑎𝑦 =

(127, 127, 127). We use Adam [33] as the optimizer with an initial
learning rate of 1𝑒 − 4. 𝑩𝑖𝑑 and 𝑩𝑎𝑙𝑏 are from BFM2009 [48] and
𝑩𝑒𝑥𝑝 is from FaceWarehouse [8].

Data.We utilize face images from publicly available datasets, in-
cluding CelebA [42], 300W [53], RAF [38, 39], and DAD-3DHeads
[44], which are commonly used in 3D face reconstruction tasks. We
employ [66] for face pose augmentation and [59] for face expres-
sion augmentation. As a result, we obtain about 600𝐾 face images
for training. Φsketch is based on [7, 56, 57] and each face image is
processed by Φsketch to obtain 5 different styles of sketches as input
to the framework (resulting in 5 × 600𝐾 sketches). The images in
the texture library 𝐿𝑖𝑏 of the texture control module are sourced
from FFHQ [32] and online collections, totaling about 1000 images.

4.2 Metrics

Sketch-REALY. The REALY benchmark [9] comprises 100 precise
3D face scanning data (as shown in Fig. 5 (d)) from LYHM [16],
which are from different identities and include accurate landmarks,
region masks, and topology-consistent meshes. During the evalua-
tion, REALY initially aligns the prediction and ground truth using
landmarks. It subsequently divides the reconstructed results into
4 parts (nose, mouth, forehead, and cheek) using region masks.
Finally, it utilizes the ICP algorithm [1] for precise registration be-
tween prediction and ground truth and computes the corresponding
average Normalized Mean Square Error (NMSE) for different face
regions. The REALY test samples are divided into 2 parts, consisting
of 100 frontal-view images and 400 side-view images. REALY has
served as the benchmark for geometric evaluation by most state-
of-the-art methods [10, 18, 59]. We propose a new Sketch-REALY
benchmark based on REALY [9] to tailor it for sketch-to-3D-face
reconstruction tasks, highlighting the performance of geometry
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Figure 6: More visualization results of our method (S2TD-Face). S2TD-Face can reconstruct high-fidelity geometry from face
sketches of different styles and generate controllable textures spanning cartoon, sculptural, and realistic facial styles guided by
text prompts. The results can also be re-lighted for broader applications.

reconstruction from sketches. Specifically, we use Φsketch to process
the REALY test images, generating 2 different types of sketches. The
former retains the shading information from the original images,
resembling realistic grayscale images (denoted as ’Shading’), while
the latter only consists of sparse lines (denoted as ’Line’), as shown
in Fig. 5 (b) and (c). We conduct the geometry evaluation on the 3D
prediction of these two types of sketches, thereby establishing the
Sketch-REALY benchmark.

SSIM and PSNR. Structural Similarity Index Measure (SSIM) [58]
and Peak Signal to Noise Ratio (PSNR) are two standard metrics
used to measure the similarity between images. SSIM considers the
brightness, contrast, and structural information of the images, with
values ranging from 0 to 1, where higher values indicate greater sim-
ilarity. PSNR evaluates the similarity between images by computing
the mean squared error between them. PSNR typically ranges from
0 to infinity and is measured in decibels (dB). Higher PSNR values
indicate smaller differences between the images, reflecting higher
similarity. In our ablation study, we utilize SSIM and PSNR to quan-
tify the differences between the coarse or detail geometry shading
sketches (𝑺𝑐𝑡 𝑗 or 𝑺

𝑑
𝑡 𝑗
) and the ground truth 𝑺𝑡 𝑗 , thereby quantitatively

evaluating the impact of Φdetail and Lsketch on visual quality.

4.3 Quantitative Comparison
Based on the Sketch-REALY benchmark, we comprehensively eval-
uated our methods with state-of-the-art approaches, including
MGCNet [54], PRNet [20], HRN [37], Deep3D [17], 3DDFA-V2
[26], DECA [19], and DeepSketch2Face [28]. DeepSketch2Face [28]
is a method tailored for sketch-to-3D-face reconstruction tasks,

whereas [17, 19, 20, 26, 37, 54] are commonly used for reconstruct-
ing RGB face images. There are two ways to reconstruct 3D faces
from sketches using these methods: firstly translating 2D sketches
to face images [52] and subsequently reconstructing 3D faces or
directly inputting sketches. To ensure fairness, we present the best
results of these both ways for [17, 19, 20, 26, 37, 54]. The eval-
uation results on Sketch-REALY are shown in Tab.1. Tab.1 indi-
cates that our method achieved the best results on both shading
sketches (1.533𝑚𝑚 in frontal-view and 1.506𝑚𝑚 in side-view) and
hard test cases with sparse line sketches (1.673𝑚𝑚 in frontal-view
and 1.690𝑚𝑚 in side-view), surpassing the second-best method by
a considerable margin, indicating that our method exhibits superior
robustness to the type and pose of the input facial sketch.

4.4 Qualitative Comparison
Similar to Fig. 1, Fig. 6 further illustrates the visualization results of
S2TD-Face. S2TD-Face is capable of reconstructing high-fidelity 3D
faces consistent with the input sketch details from various styles.
It can provide controllable textures based on text prompts, ranging
from cartoon-style, sculptural style to realistic facial style. We also
compared the reconstruction results of our method with those of
DeepSketch2Face [28], Deep3D [17], and HRN [37], as shown in
the Fig. 7. DeepSketch2Face [28] is limited to reconstructing 3D
exaggerating faces from sketches with a frontal pose and cannot
handle side views or adapt to various sketch styles. Deep3D [17]
is only capable of reconstructing coarse geometry. While HRN
[37] can capture high-frequency facial details, it may encounter
failures in certain samples. The qualitative comparison indicates
that S2TD-Face is capable of handling various styles and poses of
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Figure 7: Qualitative comparisonwith the othermethods. Our
method (S2TD-Face) achieves the best results that consistent
with the input sketch details.

facial sketches and achieves the best results consistent with the
input sketch details. Note that these methods [17, 28, 37] all lack the
ability to control the texture of the reconstructed 3D faces, while
our S2TD-Face uniquely offers this capability.

4.5 Ablation Study

Impact of Lsketch on Geometry. We investigate the effect of
sketch-to-geometry loss Lsketch for supervising geometry deforma-
tion. As shown in Tab. 1, based on our proposed geometry recon-
struction framework and Sketch-REALY benchmark, we present
results for both when the framework is applied independently (de-
noted as ’Ours (w/o Lsketch)’) and when combined with Lsketch
(denoted as ’Ours’). The former indicates our geometry reconstruc-
tion framework performs superior to existing state-of-the-art meth-
ods across most cases. The latter further shows that incorporating

Table 2: Ablation study for the impact of Lsketch and Φdetail
on visual quality. Higher values indicate better results and
the best is highlighted in bold.

Φcoarse Lsketch Φdetail SSIM ↑ PSNR ↑

✓ ✗ ✗ 0.764 25.11
✓ ✗ ✓ 0.776 25.22
✓ ✓ ✗ 0.789 26.27
✓ ✓ ✓ 0.799 26.51

Lsketch contributes to improved geometry deformation. The com-
bination of Lsketch with our geometry reconstruction framework
further refines the accuracy of the reconstructed geometry.

Impact of Lsketch and Φdetail on Visual Quality. We use SSIM
and PSNR to investigate the impact of Lsketch and Φdetail on vi-
sual quality. Utilizing rendering techniques [34, 51] and sketch
extraction methods [7, 56, 57], we can acquire coarse or detailed
geometry shading sketches (𝑺𝑐𝑡 𝑗 or 𝑺

𝑑
𝑡 𝑗
) for the predicted results.

These sketches are subsequently compared with the ground truth
𝑺𝑡 𝑗 to compute the SSIM and PSNR scores. The test images are
sourced from [9]. Quantitative results are shown in Tab.2. When
neither Lsketch nor Φdetail is involved, relying solely on Φcoarse for
reconstruction leads to poorer visual quality. Combining Φcoarse
with either Lsketch or Φdetail individually results in improved vi-
sual quality, while employing Lsketch and Φdetail together yields
the best results. Note that comparing the second and third rows of
Tab. 2, the combination of Lsketch with Φcoarse even outperforms
the combination of Φdetail with Φcoarse, further indicating the ef-
fectiveness of our proposed sketch-to-geometry loss Lsketch in
faithfully capturing the geometric information of the input sketch.

4.6 Limitations
We summarize two limitations of our methods. Firstly, although
Fig.1 and Fig.6 show that S2TD-Face can generate controllable
textures based on text prompts, these textures are all obtained
from existing facial images through UV-mapping and UV-texture-
completion techniques. Low-frequency 3DMMs PCA albedo infor-
mation is employed through the completion process, sometimes
leading to noticeable visual differences at the fusion boundaries.
Secondly, while our method can reconstruct high-fidelity geometry
from face sketches of various styles, the geometry is derived from
3DMMs, resulting in the overall appearance still resembling real
human faces when dealing with the animation styles.

5 CONCLUSIONS
This paper proposes a method tailored to the sketch-to-3D-face task,
named S2TD-Face. S2TD-Face is capable of reconstructing high-
fidelity topology-consistent detailed geometry from face sketches
of diverse styles. It enables the controllable textures of 3D faces
spanning cartoon, sculptural, and realistic facial styles based on text
prompts. The contributions include an effective geometry recon-
struction framework, a novel sketch-to-geometry loss for guiding
geometry deformation, and a novel texture module for texture con-
trol based on text prompts. Extensive experiments show that the
outstanding performance of our method surpasses existing state-
of-the-art methods. The code will be publicly available.
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