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Abstract
Spatial Message Passing Graph Neural Networks
(MPGNNs) are widely used for learning on graph-
structured data. However, key limitations of ℓ-
step MPGNNs are that their “receptive field” is
typically limited to the ℓ-hop neighborhood of
a node and that information exchange between
distant nodes is limited by over-squashing. Mo-
tivated by these limitations, we propose Spatio-
Spectral Graph Neural Networks (S2GNNs) – a
new modeling paradigm for Graph Neural Net-
works (GNNs) that synergistically combines spa-
tially and spectrally parametrized graph filters. Pa-
rameterizing filters partially in the frequency do-
main enables global yet efficient information prop-
agation. We show that S2GNNs vanquish over-
squashing and yield strictly tighter approximation-
theoretic error bounds than MPGNNs. Further,
rethinking graph convolutions at a fundamen-
tal level unlocks new design spaces. For ex-
ample, S2GNNs allow for free positional encod-
ings that make them strictly more expressive than
the 1-Weisfeiler-Lehman (WL) test. To obtain
general-purpose S2GNNs, we propose spectrally
parametrized filters for directed graphs. S2GNNs
outperform, e.g., spatial MPGNNs and graph
transformers on the peptide long-range bench-
mark tasks, and are competitive with state-of-the-
art sequence modeling. We argue that S2GNNs
are an important step towards unified foundation
models for graphs modeling various modalities.

1. Introduction
Spatial Message-Passing Graph Neural Networks
(MPGNNs) ushered in various recent breakthroughs.
For example, MPGNNs are able to predict the weather
with unprecedented precision (Lam et al., 2023), can
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be composed as a foundation model for a rich set of
tasks on knowledge graphs (Galkin et al., 2023), and
are a key component in the discovery of millions of
AI-generated crystal structures (Merchant et al., 2023).
Despite this success, MPGNNs produce node-level signals
solely considering limited-size neighborhoods, effectively
bounding their expressivity. Even with a large number
of message-passing steps, MPGNNs are limited in their
capability of propagating information to distant nodes due
to over-squashing. As evident by the success of global
models like transformers (Vaswani et al., 2017), modeling
long-range interactions can be pivotal and an important step
towards general foundation models that understand graphs.

Figure 1: S2GNN principle.

We propose Spatio-
Spectral Graph Neural
Networks (S2GNNs), a
new approach for tack-
ling the aforementioned
limitations, that syner-
gistically combine spa-
tial message passing
with spectral filters, ex-
plicitly parametrized in
the spectral domain. As
illustrated in Fig. 1,
message passing comes
with a distance cutoff
pcut (# of hops) while
having access to the en-
tire frequency spectrum. Conversely, spectral filters act glob-
ally (pmax), even with truncation of the frequency spectrum
λcut that is required for efficiency. Utilizing the strengths of
both parametrizations, we distill many important properties
of hierarchical message-passing schemes, graph-rewirings,
and pooling into a single GNN. Outside of the GNN do-
main, a similar composition was applied to molecular point
clouds (Kosmala et al., 2023) and sequence models like
Mamba (Gu & Dao, 2023) or Hyena (Poli et al., 2023), that
deliver transformer-like properties with superior scalability.

Design space of S2GNNs. Except for some initial works
like (Bruna et al., 2014) and in stark contrast to the design
space of spatial MPGNNs (You et al., 2020), the design
decisions for spectral GNNs are virtually unexplored. We
provide an overview over S2GNNs in Fig. 2. Important di-
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mensions of this new design space include the parametriza-
tion in the spectral domain (§ A.7). Moreover, we propose
the first neural network in the spectral domain (§ A.8), pre-
serving GNN’s permutation equivariance, and generalize
spectral filters to directed graphs (§ A.5).We identify a po-
tential dual use of the partial eigendecomposition required
for spectral filters. Namely, we propose stable positional en-
codings (§ A.9) that are almost free of cost for S2GNNs and
make them strictly more expressive than the 1-Weisfeiler-
Lehman (WL) test.

Figure 2: S2GNN frame-
work with adjacency matrix
A, node features X , and
Laplacian L (func. of A).

Our analysis of S2GNNs
validates their capability
for modeling complex long-
range interactions. We
prove in § E that combining
spectral and spatial filters al-
leviates the over-squashing
phenomenon (Alon & Ya-
hav, 2020; Di Giovanni
et al., 2023a;b), a necessity
for effective information-
exchange among distant
nodes. Our approximation-theoretic analysis goes one step
further and proves strictly tighter error bounds in terms of
approximation of the target idealized GNN (§ F).

S2GNNs are effective and practical. We empirically ver-
ify the shortcomings of MPGNNs and how S2GNNs over-
come them (§ 4). E.g., we set a new state-of-the-art on the
peptides-func benchmark (Dwivedi et al., 2022) with≈ 40%
fewer parameters, outperforming MPGNNs and graph trans-
formers. Moreover, S2GNNs can keep up with state-of-
the-art sequence models and are scalable. The runtime and
space complexity of S2GNNs is equivalent to MPGNNs
and, with vanilla full-graph training, S2GNNs can handle
millions of nodes with a 40 GB GPU.

2. Related Work and Background
Combining spatial and spectral filters has recently at-
tracted attention outside of the graph domain (Poli et al.,
2023; Agarwal et al., 2024; Gu & Dao, 2023) with dif-
ferent flavors of parametrizing the global/FFT convolu-
tion. However, the properties of a spatial and spectral filter
parametrization are well-established in classical signal pro-
cessing. An approach of this form has recently been applied
to (periodic) molecular point clouds (Kosmala et al., 2023).
For GNNs, Stachenfeld et al. (2020) compose spatial and
spectral message passing but do not handle the ambiguity
of the eigendecomposition and, thus, do not maintain per-
mutation equivariance. Further related literature is in § C.

Scope. We study graphs G(A,X) with adjacency matrix
A ∈ {0, 1}n×n (or A ∈ Rn×n≥0 if weighted), node features

X ∈ Rn×d and edge count m. A is symmetric for undi-
rected graphs and, thus, has eigendecomposition λ,V =
EVD(A) with eigenvalues λ ∈ Rn and eigenvectors
V ∈ Rn×n: A = V ΛV ⊤ using Λ = diag(λ). Instead of
A, we decompose the Laplacian L := I −D−1/2AD−1/2,
with diagonal degree matrix D = diag(A1⃗), since its or-
dered eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 are similar
to frequencies (e.g., low eigenvalues relate to low frequen-
cies). Likewise, one could use, e.g., L = I − D−1A
or more general variants (Yang et al., 2023); however,
we focus our explanations on the most common choice
L := I −D−1/2AD−1/2. We choose the eigenvectors
V ∈ Rn×n to be orthogonal V V ⊤ = I . We refer to V as
the Fourier basis of the graph, with Graph Fourier Transfor-
mation (GFT) X̂ = V ⊤X and its inverse X = V X̂ .

Spectral graph filters. Many GNNs implement a graph con-
volution, where node signal X ∈ Rn×d is convolved g∗GX
for every d with a scalar filter g ∈ Rn. The graph convolu-
tion (Hammond et al., 2011) is defined in the spectral do-
main g ∗G X := V ([V ⊤g]⊙ [V ⊤X]), with element-wise
product ⊙ and broadcast of V ⊤g to match shapes. Instead
of spatial g, spectral graph filters parametrize ĝ : [0, 2]→ R
in the spectral domain and yield V ⊤g := ĝ(λ) ∈ Rn by
probing at the eigenvalues.

Spatial Message Passing Graph Neural Networks
(MPGNNs) circumvent the eigendecomposition via poly-
nomial ĝ(λ)u =

∑p
j=0 γjλ

j
u since V (ĝ(λ)⊙ [V ⊤X]) =∑p

j=0 γjL
jX . In practice, many MPGNNs use p = 1:

H(l) = (γ0I + γ1L)H(l−1), with H(0) = X , stack
1 ≤ l ≤ ℓ layers of node-wise feature transformations
with activations σ(·). We refer to Balcilar et al. (2021b) for
a spectral interpretation of MPGNNs like GAT (Veličković
et al., 2018) or GIN (Xu et al., 2019).

3. Method
S2GNNs symbiotically pair Spectral(H(l−1);V ,λ) filters
and spatial Spatial(H(l−1);A) MPGNNs, with partial
V ,λ = EVD(L). Even though the spectral filter operates
on a truncated eigendecomposition (spectrally bounded), it
is spatially unbounded. Conversely, spatial MPGNNs are
spatially bounded yet spectrally unbounded (see Fig. 1).

A spectrally bounded filter is sensible for modeling global
pair-wise interactions, considering its message-passing
interpretation of Fig. 3. Conceptually, a spectral fil-
ter consists of three steps: ① Gather: The multipli-
cation of the node signal with the eigenvectors v⊤

uX
(GFT) is a weighted and signed aggregation over all
nodes; ② Apply: the “Fourier coefficients” are weighted;
and ③ Scatter broadcasts the signal vuX̂ back to the
nodes (inverse GFT). The first eigenvector (here for L =
D − A) acts like a “virtual node” (Gilmer et al., 2017)
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(see also § D). That is, it calculates the average em-
bedding and then distributes this information, potentially

Figure 3: Message-passing in-
terpretation of spectral filter
V (ĝϑ(λ)⊙ [V ⊤X]).

interlayered with
neural networks.
Importantly, the
other eigenvectors
effectively allow mes-
sages to be passed
within or between
clusters. Hence,
S2GNNs augment
spatial message-
passing with a
graph-adaptive hier-
archy (spectral filter).
Thus, S2GNNs
distill many im-
portant properties
of hierarchical
message-passing
schemes (Bodnar et al., 2021), graph-rewirings (Di Gio-
vanni et al., 2023a), pooling (Lee et al., 2019) etc. We
provide further instruction and examples in § A.1.

S2GNN’s composition. We study (1) an additive combina-
tion for its simpler approximation-theoretic interpretation
(§ F), or (2) an arbitrary sequence of filters due to its flexi-
bility:

H(l) = Spectral(l)(H(l−1);V ,λ) + Spatial(l)(H(l−1);A)
(1)

H(ℓ) = (h(ℓ) ◦ h(ℓ−1) ◦ · · · ◦ h(1))(H(0))

w/ h(j) ∈ {Spectral,Spatial}
(2)

In both cases, it may be desirable to add residual connections
(see § A.2 for details).

Spectral Filter. The building block that turns a spatial
MPGNN into an S2GNN is the spectral filter:

Spectral(l)(H(l−1);V ,λ)

= V
(
ĝ
(l)
ϑ (λ)⊙

[
V ⊤f

(l)
θ (H(l−1))

]) (3)

with a point-wise embedding transformation
f
(l)
θ : Rn×d(l−1) → Rn×d(l) and a learnable spectral

filter ĝ(l)ϑ (λ) ∈ Rk×d(l) parameterized element-wise as
ĝ
(l)
ϑ (λ)u,v := ĝ

(l)
v (λu;ϑv).

Filter parametirzation. We parametrize the filter in the
spectral domain using a Gaussian smearing and apply a lin-
ear transformation (bias omitted, similar to SchNet (Schütt
et al., 2017)). This choice (1) may represent any possible
ĝϑ(λ) with sufficient resolution (assumption in § F); (2)
avoids overfitting towards numerical inaccuracies of the
eigenvalue calculation; (3) limits the discrimination of al-
most repeated eigenvalues and, in turn, should yield stability

(similar to § A.9). The “window” suppresses ringing. De-
tails are in § A.7.

Figure 4: ĝϑ(λ) construc-
tion using smearing and win-
dow function (ϑ = {W }).

Feature transformations
f
(l)
θ . As sketched in Fig. 3,

all nodes participate in
the global data transfer.
While the global message-
passing scheme is graph-
adaptive, it is fixed for the
graph at hand. For adaptiv-
ity, we typically consider non-linear feature transformations
f
(l−1)
θ (H(l−1)), like gating mechanism f

(l−1)
θ (H(l−1)) =

H(l−1)⊙σ′(H(l−1)W
(l)
G +1⃗b⊤)) with element-wise multi-

plication⊙, SiLU function σ′, learnable weight W , and bias
b. A linear transformation f (l)θ (H(l−1)) = H(l−1)W (l) is
another interesting special case since we may first apply
the GFT and then the transformation: (V ⊤H(l−1))W (l).
In § A.8, we extend this linear transformation to a neural
network in the spectral domain by adding multiple trans-
formations and nonlinearities. Beyond the cases above, all
theoretical guarantees hold if a θ exists such that fθ = I .

High-resolution filters for low frequencies. Another per-
spective on spectral filters is that they are highly discrimi-
native between the frequencies and, e.g., can readily access
a single eigenspace (see Fig. 3). Yet, for efficiency, we
limit the spectral filter to a specific frequency band. This
choice of band does not decide on, say, low-pass behavior;
it solely determines where to increase the spectral selectivity.
Our method and theoretical guarantees adapt accordingly to
domain-specific choices for the spectral filter’s frequency
band. In all other cases, a sensible default is to focus on the
low frequencies: (1) Low frequencies model the smoothest
global signals w.r.t. the high-level graph structure. (2) Gama
et al. (2020) find that, under a relative perturbation model
(perturbation budget proportional to connectivity), stability
implies C-integral-Lipschitzness (∃C > 0: |λdĝ/dλ| ≤ C),
i.e., the filter can vary arbitrarily around zero but must level
out towards larger λ. As many graph problems discretize
continuous phenomena, stability to graph perturbations is a
strong domain-agnostic prior. (3) Many physical long-range
interactions are power laws with a flattening frequency re-
sponse. For example, we construct an explicit graph filter
modeling the electric potential of charges in a 1D “ion crys-
tal” (§ I) and find that a low-pass window is optimal. (4)
Sequence models like Hyena (Poli et al., 2023) apply global
low-pass filters through their exponential windows. (5) Cai
et al. (2023) prove that an MPGNN plus virtual node (see
§ D) can emulate DeepSets (Zaheer et al., 2017) and, thus,
approximate self-attention to any precision. Nonetheless,
we find that a virtual node alone does not necessarily yield
good generalization (§ E & M.1). (6) Nonlinearities “spill”
features between frequency bands (Gama et al., 2020).

3



Spatio-Spectral Graph Neural Networks

4. Empirical Results
With state-of-the-art performance on the peptides tasks
of the long-range benchmark (Dwivedi et al., 2022) we
provide one example in the main part capturing the stel-
lar long-range modeling capabilities of S2GNNs. More-
over, we present the results on associative recall where
we show that a graph machine learning method, namely
S2GCN, can perform on par with state-of-the-art se-
quence modeling. We next present the main findings,
refer to the end of the section for an outlook of our
comprehensive evaluation, and provide anonymized code:
https://anonymous.4open.science/r/s2gnn.

Setup. We pair different MPGNNs with spectral filters and
name the composition S2<base>. For example, a S2GNN
with GAT as base will be called S2GAT. We typically per-
form 3 to 10 random reruns and report the mean ± standard
deviation. The experiments of § M.1 require <11 GB (e.g.
Nvidia GTX 1080Ti/2080Ti); for the experiments in § M.2
& M.3 we use a 40 GB A100. We usually optimize weights
with AdamW (Loshchilov & Hutter, 2019), cosine annealing
scheduler (Loshchilov & Hutter, 2017), and linear warmup.
We use early stopping based on the validation loss/score.

S2GCN outperforms state-of-the-art graph transform-
ers, MPGNNs, and graph rewirings on the peptides-func
and peptides-struct long-range benchmarks (Dwivedi et al.,
2022). We remain approximately 40% below the 500k pa-
rameter threshold and, on peptides-func, we outperform
prior state-of-the-art models with a comfortable margin. For
this, we extend the best configuration for a GCN of Tön-
shoff et al. (2023) (see GCN in Table 1), lower the number
of message passing steps from six to three, and interleave
spatial and spectral filters (Eq. 2) with λcut = 0.7.

Table 1: Long-range benchmark with AP for “func” and
MAE for “struct”. The best/second best is bold/underlined.

Model peptides-func (↑) peptides-struct (↓)

Tr
an

sf
or

m
er TIGT (Choi et al., 2024) 0.6679± 0.0074 0.2485± 0.0015

MGT+WPE (Ngo et al., 2023) 0.6817± 0.0064 0.2453± 0.0025
G.MLPMixer (He et al., 2023) 0.6921± 0.0054 0.2475± 0.0015
Graph ViT (He et al., 2023) 0.6942± 0.0075 0.2449± 0.0016
GRIT (Ma et al., 2023) 0.6988± 0.0082 0.2460± 0.0012
GPS+HDSE (Luo et al., 2024) 0.7156± 0.0058 0.2457± 0.0013

Rewiring: DRew-GCN
(Gutteridge et al., 2023) 0.7150± 0.0044 0.2536± 0.0015

State Space Model: Graph Mamba
(Behrouz & Hashemi, 2024) 0.7071± 0.0083 0.2473± 0.0025

G
N

N

PathNN (Michel et al., 2023) 0.6816± 0.0026 0.2545± 0.0032
CIN++ (Giusti et al., 2023) 0.6569± 0.0117 0.2523± 0.0013
GCN (Tönshoff et al., 2023) 0.6860± 0.0050 0.2460± 0.0007
S2GCN (ours) 0.7275± 0.0066 0.2467± 0.0019

+ PE (ours) 0.7311± 0.0066 0.2447± 0.0032

Sequence Modelling: Mechanistic In-Context Learn-
ing. Following the evaluation of Hyena (Poli et al., 2023)
and H3 (Fu et al., 2023), we benchmark S2GCN with se-
quence models on the associative recall in-context learning
task, stemming from mechanistic interpretability (Elhage

et al., 2021; Power et al., 2022; Zhang et al., 2023; Olsson
et al., 2022). In associative recall, the model is asked to
retrieve the value for a key given in a sequence. For ex-
ample, in the sequence a,0,e,b,z,9,h,2,=>,z, the
target is the value for key z, which is 9 since it follows z
in its prior occurrences. We create a sequence/path graph
with a node for each “token” (separated by “,” in the ex-
ample above) and label the target node with its value. We
assess the performance of S2GCN on graphs that vary in
size by almost two orders of magnitude (see Fig. 17) and
follow Poli et al. (2023) with a vocabulary of 30 tokens.
Moreover, we finetune our S2GCN on up to 30k nodes.

Table 2: 30k token assoc. recall.

Model Accuracy (↑)
Transformer
(Vaswani et al., 2017) OOM

w/ FlashAttention
(Dao et al., 2022) 0.324

H3 (Fu et al., 2023) 0.084
Hyena
(Poli et al., 2023) 1.000

S2GCN (ours) 0.97± 0.05

We list the results
in Fig. 17 & Ta-
ble 2, and the evalu-
ation allows for find-
ings: A spectral filter
for directed graphs im-
proves generalization;
and S2GCN performs
on par with state-of-
the-art sequence model
Hyena and even outperforms transformers here.

Outlook on comprehensive evaluations. We comple-
ment the strong performance on the peptides benchmark
with further benchmarks to demonstrate the capabilities of
S2GNNs for modeling long-range interactions (§ M.1) in
the graph domain. We provide details on the S2GNNs’ long
sequence performance (§ M.2) (mechanistic in-context
learning). We exemplify S2GNNs’ practicality and com-
petitiveness at scale on large-scale benchmarks (§ M.3)
like the TPUGraphs (Phothilimthana et al., 2023) and Open
Graph Benchmark (OGB) Products (Hu et al., 2020). Fur-
ther, in § N.5, we report state-of-the-art performance on the
heterophilic arXiv-year (Lim et al., 2021).

5. Discussion
We propose S2GNNs, adept at modeling complex long-
range interactions while remaining efficient via the syner-
gistic composition of spatially and spectrally parametrized
filters (§ 3). We show that S2GNNs share many properties
with graph rewirings, pooling, and hierarchical message
passing schemes. S2GNNs outperform the aforementioned
techniques with a substantial margin on the peptides long-
range benchmark (Table 1), and we show that S2GNNs are
also strong sequence models, performing on par or outper-
forming state-of-the-art like Hyena or H3 in our evalua-
tion(Table 2). Even though we find S2GNNs to be data-
hungry (see § K/L for further limitations/impact), we find
that S2GNNs are well-aligned with the trend in deep learn-
ing to transition to global models. Capable graph models
could propel progress on multimodal foundation models.
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A. Further Remarks on S2GNNs
We first provide insights, details, and remarks on the details and variants of S2GNNs, accompanying the main section § 3.
The structure roughly follows the main body.

A.1. Conceptual Visualization of Spectral Filters

(a)

(b)

(c)

(d)

(e)

Figure 5: Sketch of intra- and inter-cluster message passing capabilities V (ĝϑ(λ) ⊙ [V ⊤X] = [
∑k
j=1 ĝϑ(λj)vjv

⊤
j ]X .

The “star” node reflects the global Fourier coefficient and colors/widths illustrate its signed and weighted message passing.
We show the first four eigenvectors, order nodes left to right in vj , and sum repeated eigenvalues.
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In Fig. 5, we provide further examples of hierarchies/eigenspaces spectral filters have access to, complementing Fig. 3. Here
and in the main part, we use the main diagonal of

∑
j s.t. λj=λu

vjv
⊤
j for deciding on the edge weights of the graph structures,

potentially summing over multiple eigenvectors with identical values λj = λu. We take the product
∏
j s.t. λj=λu

sign(vj)
for visualizing the sign of the n edges for the global aggregation.

For all graphs, the first eigenvector denotes the constant signal (here for L = D−A). For (a-d), we observe that the second
eigenvectors roughly describe a half oscillation, i.e., the left vs. right part of the graph. Conversely, the third eigenvectors
separate the middle parts. For (a), the fourth eigenspace models the interactions between the extremal nodes. For (b-d), the
frequency increments again, effectively clustering the graph in four roughly equal pieces. For (e), the eigenspaces model the
interplay between (automorphic) inner and outer structures, as well as the vertical and horizontal symmetry.

A.2. Composition of Filters

Composing a residual connection with a graph filter G = diag(ĝ(λ)) yields Y = V GV ⊤H +H = V (G+ I)V ⊤H ,
chaining multiple filters (without nonlinearities) results in V G2V

⊤V G1V
⊤H = V G2G1V

⊤H . Chaining and residual
connections resolve to V (G2G1 + G2 + G1 + I)V ⊤H . Hence, an arbitrary sequence of graph filters (Eq. 2) can be
more flexible due to the interactions between filters. Note that this composition is only true in the absence of nonlinearities.
Nevertheless, the main intuition about how filters interact remains approximately the same also in the light of nonlinearities.

A.3. Scaling to Graphs of Different Magnitude

For scaling to graphs of different orders of magnitude, it can be beneficial to rescale the eigenvalues before learning the filter
ĝϑ(λ). That is, we use ĝ(l)ϑ (λ̃) with rescaled λ̃.

For example, the eigenvalues for a path/sequence are λj ≈ (1− cos(πj/n)). Thus, the resolution is poor, especially for the
eigenvalues close to zero since cos approaches slope 0. For this reason, we consider rescaling the eigenvalues with

λ̃j = 1/π cos−1(1− λj) (4)

or
λ̃j = n/π cos−1(1− λj) (5)

The latter is, e.g., convenient for identifying the second lowest eigenvalue regardless of n. Due to the poor numerical
properties of these relations, we evaluate cos−1(1− λj) = tan−1(

√
2λj−λ2

j/1−λj) instead.

A.4. Spectral Normalization

While the GFT and its inverse preserve the norm of the input (e.g., ∥x̂∥2 = ∥V ⊤x∥2 = ∥x∥2), this is not true if operating
on a truncated frequency spectrum or if the filter ĝϑ(λ) suppresses certain frequencies. For example, in the case of a virtual
node (for simplicity here with L = D −A), a signal x that is zero at every node but one at a single node will be equally
scattered to every frequency. Then, suppressing all frequencies but λ = 0, yields ∥V 1{0}V

⊤x∥2 = 1/
√
n.

Motivated by this unfortunate scaling, we also consider normalization in the spectral domain. Specifically, we normalize
Ĥ = ĝϑ(λ)⊙

[
V ⊤fθ(H)

]
∈ Rk×d s.t. Ĥj ← (1− aj)Ĥj + ajĤj/∥Ĥj∥2 with learnable a ∈ [0, 1]d. This allows, e.g.,

broadcasting a signal from one node without impacting its scale. However, we empirically find that this normalization only
helps marginally in the over-smoothing experiment (Di Giovanni et al., 2023a) and otherwise can destabilize training. We
also consider variants where the norm in the spectral domain is scaled with the norm of the signal in the spatial domain with
more or less identical results. We hypothesize that such normalization is counter-productive for, e.g., a bandpass filter if the
signal does not contain the corresponding frequencies.

A.5. Adjusting S2GNNs to Directed Graphs

All discussion in the main body assumed the existence of the eigenvalue decomposition of L. This was the case for symmetric
L; however, for directed graphs, L may be asymmetric. To guarantee L to be diagonalizable with real eigenvalues, we
use the Magnetic Laplacian (Forman, 1993; Shubin, 1994; De Verdière, 2013) which is Hermitian and models direction
in the complex domain: Lq = I − (D

−1/2
s AsD

−1/2
s ) ◦ exp[i2πq(A−A⊤)] with symmetrized adjacency/degrees As/Ds,

potential q ∈ [0, 2π], element-wise exponential exp, and complex number i2 = −1. While other parametrizations of a
Hermitian matrix are also possible, with A ∈ {0, 1}n×n and appropriate choice of q, Lq : {0, 1}n×n → Cn×n is injective.
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In other words, every possible asymmetric A maps to exactly one Lq and, thus, this representation is lossless. Moreover, for
sufficiently small potential q, the order of eigenvalues is well-behaved (Furutani et al., 2020). In contrast to Koke & Cremers
(2024), a Hermitian parametrization of spectral filters does not require a dedicated propagation for forward and backward
information flow. For simplicity we choose q < 1/nmax with maximal number of nodes nmax (with binary A). This choice
ensures that the first eigenvector suffices to obtain, e.g., the topological sorts of a Directed Acyclic Graph (DAG).

For the spectral filter of Eq. 3, we use f (l)θ (Ĥ(l)) = H(l) ⊙ [σ(H(l)W
(l)
G,ℜ) + i · σ(H(l)W

(l)
G,ℑ)] and subsequently map

the result of Spectral back the real domain, e.g., using w
(l)
ℜ ℜ(Spectral

(l)(H(l−1))) +w
(l)
ℑ ℑ(Spectral

(l)(H(l−1))), with
learnable weights w

(l)
ℜ ,w

(l)
ℑ ∈ Rd and real ℜ(·) as well as imaginary component ℑ(·). For the positional encodings

PE(V ,λ) of § A.9, we use As in Eq. 7 and concatenate real as well as imaginary components. The neural network for the
spectral domain sζ of § A.8 generalizes without adjustment. Similar to Koke & Cremers (2024), one could also employ
complex weights; however, we do not.

A.6. Computational Remarks

Partial eigendecomposition. We use readily available eigensolvers (scipy) and, thus, use a fixed number of eigenvectors
(typically k ≪ n) instead of determining k based on λcut. For permutation equivariance, we calculate k + 1 eigenvalues and
then drop trailing repeated eigenvalues (λj = λk+1 for j ∈ {1, 2, . . . , k}).

Spectral graph-level readouts. The key insight is that frequencies are a global concept, and hence, the GFT can be used for
global readouts in graph-level tasks. With k ≪ n, such a readout is practically free in the presence of intermediate spectral
layers and of O(kn) otherwise. Thus, there is the opportunity for a computationally convenient aggregation of global
information, including a sort of graph-level “jumping knowledge” (Xu et al., 2018). The only caveat is that the Fourier
coefficients are not unique due to the ambiguity in the eigendecomposition. To maintain permutation equivariance, we take
the absolute value and aggregate over dimension k in Eq. 6 instead of the multiplication with V . We observe that such
intermediate readout can improve performance slightly, e.g., on TPUGraphs. However, we leave a systematic evaluation of
its benefits for future work.

Linear bottle necks. To circumvent overfitting, we commonly replace the linear transformations WX in f (l)θ (Ĥ(l)) and
ĝϑ(λ) with low-rank bottlenecks W2W1X , s.t. W ∈ Rd×d, W2 ∈ Rd×d′ , W1 ∈ Rd′×d, and d′ < d.

A.7. Parametrizing Spectral Filters

As depicted in Fig. 4 and already outlined in the main part, we use a Gaussian smearing and apply a linear transformation
(bias omitted, similar to SchNet (Schütt et al., 2017)). This choice (1) may represent any possible ĝϑ(λ) with sufficient
resolution (assumption in § F); (2) avoids overfitting towards numerical inaccuracies of the eigenvalue calculation; (3) limits
the discrimination of almost repeated eigenvalues and, in turn, should yield stability (similar to § A.9). Strategies to cope
with a variable λcut and k (e.g., using attention similar to SpecFormer (Bo et al., 2023a)), experimentally, did not outperform
a static parametrization.
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Figure 6: Ringing of low
pass filter on path graph.

Window. In Fig. 6, we plot an ideal low-pass filter response to a rectangular wave of a
sequence/path graph w/ and w/o Tukey window. Such oscillations around discontinuities are
known as ringing/the Gibbs phenomenon. As illustrated, a window may reduce the oscillations
that occur if the spectral filter has discontinuities. Thus, we add windowing to mitigate
unwanted oscillations/noise and note that the filter may (largely) overrule the windowing at
the cost of an increased weight decay penalty.

Depth-wise separable convolution (Sifre, 2014; Howard et al., 2017): Applying different
filters for each dimension is computationally more convenient than with spatial filters. While
“full” convolutions are also possible, we find that such a construction is more prone to over-fitting. In practice, we even use
parameter sharing and apply fewer filters than dimensions to counteract over-fitting.

A.8. Neural Network for the Spectral Domain

Applying a neural network sζ in the spectral domain is highly desirable on due to its negligible computational cost if k ≪ n.
Moreover, sζ allows the spectral filter to become data-dependent and may mix between channels. Data-dependent filtering
is one of the properties that is hypothesized to make transformers that powerful Fu et al. (2023). We propose the first neural
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network for the spectral domain of graph filters s(l)ζ : Rk×d → Rk×d that is designed to preserve permutation equivariance.

H(l) = Spectral(l)(H(l−1);V ,λ)

= V s
(l)
ζ

(
ĝ
(l)
ϑ (λ)⊙

[
V ⊤f

(l)
θ (H(l−1))

]) (6)

We achieve permutation equivariance via sign equivariance sζ(S ⊙X) = S ⊙ sζ(X) , ∀S ∈ {−1, 1}k×d, combined
with a permutation equivariance sζ(PX) = P sζ(X) , P ∈ Pk, where Pk is the set of all k × k permutation matrices.
Specifically, we stack linear mappings W ∈ Rd×d (without bias) with a gated nonlinearity ϕ(Ĥ) = Ĥ ⊙ σ(K) with
sigmoid σ. K is constant among all k eigenvectors: Kj = 1⃗⊤|Ĥ|W for j ∈ {1, 2, . . . , k} with element-wise absolute
value | · |.

A.9. Efficient Yet Stable and Expressive Positional Encodings

(a)

(b)

(c)

(d)

(e)

Figure 7: PE
discriminates
depicted de-
gree-regular
graphs, but (a)
vs. (c).

We propose the first efficient (O(km)) and (fully) permutation equivariant spectral Positional Encodings
PE that are proven to increase the expressivity strictly beyond the 1-Weisfeiler-Leman (1-WL) test (Xu
et al., 2019; Morris et al., 2019). The dual use of the k lowest eigenvalues allows for practically free
positional encodings in combination with S2GNNs, calculated as a preprocessing step along with the
EVD. We construct our k-dimensional positional encodings PE(V ,λ) ∈ Rn×k as

PE(V ,λ) = ||kj=1[(V ĥj(λ)V
⊤)⊙A] · 1⃗ (7)

with concatenation || and binary adjacency A ∈ {0, 1}n×n. We use a Radial Basis Function (RBF)
filter with normalization around each eigenvalue hj(λ) = softmax((λj−λ)⊙(λj−λ)/σ2) with small width
σ ∈ R>0. This parametrization is not only permutation equivariant but also stable according to the
definition of Huang et al. (2024) and strictly more expressive than 1-WL (see § G).

B. Background for Directed Graphs
Undirected vs. directed graphs. For spatial filtering, it is straightforward to plausibly extend the
message passing (e.g. Battaglia et al. (2018); Rossi et al. (2023)). However, the spectral motivation
and spectral filter on directed graphs require more care. The eigendecomposition is guaranteed to exist
for real symmetric matrices. Real symmetric matrices are always diagonalizable, and the eigenvectors
will then span a complete orthogonal basis to represent all possible signals X ∈ Rn×d. Note that some
non-symmetric square matrices are also diagonalizable and, thus, also have an eigendecomposition,
albeit the eigenvectors may not be orthogonal. Thus, further consideration is required to generalize the
graph Laplacian to general directed graphs.

Magnetic Laplacian. For the spectral filter on directed graphs, we build upon a direction-aware
generalization, called Magnetic Laplacian (Forman, 1993; Shubin, 1994; De Verdière, 2013; Furutani
et al., 2020; Geisler et al., 2023)

Lq = I − (D−1/2
s AsD

−1/2
s ) ◦ exp[i2πq(A−A⊤)] (8)

where As = A ∨A⊤ is the symmetrized graph with diagonal degree matrix Ds. ◦ denotes the element-
wise product, exp the element-wise exponential, i =

√
−1 an imaginary number, and q the potential

(hyperparameter). By construction Lq is a Hermitian matrix Lq = LH
q where the conjugate transpose

is equal to Lq itself. Importantly, Hermitian matrices naturally generalize real symmetric matrices and
have a well-defined eigendecomposition Lq = V ΛV H with real eigenvalues Λ and unitary eigenvectors
V V H = I . For appropriate choices of the potential q, the order of eigenvalues is well-behaved (Furutani
et al., 2020). Recently Geisler et al. (2023) demonstrated the efficacy of these eigenvectors for positional
encodings for transformers. Moreover, the Magnetic Laplacian was used for a spectrally designed spatial
MPGNN (Zhang et al., 2021), extending Defferrard et al. (2017). Due to the real eigenvalues, one could,
in principle, also apply a monomial basis (Chien et al., 2021), or different polynomial bases stemming
from approximation theory (He et al., 2021; Wang & Zhang, 2022; He et al., 2022; Guo & Wei, 2023).

To see why Eq. 8 describes an injection for appropriate choices of q, consider that the sparsity pattern of
Lq matches A up to the main diagonal. If A contains a self-loop the main diagonal will have a 0 instead
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of 1 entry at the self-loop location. A−A⊤ can be directly inferred from the phase exp[i2πq(A−A⊤)], assuming that
q < 1/(2maxu,v Au,v). Thus, it is solely left to obtain As from I −D

−1/2
s AsD

−1/2
s , which is trivial for a binary adjacency

but more involved for real-valued weights. Determining if and when Lq is injective for real-valued A is left for future work.

Properties of the eigendecomposition. The eigendecomposition is not unique, and thus, one should consider the result
of the eigensolver arbitrary in that regard. One ambiguity becomes apparent from the definition of an eigenvalue itself
Lv = λv since one can multiply both sides of the equation with a scalar c ∈ C \ {0}: L(cv) = λ(cv). We already
implicitly normalized the magnitude of the eigenvectors V by choosing them to be orthogonal (V V ⊤ = I) or unitary
(V V H = I). Thus, after this normalization, c only represents an arbitrary sign for real-valued eigenvectors or a rotation on
the unit circle in the complex case. Another reason for ambiguity occurs in the case of repeated / multiple eigenvalues (e.g.,
λu = λv for u ̸= v). In this case, the eigensolver may return an arbitrary set of orthogonal eigenvectors chosen from the
corresponding eigenspace.

C. Additional Related Work
Long-range interactions on graphs. Works that model long-range interactions can be categorized into: (a) MPGNNs
on rewired graphs (Gasteiger et al., 2019a;b; Gutteridge et al., 2023). (b) Closely related are also certain higher-order
GNNs (Fey et al., 2020), e.g., due to a hierarchical message passing scheme, that may pass information to distant nodes.
While approaches (a) and (b) can increase the receptive field on GNNs, they are typically still spatially bounded. In
contrast, (c) alternative architectures, like graph transformers (Ma et al., 2023; Dwivedi & Bresson, 2021; Kreuzer et al.,
2021; Rampášek et al., 2022; Geisler et al., 2023; Deng et al., 2024) with global attention, may model all possible n× n
interactions. In a recent/contemporary non-attention model for all pair-wise interactions, Batatia et al. (2024) use a resolvent
parametrization of matrix functions relying on the LDL factorization (a variant of the Cholesky decomposition) of a matrix.
However, Batatia et al. (2024) do neither provide statements about their approximation-theoretic capabilities, over-squashing,
expressivity on general graphs, nor how to deal with directed graphs.

Expressivity. Laplacian eigenvectors have been used previously to construct positional encodings that improve the
expressivity of GNNs or Transformers (Lim et al., 2023; Wang et al., 2022; Geisler et al., 2023; Huang et al., 2024). Our
positional encodings are similar to the preprocessing of Balcilar et al. (2021a), where the authors design an edge-level
encoding/mask to surpass 1-WL. The hierarchy of Weisfeiler-Leman (WL) tests is a common way to categorize the
expressivity of GNNs (Grohe et al., 2021). Xu et al. (2019) showed that most MPGNNs are bound by or as strong as the
1-WL test. Lim et al. (2023) point out that spectral GNNs suffer from similar limitations as MPGNNs w.r.t. their expressivity.
Generally, the development of expressive GNNs is an active research direction (Li & Leskovec, 2022).

Directed graphs. Rossi et al. (2023) also extend the WL test to directed graphs and propose an MPGNN for directed graphs.
How to model direction in graphs is also still an open question and various approaches were proposed (Battaglia et al.,
2018; Tong et al., 2020; Zhang et al., 2021; Rossi et al., 2023; Koke & Cremers, 2024). We utilize a Hermitian Laplacian
for direction awareness, namely the Magnetic Laplacian, which was also used by Zhang et al. (2021) for an MPGNN and
Geisler et al. (2023) for positional encodings.

D. S2GNN Generalizes a Virtual Node
Adding a fully connected virtual node (Gilmer et al., 2017) is among the simplest ways to add the ability for long-range
information exchange. An equivalent method was proposed as a simple over-squashing remedy in the seminal work by Alon
& Yahav (2020). A single Spectral layer amounts to a type of virtual nodes in the special case of fθ = I and

ĝ(l)(λ) =

{
1 for λ = 0,

0 for λ > 0,
(9)

Assuming a simply-connected graph G, the unique normalized zero-eigenvector v of the symmetrically-normalized graph
Laplacian L = I −D−1/2AD−1/2 has components vu =

√
du
2|E| , where du denotes the degree of node u ∈ G, and |E| the

number of edges in the graph. At node u ∈ G, we therefore find

Spectral(l)u (H(l−1);V ,λ) =

√
du

2|E|
∑
v∈G

√
dvh

(l−1)
v (10)
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with h
(l−1)
v denoting the row of H(l−1) corresponding to node v ∈ G. In other words, filtering out the zero-frequency

component of the signal means scattering a global, degree-weighted embedding average to all nodes of the graph. For the
unnormalized graph Laplacian, Eq. 10 instead becomes an unweighted average, which is consistent with the usual definition
of a virtual node. We refer to Fig. 3 for additional intuition.

E. S2GNNs Vanquish Over-Squashing
Alon & Yahav (2020) pointed out that MPGNNs must pass information through bottlenecks that connect different commu-
nities using fixed-size embedding vectors. Topping et al. (2022); Di Giovanni et al. (2023a) formalize this via an L1-norm
Jacobian sensitivity analysis: ∥∂h(ℓ)

v /∂h(0)
u ∥L1 modeling the output’s h(ℓ)

v change if altering input signal h(0)
u . MPGNNs’

Jacobian sensitivity typically decays with the node distance r as O (exp (−r)) if the number of walks between the two
nodes is small.

For a formal explanation, we next restate two key results from Di Giovanni et al. (2023a) using our notation. They imply
the existance of a regime in which 1-hop MPNN architectures suffer from exponentially decaying Jacobian sensitivity.
Meanwhile, S2GNNs can easily learn a signal of constantly lower-bounded sensitivity, as shown by invoking its trivial
subcase of a virtual node in Theorem E.3.

Theorem E.1 (Adapted from Di Giovanni et al. (2023a)). In an ℓ-layer spatial MPGNN with message-passing matrix
S = crI + caA (cr, ca ∈ R+) and a Lipschitz nonlinearity σ,

H(l) = Spatial(l)(H(l−1);A) = σ
(
SH(l−1)W (l−1)

)
, 1 ≤ l ≤ ℓ (11)

the Jacobian sensitivity satisfies the following upper bound:∥∥∥∥∥∂h(ℓ)
v

∂h
(0)
u

∥∥∥∥∥
L1

≤ (cσwd)
ℓ
(
Sℓ
)
vu
, (12)

with h
(0)
u , h(ℓ)

v denoting the rows of H(0), H(ℓ) corresponding to the nodes v, u ∈ G, cσ the Lipschitz constant of the
nonlinearity, w the maximum entry value over all weight matrices W (l), and d the network width.

The dependence of the upper bound on the matrix power
(
Sℓ
)
vu

– not generally present for S2GNN by Theorem E.3 –
leads to a topology-dependence which becomes explicit in the following theorem. It concerns the typical shallow-diameter
regime, in which the number ℓ of MPGNN layers is comparable to the graph diameter.

Theorem E.2 (Adapted from Di Giovanni et al. (2023a)). Given an MPNN as in Eq. 11, with ca ≤ 1, let v, u ∈ G be at
distance r. Let cσ be the Lipschitz constant of σ,w the maximal entry-value overall weight matrices, dmin the minimal
degree of G, and γℓ(v, u) the number of walks from v to u of maximal length ℓ. For any 0 ≤ k < r, there exists Ck > 0
independent of r and of the graph, such that∥∥∥∥∥∂h(r+k)

v

∂h
(0)
u

∥∥∥∥∥
L1

≤ Ckγr+k(v, u)
(
2cσwd

dmin

)r
.

For 1-hop MPGNNs with 2cσwd < dmin, we therefore identify an exponential decay of sensitivity with node distance r in
the weak-connectivity limit for which γr+k(v, u) increases sub-exponentially with r. As (Di Giovanni et al., 2023a) point
out, sharper bounds can be derived under graph-specific information about (Sr)vu.

S2GNNs are not prone to such an exponential sensitivity decay due to their global message scheme. We formalize this in the
subsequent theorem, refer to Fig. 5 for intuition and Fig. 8 for empirical verification.

Theorem E.3. An ℓ-layer S2GNN can be parametrized s.t. output h(ℓ)
v has a uniformly lower-bounded Jacobian sensitivity

on a connected graph: ∥∥∥∥∥∂h(ℓ)
v

∂h
(0)
u

∥∥∥∥∥
L1

≥ Cϑd

m
(13)

with rows h(0)
u , h(ℓ)

v of H(0), H(ℓ) for nodes u, v ∈ G, a parameter-dependent Cϑ, network width d and edge count m.
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Figure 8: Spectral filters do
not exhibit over-squashing on
“Clique Path” graphs (Di Gio-
vanni et al., 2023a).

This is true since S2GNNs contain a virtual node as a special case with ĝ(l)ϑ (λ) = 1{0},
with 1S denoting the indicator function of a set S (see also § D). However, we find
that a virtual node is insufficient for some long-range tasks, including our long-range
clustering (LR-CLUSTER) of Fig. 11b. Hence, the exponential sensitivity decay of
spatial MPGNNs only shows their inadequacy in long-range settings. Proving its absence
is not sufficient to quantify long-range modeling capabilities. We close this gap with
our subsequent analysis rooted in polynomial approximation theory.

F. Approximation
Theory: Superior Error Bounds Despite Spectral Cutoff
We study how well “idealized” GNNs (IGNNs) can be approximated by an S2GNN.
Each IGNN layer l can express convolution operators g(l) of any spectral form
ĝ(l) : [0, 2]→ R. We approximate IGNNs with S2GNNs from Eq. 1, with a spectral filter as in Eq. 3 and a spatial
part parametrized by a polynomial. While we assume here that the S2GNN spectral filter is bandlimited to and a universal
approximator on the interval [0, λmax], the findings generalize to, e.g., a high-pass interval. In the main body, we focus on
the key insights for architectures without nonlinear activations. Thus, we solely need to consider a single layer. Wang &
Zhang (2022) prove that even linear IGNNs can produce any one-dimensional output under certain regularity assumptions
on the graph and input signal. In § J.4, we cover the generic setting including nonlinearities.
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Figure 9: S2 filter perfectly approximates true
filter (a) with a discontinuity at λ = 0, while
polynomial (“Spa.”) and spectral (“Spec.”) do not.
(b) shows the responses on a path graph.

Locality relates to spectral smoothness. The locality of the true/ideal
filter g is related to the smoothness of its Fourier transform ĝ. For
instance, if g is a low-order polynomial of L, it is localized to a
few-hop neighborhood, and ĝ is regularized to vary slowly (Fig. 9a
w/o discontinuity). The other extreme is a discontinuous spectral
filter ĝ, such as the entirely non-local virtual node filter, ĝ = 1{0}
(discontinuity in Fig. 9a, details in § D). This viewpoint of spectral
smoothness illuminates the limitations of finite-hop message passing
from an angle that complements spatial analyses in the over-squashing
picture. It informs a lower bound on the error, which shows that spatial
message passing, i.e, order-p polynomial graph filters gγp

with p+ 1
coefficients γp ∈ Rp+1, can converge exceedingly slowly (slower
than any inverse root (!) of p) to a discontinuous ground truth in the
Frobenius-induced operator norm:

Theorem F.1. Let ĝ be a discontinuous spectral filter. For any approximating sequence
(
gγp

)
p∈N of polynomial filters, an

adversarial sequence (Gp)p∈N of input graphs exists such that

∄α ∈ R>0 : sup
0̸=X∈R|Gp|×d

∥(gγp − g) ∗Gp X∥F
∥X∥F

= O
(
p−α

)
Superior S2GNN error bound. A spatio-spectral convolution wins over a purely spatial filter when the sharpest irregularities
of the ground truth ĝ are within reach of its expressive spectral part. The spatial part, which can “focus” on learning the
remaining, smoother part outside of this window, now needs much fewer hops to give a faithful approximation. We illustrate
this principle in Fig. 9 where we approximate an additive combination of an order-three polynomial filter with low-pass
discontinuous. Only the S2 filter is faithfully approximating this filter. Formally, we find:

Theorem F.2. Assume ĝ
∣∣
[λcut,2]

is r-times continuously differentiable on [λcut, 2], and a bound Kr(ĝ, λcut) ≥ 0 such that∣∣ dr
dλr ĝ(λ)

∣∣ ≤ Kr(ĝ, λcut) ∀λ ∈ [λcut, 2]. An approximating S2GNN sequence with parameters
(
ϑ∗p,γ

∗
p

)
p∈N exists such that,

for arbitrary graph sequences (Gp)p∈N,

sup
0̸=X∈R|Gp|×d

∥(gγ∗
p
+ gϑ∗ − g) ∗Gp

X∥F
∥X∥F

= O
(
Kr(ĝ, λcut)p

−r)
with a scaling constant that depends only on r, not on ĝ or (Gp)p∈N.
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The above bound extends to purely spatial convolutions in terms of Kr(ĝ, 0) if ĝ is r-times continuously differentiable on
the full interval [0, 2]. The S2GNN bound of Theorem F.2 is still strictly tighter if Kr(ĝ, λcut) < Kr(ĝ, 0). In particular,
taking the limit K1(ĝ, 0) → ∞ towards discontinuity makes the purely spatial upper bound arbitrarily loose, whereas a
benign filter might still admit a small K1(ĝ, λcut) for some λcut > 0. Theorem F.1 suggests that this is not an artifact of a
loose upper bound but that there is an inherent difficulty in approximating unsmooth filters with polynomials.

We conclude the theoretical analysis by instantiating Theorem F.2: assuming ĝ is C-integral-Lipschitz for stability reasons
(see (Gama et al., 2020) and the paragraph before § E) yields K1(ĝ, λcut) = C/λcut, whereas for the electrostatics example ĝσ
in § I, we find upper bounds Kr(ĝσ, λcut) = r!/λ(r+1)

cut . In both cases, the pure spatial bound diverges as smoothness around 0
remains unconstrained.

G. Efficient Yet Stable and Expressive Positional Encodings
We define stability of positional encodings with the subsequent definition via Hölder continuity.

Definition G.1 (Stable PE). (Huang et al., 2024) A PE method PE : Rn×k × Rk → Rn×k is called stable, if there exist
constants c, C > 0, such that for any Laplacian L,L′, and P∗ = argminP ∥L− PL′P⊤∥F

∥PE(EVD(L)) − P∗ PE (EVD(L′))F

≤ C ·
∥∥L− P∗L

′P⊤
∗
∥∥c
F
.

(14)

Theorem G.2. The Positional Encodings PE in Eq. 7 are stable.

Note that the constant C depends on the eigengap between 1/λk+1−λk at the frequency cutoff (for exact constant C see proof
§ J.5). Next to their stability, our PE can discriminate certain degree-regular graphs and, thus, make the equipped GNN
bound by 1-WL, strictly more expressive than 1-WL. See § H for continued expressivity analyses.

Theorem G.3. S2GNNs are strictly more expressive than 1-WL with PE of Eq. 7.

See § J.6 for a proof of Theorem G.3.

H. Expressivity of Spectral Filters and Spectrally Designed Spatial Filters
While it is well-known that common spatial MPGNNs are at most as expressive as 1-WL and that spectrally designed
GNNs can be more expressive than 1-WL (Theorem 2 of Balcilar et al. (2021a)), we show that spectral GNNs are not able
to distinguish degree-regular graphs. This upper bound was not known/formalized prior to our work (Bo et al., 2023b).
Fortunately, our PE largely mitigates the limitation. The improved expressivity of our positional encodings, along with their
efficiency, stems from the element-wise product with A (see also Geerts (2021)).

Theorem H.1. Spectral filters V diag(ĝ(λ))V ⊤1⃗ are strictly less expressive than 3-WL with Laplacian L = D −A,
L = I −D−1A, or L = I −D−1/2AD−1/2.

Corollary H.2. “Spectrally designed” MPGNNs that use a polynomial parametrization of filter diag(ĝ(λ)) are strictly
less expressive than 3-WL with the same choices for L.

I. Construction of an explicit ground truth filter
We express the electric potential along a periodic sequence of screened 1D charges as a convolution of a corresponding
graph signal with a consistently defined graph filter. This closed-form example underscores our default use of a low-pass
window for the spectral part of S2GNNs by showing how a continuous problem with a convolutional structure and quickly
flattening spectral response (typical for pair interactions in physics and chemistry) discretizes into a graph problem with
similar features.

The approach exploits the surjective mapping of Fourier modes on [0, n] onto the Laplacian eigenvectors of a cycle graph
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Cn. We consider two corresponding representations of the same problem:

ρ(x) =

n−1∑
l=0

ql∆n (x− l) , ∆m(x) =
∑
m∈Z

δ(x−mn), V (x) = (ϕσ ∗R ρ)(x), (15)

ϕσ(x) =

(
xerf

(
x√
2σ

)
+ σ

√
2

π
exp

(
− x2

2σ2

))
− |x|, σ > 0

[
V (l) = (ϕσ ∗R ρ)(l)

!
= (gσ ∗G q)l, 0 ≤ k ≤ n− 1, ∀q ∈ Rn

] ~www� (16)

G = Cn, q = (q1, . . . , qn)
⊤ (17)

• A continuous representation (Eq. 15) in terms of a 1D distribution ρ of n point charges q1, . . . , qn and their periodically
repeating image charges, written as a sum of Dirac combs at equidistant offsets l with 0 ≤ l ≤ n−1, interacting via the
potential profile ϕσ obtained from solving in Gauss’ law of electrostatics for a 1D point charge screened by a Gaussian
cloud of opposite background charge with standard deviation σ. The screening ensures convergence to a finite potential
and its exact form is insignificant (we choose the Gaussian-type screening due to its analytical tractability). Note that
ϕσ(x) ≃ const.− |x| for x→ 0 (the unscreened 1D potential in the direction normal to an infinitely wide capacitor
plate), while the screening guarantees an exponential dropoff to zero as x→∞,

• A graph representation (Eq. 17) by placing the n charges q1, . . . , qn onto a cycle graph Cn.

We derive the graph filter gσ from a consistency condition (Eq. 16) between both representations: the graph convolution
(gσ ∗G q) has to yield the electric potential V sampled at the charge loci if we want gσ to act like the continuous convolution
kernel ϕσ in the discrete graph picture.

The Fourier transform of ϕσ (in the convention without integral prefactor and with a 2π frequency prefactor) reads
ϕ̂σ(κ) = 1

πκ2

(
1− exp

(
− 1

2σ
2κ2
))

. For the density, the Poisson sum formula gives ρ̂(κ) =
∑n−1
k=0

1√
n
q̂k∆1(κ − k

n )

with q̂k = 1√
n

∑n−1
j=0 qi exp

(
−i2π knj

)
. The coefficients q̂k are precisely the components of the graph Fourier transform

of q (physically, they amount for the structure factor). By the convolution theorem, V̂ (κ) = ϕ̂σ(κ)ρ̂(κ). By noting
that all integer-shifted frequencies in the Dirac combs ∆1

(
· − k

n

)
(or all Brillouin zones, in physics terminology) yield

the same phase exp
(
i2π kn l

)
if we only sample V (x) at the charge loci x = l, 0 ≤ l ≤ n − 1, we can write V (l) =

1
2π

∑n−1
k=0 q̂k

(∑
m∈Z ϕ̂σ

(
k
n +m

))
1√
n
exp

(
i2π kn l

)
. Through pattern-matching with the consistency condition of Eq. 16,

we can therefore identify that the graph filter is a sum over Brillouin zones, (ĝσ)(λk) = 1
2π

∑
m∈Z ϕ̂σ

(
k
n +m

)
, where λk

denotes the eigenvalues of the normalized Cn graph Laplacian, λk = 1− cos
(
2πk
n

)
. To fulfill this relation for all n, k we set

ĝσ(λ) =
1

2π

∑
m∈Z

ϕ̂σ

(
1

2π
arccos(1− λ) +m

)
We claim now (and prove in a later paragraph) that for λ > λ0 > 0 and a sufficiently large choice σ > σ(r, λ0), the absolute
r-th derivative satisfies the upper bound | d

r

dλr ĝσ(λ)| ≤ | d
r

dλr ĝ∞(λ)|, where we can think of ĝ∞ as the limit of taking σ →∞
(i.e., a constant background charge):

ĝ∞(λ) =
1

2π

∑
m∈Z

ϕ̂∞

(
1

2π
arccos(1− λ) +m

)
, ϕ̂∞(κ) =

1

πκ2

The merit of this is that unlike the screened ĝσ(λ), ĝ∞(λ) can be solved analytically to find closed-form bounds on the
absolute derivatives | d

r

dλr ĝσ(λ0)|. By invoking the sum expansion form of the trigamma function Ψ1(z) =
∑∞
m=0

1
(z+m)2 ,

the reflection identity ψ1(1− z) + ψ1(z) =
π2

sin2 πz
, and the half-angle formula sin2

(
x
2

)
= 1−cos(x)

2 , we find

ĝ∞(λ) =
1

2π2

(
Ψ1

(
1

2π
arccos(1− λ)

)
+Ψ1

(
1− 1

2π
arccos(1− λ)

))
=

1

2 sin2
(
1
2 arccos(1− λ)

) =
1

λ
,
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a remarkably simple result. We can now readily evaluate | d
r

dλr ĝ∞(λ)| = r!
λr+1 , but it remains to prove that this upper-

bounds | d
r

dλr ĝσ(λ)| for any λ > λ0 > 0 and sufficiently large σ > σ(r, λ0). For compactness, define the expressions
z(λ) := 1

2π arccos(1− λ) ∈
[
0, 12

]
(strictly increasing in λ), yσ(z) := exp

(
− 1

2σ
2z2
)
, and z̃ = 1− z ≥ z. Consider the

series of “term-by-term” derivatives

d

dz
ĝσ(λ(z)) = −

1

π2

∞∑
m=0

(
1

(z + n)3
(1− yσ(z +m))− 1

(z̃ + n)3
(1− yσ(z̃ +m))

)

+

∞∑
m=0

O (yσ(m))

d2

dz2
ĝσ(λ(z)) =

3

π2

∞∑
m=0

(
1

(z + n)4
(1− yσ(z +m)) +

1

(z̃ + n)4
(1− yσ(z̃ +m))

)

+

∞∑
m=0

O (yσ(m))

...

They converge uniformly on
[
0, 12

]
as they clearly are Cauchy sequences under uniform bound (moreover, well-definedness

in z = 0 follows by applying l’Hospital’s rule – physically, this is the merit provided by including Gaussian screening in
our model). Therefore, they indeed converge to the respective derivatives dr

dzr ĝσ(λ(z)) (justifying the above notation). The
same holds for the corresponding series for dr

dzr ĝ∞(λ(z)): they are not defined in z = 0, but otherwise still converge as they
match the known series expansion of the polygamma function. Given λ0 > 0 and thus z(λ0) > 0, taking σ larger than some
σ(r, λ0) guarantees that dr

dzr ĝσ(λ(z)) and dr

dzr ĝ∞(λ(z)) are of the same sign for λ > λ0 (z(λ) > z(λ0)). This holds for
all orders r ∈ N since we see by induction that the product rule always yields one term analogous to the first respective
terms above, and otherwise only terms of O (yσ(m))). Then, observing that 0 ≤ 1− yσ(x) < 1 ∀ x ≥ 0 and z̃ ≥ z implies
| d

r

dzr ĝσ(λ0(z0))| ≤ |
dr

dzr ĝ∞(λ0(z0))|. The same must hold for the λ-derivatives by the chain rule.

One interesting question is whether ĝσ is also C-integral-Lipschitz for some constant C > 0. We discuss this stability-
informed criterion (Gama et al., 2020) in the main body as a domain-agnostic prior assumption about the “ideal” graph filter
if no other ground truth knowledge informing additional smoothness bounds (such as here) is available. While the above
bound is too loose to certify this directly (| ddλ ĝσ(λ)| ≤ Cλ

−1 would be needed), integral-Lipschitzness under some constant
follows from the fact that | ddλ ĝσ(λ)| is bounded on [0, 2]: by the uniform convergence of the term-by-term derivative series,
it is continuous. Well-definedness of the product d

dz ĝσ
dz
dλ has to be checked in λ = 0, where it follows by continuous

extension using l’Hospital’s rule. As a continuous function defined on a compact interval, | ddλ ĝσ| assumes a maximum.

J. Proofs
J.1. Proof of permutation equivariance

We next prove the permutation equivariance of the spectral filter in Eq. 3:

Theorem J.1. Spectral(H(l−1); EVD(L)) of Eq. 3 is equivariant to all n × n permutations P ∈ P:
Spectral(PH(l−1); EVD(PLP⊤)) = P Spectral(H(l−1); EVD(L)).

for the general case of parametrizing a Hermitian “Laplacian” L ∈ Cn×n,LH = L. Note that this proof does not rely in any
means on the specifics of L, solely that the eigendecomposition exists L = V ΛV H with unitary eigenvectors V V H = I .
For practical reasons, it is suitable to define L(A) as a function of A. A similar proof for real-valued eigenvectors is given
by (Lim et al., 2023). The specific spectral filter we consider is

Spectral(H(l−1);V ,λ) = h
[
V
(
ĝ(λ)⊙

[
V Hf(H(l−1))

])]
(18)

with arbitrary f : Cd1 → Cd2 , applied row-wise to H(l−1) ∈ Cn×d1 . Analogously, h : Cd2 → Cd3 is applied row-
wise. We choose complex functions to emphasize generality, although we restrict Spectral to real in- and outputs in all
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experiments. The graph filter is defined as element-wise function ĝu,v(λ) := ĝv(λu, {λ1, λ2, . . . , λk}) that depends on the
specific eigenvalue λ and potentially the set of eigenvalues {λ1, λ2, . . . , λk} (or its vector representation λ) of the partial
eigendecomposition.

We need to make sure that the partial decomposition includes all eigenvalues of the same magnitude, i.e., λu ̸= λu′ ,∀u ∈
{1, 2, . . . , k}, u′ ∈ {k + 1, k + 2, . . . , n}. In practice, this is achieved by choosing large enough k to accommodate all
eigenvalues λcut < λk+1, or by dropping trailing eigenvalues where λj = λk+1 for j ∈ {1, 2, . . . , k}. Generally, it is also
not important that we consider the k smallest eigenvalues in the spectral filter. We only need to ensure that the spectral filter
is either calculated on all or no eigenvalues/-vectors of an eigenspace.

Proof. Assuming functions ϕ(X) and ψ(X) are permutation equivariant, then ϕ(ψ(X)) is permutation equivariant
ϕ(ψ(PX)) = ϕ(Pψ(X)) = Pϕ(ψ(X)) for any n × n permutation P ∈ P . Thus, it sufficies to prove permutation
equivariance for h, f,V (ĝ(λ)⊙ [V HX]) independently, where X ∈ Cn×d2 .

Regardless of the complex image and domain of h and f , they are permuation equivariant since they are applied row-wise

f(X) =
[
f(X1) f(X2) . . . f(Xn)

]H
and reordering the rows in X ∈ Cn×d1 also reorders the outputs: f(PX) = P f(X).

For finalizing the proof of permutation equivariance, we first rearrange Y = V (ĝ(λ)⊙ [V HX]) =
∑k
u=1 vu(ĝu,:(λu)⊙

[vH
uX]) and Y:,v =

∑k
u=1 ĝu,v(λu)vuv

H
uX:,v .

This construction (a) is invariant to the ambiguity that every eigenvector vu can be arbitrarily rotated cuvu by {cu ∈
C | |cu| = 1}. That is, (cuvu)(cuvu)H = cuc̄uvuv

H
u = vuv

H
u .

Moreover, (b) in the case of j repeated eigenvalues {s+ 1, s+ 2, . . . , s+ j} where λs+1 = λs+2 = · · · = λs+j , we can
choose a set of orthogonal eigenvectors arbitrarily rotated/reflected from the j-dimensional eigenspace (basis symmetry).
The given set of eigenvectors can be arbitrarily transformed V:,s+1:s+jΓj by a matrix chosen from the unitary group
Γj ∈ U(j). Since

s+j∑
u=s

ĝu,v(λu)vuv
H
uX:,v = ĝs,v(λs)

[
s+j∑
u=s

vuv
H
u

]
X:,v = ĝs,v(λs)

[
V:,s+1:s+jV

H
:,s+1:s+j

]
X:,v

we simply need to show that the expression is invariant to a transformation by Γj :

V:,s+1:s+jΓj(V:,s+1:s+jΓj)
H = V:,s+1:s+jΓjΓ

H
j V

H
:,s+1:s+j = V:,s+1:s+jV

H
:,s+1:s+j

To see why Γj ∈ U(j) is a sufficient choice in the light of repeated/multiple eigenvalues, consider the defintion of
eigenvalues/vectors

LV:,s+1:s+j = L

 | | |
vs+1 vs+2 . . . vs+j
| | |



=

 | | |
vs+1 vs+2 . . . vs+j
| | |



λs+1 0 . . . 0
0 λs+2 . . . 0
...

...
. . .

...
0 0 . . . λs+j


= λs+1

 | | |
vs+1 vs+2 . . . vs+j
| | |


= λs+1V:,s+1:s+j

we can now multiply both sides from the right with an arbitrary matrix B ∈ Cj×j . To preserve the unitary property
V:,s+1:s+jV

H
:,s+1:s+j = I , we require (V:,s+1:s+jB)(V:,s+1:s+jB)H = I . Thus, the eigenvectors can be arbitrarily

transformed by Γj ∈ U(j) instead of B ∈ Cj×j .

This concludes the proof.
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J.2. Proof of Theorem E.3

We restate Theorem E.3 in more detail and also considering graphs that contain multiple connected components. The
unchanged bottom line is that S2GNNs can express signals lower-bounded by a constant that is unaffected by local properties
of the graph topology, instead of suffering from exponential sensitivity decay like spatial MPGNNs.

[Theorem E.3, formal] Consider an ℓ-layer S2GNN of the form Eq. 1. Let (ϑ̃, ϑ, θ) be parameters of the spatial GNN, spectral
filters ĝ(l)ϑ , and feature transformation fθ. Assume the existence of parameters ϑ̃ such that Spatial(l)(H(l−1);A, ϑ̃) = 0
∀1 ≤ l ≤ ℓ and θ such that fθ = I . Then, a filter choice ϑ exists such that the ℓ-layer S2GNN of the additive form Eq. 1 can
express a signal h(ℓ)

v (H(0); ϑ̃, ϑ, θ) with uniformly lower-bounded Jacobian sensitivity,∥∥∥∥∥∂h(ℓ)
v (H(0); ϑ̃, ϑ, θ)

∂h
(0)
u

∥∥∥∥∥
L1

≥

{
dKℓ

ϑ

2|EC| if u, v connected,

0 otherwise,
(19)

with h
(0)
u , h(ℓ)

v denoting the rows of H(0), H(ℓ) corresponding to the nodes u ̸= v ∈ G, connected component C ⊂ G
containing |EC | edges, network width d and parameter-dependent constant Kϑ.

Proof. Choose ϑ̃ such that Spatial(l)(H(l−1);A) = 0 ∀1 ≤ l ≤ ℓ (typically by setting all weights and biases to zero), θ
such that fθ = I , and set ϑ such that

ĝ
(l)
k (λ;ϑ) = Kϑ

{
1 for λ = 0,

0 for λ > 0,
∀1 ≤ l ≤ ℓ, 1 ≤ k ≤ d (20)

for someKϑ > 0. This choice of filter parameters ϑ lets Spectral act like a type of virtual node across all hidden dimensions
k: In the standard orthonormal basis of the 0-eigenspace given by(

v(C)
)
u
=

√
du

2|EC |

{
1 for u ∈ C,
0 else,

(21)

where C enumerates all connected components, and du denotes the degree of node u, we find

h(ℓ)
v (H(0); ϑ̃, ϑ, θ) =

(
Spectral(ℓ) ◦ · · · ◦ Spectral(0)

)
v
(H(0);V ,λ)

=
Kℓ
ϑ

√
dv

2|EC(v) |
∑
u∈C(v)

√
duh

(0)
u ,

(22)

with C(v) denoting the connected component containing v. Particularly, note that applying the spectral layer more than once
does not affect the result since the projector onto an eigenvector is idempotent (up to Kϑ). The result must also hold in any
other orthonormal basis of the 0-eigenspace due to the invariance of Spectral under orthogonal eigenbasis transformations.
Differentiating with respect to h

(0)
u , taking the L1 norm and using

√
dudv ≥ 1 shows the statement.

J.3. Proof of Theorem F.1

Theorem F.1. Let ĝ be a discontinuous spectral filter. For any approximating sequence
(
gγp

)
p∈N of polynomial filters, an

adversarial sequence (Gp)p∈N of input graphs exists such that

∄α ∈ R>0 : sup
0̸=X∈R|Gp|×d

∥(gγp − g) ∗Gp X∥F
∥X∥F

= O
(
p−α

)
The proof makes use of a result by S. Bernstein (Natanson, 1964):
Theorem J.2 (Bernstein). Let f : [0, 2π]→ C be a 2π-periodic function. Then f is α-Hölder continuous for some α ∈ (0, 1)
if, for every p ∈ N, there exists a degree-p trigonometric polynomial Tp(x) = a0 +

∑p
j=1 aj cos(jx) +

∑p
j=1 bj sin(jx)

with coefficients aj , bj ∈ C, such that

sup
0≤x≤2π

|f(x)− Tp(x)| ≤
C(f)

pα

where C(f) is a positive number depending on f .
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Proof. Given a discontinuous filter ĝ : [0, 2] → R, construct the function f : [0, 2π] → C fulfilling the prerequisites
of Theorem J.2 by pre-composing f := ĝ ◦ (cos(·) + 1). We proceed via contradiction. Suppose that there is an
α ∈ (0, 1) and a sequence of degree-p polynomial filters, ĝγp(λ) =

∑p
j=0 γjλ

j , γ = (γ0, . . . , γp)
⊤ ∈ Rp+1, such that

∥ĝγp
− ĝ∥∞ = O(p−α). Then, the sequence of trigonometric polynomials Tp := ĝγp

◦ (cos(·) + 1) fulfills the condition of
Theorem J.2. This would imply that f = ĝ ◦ (cos(·) + 1) is α-Hölder continuous, meaning that a constant K > 0 exists
such that

|ĝ(cos(x) + 1)− ĝ(cos(y) + 1)| ≤ K|x− y|α ∀x, y ∈ [0, 2π]

Considering λ0 ∈ [0, 2], λ→ λ0 and x = arccos(λ0 − 1), y = arccos(λ− 1) (using the arccos branch in which both λ0,
λ eventually end up) shows a contradiction to the assumed discontinuity of ĝ. Therefore, no polynomial filter sequence(
ĝγp

)
p∈N together with an α ∈ (0, 1) exist such that ∥ĝγp − ĝ∥∞ = O(p−α). In particular, for any sequence

(
ĝγp

)
p∈N, a

sequence of adversarial values (λp)p∈N, λp ∈ [0, 2] exists such that

∄α ∈ (0, 1) : |ĝγp
(λp)− ĝ(λp)| = O(p−α)

The proof is finished if we can find a sequence of graphs (Gp) such that the symmetrically-normalized graph Laplacian
Lp of Gp contains λp as an eigenvalue. In this case, we can construct adversarial input signals Xp on the graphs Gp by
setting the first embedding channel to an eigenvector corresponding to λp, and the remaining channels to zero, such that(
gγp
− g
)
∗Gp

Xp = |ĝγp
(λp)− ĝ(λp)|Xp. In particular, it then holds that

∄α ∈ R+ : sup
0 ̸=X∈R|Gp|×d

∥(gγp
− g) ∗Gp

X∥F
∥X∥F

= O
(
p−α

)
If we assume only simple graphs, such a construction is unfortunately not possible since the set of all simple graphs and
therefore the set of all realizable eigenvalues is countable, whereas the adversarial values λp could lie anywhere in the
uncountable set [0, 2]. We can, however realize arbitrary eigenvalues by using weighted graphs with three nodes. Consider a
cyclic graph structure and tune the weight of edge (1, 2) to sin2(θp) and the weight of edges (2, 3) and (3, 1) to cos2(θp)
with θp ∈

[
0, π2

]
. The symmetrically-normalized graph Laplacian,

Lp =

 1 − cos2(θp) − sin2(θp)
− cos2(θp) 1 − sin2(θp)
− sin2(θp) − sin2(θp) 1

 ,

has eigenvalues λ(1)p = 1, λ
(2)
p = sin2(θp), λ

(3)
p = 2− sin2(θp). λ

(2)
p can assume all values λp ∈ [0, 1], whereas λ(3)p can

assume all values λp ∈ [1, 2]. This finishes the proof.

Remark J.3. If one wishes to restrict the set of possible adversarial graph sequences (Gp)p∈N to include only simple graphs,
a version of Theorem F.1 still holds where we restrict the assumption to filters ĝ which are piecewise-continuous with
discontinuities on a finite set of points D ⊂ S, where S ⊂ [0, 2] denotes the countable set of eigenvalues realizable by
simple graphs. This still covers a large class of filters to which order-p polynomial filters can provably converge slower than
any inverse root of p in the operator norm, and includes the virtual node filter (discontinuous only in λ = 0) presented as an
example in the main body. The proof is fully analogous up to the point of constructing λp. If λp ∈ D, we can find a graph
that realizes it exactly. Now assume λp /∈ D. We note that the set S is dense in [0, 2] (clear from considering, e.g., the cyclic
graphs Cn with symmetrically-normalized Laplacian eigenvalues λk = 1−cos

(
2πk
n

)
). Since we assume that ĝ and therefore

also |ĝγp
− ĝ| is piecewise-continuous anywhere but onD ⊂ S andD is finite, we can find an open neighborhoodN (λp) for

any λp /∈ D on which ĝ is continuous. Using that S is dense in [0, 2], we find a graph sequence
(
G̃(l)p

)
l∈N

with eigenvalues

λ̃
(l)
p ∈ N (λp) ∀l ∈ N,

(
λ̃
(l)
p

)
l∈N
→ λp for which ∥ĝγp

(λ̃
(l)
p ) − ĝ(λ̃(l)p )∥ → ∥ĝγp

(λp) − ĝ(λp)∥. Therefore, by the same

reasoning as in the proof of Theorem F.1, we find that there can be no α ∈ (0, 1) for which sup0 ̸=X∈R|Gp|×d

∥(gγp−g)∗GpX∥F

∥X∥F

is of O (p−α).

J.4. Proof of Theorem F.2

We first introduce the setting and notation to state Theorem F.2 in its general version. We study how well S2GNNs can
approximate “idealized” GNNs (IGNNs) containing L graph convolution layers 1 ≤ l ≤ L, each of which can express a
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convolution operator g with any spectral representation ĝ(l) : [0, 2]→ Rd(l) . An IGNN layer therefore has the structure

H(l) = σ
(
g(l) ∗G [H(l−1)W (l)]

)
= σ

(
V ĝ(l)(λ)⊙ [V ⊤H(l−1)W (l)]

)
(23)

with H(l) ∈ Rn×D(l)

, W (l) ∈ RD(l)×D(l−1)

and V ∈ Rn×n.

We compare this to S2GNNs with ℓ = (m+ 1)L layers for m ≥ 1, in the additive form of Eq. 1,

H(l) = Spectral(l)(H(l−1);V ,λ) + Spatial(l)(H(l−1);A) (24)

Each layer 1 ≤ l ≤ ℓ parametrizes a spatio-spectral convolution. The spectral part satisfies Eq. 3,

Spectral(l)(H(l−1);V ,λ) = V
(
ĝ
(l)
ϑ (λ)⊙

[
V ⊤H(l−1)W (l)

spec

])
(25)

with embeddings H(l) ∈ Rn×d(l) , linear feature transforms f (l)θ := W
(l)
spec ∈ Rd(l)×d(l−1)

and a spectral filter ĝ(l)ϑ : [0, 2]→
R that is fully supported and a universal approximator on [0, λcut]. Note we assume here that in every layer, there is only one
spectral filter which gets reshaped as to act on every hidden component, whereas in practice, we relax this assumption to
different filters per component, which can only be more expressive. The spatial part is a polynomial filter of the form

Spatial(l)(H(l−1);A) = σ

 p∑
j=0

γ
(l)
j Lj

H(l−1)W
(l)
spat


= σ

(
V
(
ĝ(l)γ (λ)⊙

[
V ⊤H(l−1)W

(l)
spat
]))

with W
(l)
spat ∈ Rd(l)×d(l−1)

, polynomial order p (fixed across layers), and a spectral representation ĝ(l)γ (λ) =
∑p
j=0 γ

(l)
j λj

with coefficients γ(l) = (γ
(l)
0 , . . . , γ

(l)
p )⊤ ∈ Rp+1.

Note that the layer-wise hidden dimensions D(l) vs. d(l) of the IGNN vs. S2GNN do not have to agree except at the
input layer, d(0) = D(0) (of course, both networks receive the same input H(0) = H(0) = X), and at the output layer,
d(ℓ) = D(L). We now state the general version of Theorem F.2. [Theorem F.2, general] Assume an L-layer IGNN with filters
ĝ(l) such that ĝ(l)

∣∣
[λcut,2]

∈ Cr[λcut, 2] and
∥∥∥ dr

dλr ĝ
(l)
∣∣
[λcut,2]

∥∥∥
∞
≤ Kmax

r (λcut) for all 1 ≤ l ≤ L. Let ∥ĝ(l)∥∞ ≤ ∥ĝ∥max
∞ and

∥W (l)∥2 ≤ ∥W ∥max
2 for all 1 ≤ l ≤ L. Assume that σ = [ · ]≥ is the ReLu function. Then,

(1) For a fixed polynomial order p ≥ 2, an approximating sequence
(
S2GNNm

)
m∈N of [(m+ 1)L]-layer S2GNNs exists

such that, for arbitrary graph sequences (Gm)m∈N,

sup
0̸=X∈R|Gp|×d

∥
[
(S2GNNm)Gm

− (IGNN)Gm

]
(X)∥F

∥X∥F

=O
(
CL(∥ĝ∥max

∞ , ∥W ∥max
2 ) Kmax

r (λcut) (pm)−r
)
,

CL(∥ĝ∥max
∞ , ∥W ∥max

2 ) = ∥W ∥max
2

L−1∏
l=1

[
∥ĝ∥max

∞ ∥W ∥max
2 + (∥ĝ∥max

∞ ∥W ∥max
2 )l

]
with a leading-order scaling constant that depends only on r. Here, ( · )Gm

denotes the instantiation of all model filters on
the eigenvalues of an input graph Gm, which maps both models onto a Gm-dependent function RD(0) → RD(L)

.

(2) For fixed m ≥ 1, an approximating sequence
(
S2GNNp

)
p∈N of [(m+ 1)L]-layer S2GNNs with increasing layer-wise

polynomial order p exists such that, for all (Gp)p∈N, the same bound holds.

Proof. We first prove the following lemma, narrowing down the previous theorem to a single layer.

Lemma J.4. Let IGNN(l) denote a single IGNN layer as in Eq. 23, with a filter ĝ(l) such that ĝ(l)
∣∣
[λcut,2]

is r-times

continuously differentiable on [λcut, 2] and satisfies a bound Kr

(
ĝ(l), λcut

)
≥ 0,

∣∣ dr
dλr ĝ

(l)(λ)
∣∣ ≤ Kr

(
ĝ(l), λcut

)
∀λ ∈

[λcut, 2]. Let σ = [ · ]≥ be the ReLu function, and let ∥W (l)∥2 denote the spectral norm of W (l). Then,
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(1) For fixed polynomial order p ≥ 2, an approximating sequence
(

S2GNN(l)
m

)
m∈N

of (m+ 1)-layer S2GNNs exists such

that, for arbitrary graph sequences (Gm)m∈N,

sup
0 ̸=X∈R|Gp|×d

∥∥∥[(S2GNN(l)
m )Gm

− (IGNN(l))Gm

]
(X)

∥∥∥
F

∥X∥F
= O

(
[∥W (l)∥2Kr(ĝ, λcut)](pm)−r

)
with a scaling constant that depends only on r. Here, ( · )Gm

denotes the instantiation of all model filters on the eigenvalues
of an input graph Gm, which maps both models onto a Gm-dependent function RD(l−1) → RD(l)

.

(2) For fixed m ≥ 1, an approximating sequence
(

S2GNN(l)
p

)
p∈N

of (m + 1)-layer S2GNNs with increasing layer-wise

polynomial order p exists such that, for all (Gp)p∈N, the same bound holds.

Remark J.5. The proof of the simplified Theorem F.2 used in the main body is analogous to the proof of Theorem J.4 just
without the nonlinearity, which has the following consequences:

• The final layer m+ 1 which we only need to apply one last nonlinearity to the output (since the spectral part of all
layers, including the previous layer m, has none) becomes obsolete, so the final layer instead becomes m,

• The two limits (1) and (2) are equivalent by the reduction to an mp-order polynomial filter,

• We do not need the dimension-doubling “trick” outlined below to get rid of the nonlinearity in the proof and instead
set all feature transform matrices in layers 1 through m − 1 to the identity and the final ones to W

∗(m)
spec = W (l),

W
∗(m)
spat = W (l).

Proof of Theorem J.4. We first note that m S2GNN spatial parts, each of order p, would act like an (mp)-order polynomial
filter (factorized into m order-p polynomials), were it not for the nonlinearities in between. However, using the fact that σ
is the ReLu function, we can choose intermediate hidden dimensions twice the size of the input dimension and then use
the linear transforms to store a positive and a negative copy of the embeddings, add them back together after applying
each ReLu, just to split the result back into a positive and negative copy for the next layer. This essentially gets us rid of
σ. Throughout the proof, we use a star superscript to denote the specific parameters that will ultimately satisfy our bound,
whereas we put no star above parameters that are yet to be fixed in a later part of the proof.

For m ≥ 2, the trick discussed above works if we set

W ∗(1)
spec =

1

2

(
I
−I

)
∈ R2D(l−1)×D(l−1)

,

W ∗(2)
spec , . . . ,W

∗(m−1)
spec =

1

2

(
I
−I

)(
I −I

)
∈ R2D(l−1)×2D(l−1)

,

W ∗(m+1)
spec = W (l)

(
I −I

)
∈ RD

(l)×2D(l−1)

,

W
∗(1)
spat =

(
I
−I

)
∈ R2D(l−1)×D(l−1)

,

W
∗(2)
spat , . . . ,W

∗(m−1)
spat =

(
I
−I

)(
I −I

)
∈ R2D(l−1)×2D(l−1)

,

W
∗(m+1)
spat = W (l)

(
I −I

)
∈ RD

(l)×2D(l−1)

.

In the case m = 1, pick the matrices W ∗(1)
spec ,W

∗(1)
spat from above for the first, and the matrices W ∗(m+1)

spec ,W
∗(m+1)
spat from

above for the second layer.

Set ĝ∗(m+1)
γ (λ) = 1 and ĝ∗(m+1)

ϑ (λ) = 0. Given these choices and a graph G with eigenvalues λ,

(S2GNN
(l)
)G(X) = σ

(
V
(
ĝspsp(λ)⊙

[
V ⊤H(l−1)W (l)

]) )
, ĝspsp =

m∏
j=1

(
ĝ
(j)
ϑ + ĝ(j)γ

)
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We see that ĝspsp
∣∣
[λmax,2]

=
∏m
j=1 ĝ

(j)
γ since ĝ(j)ϑ

∣∣
[λmax,2]

= 0 for 1 ≤ j ≤ m. This can express any polynomial up to
order mp on [λmax, 2], since we assumed a layer-wise p ≥ 2 and any polynomial with real coefficients factorizes into
real-coefficient polynomials of degree less or equal to 2 by the fundamental theorem of algebra. On the interval [0, λmax], on
the other hand, the filter ĝspsp

∣∣
[0,λmax]

can express any IGNN filter ĝ(l)
∣∣
[0,λmax]

. For m = 1, this is immediately clear. Else, set

ĝ
(j)
ϑ to constants Cj ∈ R≥, 1 ≤ j ≤ m− 1 large enough that none of the polynomials

(
Cj + ĝ

(j)
γ

)
, 1 ≤ j ≤ m− 1, has a

zero in [0, λmax]. Defining ĝ(m)
ϑ =

ĝ(l)
∣∣
[0,λmax]∏m

j=1

(
Cj+ĝ

(j)
γ

) − ĝ(m)
γ

∣∣
[0,λmax]

gives the desired function.

We proceed by making use of a result by D. Jackson (Natanson, 1964), which is essentially a converse to Theorem J.2
which we used to prove Theorem F.1: [Jackson’s theorem on an interval] Let a < b ∈ R, k, r ∈ N with k ≥ r − 1 ≥ 0,
f ∈ Cr[a, b]. Then, a polynomial pk of degree less or equal to k exists such that

∥pk − f∥∞ ≤
b− a
2

(π
2

)r 1

(k + 1)k . . . (k − r + 2)

∥∥∥∥ drdxr f
∥∥∥∥
∞

Since ĝspsp can express any polynomial up to order mp on [λmax, 2] and, for any such polynomial, find parameters for the
spectral parts that match the ideal filter ĝ(l)

∣∣
[0,λmax]

exactly (not contributing to the supremum error), we can directly transfer

this theorem to our case. Define S2GNN(l)
m from the lemma by setting the linear feature transforms and final-layer filters as

above. For the filters in layers 1 through m, define γ∗(1), . . . , γ∗(m) such that
∏m
j=1 ĝ

∗(j)
γ factorizes into into the polynomial

from Jackson’s theorem on [λmax, 2], and ϑ∗(1), . . . , ϑ∗(m) to match ĝ(l) on [0, λmax]. This defines a filter ĝ(l)spsp. We then find,
for mp ≥ r − 1 ≥ 0,

∥ĝ(l)spsp − ĝ(l)∥∞ ≤
2− λmax

2

(π
2

)r 1

(mp+ 1)mp . . . (mp− r + 2)

∥∥∥∥ drdλr ĝ(l)∣∣[0,λmax]

∥∥∥∥
∞

Therefore, ∥ĝ(l)spsp − ĝ(l)∥∞ is of O (Kr(ĝ, λcut)(mp)
−r) and we can find a scaling constant that depends only on r. Since

the Lipschitz constant of σ is 1, we find for any graph G with eigenvalues λ and any graph signal 0 ̸= X ∈ R|G|,

∥∥∥[(S2GNN(l)
m )G − (IGNN(l))G

]
(X)

∥∥∥
F

∥X∥F
≤

∥∥∥V (ĝ(l)spsp − ĝ(l)
)
(λ)⊙

[
V ⊤XW (l)

]∥∥∥
F

∥X∥F

≤
∥ĝ(l)spsp − ĝ(l)∥∞

∥∥(V V ⊤)XW (l)
∥∥
F

∥X∥F
≤ ∥ĝ(l)spsp − ĝ(l)∥∞∥W (l)∥∞

=O
(
[∥W (l)∥2Kr(ĝ, λcut)](mp)

−r
)

with a scaling constant that depends only on r. Exactly the same procedure and bounds hold if we instead keep m fixed and
increase p. This finishes the proof of Theorem J.4.

We can now prove the main theorem by induction. Theorem J.4 gives the initial step. Now, assume the theorem holds for L
IGNN layers. We can then choose

(
S2GNNm

)
m∈N =

(
S2GNN(L+1)

m ◦ S2GNN(L◦···◦1)
m

)
m∈N

, where S2GNN(L+1)
m are the

approximating models fulfilling Theorem J.4, while S2GNN(L◦···◦1)
m fulfill the induction assumption. We assume fixed p

and increasing m, but the proof is fully analogous in the other case. Applying the same decomposition to (IGNNm)m∈N lets
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us express the error on a graph sequence (Gm)m∈N as∥∥[(S2GNNm)Gm
− (IGNN)Gm

]
(X)

∥∥
F

∥X∥F

=

∥∥∥[(S2GNN(L+1)
m ◦ S2GNN(L◦···◦1)

m )Gm
− (IGNN(L+1)

m ◦ IGNN(L◦···◦1)
m )Gm

]
(X)

∥∥∥
F

∥X∥F
≤ (∥X∥F )−1

∥∥∥[(S2GNN
(L+1)

m ◦ S2GNN
(L◦···◦1)
m )Gm

− (S2GNN
(L+1)

m ◦ IGNN(L◦···◦1)
m )Gm

]
(X)

∥∥∥
F

+(∥X∥F )−1
∥∥∥[(S2GNN

(L+1)

m ◦ IGNN(L◦···◦1)
m )Gm

− (IGNN(L+1)
m ◦ IGNN(L◦···◦1)

m )Gm

]
(X)

∥∥∥
F

≤
[
∥ĝ∥max

∞ ∥W ∥max
2 +O(Kmax

r (λcut) (pm)−r)
]
O
(
CL(∥ĝ∥max

∞ , ∥W ∥max
2 ) Kmax

r (λcut) (pm)−r
)

+O(Kmax
r (λcut) (pm)−r)(∥ĝ∥max

∞ ∥W ∥max
2 )L

=O
(
CL+1(∥ĝ∥max

∞ , ∥W ∥max
2 ) Kmax

r (λcut) (pm)−r
)
.

J.5. Proof of Theorem G.2

We next prove the stability of our positional encodings:

Theorem G.2. The Positional Encodings PE in Eq. 7 are stable.

Recall the definition of stability via Hölder continuity:

Definition J.6 (Stable PE). (Huang et al., 2024) A PE method PE : Rn×k × Rk → Rn×k is called stable, if there exist
constants c, C > 0, such that for any Laplacian L,L′, and P∗ = argminP ∥L− PL′P⊤∥F

∥PE(EVD(L)) − P∗ PE (EVD(L′))F

≤ C ·
∥∥L− P∗L

′P⊤
∗
∥∥c
F
.

(14)

For this proof, we build on the work of Huang et al. (2024) where the authors show that under the assumptions of Theorem J.7,
and some minor adjustments, a positional encoding of the following form Eq. 26 is stable (Theorem J.8).

SPE(V ,λ) = ρ
(
V diag (ϕ1(λ))V

⊤,V diag (ϕ2(λ))V
⊤, . . . ,V diag (ϕk(λ))V

⊤) (26)

Definition J.7. The key assumptions for SPE are as follows:

• ϕℓ and ρ are permutation equivariant.

• ϕℓ is Kℓ-Lipschitz continuous: for any λ,λ′ ∈ Rk, ∥ϕℓ(λ)− ϕℓ (λ′)∥F ≤ Kℓ ∥λ− λ′∥.

• ρ is J-Lipschitz continuous: for any [B1,B2, . . . ,Bk] ∈ Rn×n×k and [B′
1,B

′
2, . . . ,B

′
k] ∈

Rn×n×k, ∥ρ (B1,B2, . . . ,Bk)− ρ (B′
1,B

′
2, . . . ,B

′
k)∥F ≤ J

∑k
l=1 ∥Bℓ −B′

ℓ∥F.

Theorem J.8 (Stability of Eq. 26 by Huang et al. (2024)). Under Theorem J.7, SPE (Eq. 26) is stable with respect to the
input Laplacian: for Laplacians L,L′,

∥SPE(EVD(L))− P∗ SPE (EVD (L′))∥F ≤ (α1 + α2) k
5/4
√
∥L− P∗LP⊤

∗ ∥F

+

(
α2
k

γ
+ α3

)∥∥L− P∗LP⊤
∗
∥∥
F
,

(27)

where the constants are α1 = 2J
∑k
l=1Kℓ, α2 = 4

√
2J
∑k
l=1Mℓ, and α3 = J

∑k
l=1Kℓ. Here Mℓ =

supλ∈[0,2]k ∥ϕℓ(λ)∥ and again P∗ = argminP∈Π(n)

∥∥L− P∗LP⊤
∗
∥∥
F

. The eigengap γ = λk+1 − λk is the difference
between the (k + 1)-th and k-th smallest eigenvalues, and γ = +∞ if k = n.

26



Spatio-Spectral Graph Neural Networks

We prove a similar bound for general weighted adjacency matrices A ∈ Rn×n≥0 (note that such a stability result would be
trivial if we restrict A ∈ {0, 1}n×n, since any function on a finite set is Lipschitz continuous). To achieve this, we need
a technical assumption in order to ensure that the function values do not blow up and degree normalization is indeed a
Lipschitz continuous function: We assume that the domain of A is restricted to (symmetric) matrices whose degrees are
uniformly bounded by some constants 0 < D̃min < D̃max:

du :=
∑
v

Au,v ∈ [D̃min, D̃max] ∀u ∈ {1, . . . , n}. (28)

To decompose the proof into smaller pieces we commonly use the well-known fact that the composition of Lipschitz contin-
uous functions f1 ◦ f2, with constants C1 and C2, is also Lipschitz continuous ∥f1(f2(y))− f1(f2(x))∥ ≤ C1C2 ∥y − x∥
with constant C1C2.

Proof. Our proposed encoding (Eq. 7) matches roughly Eq. 26. Specifically, ϕℓ(λ) = softmax((λj−λ)⊙(λj−λ)/σ2) with
σ ∈ R>0. However, ρℓ(B1,B2, . . . ,Bk) does not directly match ||kj=1[Bj ⊙ A] · 1⃗, since it is also a function of the
adjacency A. Nevertheless, we show that ϕℓ is Kℓ-Lipschitz continuous and ρ is J-Lipschitz continuous, where we also
bound the change of A.

We will start with ϕℓ(λ) = softmax((λj−λ)⊙(λj−λ)/σ2). The softmax is well-known to be of Lipschitz constant 1 w.r.t.
the L2 vector norm/Frobenius norm. −x/σ has a Lipschitz constant of 1/σ. This leaves us with the quadratic term
ψu(λ) = (λu − λ)⊙ (λu − λ) where we bound the norm of the Jacobian

Jψu
=



−2(λu − λ1) 0 . . . 0 . . . 0
0 −2(λu − λ2) . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . 0 . . . −2(λu − λk)


(29)

that is zero everywhere except for the diagonal entries, excluding its u-th entry. Thus, ∥Jψu∥F ≤ 2kmaxv∈{1,2,...,k}(λv −
λu) ≤ 2k(λk − λ1) ≤ 4k, as 0 = λ1 ≤ λk ≤ 2. We can therefore use Kℓ := 4k/σ.

Now we continue with ρ̃ℓ(A,B1,B2, . . . ,Bk). For f(A,B) = (B⊙A) · 1⃗ with a general weighted adjacency A ∈ Rn×n,
we consider

∥(B ⊙A) · 1⃗− (B′ ⊙A′) · 1⃗∥F ≤
(A)
∥⃗1∥2∥B ⊙A−B′ ⊙A′∥F

=
√
n∥B ⊙A−B′ ⊙A′∥F

=
√
n∥B ⊙A−B′ ⊙A+B′ ⊙A−B′ ⊙A′∥F

≤
(B)

√
n∥B ⊙A−B′ ⊙A∥F +

√
n∥B′ ⊙A−B′ ⊙A′∥F

=
√
n∥(B −B′)⊙A∥F +

√
n∥B′ ⊙ (A−A′)∥F

≤
(C)

√
nmax

u,v
Au,v︸ ︷︷ ︸

≤
(D)

D̃max

∥B −B′∥F +max
u,v

B′
u,v︸ ︷︷ ︸

≤
(E)

1

√
n ∥A−A′∥F︸ ︷︷ ︸

(F )

.

(30)

(A) holds by Cauchy-Schwarz, (B) by triangle inequality, (C) by Cauchy-Schwarz, (D) follows from the domain of A, and
(E) is true since the largest eigenvalue of B = V ϕℓ(λ)V

⊤ is 1 because ϕℓ(λ)j ≤ 1,∀1 ≤ j ≤ k.

To further bound (F), i.e. ∥A −A′∥F, note that ∥L − L′∥F = ∥D−1/2AD−1/2 −D′−1/2A′D′−1/2∥F. For g(A) :=
D1/2AD1/2, our initial assumption from Eq. 28 yields the existence of a Lipschitz constant CD̃min,D̃max

for g, which can
be verified by computing the partial derivatives of g. Thus, we can bound
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∥A−A′∥F = ∥g(D−1/2AD−1/2)− g(D′−1/2A′D′−1/2)∥F
≤ C D̃min

D̃max
, D̃max
D̃min

∥D−1/2AD−1/2 −D′−1/2A′D′−1/2∥F

= C D̃min
D̃max

, D̃max
D̃min

∥L−L′∥F =: α4∥L−L′∥F.
(31)

As concatenation of k vectors ||kj=1x has a Lipschitz constant of 1, we have J =
√
nD̃max. Moreover, we have an additional

term for the RHS of Eq. 27 with constant α4
√
nk, coming from (F) and Eq. 31.

To finalize the proof, we restate the beginning of the proof of Huang et al. (2024) and incorporate the additional A-dependency
of ρ̃ℓ(A,B1,B2, . . . ,Bk) with Bj = V diag (ϕj(λ))V

⊤ for 1 ≤ j ≤ k.

∥SPE(EVD(L),L)− P∗ SPE (EVD (L′) ,L)∥F
= ∥ρ̃ℓ(A,B1,B2, . . . ,Bk)− P∗ρ̃ℓ(A

′,B′
1,B

′
2, . . . ,B

′
k)∥F

=
∥∥ρ̃ℓ(A,B1,B2, . . . ,Bk)− ρ̃ℓ(P∗A

′P⊤
∗ ,P∗B

′
1P

⊤
∗ ,P∗B

′
2P

⊤
∗ , . . . ,P∗B

′
kP

⊤
∗ )
∥∥
F

≤

[
J

k∑
l=1

∥∥Bl − P∗B
′
lP

⊤
∗
∥∥
F

]
︸ ︷︷ ︸

subject of Huang et al. (2024)

+α4

√
nk
∥∥L− P∗L

′
lP

⊤
∗
∥∥
F
.

(32)

Including the extra term stemming from our A-dependent ρ̃ℓ(A,B1,B2, . . . ,Bk), the stability guarantee reads

∥SPE(EVD(L),L)− P∗ SPE (EVD(L′) ,L)∥F ≤ (α1 + α2) k
5/4
√
∥L− P∗LP⊤

∗ ∥F

+

(
α2
k

γ
+ α3 + α4

√
nk

)∥∥L− P∗LP⊤
∗
∥∥
F

(33)

with the newly introduced α4 arising as Lipschitz constant of (inverse) degree normalization. The proof is complete.

Windowing for “eigengap” independent bounds. Note thatC depends on the eigengap between 1/λk+1−λk at the frequency
cutoff. One should be able to improve upon this bound with windowing (see Fig. 4)), effectively lowering the Lipschitz
constant of ĥj(λ) around λk. We leave a formal treatment of this insight to future work.

J.6. Proof of Theorem G.3

We next prove the expressivity of a GNN/S2GNN in combination with our positional encodings:

Theorem G.3. S2GNNs are strictly more expressive than 1-WL with PE of Eq. 7.

For this, we assume that the positional encodings are the only node attributes, subsuming a constant feature or that there
is a linear transformation on the raw features. We require that the choice of spatial MPGNN / spectral filter is at least as
expressive as the 1-WL test, which is the case, e.g., for GIN. Moreover, we assume that the node-level embeddings are
aggregated to the graph level using summation.

Proof. To show that GNN(PE(V , λ)) is strictly more expressive as 1-WL. For all graphs that 1-WL can distinguish, the
GNN may learn to ignore the PE. Thus, we only need to prove that the positional encodings/node features of PE(V , λ)
suffice to distinguish some graphs that 1-WL could not distinguish. For all graphs that 1-WL can distinguish we know, by
assumption, that the GNN can distinguish the graphs.

As Li et al. (2020) point out, 1-WL (and MPGNN that are as capable as 1-WL) cannot distinguish degree-regular graphs
with the same number of nodes and degrees. A degree regular graph is a graph where each node has the same degree. This is
closely related to Theorem H.1.

We next show that our PE alone distinguishes certain degree-regular graphs. In this construction, we consider all 3-regular
graphs with n = 8 nodes for this (see Fig. 10). The encodings 1⃗ PE result in the following values with σ = 0.001 and
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Figure 10: Our positional encodings PE Eq. 7 illustrated in the node colors and sizes. We plot all 5 (rows) 3-regular graphs
with 8 nodes and all possible dimensions of the encoding (columns). We use σ = 0.001. Color denotes the sign, and size
encodes the absolute value. We hypothesize that the visual “smoothness” between graphs and dimensions is due to our PE’s
stability (Theorem G.2).

rounded to max 2 decimal places:

1⃗⊤ PE(EVD(L1)) =
[
3 1.73 1 0.41 −1 −1 −1.73 −2.41

]
1⃗⊤ PE(EVD(L2)) =

[
3 1.56 0.62 0.62 0 −1.62 −1.62 −2.41

]
1⃗⊤ PE(EVD(L3)) =

[
3 1.73 1 0.41 −1 −1 −1.73 −2.41

]
1⃗⊤ PE(EVD(L4)) =

[
3 1 1 0.41 0.41 −1 −2.41 −2.41

]
1⃗⊤ PE(EVD(L5)) =

[
3 1 1 1 −1 −1 −1 −3

]
(34)

By constructing examples, this shows that our PE can distinguish 4 out of the 5 3-regular graphs with 8 nodes. Thus, our
PE may distinguish at least some graphs that 1-WL cannot. This concludes the proof.

J.7. Proof of Theorem H.1

Proof. The proof relies on properties of the eigenvectors for the different choices Lu = D −A, Lrw = I −D−1A, or
Ls = I −D−1/2AD−1/2. For Lu1⃗ = λ01⃗ = 0 and Lrw1⃗ = λ01⃗ = 0 the first eigenvector is constant. The first eigenvector
of Ls is D1/21⃗ (ignoring normalization). Thus, for degree-regular graphs, the first eigenvector of Ls is also constant.

By the orthogonality of eigenvectors, vu ⊥ vv if u ̸= v, we know that all other eigenvectors are orthogonal to constant node
features. Consequently, the “Fourier transformed” node features are V ⊤1⃗ =

[√
n 0 . . . 0

]
for all three choices Lu,

Lrw, and Ls. Since this is true for all degree-regular graphs, spectral GNNs cannot distinguish degree-regular graphs with
the same number of nodes.
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Since the 3-WL test can distinguish some degree-regular graphs, 3-WL is strictly more expressive than a spectral GNN.

J.8. Proof of Theorem H.2

Proof. With a polynomial parametrization of the spectral filter ĝ(λ), we know V (ĝ(λ)⊙ [V ⊤x]) = V diag(ĝ(λ))V ⊤x =
ĝ(L)x =

∑p
j=0 γjL

jx (see § 2). Due to this equivalence between a spectral and spatial filter and the constant node
features x = 1⃗, any polynomial filter

∑p
j=0 γjL

j 1⃗ cannot distinguish degree-regular graphs. This argument also holds if
the polynomial filter is normalized by the maximum eigenvalue as done by ChebNet (Defferrard et al., 2017).

K. Limitations
We expect that many common graph benchmarks do not have or only insignificant long-range interactions. We observe that
MPGNNs are less likely to overfit, perhaps since locality is a good inductive bias in many circumstances (Bronstein et al.,
2021). Moreover, we observe that the spectral filter (§ A.7) may converge slowly and get stuck in local optima. We find that
a sufficient amount of randomly initialized filters mitigates this issue to a large extent. Further, one can introduce inductive
biases via windowing functions (Fig. 4), like the exponential window used by Hyena (Poli et al., 2023).

Even if the true causal model generating the target consists of long-range interactions, it might be sufficient to model the
training data solely using (potentially spurious) local interactions. This might be especially true if the training nodes are
samples from a “small” vicinity of the graph (e.g., OGB Products (Hu et al., 2020)).

Closely related to the previous point is the amount of available training data. We hypothesize that S2GNNs are more
data-hungry than their purely spatial counterpart. That is, to reliably detect (non-spurious) long-range interactions in the
training data, a sufficient amount of data is required. Similar findings have been made, e.g., in the image domain (Dosovitskiy
et al., 2021).

Except for heterophilic graphs, direction plays a small role in graph machine learning even though many benchmark tasks
actually consist of directed graphs (Rossi et al., 2023). Moreover, there is a lack of benchmarks involving directed graphs,
which require long-range interactions.

Since a lot of the previous points hover around the insufficiency of the available benchmarks, we propose two new tasks § M.1
and derive further datasets, e.g., for associative recall.

While we demonstrate the practicality of S2GNNs in § M.3 on large-scale benchmarks, the partial eigendecomposition EVD
starts to become costly on the largest graphs we use for evaluation. Even though we did not experiment with lowering the
requested precision, etc., we expect that for scaling further, naïve approaches might not be sufficient. One direction could be
to utilize GPUs instead of CPUs or to adapt concepts, e.g., from spectral clustering (von Luxburg, 2007).

Even though there are many important reasons why we should utilize a spectral filter on the low end of the spectrum,
there might be tasks for which this choice is suboptimal. One way to estimate the frequency band to which one should
apply a spectral filter is via a polynomial regression and then determine where the derivative is maximal. Note that it is
efficient to calculate the eigenvectors around an arbitrary location of the spectrum, e.g., with the “shift-invert mode” of
scipy/ARPACK (Lehoucq et al., 1998).

Due to the many possible design decisions of spectrally parametrized filters, the neglect of spectral filters in prior work, and
the lack of appropriate benchmarks, it was not possible to ablate all the details. We expect that future work will discuss the
specific building blocks in greater detail.

L. Broader Impact
We expect that S2GNNs will have similar societal implications as other model developments like Convolutional Neural
Networks (CNNs) (LeCun et al., 1989), LSTMs (Hochreiter & Urgen Schmidhuber, 1997), transformers (Vaswani et al.,
2017), or modern Graph Neural Networks (Gilmer et al., 2017). Since such models may be used as building blocks in
architectures for predictive tasks, generative modeling, etc., they have a wide range of positive and negative implications.
Nevertheless, we expect that S2GNNs will not have more negative implications than other machine learning model
innovations.
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M. Main Experimental Findings
We next coherently present the main empirical findings following the outlook paragraph in § 4 and the results stated in
this section. Specifically, we complement the strong performance on the peptides benchmark with further benchmarks
to demonstrate the capabilities of S2GNNs for modeling long-range interactions (§ M.1) in the graph domain. We
provide details on the S2GNNs’ long sequence performance (§ M.2) (mechanistic in-context learning). We exemplify
S2GNNs’ practicality and competitiveness at scale on large-scale benchmarks (§ M.3) like the TPUGraphs (Phothilimthana
et al., 2023) and Open Graph Benchmark (OGB) Products (Hu et al., 2020). Further, in § N.5, we report state-of-the-art
performance on the heterophilic arXiv-year (Lim et al., 2021).

M.1. Long-Range Interactions
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Finding (I): S2GCN outperforms state-of-the-art graph transformers, MPGNNs, and graph rewirings on the peptides-
func and peptides-struct long-range benchmarks (Dwivedi et al., 2022). We remain approximately 40% below the 500k
parameter threshold and, on peptides-func, we outperform prior state-of-the-art models with a comfortable margin. For this,
we extend the best configuration for a GCN of Tönshoff et al. (2023) (see GCN in Table 1), lower the number of message
passing steps from six to three, and interleave spatial and spectral filters (Eq. 2) with λcut = 0.7.

Dataset contribution: Clustering a graph, given a single seed node per cluster, measures the ability (1) to spread information
within the cluster and (2) to discriminate between the clusters. We complement the semi-supervised task CLUSTER from
Dwivedi et al. (2023) with (our) LR-CLUSTER dataset, a scaled-up version with long-range interactions (1). We closely
follow Dwivedi et al. (2023), but instead of using graphs sampled from Stochastic Block Models (SBMs), we sample
coordinates from a Gaussian Mixture Model (GMM). CLUSTER has 117 nodes on average, while ours has 896. Our cluster
dataset has an average diameter of ≈ 33 and may contain hub nodes that would cause over-squashing (see Fig. 15). For full
details on the dataset construction, see § N.3.

(a) (b) (c)

Figure 14: Examples of generated graphs for the CLUSTER task (SBM). Labeled nodes are marked red. Edges within
clusters are highlighted.
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(a) (b) (c)

Figure 15: Examples of generated graphs for the LR-CLUSTER task (GMM). Labeled nodes are marked red.

Dataset contribution: Distance regression is a task with long-range interactions used in prior work (Geisler et al., 2023;
Lim et al., 2023). Here, the regression targets are the shortest path distances to the only root node (in-degree 0). We generate
random trees/DAGs with ≈750 # of nodes on average (details are in § N.4). The target distances often exceed 30. We
evaluate on similarly sized graphs as in the training data, i.e., in-distribution (ID) samples, and out-of-distribution (OOD)
samples that consist of slightly larger graphs.

A Vdiag(ĝϑ(λ) : , 1)V
> Vdiag(ĝϑ(λ) : , 2)V

> Vdiag(ĝϑ(λ) : , 3)V
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>

(a)
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> Vdiag(ĝϑ(λ) : , 3)V
> Vdiag(ĝϑ(λ) : , 4)V

>

(b)

Figure 16: SBM-based (a), visualized in Fig. 15a, and our GMM-based (b), visualized in Fig. 14a, graphs along with four
learned filters. Large entries are yellow, small are blue, and white lines denote clusters.

Finding (II): spatial MPGNNs are ineffective for long-range interactions. This is evident for peptides Table 1, clustering
Fig. 11, distance regression Fig. 12, and over-squashing Fig. 13. Specifically, if the task requires long-range interactions
beyond the receptive field of the MPGNN, the MPGNN will solely return a mean estimate. E.g., in Fig. 12, the MPGNN
predicts (approx.) constantly 20 for all distances beyond its receptive field – roughly the mean in the training data. Moreover,
S2GNNs may converge faster (see § N.3.2).
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Finding (III): virtual nodes are insufficient. We frequently find that including more than a single eigenvector (k > 1)
yields substantial gains. We make this explicit in Fig. 11a, where we append a single spectral layer and sweep over the
number of eigenvectors k.

Finding (IV): spectral filters align with clusters. We contrast the learned filters for a graph on LR-CLUSTER and
CLUSTER in Fig. 16 We observe that (a) the spectral filters correlate strongly with the true clustering structure, (b) some
filters are smooth while others contain details, and (c) they model coarser or finer cluster structures (e.g., compare the first
with the third filter).

Finding (V): our Positional Encodings PE consistently help, when concatenated to the node features. While this finding
is true throughout our evaluation, the differences are more pronounced in certain situations. For example, on LR-CLUSTER
in Fig. 11, the PE help with spectral filter and a small k or without spectral filter and many message passing steps.

M.2. Sequence Modelling: Mechanistic In-Context Learning
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Figure 17: S2GCN solves asso-
ciative recall for sequences vary-
ing in size by two orders of mag-
nitude. Grey area marks ID.

We list the results in Fig. 17 & Table 2, and the evaluation allows for two further
findings: (VI) a spectral filter for directed graphs improves generalization; and
(VII) S2GCN performs on par with state-of-the-art sequence model Hyena and even
outperforms transformers here. Finding (VI) is consistent with the experiments on
LR-CLUSTER (see § N.3).

M.3. Large-Scale Benchmarks

Finding (VIII): S2GNNs is practical and scalable. We demonstrate this on the OGB
Products graph (2.5 mio. nodes, Table 3) and the (directed) 10 million graphs dataset
TPUGraphs (average number of nodes ≈10,000, Table 4). In both cases, we find
full-graph training (without segment training (Cao et al., 2023)) using 3 (Dir-) GCN
layers interlayered with spectral filters, a reasonable configuration with a 40 GB A100.
However, for OGB Products, we find that batching is superior, presumably because the
training nodes are drawn from a “small” vicinity of the graph (see § K).

Table 3: OGB Products.

Split Model Accuracy (↑) F1 (↑)

Train GAT 0.866±0.001 0.381±0.001
S2GAT 0.902±0.000 0.472±0.006

Val GAT 0.907±0.001 0.508±0.002
S2GAT 0.913±0.002 0.582±0.014

Test GAT 0.798±0.003 0.347±0.004
S2GAT 0.811±0.007 0.381±0.009

Table 4: Graph ranking
on TPUGraphs “layout”.

Model Kendall tau (↑)
GCN 60.09
S2GCN 65.74

The cost of partial EVD for each dataset (incl. TPUGraphs, once per distinct graph, excluding distance regression) is
between 1 to 30 min. on CPUs. We report detailed costs in § N.2.

N. Details on Experimental Results
This section provides further details on the experimental setup (§ N.1), the computational cost (§ N.2), and graph con-
structions with additional experimental results for the clustering tasks (§ N.3); likewise we provide details for the distance
regression (§ N.4), arXiv-year (§ N.5), and provide nodes on the graph construction in TPUGraphs (§ N.6). Note that the
sections on clustering (§ N.3) and distance regression (§ N.4) also contain ablations and further insights.

N.1. Experimental Details

Implementation. The code base is derived from Cao et al. (2023), which on the other hand derive the code of Rampášek
et al. (2022). The implementation heavily relies on PyTorch geometric (Fey & Lenssen, 2019).
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Table 5: Dataset statistics and licenses.

Name # of graphs Average # of nodes Average # of edges Task License

Peptides func (Dwivedi et al., 2022) 15,535 150.9 307.3 graph multi-label
classification CC BY-NC 4.0

Peptides struct (Dwivedi et al., 2022) 15,535 150.9 307.3 graph regression CC BY-NC 4.0
CLUSTER (Dwivedi et al., 2023) 12,000 117.2 4,301.7 node classification CC-BY 4.0
LR-CLUSTER (ours) 12,000 896.9 6,195.1 node classification CC-BY 4.0
Tree Distance regression (ours) 55,000 749.2 748.2 node regression CC-BY 4.0
DAG Distance regression (ours) 55,000 748.6 821.8 node regression CC-BY 4.0
Oversquashing extended

(derived from (Di Giovanni et al., 2023a)) 730 43.8 231.9 node classification CC-BY 4.0

Associative recall small
(derived from (Poli et al., 2023)) 26,000 524.7 523.7 node classification CC-BY 4.0

Associative recall 30k
(derived from (Poli et al., 2023)) 11,000 30,003.8 30,002.8 node classification CC-BY 4.0

OGB arXiv (Hu et al., 2020) 1 169,343 1,166,243 node classification MIT
OGB Products (Hu et al., 2020) 1 2,449,029 61,859,140 node classification MIT
TPUGraphs (Phothilimthana et al., 2023) ≈31,000,000 ≈6,100 NA graph ranking Apache License

Datasets. We collect the main statistics, including licenses, for the datasets in Table 5. The provided code will download all
datasets along with the experiment execution, except for TPUGraphs, where one should follow the official instructions. Due
to the high variation in results, we merge all “layout” datasets and present the results on this joint dataset. We use the fixed
public splits for all experiments and proceed accordingly for our datasets (see § N.3 and § N.4).

Hyperparameters. While we provide full parameters for all experiments and models in our code, we gather an overview
of the used S2GNNs variants here. The parameters were determined through cascades of random search throughout the
development of the method. We list the most important parameters in Table 6.

Usage of external results. The performance of baselines is commonly taken from leaderboards and the respective
accompanying papers. This specifically includes the results in Table 1, Table 2, and Table 10.

Setup. For clustering (§ N.3), distance regression (§ N.4), and arXiv-year (§ N.5) we report the detailed setup in the
respective sections. For the other tasks, the relevant details are:

• Peptides: We follow the setup and implementation of Rampášek et al. (2022). That is, we train for 250 epochs with a
batch size of 200. We rerun experiments on 10 random seeds.

• Over-squashing: We derive the setup from Di Giovanni et al. (2023a). In the main part (Fig. 8), for the GCN, we
report the numbers of their Figure 3 for a GCN on “Clique Path” graphs. For the spectral filter, we actually consider
the more challenging setting where we do not train one model per graph size. Instead, we train one model for all
sequence lengths. The task is to retrieve the correct of five possible classes on the other end of the graph. In the
extended experiment of Fig. 13, we compose the dataset of “Clique Path” and “Ring” graphs (see Di Giovanni et al.

Table 6: Important S2GNNs specific hyperparameters and runtimes. The times for the EVD cover the respective dataset
entirely.

Dataset # MP
layers

# spec.
layers Dim. d # spec. filters

per layer
# eigenvectors k /
frequency cutoff λcut

Spectral
NN

Train
time EVD time GPU Notes

Peptides-Func 3 3 224 128 λcut = 0.7 ✗ 1 h 2 min 1080Ti
Peptides-Struct 3 1 260 260 λcut = 0.7 ✗ 1 h 2 min 1080Ti
CLUSTER 18 17 64 32 λcut = 1.3 ✗ 1.2 h 4 min 1080Ti
LR-CLUSTER (ours) 4 1 128 128 k = 10, λcut = 0.05 ✗ 20 min 4 min 1080Ti
Distance regression
(ours) 5 4 236 236 k = 50, λcut = 0.1 ✗ 3 h 1.5 h A100 1080Ti possible with

smaller batch size
Oversquashing
extended 0 1 16 16 k = 20, λcut = 0.05 ✗ 3 min 3 s 1080Ti

Associative recall 3 3 224 224 k = 10, λ̃cut = 10 ✓ 3 h closed form 1080Ti
eigenvalue transform
(Eq. 5) & exponential

window
arXiv-year 4 2 256 256 k = 100, λcut = 0.05 ✓ 1 h 5 min 1080Ti
Open Graph
Benchmark Products 6 2 256 164 k = 100 → λcut ≈ 0.056 ✓ 11 h 26 min A100 eigenvalue transform

(Eq. 4)
TPU Graphs 3 1 128 64 k = 50, λcut = 0.05 ✓ 40 h 22 min A100
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(2023a)). To avoid m = O(n2), we limit the fully connected clique to 15 nodes. For training and validation, we
enumerate all graphs with even n ∈ {4, 6, . . . , 50} and train for 500 epochs. For test, we enumerate the graphs with
even n ∈ {52, 54, . . . , 100}. We rerun experiments on 10 random seeds.

• Associative recall: We construct one dataset consisting of key-value sequences of length 20 to 999. As Poli et al.
(2023), we use a vocabulary of 30. We sample 25,000/500 random graphs for train/validation. For the test set, we
randomly generate 500 graphs for the sequence lengths of 1,000 to 1,199. We train for 200 epochs. In the experiment
with validation/test sequence length 30k (Table 2), we generate 10,000 training graphs of length 29,500 to 30,499 and
finetune S2GNNsGCN from the smaller setup. We rerun experiments on 10 random seeds.

• OGB Products: Even though full-graph training with 3 layers GCN plus one spectral layer fits into a 40 GB A100
GPU, we find that batched training works better. We randomly divide the graph during training into 16 parts and train a
6-layer S2GAT with spectral layers after the second and last message passing step. Inference is performed on the entire
graph at once. We rerun experiments on 5 random seeds.

• TPUGraphs: Due to the large variation of results, we merge all “layout” tasks into a single dataset. Since the default
graph construction is not able to express all relevant information, we adapt it as detailed in § N.6, however, the empirical
impact was small. TPUGraphs “layout” consists of a few hundred distinct graph structures with a large variation on the
node-level configuration/features. We sample 10,000 configurations for each graph structure of each “layout” sub-split.
Here, we introduce two batch dimensions: (1) batching over multiple graphs and (2) batching over the configurations.
In each training step of the 1,000 epochs, we sample a small subset of configurations per graph structure and apply a
pairwise hinge loss to rank the configurations. We do not perform random reruns due to the computational cost.

N.2. Computational Cost

We report the computational cost for the experiments in Table 6 for a single random seed. On top of the pure cost of
reproducing our numbers, we conducted hyperparameter searches using random search. Partially, we required 100s of
runs to determine good parameter ranges. A generally well-working approach was first to reproduce the results of the best
available MPGNN in prior work. Thereafter, we needed to assess how likely additional capacity would lead to overfitting.
Usually, we reduced the number of message-passing steps, added the spectral filter, and determined appropriate values for
the number of eigenvectors k. In the light of overfitting, it is a good idea to lower the number of Gaussians in the smearing of
the filter parametrization (§ A.7), introduce bottle-neck layers (§ A), and use fewer spectral filters than hidden dimensions.

Large-scale benchmarks. On the large-scale datasets OGB Products and TPUGraphs, we perform full-graph training
(without, e.g., segment training (Cao et al., 2023)) using 3 DirGCN layers interlayered with spectral filters targeting a
pair-wise hinge loss. The spectral GNN uses the Magnetic Laplacian to incorporate direction. The spatial MPGNN closely
resembles the model of Rossi et al. (2023), except that we half the dimension for the forward and backward message passing
and concatenate the result. We shrink the dimensions to model the direction at a very low cost. We conclude that S2GNNs
can be very practical even if applied at scale and can effectively model long-range interactions also on large graphs.
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Figure 18: Runtime of partial eigendecomposition k = 25 of Erdős Rényi graph with average degree 5. Dashed mark
directed/Hermitian Laplacian.

Eigendecompositon. We show the computational cost for the eigendecomposition of a random Erdős Rényi graph (every
edge has equal likelihood to be drawn). We use scipy (CPU) and PyTorch (GPU) with default arguments. Note that the
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default parameters for PyTorch are usually leading to large numerical errors. Fig. 18 demonstrates that the cost of the
eigendecomposition is manageable. For large graphs like ogbn-products (2.5 mio. nodes), the EVD takes around 30 minutes
with k = 100 on 6 CPU cores of an AMD EPYC 7542. Note that the default parameters of the eigensolver allow for 1000s
of iterations or until the error in the 32-bit float representation achieves machine precision.

N.3. Clustering Tasks

We use a clustering task LR-CLUSTER based on Gaussian Mixture Models (GMMs), which requires long-range interactions
to measure the ability of S2GNN to spread information within clusters and consider the original CLUSTER task from
Dwivedi et al. (2023) based on Stochastic Block Models (SBMs) in order to measure the ability to discriminate between the
clusters. The differences are apparent from an illustration of some exemplary graphs in Fig. 15 & 14. While LR-CLUSTER
has long-range interactions, the challenge of CLUSTER is to discriminate between the clusters. Without the arrangement of
nodes, colors, and different edge weights, for CLUSTER, it is virtually impossible to discriminate the clusters by visual
inspection.

Nevertheless, we find that the spectral filter is well aligned with the cluster structure in these tasks. We plot this some
exemplary filter in Fig. 16. The findings match the explanations of § M.1 also for CLUSTER.

In the remainder of the section, we provide full details of the experiment setups. Moreover, we provide additional results not
presented in the main text, including ablations.

N.3.1. GMM CLUSTERING LR-CLUSTER

Setup. To sample an input graph, we start by generating C = 6 p-dimensional cluster centers µc ∼ U [0, 10]p for
c ∈ {0, . . . , C − 1} (we use p = 2). Next, we draw nc ∈ {100, . . . , 199} points xic ∼ N (µc, 4Ip) which will represent the
nodes of the graph. Subsequently, we update the class memberships such that every point is in its most likely class according
to the underlying probabilistic model. Finally, we connect each node v to its ev ∼ U({1, . . . , 10}) closest neighbors by
Euclidean distance ∥ · ∥2. This whole procedure is repeated until the generated graph is connected. We then discard the
location information and only keep the graph structure. In this way, we generate graphs of an average diameter of ≈ 33. See
Fig. 15 for depictions of example graphs.

Apart from the graph generation procedure, we adhere closely to Dwivedi et al. (2023): We introduce input features in
{0, 1, 2, . . . , C}, where a feature value of c = 1, . . . , C corresponds to the node being in class c− 1 and a feature value of 0
means that the class is unknown and has to be inferred by the model. Only one node vc per class is randomly chosen to be
labeled and all remaining node features are set to 0. The output labels are defined as the class labels. We use weighted cross
entropy loss for training and class-size-weighted accuracy as a target metric. We generate 10,000 training and 1,000 val/test
graphs each and report the average ± standard deviation over 3 random reruns.

Models. As an underlying spatial model baseline, we use a vanilla GCN (Kipf & Welling, 2017). We compare this to
S2GCN, only applying one spectral convolution immediately before the last spatial layer. We investigate the influence of the
number k ∈ {0, 1, . . . , 10} of eigenvectors to be taken into account with 4 spatial layers, with k = 0 indicating the absence
of a spectral layer (see Fig. 11a, and Table 7 for the underlying data). We also vary the number of spatial MP layers from 2
to 10 and compare the performance of a purely spatial GCN to the corresponding S2GCN with one spectral convolution (see
Fig. 11b, and Table 8 for the underlying data).

Throughout all evaluations, we maintain a consistent hyperparameter configuration: Specifically, we use an inner dimension
of 128, GELU (Hendrycks & Gimpel, 2016) as an activation function, no dropout, and residual connections for all spatial
and spectral layers. For the spectral layer, we implement the gating mechanism f

(l)
θ , but abstain from a neural network

in the spectral domain (§ A.8), bottlenecks, or parameter sharing. We train for 50 epochs with a batch size of 50, using
the AdamW optimizer (Loshchilov & Hutter, 2019) with a base learning rate of 0.003, a weight decay of 0.0001, a cosine
scheduler and 5 warmup epochs.

Further discussion. The clustering task comes naturally to S2GCN, as a spectral layer can simulate certain variations
of spectral clustering (von Luxburg, 2007): Suppose H(l−1) ∈ Rn×C is a one-hot encoding of the cluster labels, i.e.
H

(l−1)
v,c = δv,vc , with c ∈ {1, . . . , C} and vc being the unique labeled node per class. In its simplest form, taking ĝ(l)ϑ (λ) ≡ 1

and f (l)θ ≡ id, the spectral layer Spectral(l) from Eq. 3 turns into H(l) = V V ⊤H(l−1). Hence, H(l)
v,c = V ⊤

v,:Vvc,:
encodes a notion of similarity between a node v and each labeled node vc. This relates to the Euclidean distance
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Table 7: Accuracy on the GMM clustering task for varying number of eigenvectors k, using 4 GCN layers
and one spectral layer in the end.

k 0 (MPGNN) 1 (Virtual Node) 2 3 4

S2GCN 0.4546± 0.0002 0.4646± 0.0001 0.6786± 0.0010 0.7429± 0.0026 0.7971± 0.0008
S2GCN (+PE) 0.4546± 0.0002 0.4642± 0.0007 0.7221± 0.0008 0.7860± 0.0005 0.8202± 0.0011

5 6 7 8 9 10

0.8322± 0.0004 0.8511± 0.0008 0.8510± 0.0008 0.8519± 0.0005 0.8517± 0.0006 0.8513± 0.0018
0.8440± 0.0006 0.8538± 0.0012 0.8548± 0.0011 0.8546± 0.0002 0.8545± 0.0005 0.8554± 0.0005

Table 8: Accuracy on the GMM clustering task for varying number of MP layers, while comparing a purely
spatial GCN model to S2GCN with one spectral layer added in the end.

2 3 4 5

GCN 0.2700± 0.0002 0.3557± 0.0000 0.4544± 0.0003 0.5521± 0.0001
GCN (+PE) 0.2684± 0.0005 0.3552± 0.0015 0.4550± 0.0004 0.5526± 0.0006

S2GCN 0.8517± 0.0003 0.8520± 0.0008 0.8518± 0.0005 0.8512± 0.0002
S2GCN (+PE) 0.8547± 0.0007 0.8550± 0.0010 0.8552± 0.0015 0.8539± 0.0010

6 7 8 9 10

0.6367± 0.0001 0.7013± 0.0001 0.7448± 0.0003 0.7708± 0.0007 0.7860± 0.0004
0.6387± 0.0012 0.7104± 0.0011 0.7609± 0.0009 0.7931± 0.0005 0.8135± 0.0007

0.8512± 0.0008 0.8509± 0.0008 0.8511± 0.0003 0.8504± 0.0009 0.8509± 0.0006
0.8552± 0.0008 0.8542± 0.0004 0.8545± 0.0008 0.8536± 0.0013 0.8542± 0.0008

∥Vv,: − Vvc,:∥2 =
√
∥Vv,:∥22 + ∥Vvc,:∥22 − 2V ⊤

v,:Vvc,: which is more typically used for spectral clustering.

N.3.2. SBM CLUSTERING CLUSTER (DWIVEDI ET AL., 2023)

Setup. We conduct an ablation study on the original CLUSTER task (Dwivedi et al., 2023), which uses a similar setup to our
GMM clustering task, however drawing from a SBM instead: For each cluster, nc ∈ {5, . . . , 35} nodes are sampled. Nodes
in the same community are connected with a probability of p = 0.55, while nodes in different communities are connected
with a probability of q = 0.25. While there is no need for long-range interactions in this task, considering that the average
diameter of the graphs is just ≈ 2.17, separating the clusters is much harder than in the GMM clustering task (see Fig. 16
for example adjacency matrices from the SBM and GMM models). We use weighted cross entropy loss for training and
class-size-weighted accuracy as a target metric. We report the average ± standard deviation over 3 random reruns.
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Figure 19: Effects of the spectral part on SBM clustering performance for different
base architectures.

Models. In our ablation
study, we consider GCN (Kipf &
Welling, 2017), GAT (Veličković
et al., 2018), and Gat-
edGCN (Bresson & Laurent,
2018) as MPGNN baselines,
following a setup similar to
Dwivedi et al. (2023). We
consider models with 4 layers
(roughly 100k parameters)
and 16 layers (roughly 500k
parameters), while keeping most
hyperparameters the same as in
the benchmark, including inner
dimension, dropout, and the number of heads for GAT. However, our reported baseline results and parameter counts differ
slightly as we are using a different post-MP head, where we maintain a constant dimension until the last layer, in contrast to
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Figure 20: Test accuracy curves for the SBM clustering task. Curves are shown for the models from Table 9
with PE, with the MPGNN baseline and the respective S2GNN.

Dwivedi et al. (2023) who progressively shrink the inner dimension. We construct the corresponding S2GNNs by modifying
each baseline model, replacing the 3rd and the 5th/15th layers with spectral layers, ensuring a roughly equivalent parameter
count. Additionally, each model is optionally supplemented by our positional encodings PE (§ A.9).

We further conduct a hyperparameter search on the most promising base MPGNN candidate, GatedGCN, which leads to an
optimized version of S2GNN. This optimized model has 18 spatial MPGNN layers, spectral layers between all spatial layers,
and additional RWSE encodings. The inner dimension is adjusted to keep the model well below a parameter budget of 500k.
Finally, we also evaluate S2GCN and S2GAT using these hyperparameter settings.

Throughout all evaluations, we use GELU (Hendrycks & Gimpel, 2016) as an activation function, residual connections
for all spatial and spectral layers, and implement the gating mechanism f

(l)
θ without employing a neural network in the

spectral domain. We use a batch size of 128 for training the 4-layer models and 64 for all other models. For the spectral
layer, we use the partial eigendecomposition corresponding to the lowest k = 50 eigenvalues (k = 100 for the optimized
S2GNN versions), spectral normalization, and λcut = 1.3. For the optimized models, we employ parameter sharing with 128
heads, and a bottleneck of 0.25 in feature gating. We use 8 attention heads for all GAT versions in accordance with Dwivedi
et al. (2023) (inner dimension is not expanded but split up), except for the optimized version, which uses 4 heads. For the
purely spatial models, we use p = 0.0 as dropout (similar to Dwivedi et al. (2023)). We observe this to lead to overfitting for
models with spectral layers, for which we set p ∈ {0.1, 0.2}. Hyperparameters differing between the compared models are
listed in Table 9. We train for 100 epochs using the AdamW optimizer (Loshchilov & Hutter, 2019) with a base learning
rate of 0.001, no weight decay, and a cosine scheduler with 5 warmup epochs.

Results. Results for the CLUSTER task are presented in Table 9, Table 10 and Fig. 19. Introducing a spectral layer
significantly enhances performance on the 4-layer architectures, both with and without positional encodings. The effect is
most pronounced on GCN, where replacing just a single GCN layer by a spectral layer boosts accuracy from 0.504 to 0.655.
Notably, introducing two spectral layers still has a consistent positive effect on all 16-layer architectures.
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Table 9: Ablation results on the SBM clustering task (Dwivedi et al., 2023). The best mean test accuracy is bold, second is
underlined.

MPGNN # total Inner Spec. Pos. Dropout # params Train accuracy (↑) Test accuracy (↑)
base layers dim. filters enc.

G
C

N

4 146

✗ ✗ 0.0 109k 0.5059± 0.0018 0.5037± 0.0023
✗ ✓ 0.0 117k 0.5053± 0.0010 0.5026± 0.0006
1 ✗ 0.1 117k 0.6492± 0.0009 0.6545± 0.0013
1 ✓ 0.1 125k 0.6663± 0.0020 0.6640± 0.0021

16 172

✗ ✗ 0.0 508k 0.7354± 0.0009 0.7190± 0.0010
✗ ✓ 0.0 517k 0.7378± 0.0017 0.7194± 0.0010
2 ✗ 0.1 527k 0.7535± 0.0011 0.7359± 0.0017
2 ✓ 0.1 536k 0.7526± 0.0021 0.7269± 0.0011

18 124 17 PE+RWSE 0.2 491k 0.8022± 0.0147 0.7711± 0.0020

G
AT

4 152

✗ ✗ 0.0 120k 0.6705± 0.0008 0.6525± 0.0010
✗ ✓ 0.0 128k 0.7167± 0.0001 0.6680± 0.0020
1 ✗ 0.1 128k 0.7093± 0.0007 0.6960± 0.0010
1 ✓ 0.1 136k 0.7398± 0.0006 0.7065± 0.0007

16 176

✗ ✗ 0.0 541k 0.8537± 0.0025 0.7126± 0.0014
✗ ✓ 0.0 549k 0.8740± 0.0014 0.7139± 0.0022
2 ✗ 0.1 558k 0.8723± 0.0013 0.7277± 0.0005
2 ✓ 0.1 567k 0.8836± 0.0005 0.7232± 0.0010

18 120 17 PE+RWSE 0.1 469k 0.8071± 0.0262 0.7681± 0.0003

G
at

ed
G

C
N

4 70

✗ ✗ 0.0 106k 0.6181± 0.0020 0.6039± 0.0019
✗ ✓ 0.0 110k 0.7292± 0.0031 0.6889± 0.0027
1 ✗ 0.1 90k 0.6933± 0.0003 0.7050± 0.0001
1 ✓ 0.1 94k 0.7245± 0.0002 0.7217± 0.0018

16 78

✗ ✗ 0.0 505k 0.8667± 0.0019 0.7369± 0.0011
✗ ✓ 0.0 509k 0.8753± 0.0257 0.7314± 0.0058
2 ✗ 0.1 464k 0.8086± 0.0016 0.7627± 0.0010
2 ✓ 0.1 468k 0.8302± 0.0011 0.7659± 0.0003

18 64 17 PE+RWSE 0.2 460k 0.8202± 0.0024 0.7808± 0.0005

Table 10: Results on the CLUSTER task (Dwivedi et al., 2023). Transformer models that outperform our S2GatedGCN are
underlined.

Model Accuracy (↑)

Tr
an

sf
or

m
er

ARGNP (Cai et al., 2022) 0.7735± 0.0005
GPS (Rampášek et al., 2022) 0.7802± 0.0018
TIGT (Choi et al., 2024) 0.7803± 0.0022
GPTrans-Nano (Chen et al., 2023) 0.7807± 0.0015
Exphormer (Shirzad et al., 2023) 0.7807± 0.0004
EGT (Hussain et al., 2022) 0.7923± 0.0035
GRIT (Ma et al., 2023) 0.8003± 0.0028

G
N

N GatedGCN 0.7608± 0.0020
S2GatedGCN (ours) 0.7808± 0.0005

39



Spatio-Spectral Graph Neural Networks

N.4. Distance Regression

Setup. We generate directed random trees with one source by sampling trees with n ∈ {500, . . . , 999} nodes, picking one
node at random to declare as a source and introducing edge directions accordingly. To construct random DAGs with long
distances, we start from such directed random trees and proceed by adding ⌊n/10⌋ edges at random, choosing each edge
direction such that the resulting graph is still a DAG. Additionally, we mark the source node with a node feature. Besides
evaluating all models in an in-distribution regime, we also assess the generalization power of the methods by drawing
out-of-distribution val/test splits from slightly larger graphs of n ∈ {1000, . . . , 1099} and n ∈ {1100, . . . , 1199} nodes
each. We use L2 loss for training and R2 as a target metric. We sample 50,000 training and 2,500 val/test graphs each and
report the average ± standard deviation over 3 random reruns.

Models. As a MPGNN baseline, we use a five-layer directed version of GCN, DirGCN (Rossi et al., 2023), with three
post-message-passing layers, and concatenating instead of averaging over the source-to-target and target-to-source parts.
We compare these baselines to S2DirGCN of the form Eq. 2 with four spectral layers, alternating spatial and spectral
convolutions and employing residual connections. We benchmark versions of S2DirGCN that ignore edge direction in the
spectral convolution against directed versions in which we set q = 0.001. In all cases, we use the partial eigendecomposition
corresponding to the k = 50 lowest eigenvalues. All models are optionally enriched by the positional encodings from § A.9.
Throughout all evaluations, we use an inner dimension of 236, GELU (Hendrycks & Gimpel, 2016) as an activation function,
and dropout p = 0.05. For the spectral layers, we utilize the gating mechanism f

(l)
θ , not employing a neural network in the

spectral domain, we use spectral normalization, λcut = 0.1, and a bottleneck of 0.03 in the spectral layer. We train for 50
epochs, using a batch size of 36 and the AdamW optimizer (Loshchilov & Hutter, 2019) with a base learning rate of 0.001, a
weight decay of 0.008, and a cosine scheduler with 5 warmup epochs.

Results. In Table 11, we show the performance of the different models on DAGs and trees. We observe that the simple
MPGNNs are notably surpassed by all versions of S2DirGCN. While S2DirGCN achieves nearly perfect predictions on
the tree tasks in both the directed and undirected case, the undirected version is outperformed by the directed version on
the DAG tasks. Here, performance also reduces slightly in the out-of-distribution regime. The great performance on the
tree task is due to the fact that trees are collision-free graphs (Geisler et al., 2023), where the phase of each eigenvector
is exp(i2πq(dv + c)) for each node v, with dv representing the distance to the source node and c ∈ R being an arbitrary
constant (due to phase invariance of the eigenvector). It is noteworthy that a simple MPGNN with positional encodings,
despite having the distances (shifted by c) readily available, fails the task, as the information about the phase of the source
node cannot be effectively shared among all nodes. In Fig. 21, we compare the distance predictions by the different models.
While the prediction of all models is close to perfect below a distance of 5, the spatial MPGNNs are almost unable to
distinguish higher distances. By contrast, S2DirGCN predicts reasonable distances regardless of the ground truth, with the
absolute error only increasing slowly.

Table 11: Results on the distance task, with DirGCN as base. The best mean score is bold, second is underlined.

+Spec. PE in-distribution out-of-distribution
filter MAE (↓) RMSE (↓) R2 (↑) MAE (↓) RMSE (↓) R2 (↑)

D
A

G
s

✗ ✗ 7.0263± 0.0033 9.0950± 0.0005 0.1915± 0.0001 8.1381± 0.0368 10.7735± 0.0402 0.1214± 0.0066
✗ ✓ 6.8252± 0.0008 8.8636± 0.0024 0.2322± 0.0004 8.0018± 0.0018 10.4432± 0.0017 0.1745± 0.0003

undir. ✗ 1.9248± 0.0116 3.2687± 0.0100 0.8956± 0.0006 3.0471± 0.0192 4.9467± 0.0263 0.8148± 0.0020
undir. ✓ 1.7384± 0.0039 2.9934± 0.0046 0.9124± 0.0003 2.7950± 0.0041 4.5834± 0.0117 0.8410± 0.0008
direc. ✗ 1.2401± 0.0173 2.1600± 0.0340 0.9544± 0.0014 2.1824± 0.0787 3.7694± 0.0710 0.8924± 0.0040
direc. ✓ 1.1676± 0.0032 2.0428± 0.0066 0.9592± 0.0003 2.0565± 0.0326 3.5887± 0.0434 0.9025± 0.0024

Tr
ee

s

✗ ✗ 13.7472± 0.0478 17.3902± 0.0277 0.0958± 0.0029 16.8554± 0.0559 21.6454± 0.1394 0.0144± 0.0127
✗ ✓ 11.6316± 0.0370 15.0123± 0.0249 0.3262± 0.0022 14.9837± 0.0501 19.3659± 0.0610 0.2110± 0.0050

undir. ✗ 1.0236± 0.0408 1.7991± 0.1956 0.9902± 0.0020 1.5981± 0.2221 2.7377± 0.4786 0.9839± 0.0053
undir. ✓ 1.2887± 0.1195 2.0095± 0.2638 0.9878± 0.0031 1.7184± 0.3288 2.5791± 0.5372 0.9856± 0.0055
direc. ✗ 0.8166± 0.5012 1.2224± 0.7600 0.9944± 0.0060 1.5280± 0.4539 2.2942± 0.7592 0.9881± 0.0069
direc. ✓ 0.7767± 0.3306 1.1512± 0.5839 0.9954± 0.0041 0.9911± 0.6911 1.5064± 1.0206 0.9938± 0.0077
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Figure 21: RMSE and 90% prediction intervals for distance predictions by ground truth.

N.5. arXiv-year (Lim et al., 2021)

Setup. We evaluate S2GNN on a large-scale heterophilic dataset, namely arXiv-year. arXiv-year is based on OGB arXiv (Hu
et al., 2020), but instead of paper subject areas, the year of publication (divided into 5 classes) is the prediction target.
While there are no long-range interactions in this dataset, preliminary experiments indicated that the phase of the Magnetic
Laplacian eigenvectors on its own can also be predictive of the class label. We report average ± standard deviation over 5
reruns with the splits from Lim et al. (2021), using a different random seed for each run.

Models. We use DirGCN (Rossi et al., 2023) as a baseline and largely follow the original setup. However, we observe that
using 4 layers (instead of 6) and introducing a dropout of p = 0.5 improves baseline performance. Furthermore, we drop the
jumping knowledge used by Rossi et al. (2023). We compare this baseline to S2DirGCN with two spectral layers (after the
second and third spatial layers) and apply residual connections only for the spectral layers. For the spectral layers, we set
q = 0.0001 and use the partial eigendecomposition with k = 100, a NN in the spectral domain § A.8, no feature gating, and
a bottleneck of 0.05. All other parameters are kept similar to the DirGCN base from Rossi et al. (2023). We train for 2000
epochs using the AdamW optimizer (Loshchilov & Hutter, 2019) with a base learing rate of 0.005, no weight decay, and a
cosine scheduler with 50 warmup epochs.

Results. We report the results in Table 12. Notably, our S2DirGCN outperforms both our baseline DirGCN as well as the
recent FaberNet (Koke & Cremers, 2024), albeit by a very tight margin. A more comprehensive evaluation of S2GNN’s
power on heterophilic datasets, potentially with long-range interactions, is left for future work.

Table 12: Results on arXiv-year. Best mean test accuracy is bold, second is underlined.

Model Accuracy (↑)
DirGCN (Rossi et al., 2023) 0.6408± 0.0026
FaberNet (Koke & Cremers, 2024) 0.6462± 0.0101

DirGCN (tuned) 0.6444± 0.0027
S2DirGCN (ours) 0.6495± 0.0033
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N.6. TPUGraphs Graph Construction

The “XLA” collections of TPUGraphs contain many constructs that are most certainly suboptimal for a machine-learning-
based runtime prediction. However, in our preliminary experiments, we could not show that our graph construction yielded
better results in a statistically significant manner. Nevertheless, we include this discussion since it might be insightful.

To understand the challenges with the default graph construction, note that in the TPUGraphs dataset each node represents an
operation in the compuational graph of Accelerated Linear Algebra (XLA). Its incoming edges are the respective operands,
and the outgoing edges signal where the operation’s result is used. Thus, the graph describes how the tensors are being
transformed. An (perhaps unnecessary) challenge for machine learning models arises from using tuple, which represents
a sequence of tensors of arbitrary shapes. In this case, the model needs to reason how the tuple is constructed, converted,
and unpacked again. Moreover, directly adjacent tensors/operations can be very far away in the graphs of TPUGraphs.

We identified and manually “fixed” three cases to eliminate this problem largely in the TPUGraphs dataset: Tuple-
GetTupleElement, While, and Conditional. Since we could not access the configurations in the HLO protobuf files and C++
XLA extraction code, we decided to perform these optimizations ourselves. However, it might be a better strategy to utilize
the existing XLA compiler etc.

Additionally, to the subsequently described graph structure changes, we extract the order of operands from the HLO protobud
files. Outgoing edges are assumed to be unordered except for the GetTupleElement operation, where the tuple index is used
as order. Moreover, we extracted all features masked in the C++ code and then excluded constant features.

N.6.1. TUPLE-GETTUPLEELEMENT

The dataset contains aggregations via the XLA Tuple operation that are often directly followed by a GetTupleElement
operation. To a large extent, these constructs are required for the subsequently discussed While and Conditional operations.
Importantly, the model could not extract the relationships through a tuple aggregation since the tuple_index was not
included in the default features. Moreover, the resulting tuple hub nodes severely impact the Fourier basis of the graphs (see
§ 2). We illustrate the graph simplification in Fig. 22 and denote the edge order of incoming edges from top to bottom. The
edge order represents the order of operands.

Figure 22: Tuple-GetTupleElement simplification: the Tuple aggregates the output of multiple predecessors/operations and
then the GetTupleElement extracts the tensor according to its index (number in respective nodes). We propose dropping
immediate Tuple-GetTupleElement constructs and connecting predecessors and successors.

We propose dropping immediate Tuple-GetTupleElement constructs and directly connecting predecessors and succes-
sors. For this, we generate a graph solely consisting of direct connections and then resolve multiple consecutive Tuple-
GetTupleElement constructs via a graph traversal (depth-first search). We perform the Tuple-GetTupleElement simplification
after dealing with While and Conditionals. However, for the sake of simplicity, we will avoid using tuples in the subsequent
explanations for While and Conditional. In other words, the subsequent explanations extend to functions with multiple
arguments via the use of tuples.
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N.6.2. WHILE OPERATION

The While operation has the signature While(condition, body, init) where condition is a function given
the init or output of the body function. Note that in the TPUGraph construction, body as well as condition only
represent the outputs of the respective function and their operands need to be extracted from HLO.

Figure 23: Instead of aggregating everything into a hub node, we propose to connect respective inputs and outputs.

To avoid hub nodes and to retain the dataflow between operations (important for decisions about the layout), operands and
outputs are connected directly. Technically, we am modeling a do-while construct because the condition is not connected to
the inputs. Since the successors of the while are of type GetTupleElement, they relabeled to a new node type, signaling the
end of a while loop. To support nested while loops, each node in the body is assigned a new node feature signaling the
number of while body statements it is part of.

N.6.3. CONDITIONAL OPERATION

Figure 24: Instead of aggregating everything into a hub node, we propose to connect respective inputs and outputs. Here as
an example with two conditional computations.

Conditional(branch_index, branch_computations, branch_operands) is the most common signa-
ture of the Conditional operation, where the integer-valued branch_index selects which branch_computations is
executed with the respective input in branch_operands. Similarly to the While operation, we introduce new node types
for the inputs of computations and the successors (they are GetTupleElement operations).
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