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Abstract

Classifier-free guidance (CFG) has become an essential component of modern
diffusion models to enhance both generation quality and alignment with input
conditions. However, CFG requires specific training procedures and is limited
to conditional generation. To address these limitations, we propose Token Per-
turbation Guidance (TPG), a novel method that applies perturbation matrices
directly to intermediate token representations within the diffusion network. TPG
employs a norm-preserving shuffling operation to provide effective and stable
guidance signals that improve generation quality without architectural changes. As
a result, TPG is training-free and agnostic to input conditions, making it readily
applicable to both conditional and unconditional generation. We further ana-
lyze the guidance term provided by TPG and show that its effect on sampling
more closely resembles CFG compared to existing training-free guidance tech-
niques. Extensive experiments on SDXL and Stable Diffusion 2.1 show that TPG
achieves nearly a 2x improvement in FID for unconditional generation over the
SDXL baseline, while closely matching CFG in prompt alignment. These re-
sults establish TPG as a general, condition-agnostic guidance method that brings
CFG-like benefits to a broader class of diffusion models. The code is available at
https://github.com/TaatiTeam/Token-Perturbation-Guidance

1 Introduction

Diffusion models [1, 2, 3] have emerged as the main methodology behind many successful generative
models for images [4, 5], videos [6, 7, 8, 9, 10], audio [11, 12], and 3D objects [13, 14, 15]. Despite
their theoretical capacity to produce high-fidelity data, unguided diffusion models often suffer from
poor sample quality, manifesting as visual artifacts, lack of semantic consistency, and insufficient
sharp details [16]. To mitigate these issues, classifier-free guidance (CFG) [17] has become the de
facto approach to steer the generation process toward higher quality and more semantically aligned
outputs. However, CFG is inherently limited to conditional generation and requires a specific training
strategy that randomly replaces the input condition with a null condition.

In response to these constraints, several alternative guidance techniques have emerged, aiming to
extend CFG-like benefits to broader settings [18, 16, 19, 20, 21]. These approaches often manipulate
components of the denoiser network, such as attention layers, to construct effective guidance signals.
However, they either require additional specialized training or offer limited improvements in prompt
alignment and generation quality (particularly w.r.t. unconditional generation). Accordingly, there
remains a need for a training-free guidance mechanism that works across both conditional and
unconditional settings while improving generation quality and semantic alignment similar to CFG.

In this paper, we revisit existing attention-based guidance techniques and aim to bridge the gap
between the effectiveness of CFG and that of training-free, condition-agnostic methods. We observe
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Figure 1: Visualization of the denoising process over time for different guidance strategies: CFG [17],
PAG [19], SEG [18], and our proposed TPG. Each row shows generated images at various denoising
time steps, from ¢ = 981 (left) to ¢t = 1 (right). The red box highlights the early-to-middle denoising
stage (t = 821 to t = 741), where CFG and TPG demonstrate clearer structure (e.g. horse face) and
consistency. The text prompt used is "a female in a black jacket is riding a brown and white horse".

that CFG effectively recovers global structure and coarse details during the early denoising steps,
whereas existing training-free methods tend to produce over-smoothed results at the same stage (see
highlighted regions in Figure 1). This is problematic because early denoising steps are critical for
both image quality and prompt alignment, as they establish global structure, major shapes, and coarse
semantics before the network begins refining fine details [22, 23]. If the model fails to capture correct
semantics, object placement, or overall composition at this stage, it may never fully recover from that
high-level mismatch in later refinements. This lack of sufficient early-step guidance likely explains
why existing methods often yield only marginal improvements in prompt alignment and generation
quality compared to CFG.

Motivated by these insights, we introduce Token Perturbation Guidance (TPG), a novel method that
directly perturbs intermediate token representations within the diffusion network, without requiring
additional training or architectural changes. TPG employs token shuffling as the core operation to
provide effective guidance signals. Specifically, token shuffling is (i) linear, (ii) preserves token
norms, and (iii) disrupts local structure while maintaining global statistics. As shown in Figure 1,
TPG exhibits behavior similar to CFG and, compared to other training-free methods, more faithfully
recovers both global structure and fine details at early denoising stages.

We evaluate the effectiveness of TPG on both conditional and unconditional image generation
using SDXL [5] and Stable Diffusion 2.1 [24]. Our results show that TPG achieves nearly a
2x improvement in FID for unconditional generation compared to the SDXL baseline and also
significantly outperforms existing perturbation-based guidance techniques. Furthermore, we observe
that TPG closely mirrors CFG in terms of alignment and its effect on the sampling process, i.e.,
positively aligning with ground-truth noise in low-frequency bands, remaining largely orthogonal
at other frequencies, and following a similar norm profile throughout denoising. These findings
establish TPG as a general, condition-agnostic guidance method that extends CFG-like benefits to a
broader class of diffusion models, including those for unconditional generation.

2 Related work

Score-based diffusion models [25, 1, 26, 3] reverse a forward noising process by learning the score
function, the gradient of the log data density, at multiple noise levels to progressively transform pure
Gaussian noise into realistic samples [26]. This principled estimator of the data distribution has
outperformed previous generative modeling methods in both fidelity and mode coverage [23]. Since
the score represents an explicit gradient field, the sampling trajectory can be guided by incorporating
auxiliary gradients, leading to powerful guidance techniques such as classifier guidance (CG) [23]
and classifier-free guidance (CFG) [17]. These guidance methods significantly enhance image quality
and prompt alignment, albeit at the cost of oversaturation [27] and reduced diversity [17, 28].



Although CFG improves image fidelity and alignment with the input condition, it is inherently
restricted to conditional generation. Moreover, since its guidance signal is defined as the difference
between conditional and unconditional denoising outputs, CFG requires specific training procedures
and its sampling trajectory can overshoot the desired conditional distribution, leading to skewed or
oversimplified images [29]. Autoguidance [16] builds on CFG by introducing a deliberately weaker,
also known as the “bad version” of the noise predictor, i.e., a less-trained denoiser network, to produce
the guidance signal. While this avoids CFG’s reliance on the unconditional score, identifying an
effective “bad version” is non-trivial and still requires training and careful tuning of the model. By
contrast, our method requires no additional training or architectural changes.

Recently, attention-based perturbation methods have shown promising results in improving the quality
of generated images by leveraging or modifying the attention maps within the diffusion model’s
attention blocks. Self-Attention Guidance (SAG)[20] uses the model’s own attention map to blur the
denoiser input. Perturbed Attention Guidance (PAG)[19] replaces the attention map with an identity
matrix to form the guidance signal, while Smoothed Energy Guidance (SEG) [18] applies Gaussian
blurring to the attention maps. Although these techniques enhance image quality without additional
training or auxiliary models, their impact on image quality and prompt alignment remains limited
compared to CFG. In contrast, we show that TPG provides a stronger guidance signal, bridging the
gap between the effectiveness of CFG and that of training-free guidance methods—both in terms of
image quality and alignment with the input condition.

3 Background

Diffusion Models Denoising diffusion models generate samples from a data distribution pgae, (x)
by reversing a gradual noising process [1, 25]. In the forward process, a clean sample Xg ~ Pdata 1S
progressively corrupted into noise xr through a stochastic differential equation (SDE):

dx = f(x,t)dt + g(t)dw, (D

where f(x, t) and g(t) are predefined functions representing the drift and diffusion coefficients, and
dw is an increment of the standard Wiener process. A widely adopted formulation is the variance-
preserving (VP) diffusion process [3], where x; gradually approaches an isotropic Gaussian as ¢ — 7T'.
A typical parameterization is f(x,t) = —23(¢)x and g(t) = /B(t) where 3(t) defines the noise
schedule. With this formulation, the denoising process is given by the following reverse-time SDE:

dx = —%B(t)x — B(t)Vxlog py(x)| dt + /B(t)dw @

where Vy log p:(x) is the score function, representing the gradient of the log-density of the noisy
data at time ¢. This gradient indicates the direction in which a sample should be updated to increase
its likelihood w.r.t. the noisy data distribution. The unknown score function is typically approximated
by a neural network sy (x, ), trained using denoising score matching [30]. Given a noisy sample x;
at time ¢, the network predicts the score of the marginal distribution p;. Training is performed by
minimizing a weighted denoising score matching loss:

1 T
L(0) = 5/0 B Excympo B, mpy o (2 x0) || 50 (%25 1) = Vi, Tog pyjo (x| Xo)szt, (3)

where py|o(x; | Xo) is the known Gaussian transition kernel of the forward SDE. Once trained, sam-
ples are generated by integrating the reverse SDE using sg(x,t) &~ Vy log p;(x) as an approximation
to the score function. Conditional generation is enabled by training a score network that receives
additional conditioning signals, e.g., class labels or text prompts, as input. In this case, the score
network sy (x, ¢, ¢) approximates the conditional score Vy log pi(x | ¢).

Guidance Although diffusion models trained via denoising score matching have strong theoretical
foundations, the score approximations are often inaccurate due to limited model capacity. As a result,
unguided sampling using the learned score function tends to produce blurry and low-fidelity images,
especially in complex tasks such as text-conditional generation. To address these limitations and
improve generation quality, classifier-free guidance (CFG) [17] was introduced to steer the reverse
diffusion trajectory toward higher quality outputs by linearly interpolating between conditional and
unconditional score estimates. In general, guidance in a diffusion model can be defined as:

g@(Xt, c, t) = Sg_(xhcv t) + V[Sg_(xhcv t) - S;(thﬂ t)]? (4)



Algorithm 1 Token Perturbation Guidance (TPG) for Diffusion Models

Require: Noisy input xp ~ N(0,I), shuffling matrices Sy, ;, set of perturbed layers L, score
function (denoiser) sg, guidance scale -, total time steps T’
1. fort="T,...,1do

2: // Forward pass without perturbation
3: sy (x¢) < so(x¢,1)
4: // Forward pass with perturbation
5: Run the network s (x;) a second time with the following modification to have s, (x;):
6: for each layer k£ do
7: if £ € £ then
8: Apply token perturbation: Hy, <— Sy, .H},
9: // Apply token perturbation guidance
10 8o(xe,t) < s (x¢) +(sg (x¢) — 85 (x¢))
11: // Update sample
12: x¢—1 < SolverStep(x;, 59(x¢, t))

13: return x

where s;’ (x4, ¢, t) estimates the desired direction (typically the conditional score sq(x¢, ¢, t)), and
s, (x¢,¢,t) acts as a negative score. In such guidance methods, samples are effectively pushed
more toward a positive signal and away from a negative signal. In CFG, by assigning s, (X, ¢, t) =
so(x¢, @, t), the samples are pushed away from the score of the unconditional data distribution and
more strongly toward the given condition. Other guidance techniques implement s, (x;, ¢, t) with a
less-trained diffusion model [16], or by perturbing attention maps or input pixels [19, 18, 20].

4 Token perturbation guidance

We next introduce Token Perturbation Guidance (TPG), a novel guidance method that directly perturbs
token representations within the diffusion model. Unlike previous approaches that modify model
weights or attention mechanisms, TPG operates on the intermediate token representations in the
denoiser during inference. To improve sample quality, we use token shuffling as a simple choice of
the perturbation, which preserves global structure while disrupting local patterns. TPG is training-free
and does not require any changes to the model architecture, effectively extending the benefits of CFG
to a broader class of diffusion models.

Let H € RB*NXC denote the intermediate hidden representations, where B is the batch size, N is
the number of tokens, and C is the feature dimension per token. We apply the shuffling operator
8§ € RNV*N along the token dimension to get H' = SH. These shuffled tokens are used to define the
negative score s, (X¢, ¢, t) in TPG. The shuffling operation satisfies the following properties:

* Linearity: This ensures that the perturbations can be expressed as a matrix multiplication, enabling
efficient implementation within the denoising process. Thus, TPG does not add any noticeable
overhead to the sampling process, and it has practically the same sampling cost as CFG.

* Norm preservation: The shuffling matrix is orthonormal, meaning it satisfies S'S =1 and
acts as a rigid rotation or permutation in the embedding space. This property guarantees that the
preturbation preserves token norms, i.e., we have |[SH||2 = ||H||2. As a result, the magnitude of
the feature representations remains unchanged, which helps maintain their statistical properties and
prevents internal covariate shift [31].

Algorithm 1 summarizes the inference procedure of TPG. At each timestep, two forward passes are
performed: one standard, and one with token perturbations applied at selected layers via shuffling
matrices S ;, unique at each time step ¢ and each layer k. The outputs are combined to guide
the denoising trajectory toward higher-quality samples. Accordingly, TPG can be applied to both
conditional and unconditional models and does not require additional training of the base model.
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Figure 2: Analyzing the behavior of different guidance methods across denoising steps. (a) Cosine
similarity between the added guidance term Ae in &g = ey + yAe and the true noise €. SEG and
PAG exhibit negative alignment at intermediate steps, while TPG and CFG maintain near-zero cosine
values, indicating orthogonality to the noise. (b) Cosine similarity between the full guided score €y
and e. Compared to SEG and PAG, TPG behaves more similarly to CFG across sampling. (c) {2
norm of the guidance term Ae. TPG and CFG follow nearly identical trends, both starting around 40
and increasing steeply in the later denoising steps. In contrast, SEG and PAG maintain consistently
low norms throughout.

S Comparing the behavior of TPG with other guidance methods

To better understand how different guidance strategies influence denoising, we analyzed their interac-
tion with the true noise signal across various steps of the denoising process. In this experiment, we
selected 1,000 images from the MS-COCO 2014 validation set [32]. Instead of starting from pure
random noise, we corrupted each image with noise corresponding to a specific time step ¢ to generate
the noisy input. This noisy image was then passed through the denoiser to produce the guided output
for various methods (e.g., SEG, CFG, and TPG). We analyzed the angle between the predicted and
ground-truth noise and examined the frequency components by partitioning the spectrum (up to radius
0.7) into 29 bins. Importantly, we did not use the denoiser output to progress to the next step; rather,
for each time step, we reapplied noise directly to the clean image.

As shown in Figure 2, TPG and CFG produce guidance vectors that are nearly orthogonal to the
ground-truth noise throughout the trajectory, as indicated by cosine values close to zero. This aligns
with observation shown in [33], which demonstrates that the CFG update term can be decomposed
into parallel and orthogonal components. Importantly, the parallel component primarily contributes
to oversaturation. It is believed that orthogonality enables more effective steering of the predicted
direction, and generally, the orthogonal component contributes to improved image quality. In contrast,
PAG and SEG exhibit strong negative alignment during the middle steps, suggesting that they
temporarily oppose the denoising direction. Figure 2 (b) further shows that, compared to SEG and
PAG, TPG more closely mirrors the behavior of CFG in terms of alignment between the predicted
and ground-truth noise. Additionally, Figure 2 (c) shows that TPG and CFG exhibit similar guidance
magnitudes across all denoising steps, while SEG and PAG show substantially lower norms. This
indicates that the update terms in CFG and TPG are more influential throughout the sampling process
compared to that in PAG and SEG.

Figure 3 complements our step-wise analysis by illustrating how each guidance method behaves in
the frequency domain. TPG and CFG remain almost perfectly orthogonal to the ground-truth noise
across all frequencies and time steps, except for a slight positive tilt in the lowest frequency bands.
SEG, however, exhibits a clear negative stripe at medium frequencies during intermediate steps,
confirming that its correction momentarily opposes the desired direction. The norm heatmaps further
reveal that CFG and TPG inject a strong low-frequency signal in the early steps, while high-frequency
modifications primarily occur in the later denoising steps. In contrast, SEG operates with less energy
and displays a markedly different norm pattern when modifying high-frequency content, indicating
a relatively weaker approach to detail refinement. This behavior aligns with Figure 1, where the
reduced energy across frequency bands leads to overly smooth generations in the initial steps.

In summary, these results show that the TPG update closely mirrors the behavior of CFG both in di-
rection and frequency content across different denoising steps, suggesting more effective performance
compared to previous training-free guidance methods like PAG and SEG.
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Figure 3: Frequency analysis of guidance residuals throughout sampling. Each heatmap shows
either the cosine similarity between the guidance term Ae and the ground-truth noise € (top row), or
the £ norm of the guidance term (bottom row), as a function of frequency bin (horizontal axis) and
denoising step (vertical axis; 1000 — 1). Top: For both CFG and TPG, the guidance term remains
almost orthogonal to the noise across all frequencies, with a mild positive bump in the lowest bands.
In contrast, SEG transitions from weak positive alignment in the early steps to a pronounced negative
stripe centered at medium frequencies. Bottom: CFG and TPG concentrate most of their energy in
the lowest frequency bin and inject significantly larger magnitudes than SEG, whose energy remains
up to two orders of magnitude smaller throughout the denoising process.

g Step
g Step

D

noising Step
g Step

De

6 Experiments

Setup All experiments are conducted via official implementations and pre-trained checkpoints
provided by publicly available repositories. We build upon the current open-source state-of-the-art
Stable Diffusion XL (SDXL) [5] as our primary baseline, and include the Stable Diffusion 2.1 (SD
2.1) [34] to show the generality of our method and analysis. Moreover, TPG is easy to implement,
and it can be added into existing diffusion models as a plug-and-play module with just a few lines
of additional code. In all experiments, the compared methods are evaluated using their original
configurations and default guidance scales. The guidance scale for TPG is fixed at 3.0.

Metrics We adopt Fréchet Inception Distance (FID) [35] as our principal metric because it correlates
well with human preferences and jointly captures image quality and diversity. To quantify prompt
alignment, we report the average CLIP Score [36] between sampled images and their corresponding
prompts. Overall perceptual quality is further evaluated with the Inception Score and an Aesthetic
Score [37]. Moreover, all experiments are conducted by generating 30k samples for each method
(unless stated otherwise) and evaluated on the MS-COCO 2014 validation set [32].

6.1 Quantitative results

Table 1 presents a quantitative comparison of TPG against vanilla SDXL, PAG, SEG, and CFG
for both unconditional and conditional image generation tasks. In unconditional generation, TPG
outperforms all compared methods by achieving notably lower FID and sFID scores (69.31 and 44.18,
respectively), indicating better overall image quality and diversity. Additionally, TPG achieves the
highest Inception Score (17.99) while maintaining a competitive Aesthetic Score, further reflecting
the perceptual quality of TPG outputs. In conditional generation, CFG achieves the best results
overall, with TPG closely following and consistently outperforming vanilla SDXL, PAG, and SEG in
FID, sFID, and CLIP Score metrics.



Table 1: Quantitative comparison of TPG against vanilla SDXL [5], PAG [19], SEG [18], and
CFG [17] for unconditional and conditional image generation. Lower FID and sFID scores indicate
superior image quality and diversity, while higher Inception, Aesthetic, and CLIP scores indicate
enhanced perceptual quality and semantic alignment. TPG achieves the best metrics in unconditional
generation and closely matches the performance of CFG in conditional generation.

Setting Metric Vanilla SDXL [5] PAG[19] SEG|[18] CFG][17] TPG (Ours)
FID, 124.04 98.83 82.64 - 69.31

Unconditional sFID] 78.91 94.71 74.98 - 44.18
Inception Scoret 9.19 13.74 13.22 - 17.99
Aesthetic ScoreT 5.02 5.94 6.15 - 6.14
FID, 48.97 20.49 23.94 12.79 17.77
sFID] 43.71 28.78 31.50 23.31 24.32

Conditional Inception Scoret 22.10 34.66 30.29 42.75 34.89
Aesthetic ScoreT 5.37 6.11 6.18 6.20 6.12
CLIP Scoret 27.47 29.67 29.49 32.03 30.15

Table 2: Quantitative comparison of TPG with vanilla Stable Diffusion 2.1 [24], PAG [19], and
SEG [18] for unconditional generation. TPG outperforms other baselines in all evaluated metrics.

Metric Vanilla SD [24] PAG [19] SEG [18] TPG (Ours)
FIDJ 25.24 21.30 20.98 16.69
Inception Score 24.59 28.80 25.15 36.28
Aesthetic Score 1 5.07 5.93 5.83 5.97
Clip Score 1 27.74 29.03 28.53 29.30

Table 2 further compares TPG against vanilla Stable Diffusion 2.1, PAG, and SEG in unconditional
image generation. TPG consistently achieves the best performance, significantly outperforming
the other methods with the lowest FID score (16.69) and highest Inception Score (36.28). It also
maintains competitive results in terms of Aesthetic Score (5.97) and CLIP Score (29.30), highlighting
TPG’s strength in producing high-quality and semantically aligned images.

6.2 Qualitative results

Figure 4 highlights the differences in unconditional generations produced by various guidance
methods. Vanilla SDXL, PAG, and SEG often generate abstract or repetitive textures lacking clear
semantic structure, while TPG consistently produces well-structured and realistic scenes. Across
various initial seeds, TPG is less prone to generating abstract patterns and more likely to form
coherent spatial layouts with identifiable objects. Moreover, visual artifacts such as unnatural textures
or distortions are more noticeable in outputs from baseline methods, whereas TPG reduces such
artifacts, resulting in cleaner and more realistic generations.

We also show a qualitative comparison of conditional image generation across different guidance
methods in Figure 5. As can be seen, CFG and TPG consistently produce the highest-quality images,
with sharp details and strong alignment to the text prompts. In contrast, other baselines such as
SEG and PAG often generate outputs that deviate from the given condition, leading to less faithful
semantic content. Furthermore, visual artifacts, such as distorted shapes or inconsistent textures,
are more frequently observed in SEG and PAG outputs, while TPG exhibits improved robustness,
generating cleaner and more semantically accurate images with fewer artifacts.

6.3 Ablating other norm-preserving perturbation methods

To assess the importance of shuffling during guidance, Table 3 reports the results of various norm-
preserving perturbation methods compared to the vanilla baseline. In addition to the shuffling
strategy used in TPG, we evaluated Sign Flip, Hadamard, and Haar transforms, all described in
Appendix A. While these three alternatives provide slight improvements in generation quality over
the baseline, their gains are modest. In contrast, shuffling yields a substantially larger improvement
in both FID and Inception Score, indicating significantly better image quality and diversity. Although
all perturbations are orthogonal and preserve token norms, they influence the features differently.
Shuffling randomly reorders tokens, disrupting local patterns while preserving recoverable global
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Figure 4: Qualitative comparison of unconditional generations produced by Vanilla SDXL [5],
PAG [19], SEG [18], and our method (TPG). TPG achieves more realistic generations compared to
other training-free guidance methods.

Table 3: Comparison of different token perturbation methods evaluated using SK samples.

Metric Vanilla Sign Flip Hadamard Haar Shuffling
FID] 131.57 119.23 120.54 118.47 78.43
Inception Scoref 9.21 10.98 10.34 10.75 18.26

structure, which facilitates stronger guidance during inference. By comparison, Hadamard and Haar
transformations mix all tokens together, potentially distorting useful information and weakening the
guidance signal. Sign Flip merely alters the sign of each token, which may not offer a strong enough
signal to steer samples effectively toward desirable regions of the data distribution.

7 Conclusion and discussion

In this paper, we introduced Token Perturbation Guidance (TPG), a novel, training-free method for
enhancing the quality of diffusion models by directly perturbing intermediate token representations.
TPG employs token shuffling to define an effective guidance signal, extending the benefits of classifier-
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Prompt: “There is a man playing tennis on the court.”

Figure 5: Qualitative comparison of conditional generations produced by Vanilla SDXL [5], CFG [17],
PAG [19], SEG [18], and our method (TPG). TPG is able to achieve good quality and prompt
alignment compared to other baselines such as PAG and SEG.

free guidance to a broader range of models. Through extensive experiments, we demonstrated that
TPG improves the quality of both conditional and unconditional generation, while also enhancing
prompt alignment in conditional setups. Our analysis further showed that, unlike existing attention-
based perturbation methods such as SEG and PAG, the behavior of TPG closely resembles that of
CFG in terms of the direction and frequency content of the guidance term. We thus consider TPG a
simple, plug-and-play method that effectively bridges the gap between existing training-free guidance
methods and CFG both in quality and prompt alignment.
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A Orthogonal token perturbation matrix designs

TPG directly applies structured perturbations to the intermediate token embeddings within the
denoiser during inference. Specifically, consider the intermediate hidden-state activations of the
denoiser at a given layer, represented as a tensor H € RE*XNXC wwhere B denotes the batch size, N
the number of tokens, and C' the dimension of each token’s feature vector. At each denoiser layer
k and diffusion time step ¢, we apply the perturbation by multiplying the token-embedding with an
orthogonal (or approximately orthogonal) matrix Py ; € RY*¥ along the token dimension:

H' = PH.

The primary goal of these perturbations is to preserve global information flow while disrupting local
correlations that may lead to overfitting or artifacts. To achieve this, we investigated four distinct
perturbation methods for Py, ;:

* Token Shuffling. Represented by a permutation matrix Si; € RY*N_ where k denotes the
denoiser’s block index and ¢ the time step. The permutation matrix rearranges the tokens by
selecting exactly one token from each position and assigning it to a new position; mathematically,
this means that each row and column contains exactly one entry of "1", while all other entries are
zeros. It simply changes the order of tokens without altering their magnitude or norm, satisfying:

SiiSki = I.

* Random Sign Flipping. This perturbation method is defined using a diagonal matrix Dy ; €
RN*N “whose diagonal entries d; are drawn independently and identically from {+1, —1}. Each
token’s embedding is thus flipped in sign independently. By construction, the matrix D}, ; ensures
that the £5-norm of every token embedding is preserved, by satisfying the orthogonality condition:

D; Dy, =1

e Walsh-Hadamard Transform (WHT). The WHT uses a normalized Hadamard matrix W &

RN*N whose entries are :I:l/\/N and which satisfies W W = In. When N is a power of two
(i.e. N = 2™), we compute the transform of an NV x C token matrix X in m = log, (V) iterative

stages. We begin with w = X, and for each stage s = 1,...,m, update

W W W

2ol L s-1
- A, A j=1,3,...,N—2°"1 4+1.
j+25—17: - j,; j+2s—17:7

After m stages, the result w ™) equals W X. This structured, deterministic mixing redistributes
each token’s information uniformly across all others while preserving every token’s £o-norm.

* Haar-Random Orthogonal Perturbation. At each denoiser block % and diffusion time step ¢,
we generate a dense orthogonal matrix @, , € RY*N by first sampling A ~ N (0,1) ¥ *N and
then computing its QR decomposition A = Q R. We set Q. , = Q. Since the entries of A are i.i.d.
Gaussian, the orthogonal factor @ is distributed uniformly (with respect to the Haar measure) over
the orthogonal group O(N), and by construction

Q;,iQk,i =1I

This yields an isotropic rotation in the N-dimensional token-index space, mixing all token positions
globally without changing their ¢5-norm.

Each method preserves the overall norm and energy of the embeddings but changes their local
structure in uniquely effective ways. Empirically, these operations break up small-scale noise
patterns that the denoiser might overfit, while still carrying global structure for high-quality sample
generation. Among these methods, token shuffling typically provides the best overall performance:
it is straightforward to implement, has minimal computational overhead, and consistently achieves
significant improvements in both diversity and fidelity of generated samples.
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Table 4: Effect of guidance scale o on generative performance. Increasing ¢ improves both FID
and Inception Score up to o=3, after which performance degrades, suggesting an optimal balance
between diversity and fidelity at moderate noise levels.

o FID| sFID|  Inception Scoref  Precisiont  Recallt
0 136.01 86.42 7.48 0.21 0.31
1 84.05 68.35 16.05 0.38 0.37
2 77.25 70.81 17.39 0.45 0.35
3 76.00 75.92 18.47 0.45 0.37
4 77.62 80.29 17.87 0.44 0.30
5 79.44 83.23 17.11 043 0.32
6 81.52 86.63 16.39 0.41 0.30
7 84.17 90.15 15.39 0.40 0.28

Table 5: Quantitative comparison of Vanilla SD3, TPG, and PAG for unconditional generation,
evaluated over 5k generated samples. TPG achieves the lowest FID and highest Inception Score,
showing improved fidelity and diversity over other baselines.

Method FIDJ sFIDJ Inception Scoref Precisiont Recallt
Vanilla SD3 113.86 91.09 11.06 0.26 0.28
PAG 138.08 216.65 9.13 0.25 0.15
TPG (Ours) 83.01 71.59 13.34 0.46 0.42

Table 6: Quantitative comparison of Vanilla SD3, CFG, TPG, and PAG for conditional generation,
evaluated over 5k generated samples. CFG achieves the highest precision, while TPG attains a
balanced trade-off between quality and diversity.

Method FID] sFID] Inception Score Precision? Recallt
Vanilla SD3 33.81 63.17 29.62 0.45 0.45
CFG 21.22 58.14 42.10 0.70 0.42
PAG 41.32 117.03 25.65 0.42 0.30
TPG (Ours) 21.37 57.01 34.49 0.56 0.49

B More ablation

Effect of guidance scale on TPG We investigate the impact of the guidance scale o on the quality
and diversity of generated samples. As shown in Table 4, increasing ¢ from O to 3 consistently
improves both FID and Inception Score, indicating better fidelity and diversity. The performance
peaks at 0=3 with the lowest FID (76.00) and the highest Inception Score (18.47), suggesting an
optimal trade-off between structure preservation and generative diversity. Beyond this point, larger
guidance scales (0 > 3) lead to gradual degradation across all metrics, implying that excessive
stochasticity introduces artifacts and reduces consistency in generation.

Compatibility with ViT-based models To evaluate the generalization ability of TPG beyond the
U-Net architecture, we compare it with existing perturbation-based guidance methods, including PAG,
using the Stable Diffusion 3 model. The results for both unconditional and conditional generation are
shown in Tables 5 and 6. Unlike prior perturbation-based approaches that were specifically designed
for U-Net and fail to transfer effectively, TPG demonstrates strong cross-architecture compatibility.
In the unconditional setting, TPG achieves the best overall performance, significantly reducing FID
and improving Inception Score compared to both Vanilla SD3 and PAG. In the conditional setting,
TPG performs competitively with CFG, achieving comparable FID and recall while maintaining high
visual fidelity. These results confirm that TPG generalizes effectively across different architectures
and retains its effectiveness without modification.
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Table 7: Quantitative comparison of shuffling applied to down, mid, and up layers for unconditional
generation using SDXL, evaluated over Sk generated samples.

Layers FID| sFID] Inception Scoret Precisiont Recallt
Down layers 76.00 75.92 18.47 0.45 0.37
Mid layers 100.80 142.40 12.27 0.29 0.32
Up layers 102.28 154.87 12.81 0.30 0.23

Table 8: Quantitative comparison of Token Shuffling (ours), Token Blurring, and Vanilla for uncondi-
tional generation using SDXL, evaluated over 5k generated samples. Token Shuffling substantially
improves all quality metrics, demonstrating its effectiveness in enhancing generative fidelity and
diversity.

Method FID| sFID| Inception Scoref Precisiont Recallt
Vanilla 136.01 86.42 7.48 0.21 0.31
Token Blurring 157.67 184.40 6.70 0.18 0.23
Token Shuffling (ours) 76.00 75.92 18.47 0.45 0.37

Ablation on layer selection Following prior works such as SEG and PAG for U-Net-based models,
we examined perturbing the downsampling, mid, and upsampling layers separately. Table 7 shows
that TPG is most effective when the perturbation is applied only to the downsampling layers (i.e., the
encoder part of the U-Net). We also experimented with combinations of down, mid, and up layers,
but these did not lead to improvements and, in some cases, resulted in degraded performance.

Exploring non-norm preserving perturbations We further investigate the effect of non—norm-
preserving perturbations by introducing Token Blurring, which applies a Gaussian blur kernel to the
input tokens. As shown in Table 8, Token Blurring leads to a clear degradation across all evaluation
metrics, with higher FID and lower Inception Score compared to our Token Shuffling strategy. In
contrast, Token Shuffling maintains feature magnitude consistency while introducing structured
diversity, resulting in improved fidelity and perceptual quality. These results indicate that preserving
the token norm during perturbation is crucial for stable and semantically coherent generation.

C Limitations and future work

Despite these strengths, as with CFG itself, TPG still requires two forward passes through the
diffusion network, leading to increased sampling time compared to the unguided case. Additionally,
although TPG significantly improves quality in most situations, the guidance term may remain limited
in extreme out-of-distribution scenarios that are not captured by the learned distribution of the base
model. We consider addressing these limitations an interesting direction for future research.

D Societal impact

Generative modeling, particularly in the domains of images and videos, holds immense potential
for misuse, raising important ethical concerns. While advancements in sample quality, such as
those achieved through our method, can make generated content more realistic and convincing, this
heightened believability can unfortunately facilitate the spread of disinformation. Such misuse may
have far-reaching negative effects on society, including the amplification of existing stereotypes
and the inadvertent reinforcement of harmful biases. Although our improvements do not introduce
entirely new uses for the technology, they may nonetheless increase the risk of these unintended
consequences. It is therefore crucial to remain vigilant and consider the broader societal impacts that
enhancements in generative modeling capabilities might entail.
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Figure 6: Visualization of the denoising process over time for different guidance strategies: CFG [17],
PAG [19], SEG [18], and our proposed TPG. Each row shows generated images at various denoising
time steps, from ¢ = 981 (left) to ¢ = 1 (right). The text prompt used is "A red stop sign underneath
green street signs".
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Figure 7: Analysis of guidance behavior across denoising steps in unconditional setting. (a)
Cosine similarity between the added guidance term Ae and the true noise €. (b) Cosine similarity
between the full guided score éy and e. (¢) £> norm of the guidance term Ae.

E Additional qualitative results

In this section, we provide additional qualitative results to showcase the effectiveness and adaptability
of our Token Perturbation Guidance (TPG) method across different generation tasks and to compare
its performance with other existing methods.
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Figure 8: Frequency-step analysis of guidance residuals in unconditional setting. Each heat-map
plots either the cosine similarity between the guidance term Ae and the ground-truth noise € (top
row) or the £5-norm of the guidance term (bottom row) as a function of frequency bin (horizontal
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Figure 9: Qualitative comparison of conditional generation based on Stable Diffusion 2.1 [24]
produced by PAG [19], SEG [18], and our TPG.
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Figure 10: Qualitative comparison of unconditional generation based on Stable Diffusion 2.1 [24]
produced by PAG [19], SEG [18], and our TPG.

Figure 11: Qualitative comparison of face images based on Stable Diffusion 2.1 [24] generated
by SEG [18] and by our TPG under both conditional and unconditional settings. SEG [18] clearly
produces unrealistic patterns in the generated faces.
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Figure 12: Qualitative comparison of conditional generations produced by Vanilla SDXL [5],
CFG [17], PAG [19], SEG [18], and our TPG.
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PAG [19], SEG [18], and TPG.
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PAG [19], SEG [18], and TPG.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims are supported by detailed empirical analysis.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are discussed in Section 7.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:[Yes]

Justification: The paper provides all the necessary information to allow for full reproduction
of the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included our code as a ZIP file with the submission, and will make
the implementation of our method publicly available.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the test details.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Calculating the error bars in our context requires excessive computational
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. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide hardware details in Section 6
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Answer: [Yes]
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
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Answer: [NA]
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or data.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use well-established datasets and models with proper academic licenses.
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Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [NA]
Justification: The paper does not release new assets.
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper did not involve human participants, so no risks, disclosures, or IRB
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Declaration of LLM usage
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