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Abstract
Pretrained language models (PLMs) have001
achieved superhuman performance on many002
benchmarks, creating a need for harder003
tasks. We introduce CoDA21 (Context Def-004
inition Alignment), a challenging benchmark005
that measures natural language understanding006
(NLU) capabilities of PLMs: Given a defini-007
tion and a context each for k words, but not the008
words themselves, the task is to align the k def-009
initions with the k contexts. CoDA21 requires010
a deep understanding of contexts and defini-011
tions, including complex inference and world012
knowledge. We find that there is a large gap013
between human and PLM performance, sug-014
gesting that CoDA21 measures an aspect of015
NLU that is not sufficiently covered in exist-016
ing benchmarks.017

1 Introduction018

Increasing computational power along with the de-019

sign and development of large and sophisticated020

models that can take advantage of enormous cor-021

pora has drastically advanced NLP. For many tasks,022

finetuning pretrained transformer-based language023

models (Vaswani et al., 2017; Devlin et al., 2019;024

Radford et al., 2018) has improved the state of the025

art considerably. Language models acquire knowl-026

edge during pretraining that is utilized during task-027

specific finetuning. On benchmarks that were intro-028

duced to encourage development of models that do029

well on a diverse set of NLU tasks (e.g., GLUE1030

(Wang et al., 2018) and SuperGLUE2 (Wang et al.,031

2019)), these models now achieve superhuman per-032

formance (He et al., 2020). The pretrain-then-033

finetune approach usually requires a great amount034

of labeled data, which is often not available or ex-035

pensive to obtain, and results in specialized models036

that can perform well only on a single task. Re-037

cently, it was shown that generative language mod-038

els can be applied to many tasks without finetuning039

1https://gluebenchmark.com/leaderboard
2https://super.gluebenchmark.com/leaderboard

his horse kicking up
clouds of <xxx>

these bees love a fine-
grained <xxx> that is
moist

Pels [...] had a white
<xxx> monument
erected on his grave

fine broody hen, with
[...] a striking abun-
dance of <xxx>

C1

C2

C3

C4

Definition
of <xxx>

is
humus and disinte-
grated rock

a hard crystalline
metamorphic rock that
takes a high polish

structure forming the
external covering of
birds

fine powdery material
such as dry earth or
pollen

D1

D2

D3

D4

Contexts Definitions

Figure 1: The CoDA21 task is to find the correct align-
ment between contexts and definitions: C1-D4, C2-D1,
C3-D2, C4-D3. The target words for C1-C4 (“dust”,
“soil”, “marble”, “feathers”; not given) are replaced
with a placeholder <xxx>.

when the task is formulated as text generation and 040

the PLM is queried with a natural language prompt 041

(Radford et al., 2019; Brown et al., 2020). 042

Motivated by recent progress in zero-shot learn- 043

ing with generative models as well as the need for 044

more challenging benchmarks that test language 045

understanding of language models, we introduce 046

CoDA21 (Context Definition Alignment), a diffi- 047

cult benchmark that measures NLU capabilities of 048

PLMs. Given a definition and a context each for 049

k words, but not the words themselves, the task 050

is to align the k definitions with the k contexts. 051

In other words, for each definition, the context in 052

which the defined word is most likely to occur has 053

to be identified. This requires (i) understanding 054

the definitions, (ii) understanding the contexts and 055

(iii) the ability to match the two. Since the target 056

words are not given, a model must be able to distin- 057

guish subtle meaning differences between different 058

contexts/definitions to be successful. To illustrate 059

the difficulty of the task, Figure 1 shows a partial 060

example for k = 4 (see supplementary for the full 061

example). We see that both complex inference (e.g., 062

<XXX> can give rise to a cloud by being kicked up 063
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⇒ <XXX> must be dry⇒ <XXX> can be dust, but064

not soil) and world knowledge (what materials are065

typical for monuments?) are required for CoDA21.066

We formulate the alignment task as a text pre-067

diction task and evaluate, without finetuning, three068

PLMs on CoDA21: BERT (Devlin et al., 2019),069

RoBERTa (Liu et al., 2019) and GPT-2 (Radford070

et al., 2019). Poor performance of the PLMs and a071

large gap between human and PLM performance072

suggest that CoDA21 is an important benchmark073

for designing models with better NLU capabilities.074

2 CoDA21075

2.1 Dataset076

We construct CoDA21 by first deriving a set G of077

synset groups {G1, G2, . . .} from Wordnet (Miller,078

1995). A synset group Gi is a group of synsets079

whose meanings are close enough to be difficult to080

distinguish (making the task hard), but not so close081

that they become indistinguishable for human and082

machine. In a second step, each synset group Gi083

is converted into a CoDA21 group G+
i – a set of084

triples, each consisting of the synset, its definition085

and a corpus context. A CoDA21 group can be086

directly used for one instance of the CoDA21 task.087

Synset groups. Each synset group G consists088

of 5 ≤ k ≤ 10 synsets. To create a synset group,089

we start with a parent synset ŝ and construct a co-090

hyponym group Ḡ(ŝ) of its children:091

Ḡ(ŝ) = {s | s < ŝ, s /∈ D}092

where < is the hyponymy relation between synsets093

and D is the set of synsets that have already been094

added to a synset group. The intuition for grouping095

synsets with a common parent is that words sharing096

a hypernym are difficult to distinguish (as opposed097

to randomly selected words).098

We iterate ŝ through all nouns and verbs in Word-099

Net. At each iteration, we get all hyponyms of ŝ100

that have not been previously added to a synset101

group; not reusing a synset ensures that different102

CoDA21 subtasks are not related and so no such103

relationships can be exploited. We extract synset104

groups from co-hyponym groups by splitting them105

into multiple chunks of size k, where each chunk106

contains synsets whose definitions are most dissim-107

ilar from each other (see Appendix for details).108

CoDA21 groups. For each synset s, we extract109

its definition d(s) from WordNet and a context c(s)110

Dataset # of Gnoun # of Gverb

CoDA21-clean-hard 106 102
CoDA21-clean-easy 274 103
CoDA21-noisy-hard 691 350
CoDA21-noisy-easy 1188 370

Table 1: CoDA21 group (G) statistics

in which it occurs from SemCor.3 SemCor4 is an 111

English corpus tagged with WordNet senses. Let 112

C(s) be the set of contexts of s in SemCor. If 113

|C(s)| > 1, we use as c(s) the context in which 114

bert-base-uncased gives s the highest log proba- 115

bility (averaged for multi-token instances) – this 116

favors contexts that are specific to the meaning of 117

the synset. Finally, we convert each synset group 118

Gi in G to a CoDA21 group G+
i : 119

G+
i = {(sj , d(sj), c(sj)) | sj ∈ Gi} 120

That is, a CoDA21 groupG+
i is a set of of triples of 121

sense, definition and context. In PLM evaluation, 122

each CoDA21 group G+
i gives rise to one context- 123

definition alignment subtask. 124

We name the resulting dataset CoDA21-noisy- 125

hard: noisy because if |C(s)| is small, the selected 126

context may not be informative enough to identify 127

the matching definition; hard because the synsets in 128

a CoDA21 group are taxonomic sisters, generally 129

with similar meanings despite the clustering-based 130

limit on definition similarity. We construct a clean 131

version of the dataset by only using synsets with 132

|C(s)| ≥ 5. We also construct an easy version by 133

taking the “hyponym grandchildren” s of a parent 134

synset ŝ (s < m ∧m < ŝ) instead of its hyponym 135

children. This reduces the similarity of synsets in 136

a CoDA21 group, making the task easier. Table 1 137

gives dataset statistics. 138

2.2 Alignment 139

Recall the CoDA21 task: given a definition and a 140

context each for k words (but not the words them- 141

selves), align the k definitions with the k contexts. 142

That is, we are looking for a bijective function (a 143

one-to-one correspondence) between definitions 144

and contexts. Our motivation in designing the task 145

is that we want a hard task (which can guide us in 146

developing stronger natural language understand- 147

ing models), but also a task that is solvable by 148

humans. Our experience is that humans can at 149

3We do not consider synsets without contexts in SemCor.
4http://lcl.uniroma1.it/wsdeval/home
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least partially solve the task by finding a few initial150

“easy” context-definition matches, removing them151

from the definition/context sets and then match the152

smaller remaining number of definitions/contexts.153

The number of context-definition pairs scales154

quadratically (O(k2)) with k and the number of155

alignments factorially (O(k!)). We restrict k to156

k ≤ 10 to make sure that we do not run into com-157

putational problems and that humans do not find158

the task too difficult.159

Let t be a target word, c a context in which t160

occurs and m a made-up word. To test PLMs on161

CoDA21, we use the following two patterns:162

Qnoun(c,m) = cm Definition of m is163

Qverb(c,m) = cm Definition of m is to164

where cm is c with each occurrence of t replaced165

by m.166

We calculate the match score of a context-167

definition pair (c, d) as logP (d | Q(c,m)), i.e.,168

as the log generation probability of the definition d169

conditioned on Q(c,m) where Q is either Qnoun or170

Qverb, depending on the target word. Our objective171

is to maximize the sum of the k match scores in an172

alignment. We find the best alignment by exhaus-173

tive search. The accuracy for a CoDA21 group G+
i174

is then the accuracy of its best alignment, i.e., the175

number of contexts in G+
i that are aligned with the176

correct definition, divided by the total number of177

contexts |G+
i |.178

2.3 Baselines179

We calculate P (d | Q(c,m)) for a masked lan-180

guage model (MLM) M and an an autoregressive181

language model (ALM) A as follows:182

PM (d | Q′) =
∏|d|

i=1 P (di | Q′, d−i)183

PA(d | Q′) =
∏|d|

i=1 P (di | Q′, d1, . . . , di−1)184

whereQ′ = Q(c,m), di is the ith word in definition185

d and d−i is the definition with the ith word masked.186

We evaluate the MLMs BERT and RoBERTa187

and the ALM GPT-2. We experiment with both188

base and large versions of BERT and RoBERTa189

and with all four sizes of GPT-2 (small, medium,190

large, xl), for a total of eight models, to investigate191

the effect of model size on performance.192

The made-up wordm should ideally be unknown193

so that it does not bias the PLM in any way. How-194

ever, there are no truly unknown words for the195

clean clean noisy noisy S20hard easy hard easy

Model N V N V N V N V N

BERTb .20 .21 .22 .25 .21 .22 .22 .24 .24
BERTl .22 .22 .19 .21 .19 .20 .20 .20 .22
RoBERTab .24 .26 .26 .32 .25 .25 .28 .27 .29
RoBERTal .26 .30 .30 .30 .27 .29 .30 .33 .29
GPT-2s .31 .32 .42 .40 .35 .32 .40 .36 .35
GPT-2m .37 .35 .45 .39 .38 .35 .43 .39 .39
GPT-2l .38 .34 .47 .42 .39 .37 .46 .41 .47
GPT-2xl .42 .36 .49 .42 .40 .36 .46 .43 .48

mpnet .42 .39 .48 .42 .40 .37 .46 .40 .51
MiniLM .35 .34 .40 .36 .34 .30 .38 .32 .34
fastText .18 .17 .20 .20 .18 .18 .18 .18 .17
Random .15 .15 .14 .14 .16 .15 .14 .14 .14

Human – – – – – – – – .86

Table 2: Average accuracy on the noun (N) and verb
(V) subsets of CoDA21 for eight PLMs, two sentence
transformers, fastText embeddings and (on S20) for hu-
mans

models we investigate due to the word-piece to- 196

kenization they apply to the input. Any made-up 197

word that is completely meaningless to humans will 198

have a representation in the models’ input space 199

based on its tokenization. To minimize the risk 200

that the meaning of the made-up word may bias 201

the model, we use m = bkatuhla, a word with 202

an empty search result on Google that most likely 203

never appeared in the models’ pretraining corpora. 204

In addition to PLMs, we also evaluate 2 re- 205

cent sentence transformer models5 (Reimers and 206

Gurevych, 2019), paraphrase-mpnet-base-v2 (mp- 207

net) and paraphrase-MiniLM-L6-v2 (MiniLM), 208

and fastText static embeddings6 (Mikolov et al., 209

2018). To calculate the match score of a context- 210

definition pair, we first remove the target word from 211

the context and represent contexts and definitions 212

as vectors. For sentence transformers, we obtain 213

these vectors by simply encoding the input sen- 214

tences. For fastText, we average the vectors of the 215

words in contexts and definitions. We then cal- 216

culate the match score as the cosine similarity of 217

context and definition vectors. 218

3 Results 219

Table 2 presents average accuracy of the investi- 220

gated models on the four CoDA21 datasets. As 221

can be seen, fastText performs only slightly bet- 222

5https://www.sbert.net/docs/
pretrained_models.html

6We use the crawl-300d-2M-subword model from https:
//fasttext.cc/docs/en/english-vectors.html
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ter than random. MLMs also perform better than223

random chance by only a small margin. This224

poor performance can be partly explained by the225

generation style setup we use, which is not well226

suited for masked language models. Even the227

smallest GPT-2 model performs considerably better228

than RoBERTA-large, the best performing MLM.229

Performance generally improves with model size.230

GPT-2xl achieves the best results among the LMs231

on almost all datasets. Interestingly, sentence trans-232

former all-mpnet-base-v2 performs comparably233

to GPT-2xl on most datasets despite its simple,234

similarity based matching compared to generation235

based matching of GPT-2 models. Based on this236

observation it can be argued that current state of237

the art language models fail to perform complex,238

multi-step reasoning and inference which are nec-239

essary to solve the CoDA21 tasks. Overall, MLMs240

perform slightly better on verbs than nouns while241

the converse is true for GPT-2. As expected, all242

models perform better on the easy datasets. Perfor-243

mance on noisy and clean datasets are comparable;244

this indicates that our contexts are of high quality245

even for the synsets with only a few contexts.246

To investigate the effect of the made-up word247

m, we experiment with several other words on248

the noun part of CoDA21-clean-easy using GPT-249

2xl. When m is a frequent word like “orange” or250

“cloud”, performance drops (0.41 and 0.40 accu-251

racy, respectively) due to the effect of prior knowl-252

edge models have about these words. The single253

letter “x” results in better performance (0.45 ac-254

curacy), possibly due to not having a strong spe-255

cific meaning. Another nonce word “opyatzel” per-256

forms worse than “bkatuhla” (0.44 vs 0.49 accu-257

racy), which indicates some random variation.258

We compared our patterns Qnoun and Qverb to259

two alternatives, but the difference in performance260

was minimal. See supplementary for details.261

Human performance on CoDA21. We asked262

two NLP PhD students7 to solve the task on S20,263

a random sample of size 20 from the noun part of264

CoDA21-clean-easy. Table 2 shows results on S20265

for these two subjects and our models. Human per-266

formance is 0.86 – compared to 0.48 for GPT-2xl,267

the best performing model. This difference indi-268

cates that there is a large gap in NLU competence269

between current language models and humans and270

that CoDA21 is a good benchmark to track progress271

on closing that gap.272

7Both are proficient (though not native) English speakers.

To get a better sense of why the task is hard 273

for PLMs, we give an example, from the CoDA21 274

subtask in Figure 1, of a context-definition match 275

that is scored highly by GPT-2xl, but is not correct. 276

Context: “these bees love a fine-grained <XXX> 277

that is moist”. Definition: “fine powdery material 278

such as dry earth or pollen”. GPT-2xl most likely 279

gives a high score because it has learned that bees 280

and pollen are associated. It does not understand 281

that the mutual exclusivity of “moist” and “pow- 282

dery” makes this a bad match. 283

4 Related Work 284

There are many datasets (Levesque et al., 2012; Ra- 285

jpurkar et al., 2016; Williams et al., 2018) for eval- 286

uating language understanding of models. Many 287

adopt a text prediction setup: Lambada (Paperno 288

et al., 2016) evaluates the understanding of dis- 289

course context, StoryCloze (Mostafazadeh et al., 290

2016) evaluates commonsense knowledge and so 291

does HellaSwag (Zellers et al., 2019), but exam- 292

ples were adversarially mined. LAMA (Petroni 293

et al., 2019) tests the factual knowledge con- 294

tained in PLMs. In contrast to this prior work, 295

CoDA21 goes beyond prediction by requiring the 296

matching of pieces of text. WIC (Pilehvar and 297

Camacho-Collados, 2019) is also based on match- 298

ing, but CoDA21 is more complex (multiple con- 299

texts/definitions as opposed to a single binary 300

match decision) and is not restricted to ambigu- 301

ous words. WNLaMPro (Schick and Schütze, 302

2020) evaluates knowledge of subordinate rela- 303

tionships between words, and WDLaMPro (Senel 304

and Schütze, 2021) understanding of words using 305

dictionary definitions. Again, matching multiple 306

pieces of text with each other is much harder and 307

therefore a promising task for benchmarking NLU. 308

5 Conclusion 309

We introduced CoDA21, a new challenging bench- 310

mark that tests natural language understanding ca- 311

pabilities of PLMs. Performing well on CoDA21 312

requires detailed understanding of contexts, per- 313

forming complex inference and having world 314

knowledge, which are crucial skills for NLP. All 315

models we investigated perform clearly worse than 316

humans, indicating a lack of these skills in the cur- 317

rent state of the art in NLP. CoDA21 therefore is a 318

promising benchmark for guiding the development 319

of models with stronger NLU competence. 320

4



References321

Tom Brown, Benjamin Mann, Nick Ryder, Melanie322
Subbiah, Jared D Kaplan, Prafulla Dhariwal,323
Arvind Neelakantan, Pranav Shyam, Girish Sastry,324
Amanda Askell, Sandhini Agarwal, Ariel Herbert-325
Voss, Gretchen Krueger, Tom Henighan, Rewon326
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,327
Clemens Winter, Chris Hesse, Mark Chen, Eric328
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,329
Jack Clark, Christopher Berner, Sam McCandlish,330
Alec Radford, Ilya Sutskever, and Dario Amodei.331
2020. Language models are few-shot learners. In332
Advances in Neural Information Processing Systems,333
volume 33, pages 1877–1901. Curran Associates,334
Inc.335

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and336
Kristina Toutanova. 2019. BERT: Pre-training of337
deep bidirectional transformers for language under-338
standing. In Proceedings of the 2019 Conference339
of the North American Chapter of the Association340
for Computational Linguistics: Human Language341
Technologies, Volume 1 (Long and Short Papers),342
pages 4171–4186, Minneapolis, Minnesota. Associ-343
ation for Computational Linguistics.344

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and345
Weizhu Chen. 2020. Deberta: Decoding-enhanced346
bert with disentangled attention. arXiv preprint347
arXiv:2006.03654.348

Hector Levesque, Ernest Davis, and Leora Morgen-349
stern. 2012. The winograd schema challenge. In350
Thirteenth International Conference on the Princi-351
ples of Knowledge Representation and Reasoning.352
Citeseer.353

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-354
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,355
Luke Zettlemoyer, and Veselin Stoyanov. 2019.356
Roberta: A robustly optimized bert pretraining ap-357
proach. arXiv preprint arXiv:1907.11692.358

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,359
Christian Puhrsch, and Armand Joulin. 2018. Ad-360
vances in pre-training distributed word representa-361
tions. In Proceedings of the Eleventh International362
Conference on Language Resources and Evaluation363
(LREC 2018), Miyazaki, Japan. European Language364
Resources Association (ELRA).365

George A Miller. 1995. WordNet: a lexical366
database for english. Communications of the ACM,367
38(11):39–41.368

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong369
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,370
Pushmeet Kohli, and James Allen. 2016. A cor-371
pus and cloze evaluation for deeper understanding of372
commonsense stories. In Proceedings of the 2016373
Conference of the North American Chapter of the374
Association for Computational Linguistics: Human375
Language Technologies, pages 839–849, San Diego,376
California. Association for Computational Linguis-377
tics.378

Denis Paperno, Germán Kruszewski, Angeliki Lazari- 379
dou, Ngoc Quan Pham, Raffaella Bernardi, San- 380
dro Pezzelle, Marco Baroni, Gemma Boleda, and 381
Raquel Fernández. 2016. The LAMBADA dataset: 382
Word prediction requiring a broad discourse context. 383
In Proceedings of the 54th Annual Meeting of the As- 384
sociation for Computational Linguistics (Volume 1: 385
Long Papers), pages 1525–1534, Berlin, Germany. 386
Association for Computational Linguistics. 387

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, 388
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and 389
Alexander Miller. 2019. Language models as knowl- 390
edge bases? In Proceedings of the 2019 Confer- 391
ence on Empirical Methods in Natural Language 392
Processing and the 9th International Joint Confer- 393
ence on Natural Language Processing (EMNLP- 394
IJCNLP), pages 2463–2473, Hong Kong, China. As- 395
sociation for Computational Linguistics. 396

Mohammad Taher Pilehvar and Jose Camacho- 397
Collados. 2019. WiC: the word-in-context dataset 398
for evaluating context-sensitive meaning represen- 399
tations. In Proceedings of the 2019 Conference 400
of the North American Chapter of the Association 401
for Computational Linguistics: Human Language 402
Technologies, Volume 1 (Long and Short Papers), 403
pages 1267–1273, Minneapolis, Minnesota. Associ- 404
ation for Computational Linguistics. 405

A. Radford, Jeffrey Wu, R. Child, David Luan, Dario 406
Amodei, and Ilya Sutskever. 2019. Language mod- 407
els are unsupervised multitask learners. In Technical 408
Report. 409

Alec Radford, Karthik Narasimhan, Tim Salimans, and 410
Ilya Sutskever. 2018. Improving language under- 411
standing by generative pre-training. 412

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 413
Percy Liang. 2016. SQuAD: 100,000+ questions for 414
machine comprehension of text. In Proceedings of 415
the 2016 Conference on Empirical Methods in Natu- 416
ral Language Processing, pages 2383–2392, Austin, 417
Texas. Association for Computational Linguistics. 418

Nils Reimers and Iryna Gurevych. 2019. Sentence- 419
BERT: Sentence embeddings using Siamese BERT- 420
networks. In Proceedings of the 2019 Conference on 421
Empirical Methods in Natural Language Processing 422
and the 9th International Joint Conference on Natu- 423
ral Language Processing (EMNLP-IJCNLP), pages 424
3982–3992, Hong Kong, China. Association for 425
Computational Linguistics. 426

Timo Schick and Hinrich Schütze. 2020. Rare words: 427
A major problem for contextualized embeddings and 428
how to fix it by attentive mimicking. Proceedings 429
of the AAAI Conference on Artificial Intelligence, 430
34:8766–8774. 431

Lutfi Kerem Senel and Hinrich Schütze. 2021. Does 432
she wink or does she nod? a challenging bench- 433
mark for evaluating word understanding of language 434
models. In Proceedings of the 16th Conference of 435

5

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/L18-1008
https://aclanthology.org/L18-1008
https://aclanthology.org/L18-1008
https://aclanthology.org/L18-1008
https://aclanthology.org/L18-1008
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.1609/aaai.v34i05.6403
https://aclanthology.org/2021.eacl-main.42
https://aclanthology.org/2021.eacl-main.42
https://aclanthology.org/2021.eacl-main.42
https://aclanthology.org/2021.eacl-main.42
https://aclanthology.org/2021.eacl-main.42
https://aclanthology.org/2021.eacl-main.42
https://aclanthology.org/2021.eacl-main.42


the European Chapter of the Association for Compu-436
tational Linguistics: Main Volume, pages 532–538,437
Online. Association for Computational Linguistics.438

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob439
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz440
Kaiser, and Illia Polosukhin. 2017. Attention is all441
you need. In Advances in Neural Information Pro-442
cessing Systems, volume 30. Curran Associates, Inc.443

Alex Wang, Yada Pruksachatkun, Nikita Nangia,444
Amanpreet Singh, Julian Michael, Felix Hill, Omer445
Levy, and Samuel Bowman. 2019. Superglue: A446
stickier benchmark for general-purpose language un-447
derstanding systems. In Advances in Neural Infor-448
mation Processing Systems, volume 32. Curran As-449
sociates, Inc.450

Alex Wang, Amanpreet Singh, Julian Michael, Fe-451
lix Hill, Omer Levy, and Samuel Bowman. 2018.452
GLUE: A multi-task benchmark and analysis plat-453
form for natural language understanding. In Pro-454
ceedings of the 2018 EMNLP Workshop Black-455
boxNLP: Analyzing and Interpreting Neural Net-456
works for NLP, pages 353–355, Brussels, Belgium.457
Association for Computational Linguistics.458

Adina Williams, Nikita Nangia, and Samuel Bowman.459
2018. A broad-coverage challenge corpus for sen-460
tence understanding through inference. In Proceed-461
ings of the 2018 Conference of the North American462
Chapter of the Association for Computational Lin-463
guistics: Human Language Technologies, Volume464
1 (Long Papers), pages 1112–1122, New Orleans,465
Louisiana. Association for Computational Linguis-466
tics.467

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali468
Farhadi, and Yejin Choi. 2019. HellaSwag: Can469
a machine really finish your sentence? In Pro-470
ceedings of the 57th Annual Meeting of the Asso-471
ciation for Computational Linguistics, pages 4791–472
4800, Florence, Italy. Association for Computational473
Linguistics.474

6

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472


A Appendices475

A.1 Extracting Synset Groups from476

Co-hyponym Groups477

In an initial exploration, we found that the task478

is hard to solve for human subjects if two closely479

related hyponyms are included, e.g., “clementine”480

and “tangerine”. We therefore employ clustering481

to assemble a set of mutually dissimilar hyponyms.482

We first compute a sentence embedding for each483

hyponym definition using the stsb-distilbert-base484

Sentence Transformer8 model. We then cluster the485

embeddings using complete-link clustering, com-486

bining the two most dissimilar clusters in each step.487

We stop merging before the biggest cluster exceeds488

the maximum group size (k = 10) or before the489

similarity between the last two combined clusters490

exceeds the maximum similarity (θ = 0.8). The491

largest cluster G is added to the set G of synset492

groups. We then iterate the steps of (i) removing493

the synsets in the previous largest cluster G from494

Ḡ(ŝ) and (ii) running complete-link clustering and495

adding the resulting largest cluster G to G until496

fewer than five synsets remain in Ḡ(ŝ) or no clus-497

ter can be formed whose members have a similarity498

of less than θ.499

A.2 Effect of Pattern500

We compared our pattern Qnoun with two alterna-501

tive patterns by evaluating GPT-2xl on the noun502

part of CoDA21-clean-easy. Patterns and the eval-503

uation results are shown in Table 3. The results504

suggest that the effect of the pattern on perfor-505

mance is minimal.506

Pattern Acc

<CTXT> Definition of <XXX> is 0.49
<CTXT> <XXX> is defined as 0.51
<CTXT> <XXX> is 0.49

Table 3: Effect of the pattern on the performance of
GPT2-xl on the noun part of CoDA21-clean-easy

A.3 Effect of Alignment Setup507

We constructed CoDA21 as an alignment dataset508

which uses the fact that matching between the def-509

initions and contexts is one-to-one. This setup510

makes the task more intuitive and managable for511

humans. However, context-definition match scores512

8https://huggingface.
co/sentence-transformers/
stsb-distilbert-base

Figure 2: Match scores from GPT2-xl model for the
context definition pairs for the sample given in Table
4. Match scores shown in bold correspond the context-
definition pairs that are in the predicted alignment by
the model that yields maximum total match score.

can be used to evaluate models on CoDA21 sam- 513

ples also without the alignment setup by simply 514

picking context-definition pairs with the highest 515

match score for each definition. We additionally 516

evaluated GPT-2xl model on CoDA21-clean-easy 517

dataset using this simple matching approach which 518

yielded 0.38 average accuracy compared to the 0.49 519

accuracy achieved with the alignment setup. This 520

result suggests that language models can also make 521

use of the alignment style evaluation, similar to 522

humans. 523

Table 4 presents a sample of size 7 from the 524

noun part of the CoDA21-clean-easy dataset. Fig- 525

ure 2 displays all 49 match scores of the context- 526

definition pairs for this sample obtained using GPT- 527

2xl. 5 of the 7 definitions (2,3,4,5,7) are matched 528

with correct contexts with the alignment setup 529

while 4 definitions (4,5,6,7) are matched correctly 530

for the simpe matching setup. Alignment setup 531

enabled the model to match second and third defini- 532

tions with their corresponding contexts even though 533

thier match scores are not the highest ones. 534
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Hidden word Context
dust 1. He came spurring and whooping down the road , his horse kicking up clouds of

<XXX> , shouting :
marble 2. Pels also sent a check for $ 100 to Russell ’s widow and had a white <XXX>

monument erected on his grave .
wastewater 3. The high cost of land and a few operational problems resulting from excessive

loadings have created the need for a <XXX> treatment system with the operational
characteristics of the oxidation pond but with the ability to treat more organic matter
per unit volume .

feathers 4. It was a fine broody hen , white , with a maternal eye and a striking abundance of
<XXX> in the under region of the abdomen .

fraction 5. It was then distilled at least three times from a trap at - 78 ‘ to a liquid air trap with
only a small middle <XXX> being retained in each distillation .

soil 6. The thing is that these bees love a fine-grained <XXX> that is moist ; yet the water
in the ground should not be stagnant either .

cards 7. And the coffee shop on Drexel Street , where the men spent their evenings and
Sundays playing <XXX> , had a rose hedge beneath its window .

Synset Definition
dust.n.01 1. fine powdery material such as dry earth or pollen that can be blown about in the air
marble.n.01 2. a hard crystalline metamorphic rock that takes a high polish; used for sculpture and

as building material
effluent.n.01 3. water mixed with waste matter
feather.n.01 4. the light horny waterproof structure forming the external covering of birds
fraction.n.01 5. a component of a mixture that has been separated by a fractional process
soil.n.02 6. the part of the earth’s surface consisting of humus and disintegrated rock
card.n.01 7. one of a set of small pieces of stiff paper marked in various ways and used for

playing games or for telling fortunes

Table 4: A sample CoDA21 question taken from the noun part of the CoDA21-clean-easy dataset. The synsets
are grandchildren of the parent synset ‘material.n.01’ whose definition is “the tangible substance that goes into the
makeup of a physical object”.
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