
Off-policy Predictive Control with Causal Sensitivity Analysis

Myrl G. Marmarelis1 Ali Hasan2 Kamyar Azizzadenesheli3 R. Michael Alvarez1 Anima Anandkumar1

1Caltech
2Morgan Stanley

3NVIDIA

Abstract

Predictive models are often deployed for decision-
making tasks for which they were not explicitly
trained. When only partial observations of the rel-
evant state are available, as in most real-world ap-
plications, there is a strong possibility of hidden
confounding. Therefore, partial observability often
makes the outcome of an action unidentifiable, and
could render a model’s predictions unreliable for ac-
tion planning. We present an identification bound
and propose an algorithm to account for hidden
confounding during model-predictive control. To
that end, we introduce a generalized causal sensi-
tivity model for action-state dynamics. We place a
constraint on the hidden confounding between tra-
jectories of future actions and states, enabling sharp
bounds on interventional outcomes. Unlike previ-
ous sensitivity models, ours accommodates hidden
confounding with memory, while maintaining com-
putational and statistical tractability. We benchmark
on a wide variety of multivariate stochastic differ-
ential equations with arbitrary confounding. The
results suggest that a calibrated sensitivity model
helps controllers achieve higher rewards.

1 INTRODUCTION

Learning to predict dynamics that are partially observed may
be unhelpful for taking action in those dynamics, especially
if the hidden state confounds the relationship between action
and outcome. We consider the problem of using a predictive
model trained on offline trajectory data for the purpose of
online control. We assume that partial observability induces
hidden confounding in the offline data-generating process.

Our insights center on the identification of dynamics subject
to intervention, like an action policy for online (closed-loop)
control. We study the setting in which we only have access

Easy Medium Hard

Ours 20.8% 17.9% 22.8%
MSM 15.3% 13.0% 21.6%

Empirical 13.1% 15.9% 20.6%

Table 1. Results of partially identified controllers expressed
as average improvement in reward over naive model predic-
tive control (MPC) for 28 = 256 i.i.d experiments in each
column. Standard errors were all about 1%.

to a confounded predictive model that can generate samples
of the dynamics, following the offline distribution of observ-
ables generated by an unknown policy acting on the hidden
state. By projecting entire trajectories of possible actions
into the future, a controller may find the trajectory with the
best predicted outcome, and act on it. With hidden confound-
ing, the controller needs to assess the worst-case outcome
by taking into account any known constraints on the hidden
confounding. This makes the action policy more conserva-
tive. If the worst case represents a truly valid instantiation of
possible hidden confounding, then the controller performs
as well as possible and is considered minimax optimal.

Contributions. We propose a continuity constraint on
counterfactual probabilities that admits an adaptive method
for partially identifying the outcomes of action trajectories.
This is used as a sensitivity model for the hidden confounding
by setting a single parameter 𝛤 ≥ 0, associated with a norm
over action trajectories, that quantifies the extent of hidden
confounding and can be calibrated online (Definition 4). We
formally characterize sharp bounds for the partially identified
outcome of an action trajectory (Lemma 2). The sharp lower
bound naturally gives rise to a minimax model-predictive
controller (Lemma 3). We implement such a controller by
augmenting a practical algorithm that is commonly used in
deep reinforcement learning (Algorithm 1). Finally, we show
empirically how this algorithm yields higher rewards on aver-
age compared to alternative methods across a wide diversity
of linear and nonlinear synthetic experiments (Table 1).
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Figure 1. When planning to take actions in an online (in-
terventional) setting, a dynamics model trained offline (on
observational data) can usually be trusted more for action tra-
jectories that remain near the reference policy. Trajectories
are “off-policy” when they are generated by a new learned
policy, which can be subject to hidden confounding.

2 BACKGROUND

The main question we want to answer is how to design a
controller using an environment’s observable behavior from
actions taken under an unknown reference policy. Our focus
is on the challenges that emerge when those actions interact
with underlying state that is not observed. This is common;
examples include robotics with limited sensing and text-
based agents interacting with humans [Lang et al., 2024].

The field of artificial intelligence is beginning to realize the
promise in deploying large (self-)supervised predictive mod-
els as agents to interact with the world [Acharya et al., 2025,
Wang et al., 2024]. This agentic viewpoint can be cast as a
predictive control problem, since the agent must learn to act
from observations of the environment in order to achieve
diverse goals. We wish to emphasize that without abundant
feedback from the environment, and without full observabil-
ity of the relevant state of the world, even the most capable
predictive models could fail dramatically for planning ac-
tions to achieve a real-world goal [Saghafian, 2024]. It is a
problem of identifiability when a model’s predictions do not
translate to interventions [Peters et al., 2017].

This paper considers one particular obstacle to identifiability:
that of hidden confounding. Hidden confounding can easily
manifest within the agentic paradigm because foundation
models are seldom trained directly on the tasks that an agent
would seek to accomplish. While reinforcement learning
(RL) is employed to improve alignment or reasoning capabil-
ities [Guo et al., 2025], the training process does not collect
new data from the world, so the foundation model does not
explore or learn from its own actions as a hypothetical agent.
Interventional data are much more costly to obtain than the
observational datasets that enable foundation models.

Motivating example. To motivate the problem setting, we
consider an application of market impact [Guéant, 2016]
of agents in the financial sector [Bai et al., 2025]. One may
wish to understand how to optimally rebalance a portfolio
by executing specific trades. However, the trader has not
observed the full dynamics of how market participants re-
acted to past trades. As the trader interacts with the market,
additional hidden factors may influence the evolution of the
price. This may lead to the trader wanting to execute the
trade according to an upper or lower bound on the expected
price impact under the hidden confounding. The proposed
method considers a controller that achieves this goal.

2.1 MODEL PREDICTIVE CONTROL

A world model that can predict the dynamics of actions and
future states can readily implement agents through model
predictive control (MPC) [Clarke et al., 1987], a widely cele-
brated family of algorithms for adaptive control [Fernandez-
Camacho and Bordons-Alba, 1995] that project entire trajec-
tories of states and actions into the future, select the best one,
and execute the first action in that trajectory. MPC in model-
based RL enables fast learning [Lale et al., 2021, 2024], as
well as generalizable and multi-task agents [Hansen et al.,
2024, Hu et al., 2023]. Moreover, world models trained online
can be used offline to learn agents for novel tasks [Georgiev
et al., 2024, Hafner et al., 2023]. A trend is emerging for
offline-trained world models in realms that were traditionally
suited for online RL [LeCun, 2022, Ajay et al., 2023] likely
due to data accessibility and the demonstrated scalability of
self-supervised learning [Chen et al., 2020].

The lack of identifiability in a partially observed system
holds for MPC as well, specifically when using an offline-
trained world model for novel tasks. Our goal is to provide an
approach for partially identifying the outcomes of an agent’s
actions while leveraging a world model’s predictions. To do
so, it is necessary to assume a structural constraint on the
impact of, or sensitivity to, hidden confounding, manifesting
as a form of continuity in the action space. We propose
theoretically-guaranteed conservative MPC under the worst-
case scenarios admitted by the partial identification. This
work is in a similar spirit, but orthogonal to “offline RL” with
hidden confounding; we elaborate below.

2.2 OFFLINE REINFORCEMENT LEARNING

Offline RL refers to the class of methods for learning action
policies from data collected under a reference policy that
cannot be updated, and that is not from an expert—i.e., does
not maximize rewards for the task of interest. Most offline
RL algorithms borrow from online RL with the addition of
regularization to protect against domain shift [e.g. Kumar
et al., 2020]. They tend to involve learning a state-action
value Q-function for the current action policy and iteratively



optimizing a new policy on the basis of a Bellman equation.
These approaches can be efficient and robust [Panaganti
et al., 2022]. Sensitivity to hidden confounding has also
been incorporated through structural constraints [Bennett
et al., 2024], latent variables [Pace et al., 2024], as well as
adjustment through auxiliary variables [Wang et al., 2025].

Our focus on MPC diverges from those lines of work. The
scope of this paper assumes access to an accurate (offline,
confounded) world model, with the task of using it for on-
line control. This regime is becoming relevant to real-world
problems with the emergence of foundation models, yet
also contrasts with classical control theory by allowing the
dynamics—crucially, of the hidden confounders—to largely
remain a black box. The constraint on the hidden confounders
is meant to be adaptive to most data-generating processes.

2.3 CAUSAL INFERENCE

Our main insight is that recent theoretical tools from the inter-
section of causal inference and machine learning can be de-
ployed to this context of partially identified predictive control.
Causal inference is primarily concerned with the identifica-
tion and estimation of causal relationships among variables.
Many have studied the necessary and sufficient conditions for
identifying one variable’s outcome from another variable’s
intervention [Imbens and Rubin, 2015]. In the presence of
hidden confounding, researchers have developed sensitivity
models that impose structural constraints on the confounders,
and yield tractable bounds for the causal estimand. Hidden
confounders are distinct from latent confounders, the latter
being possible to infer to some extent. In general, data cannot
carry information about hidden confounders, and structural
constraints can help to quantify a model’s ignorance instead.
Sensitivity models have a long history of improving the ro-
bustness of observational studies [Cornfield et al., 1959] and
are making their way into machine-learning pipelines for the
sciences [Feuerriegel et al., 2024, Haddad et al., 2023].

The push to make these methods useful in machine learning
has led to more general sensitivity models: the univariate bi-
nary or discrete-intervention setting [Tan, 2006] has quickly
evolved to continuous [Jesson et al., 2022, Marmarelis et al.,
2023] and even multivariate [Frauen et al., 2024] interven-
tions. Starting with Dorn and Guo [2022], progress has also
been made in formally characterizing the sharpness of the
bounds arising from these sensitivity models.

Considering MPC as the problem of identifying outcomes
associated with entire future trajectories of actions, a suffi-
ciently flexible sensitivity model should yield conservative
policies in the presence of hidden confounding. Figure 1 illus-
trates the link between off-policy and interventions. We build
on recent progress and present our analysis in the framework
of potential outcomes introduced by Neyman [1923], which
vastly simplifies notation and centers on identifiability.

Data Generating Process

Figure 2. Graphical representation of the data-generating
process. Dashed arrows correspond to the reference policy
for the offline data. Dynamics are condensed into outcome
𝑌 , action trajectory 𝛱 , and observation history 𝑋; see §3.1.

3 THEORY

The main primitive underlying the data-generating process
is a partially observable Markov decision process (POMDP).
The POMDP consists of a sequence of state 𝑆𝑡 ∈ S, action
𝐴𝑡 ∈ A, and observation 𝑂𝑡 random variables indexed in
discrete time. 𝑂𝑡 is the observable part of the full state 𝑆𝑡 .
There is also a reward 𝑅𝑡 ∈ R≥0 that depends on the cur-
rent state-action pair (𝑆𝑡 , 𝐴𝑡 ). The evolution of the POMDP
is governed by a transition kernel 𝑇 (𝑆𝑡+1 |𝑆𝑡 , 𝐴𝑡 ) that is as-
sumed to be unknown. All that is observed at each time
step is the triplet 𝑊𝑡 ≜ (𝑂𝑡 , 𝐴𝑡 , 𝑅𝑡 ); the full state is hidden,
making the process partially observable.

As in standard reinforcement learning, the goal of an agent
is to choose actions that maximize expected future rewards
with infinite horizon and discounting factor 𝛾 ∈ (0, 1). With-
out loss of generality, denote the present context as 𝑡 = 0.
The agent acts on 𝐴0 by picking from a set of choices A
using the current observable state𝑂0 as well as any available
past (𝑊−1,𝑊−2, · · · ). The agent’s objective is for repeated
applications of its action policy to maximize E[∑∞

𝑡=0 𝛾
𝑡𝑅𝑡 ].

Our setting has an offline and online component. Data are col-
lected offline under an unknown reference policy �̃�(𝐴𝑡 |𝑆𝑡 )
and a predictive model is learned on the observables. We
therefore assume access to samples from the conditional
dynamics distributions 𝑃𝑊0 ,𝑊1 , · · · |𝑊−1 ,𝑊−2 , · · · that can be ap-
proximated arbitrarily well by a deep generative model. Any
distribution 𝑃 involving observables 𝑊𝑡 is assumed to corre-
spond to the offline data-generating process.

The agent must use 𝑃 to act online, replacing �̃� in the data-
generating process with its own policy 𝜋 that aims to max-
imize the discounted reward in expectation. This is called
off-policy learning because data generated from the agent’s
own policy are not available while learning. The domain shift
between the offline and online POMDPs cannot be antici-
pated before the agent starts acting. In particular, because the
full state 𝑆𝑡 is unobserved, 𝑃 is not guaranteed to help pro-
duce optimal actions even though it is the exact conditional



distribution of observables including actions and rewards.

3.1 HIDDEN CONFOUNDING

We simplify notation according to Figure 2 before proceed-
ing with identification. The outcome of interest is the fu-
ture discounted reward 𝑌 ≜

∑∞
𝑡=0 𝛾

𝑡𝑅𝑡 . The agent makes
plans on the basis of action trajectories taking the form 𝛱 ≜
[𝐴0 𝐴1 𝐴2 · · · ] belonging to an A-product space of finite or
even infinite dimensionality, depending on the planning hori-
zon. The agent’s context is the current and past observable
states, as well as actions, 𝑋 ≜ [𝑂0 𝑂−1 𝐴−1 𝑂−2 𝐴−2 · · · ]
[Littman and Sutton, 2001].

In the MPC framework, the optimal controller is that which
selects the action trajectory 𝛱 that maximizes the reward
𝑌 . This notation allows the abstraction of the dynamics in a
(partially observed) Markov decision process. The optimal
plan starting at a state 𝑠 ∈ S is ultimately specified by

𝜋∗ ∈ arg max
𝜋∈T

E[𝑌 | 𝛱 = 𝜋, 𝑆0 = 𝑠] . (1)

T denotes the set of all feasible action trajectories: like a
power set of A. Since 𝑆0 is not observed, it must be inferred
with all of the available information in 𝑋 . However, some
of the statistical variation in 𝑆0 will probably leak through,
and manifest as residual (hidden) confounding.

3.2 POTENTIAL OUTCOMES

The naive solution to action-trajectory selection would be
like Equation (1) but simply using the observables instead.

𝜋∗naive ∈ arg max
𝜋∈T

E[𝑌 | 𝛱 = 𝜋, 𝑋 = 𝑥] (2)

Clearly, if 𝑋 cannot perfectly predict 𝑆0, then these solutions
might be different. A solution to Equation (2) might yield
a high expected reward in the offline setting, but that is not
guaranteed in the online setting in which any confounding
between 𝛱 and 𝑆0, conditioned on 𝑋 , is removed. The online
outcome E[𝑌 | 𝛱 = 𝜋∗naive, 𝑆0 = 𝑠0] is unidentifiable.

We require a simple notation for the outcomes of a potential
online intervention in an instance described by the observable
𝑋 . The potential-outcomes framework [Rubin, 1974, Imbens
and Rubin, 2015] provides such a theory, and can flexibly
handle vector-valued interventions [Marmarelis et al., 2024].

Definition 1 (Potential Outcome). For every decision-
making instance, the realized outcome𝑌 is the future reward
from the offline dynamics, and the potential outcome 𝑌 (𝜋)
associated with any action trajectory 𝜋 is the future reward
that would be realized online from following actions 𝜋.

Potential outcomes and realized outcomes follow a joint
distribution because each individual instance of dynamics
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Figure 3. Continuity in the outcome counterfactual probabil-
ities is set in terms of a norm on realized action trajectories.

is considered to have its own set of potential outcomes in-
dexed by 𝜋. For a particular instance of state and observable
(𝑠0, 𝑥), the marginal behavior of one potential outcome can
be expressed as(

𝑌 (𝜋) | 𝑋 = 𝑥
)
∼

(
𝑌 | 𝛱 = 𝜋, 𝑆0 = 𝑠0

)
.

The most relevant insight is that without conditioning on the
full state 𝑆0, the offline action trajectory 𝛱 itself can reveal
information about 𝑆0 (statistically). Hence, 𝑌 |𝛱, 𝑋 is not
predictive of 𝑌 (𝜋) because the underlying 𝑆0 is not fixed
across different (𝛱 = 𝜋) conditions. We formally define the
counterfactual as

Definition 2 (Counterfactual). Conditional expressions of
the form 𝑌 (𝜋) | 𝛱, 𝑋 are called counterfactual because they
describe “what-if” scenarios where offline 𝛱 is observed,
and we want to know the online outcome of a different 𝜋.

Definition 3 (Causal Estimand). The quantity of interest for
partial identification is E

[
𝑌 (𝜋) | 𝑋 = 𝑥

]
, to be evaluated at

any (𝜋, 𝑥) with support on 𝑃𝛱 ,𝑋.

3.3 SENSITIVITY ANALYSIS

We begin our sensitivity analysis by considering the counter-
factual distribution 𝑃𝑌 (𝜋 ) |𝛱 ,𝑋, where generally 𝛱 is called
the exposure to disambiguate from 𝜋, the intervention.

Partial identification will be enabled by a mild continuity
argument. The argument aligns with the reasoning that led to
the classically celebrated marginal sensitivity model (MSM)
for binary exposures [Tan, 2006]. The MSM constrains the
Radon-Nikodym derivative of the two possible (binary) coun-
terfactuals. In order to graduate to continuous exposure
domains, Marmarelis et al. [2023] recently proposed local
bounds for nearby counterfactuals. Concretely, their 𝛿MSM
is derived by assuming a constraint on

d𝑃𝑌 (𝜋 ) |𝛱=𝛼+𝛿,𝑋=𝑥
d𝑃𝑌 (𝜋 ) |𝛱=𝛼,𝑋=𝑥

≈ 1, (3)



for a sufficiently small value 𝛿 in the space of exposures,
adapted to this paper’s notation. Our analysis is inspired by
a vector-valued extension of the 𝛿MSM applied to the action
trajectories. By Equation (3), a form of continuity is placed
on the counterfactual densities with respect to the observed
trajectory 𝛱 at any feasible value 𝛼, for any potential trajec-
tory 𝜋, and history 𝑥. In other words, it is describing how
much the distribution of rewards 𝑌 for a potential trajectory
𝜋, denoted as 𝑌 (𝜋), could change with a perturbation in
the realized action trajectory 𝛼. Any statistical dependence
between 𝑌 (𝜋) and 𝛱 , conditioned on 𝑋 , could only occur
through hidden confounders that violate ignorability.

In a POMDP setting, the hidden state behaves as a hidden
confounder whenever it affects the reference policy—which
generates the offline realized trajectories—and the reward. It
impedes identification of the reward for potential trajectories
that are off-reference-policy, as in online planning. So far, the
literature on causal sensitivity models has failed to provide an
approach to partial identification that is generally applicable
while also adapting its bounds based on how off-policy the
counterfactuals in question really are.

A recently popular sensitivity model that can be used for
vector valued exposures, and therefore action trajectories, is
termed the CMSM [Frauen et al., 2024, Jesson et al., 2022].
While simple and surprisingly effective, the CMSM does not
have a way to quantify whether some trajectories are more
on-policy or off-policy than others, so it does not discrimi-
nate in its resultant bounds. On the other hand, the 𝛿MSM
may provide a starting point for an adaptive sensitivity model
because it considers continuity between nearby counterfac-
tuals. We deviate from the original infinitesimal formulation
of the 𝛿MSM and consider exposures and interventions in a
general normed vector space of action trajectories.

First we re-frame the arguments (𝛼, 𝛿) by setting 𝛼 = 𝜋

and 𝛿 = 𝛱 − 𝜋, so that 𝑃𝑌 (𝜋 ) |𝛱=𝛼,𝑋=𝑥 becomes the identi-
fiable quantity 𝑃𝑌 (𝜋 ) |𝛱=𝜋,𝑋=𝑥 = 𝑃𝑌 |𝛱=𝜋,𝑋=𝑥 . Equation (3)
transforms to

d𝑃𝑌 (𝜋 ) |𝛱 ,𝑋=𝑥

d𝑃𝑌 |𝛱=𝜋,𝑋=𝑥

≈ 1. (4)

This constraint is to hold almost everywhere in the joint
probability space of

(
𝑌 (𝜋), 𝑌 , 𝛱

)
, and for any (𝜋, 𝑥) with

support in 𝑃𝛱 ,𝑋. It is instructive to think of (𝜋, 𝑥) as fixed and(
𝑌 (𝜋), 𝑌 , 𝛱

)
as a triplet of random variables. The framing

corresponds to the decision-making context, where for a
given “state” 𝑥, we seek to evaluate possible interventions
𝜋. The existence of this Radon-Nikodym derivative can be
guaranteed under the mild condition that all counterfactuals
have identical support (in the outcome space Y, shared by
all potential and realized outcomes) [Kallenberg, 2002].

Suppose that a norm is defined over trajectories. If the coun-
terfactual log-probability density functions could be assumed
to be continuous in the realized trajectory 𝛱 , then the Radon-
Nikodym derivative of Equation (4) could be constrained via

Lipschitz continuity in ∥𝛱 − 𝜋∥ as illustrated in Figure 3.

Definition 4 (Sensitivity Model). Let 𝛤 ≥ 1 be the lowest
constant such that����log

d𝑃𝑌 (𝜋 ) |𝛱 ,𝑋 (𝑌 | 𝛱, 𝑋)
d𝑃𝑌 |𝛱 ,𝑋 (𝑌 | 𝜋, 𝑋)

���� ≤ ∥𝛱 − 𝜋∥ log𝛤

almost everywhere, and for any action trajectory 𝜋. The
scalar 𝛤 is the sensitivity parameter for this model.

3.4 PARTIAL IDENTIFICATION

The proposed sensitivity model in Definition 4 ultimately
places constraints on the relationships between any coun-
terfactual density 𝑃𝑌 (𝜋 ) |𝛱 ,𝑋 (𝑌 | 𝛱, 𝑋) and its correspond-
ing factual density 𝑃𝑌 |𝛱 ,𝑋 (𝑌 | 𝜋, 𝑋). These density ratios
(formally Radon-Nikodym derivatives) are central to our
analysis. Let us denote them as functions 𝑔𝜋 .

𝑔𝜋 (𝑌, 𝛱 , 𝑋) ≜
d𝑃𝑌 (𝜋 ) |𝛱 ,𝑋 (𝑌 | 𝛱, 𝑋)

d𝑃𝑌 |𝛱 ,𝑋 (𝑌 | 𝜋, 𝑋)

By the proposed sensitivity model, any such density ratio falls
within the straightforward bounds

[
𝛤−∥𝛱 −𝜋 ∥ , 𝛤+∥𝛱 −𝜋 ∥ ] .

Less straightforward is how to translate those bounds to the
causal estimand given by Definition 3. We propose a change
of measure. Specifically, we obtain the desired kernel by
marginalizing over observational trajectories 𝛱 :

�̃�𝜋 (𝑌, 𝑋) ≜
∫
𝛱

𝑔𝜋 (𝑌, 𝛱 , 𝑋) d𝑃𝛱 |𝑋,

=
d𝑃𝑌 (𝜋 ) |𝑋 (𝑌 | 𝑋)

d𝑃𝑌 |𝛱=𝜋,𝑋 (𝑌 | 𝑋) .
(5)

This integrated �̃�𝜋 is the Radon-Nikodym derivative between
potential and realized outcome distributions. Remarkably,

E[𝑌 �̃�𝜋 (𝑌, 𝑋) | 𝛱 = 𝜋, 𝑋 = 𝑥] = E[𝑌 (𝜋) | 𝑋 = 𝑥] . (6)

The kernel �̃�𝜋 cannot be point-identified, but it does admit
bounds from marginalization.

E
[
𝛤−∥𝛱 −𝜋 ∥ �� 𝑋]

≤ �̃�𝜋 (𝑌, 𝑋) ≤ E
[
𝛤+∥𝛱 −𝜋 ∥ �� 𝑋]

(7)

It is possible to produce sharp bounds on the expected future
discounted reward, E[𝑌 (𝜋) | 𝑋], in a manner similar to
other recent works on causal sensitivity analysis [Frauen
et al., 2024, Oprescu et al., 2023, Dorn et al., 2024]. We seek
to construct a lower-bounding function �̃�

(−)
𝜋 that yields

E[𝑌 (𝜋) | 𝑋] ≥ E[𝑌 �̃�
(−)
𝜋 (𝑌, 𝑋) | 𝛱 = 𝜋, 𝑋], (8)

and for which equality can hold with a feasible configura-
tion of hidden confounders. It is important to ensure that
the bounds are sharp in order to be resourceful with the
sensitivity model, and for optimality results downstream.



For a putative kernel �̃�𝜋 to be valid, it must satisfy any and all
properties of a true d𝑃𝑌 (𝜋 ) |𝑋/d𝑃𝑌 |𝛱=𝜋,𝑋 that can be tested
with the data (i.e., are identifiable). Crucially, we propose a
necessary and sufficient condition of the form

Proposition 1 (Balancing Criterion).

E
[ d𝑃𝑌 (𝜋 ) |𝑋 (𝑌 | 𝑋)
d𝑃𝑌 |𝛱=𝜋,𝑋 (𝑌 | 𝑋)

��� 𝛱 = 𝜋, 𝑋

]
=

∫
Y

d𝑃𝑌 (𝜋 ) |𝑋 (𝑦 | 𝑋)
d𝑃𝑌 |𝛱=𝜋,𝑋 (𝑦 | 𝑋) d𝑃𝑌 |𝛱=𝜋,𝑋 (𝑦 | 𝑋) = 1.

What remains is to construct �̃� (−)
𝜋 such that it minimizes the

weighted outcome expectation while obeying the sensitivity
model and satisfying the balancing criterion. The latter is
accomplished by placing a threshold on a particular quantile
of 𝑌 | 𝛱, 𝑋 that balances the extremes on either side of the
sensitivity bounds. For high values of 𝑌 , �̃� (−)

𝜋 must be as
small as possible, and for low values of 𝑌 , it must be as high
as possible. The line between high and low is drawn by that
quantile threshold, which is denoted as 𝑄𝜏 (𝛱, 𝑋).

Lemma 2 (Sharp Reward Bound). The sharp lower bound
in Equation 8 can be achieved with the synthetic kernel

�̃�
(−)
𝜋 (𝑌, 𝑋) ≜

{
E
[
𝛤+∥𝛱 −𝜋 ∥ �� 𝑋]

if 𝑌 ≤ 𝑄𝜏 (𝜋, 𝑋),
E
[
𝛤−∥𝛱 −𝜋 ∥ �� 𝑋]

if 𝑌 > 𝑄𝜏 (𝜋, 𝑋),

𝜏 ≜
E
[
𝛤+∥𝛱 −𝜋 ∥ | 𝑋

]
− 1

E
[
𝛤+∥𝛱 −𝜋 ∥ | 𝑋

]
− E

[
𝛤−∥𝛱 −𝜋 ∥ | 𝑋

] .
4 MINIMAX CONTROL

By following the insights of Lemma 2, an MPC algorithm
can be ideally conservative by choosing the action trajectory
with the highest expected-reward lower bound admitted by
the hidden-confounding constraints. The controller is said to
be minimax-optimal if its expected discounted reward from
taking actions in every time step achieves the maximum out
of all controllers’ total worst-case scenarios.

Recall that the outcome optimized by MPC is, in theory,
𝑌 =

∑∞
𝑡=0 𝛾

𝑡𝑅𝑡 by its selection of infinite-horizon action
trajectories 𝛱 = [𝐴0 𝐴1 𝐴2 · · · ], using the observable state
representation 𝑋 = [𝑂0 𝑂−1 𝐴−1 𝑂−2 𝐴−2 · · · ]. We take a
perspective of stochastic control of an uncertain system [Bert-
sekas, 2025]. Uncertainty is the induced hidden confounding
when the controller uses 𝑋 instead of 𝑆0.

LetU(𝐴0, 𝑋) denote the set of values an uncertainty variable
𝑈 can take such that the actual instantaneous reward 𝑅0 and
state transition 𝑋 ′ ≜ [𝑂1 𝑂0 · · · ] from any action 𝐴0 = 𝑎 at
current state representation 𝑋 = 𝑥 is indexed by conditioning
𝑈 on some value 𝑢 ∈ U(𝐴0, 𝑋). Further, let that mapping
be bijective: any such 𝑢 must induce an admissible reward

and state transition. In that case, the minimax controller must
satisfy the Bellman equation

𝑉∗ (𝑥) = max
𝑎∈A

inf
𝑢∈U(𝑎,𝑥 )

E
[
𝑅0 + 𝛾𝑉∗ (𝑋 ′)

�� 𝐴0 = 𝑎, 𝑋 = 𝑥,𝑈 = 𝑢
]
. (9)

The sensitivity model ultimately places a constraint on how
much the rewards of a controller’s actions can vary from
those that it predicted (by an offline world model). We assume
that this is reflected in 𝑈. The value function of a stationary,
deterministic policy 𝑓 : X → A can be written as

𝑉 𝑓 (𝑥) = inf
𝑢∈U( 𝑓 (𝑥 ) ,𝑥 )

E
[
𝑅0 + 𝛾𝑉 𝑓 (𝑋 ′)

�� 𝐴0 = 𝑓 (𝑥), 𝑋 = 𝑥,𝑈 = 𝑢
]
. (10)

Our theoretical MPC approach is such a policy 𝑓 . It projects
jointly sampled trajectories and then takes the first action of
the best action trajectory from the closed set T . By Lemma 2,
our 𝑓MPC (𝑥) solves

max
𝑎0:𝜋=[𝑎0 𝑎1 · · · ]∈T

E
[
𝑌�̃�

(−)
𝜋 | 𝛱 = 𝜋, 𝑋 = 𝑥

]
.

The quantity being maximized provides a lower bound on
E[𝑌 (𝜋) | 𝑋 = 𝑥], where𝑌 (𝜋) follows the discounted-reward
distribution from following the action trajectory 𝜋. Subse-
quent state transitions after 𝑎0 and reward uncertainty are
already encapsulated in 𝑌 (𝜋), by implication of Definition 1.

Plugging 𝑓MPC into Equation 10, it can be seen that maximiz-
ing the sharp bound on the expected discounted rewards of
the projected trajectories also maximizes 𝑉 𝑓MPC . Details are
provided in §A.2. We formalize this in the following lemma:

Lemma 3 (Minimax Control). The proposed partially iden-
tified MPC described by 𝑓MPC reaches the minimax value,

𝑉 𝑓MPC (𝑋) = 𝑉∗ (𝑋) almost everywhere.

Lemma 3 illustrates the capability of the controller to achieve
optimal rewards in the minimax sense.

4.1 IMPLEMENTATION

We present a concrete implementation of MPC with our
partial identification strategy. State-of-the-art model-based
RL algorithms [Hansen et al., 2024, Hu et al., 2023]
tend to use a variant called model predictive path integral
(MPPI) [Williams et al., 2015]. MPPI operates on samples
of future dynamics by ranking and weighting action trajec-
tories based on their projected rewards. We assume access
to a generative model for the conditional distributions of
action trajectories 𝑃𝛱 |𝑋 and rewards 𝑃𝑌 |𝛱 ,𝑋. In practice,
the infinite horizon for discounted rewards needs to be ap-
proximated by a sufficiently long finite horizon, perhaps with
a terminal value estimator if necessary.



Algorithm 1: Partially Identified MPPI (single step)
Input: dynamics models �̂�𝛱 |𝑋 and �̂�𝑌 |𝛱 ,𝑋,

decision-making context 𝑥 ∈ X,
sensitivity parameter 𝛤 ≥ 1

Output: best action �̂�0 ∈ A
1 Sample i.i.d action trajectories 𝜋 (1) , 𝜋 (2) , 𝜋 (3) , . . .

according to �̂�𝛱 |𝑋 (𝜋 | 𝑥);
2 foreach search iteration do
3 foreach action trajectory 𝜋 (𝑖) do
4 Estimate bounds for density ratio �̃�𝜋 (𝑖) as

Ê
[
𝛤±∥𝛱 −𝜋 (𝑖) ∥ �� 𝑋 = 𝑥

]
using the 𝜋-sample;

5 Sample i.i.d reward trajectories 𝑦 (𝑖,1) , 𝑦 (𝑖,2) . . .
according to �̂�𝑌 |𝛱 ,𝑋 (𝑦 | 𝜋 (𝑖) , 𝑥);

6 Estimate reward lower bound
�̂� (𝑖) ≜ Ê

[
𝑌�̃�

(−)
𝜋 (𝑖) | 𝛱 = 𝜋 (𝑖) , 𝑋 = 𝑥

]
;

7 Update policy estimate �̂� using action-reward pairs
(𝜋 (1) , �̂� (1) ), (𝜋 (2) , �̂� (2) ) . . . as in classic MPPI;

8 Resample i.i.d action trajectories 𝜋 (1) , 𝜋 (2) . . .
according to the current policy estimate �̂�;

9 Select and return first action �̂�0 from policy estimate �̂�;

Algorithm 1 augments MPPI by lower-bounding the expected
reward through Lemma 2 for each sampled action trajectory.
Classic MPPI tends to use the reward sample directly. We
adopt the same heuristics for ranking and weighting trajec-
tories as in other works. During each search iteration, MPPI
updates its policy estimate �̂�, which tends to be approximated
as a multivariate Gaussian with diagonal covariance across
time steps. In line 7 of Algorithm 1, the means and vari-
ances are estimated with the top-𝑘 trajectories, with weights
computed through a softmax on the reward lower-bound esti-
mates. In line 8, the action-trajectory sample is replaced with
a sample of this Gaussian policy estimate, so that subsequent
iterations further refine the distribution.

5 EXPERIMENTS

To fairly benchmark the core novelties of this paper, we
compared variants of MPPI using the same dynamics mod-
els, and hyper-parameters tuned for the baseline algorithm
that uses no partial identification. The MPPI without partial
identification is referred to as “naive” as it is unaware of
hidden confounding. Algorithm 1 shows MPPI augmented
with our proposed sensitivity analysis. Similarly, MPPI can
be augmented with the sensitivity model that has been stud-
ied in numerous recent works [Frauen et al., 2024, Kausik
et al., 2024, Bennett et al., 2024], inspired by the classic
MSM. In simplest terms, this sensitivity model constrains
the divergence of the counterfactuals uniformly, rather than
based on a norm in the intervention space. We refer to this
baseline as “MSM”. To highlight the difference in the kind

Observed Hidden Nonlinearity

Easy 4 1 None
Medium 8 8 Sigmoid

Hard 16 16 Cubic

Table 2. Numbers of observed and hidden dimensions, as
well as the type of nonlinearity, selected for the experimental
settings with results in Table 1 and Figure 5.
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Figure 4. Reward improvement scores for the first “easy” ex-
periment with our sensitivity analysis, as a function of log𝛤.
This plot exhibits the trade-offs for increasing sensitivity. A
low 𝛤 encourages more, potentially careless action, whereas
a high 𝛤 could make the controller too conservative.

of uncertainty under consideration, as well as to represent an
approach from distributional RL [Bellemare et al., 2017], we
present an additional baseline that takes lower conditional
outcome quantiles in place of a causal sensitivity analysis.
This baseline uses empirical uncertainties to emulate con-
founding uncertainty, so we termed it “empirical”.

The goal is to assess the viability of these three approaches
for online calibration of an offline-trained controller with
hidden confounding. Each of the benchmarked methods has
a single sensitivity parameter—𝛤 for ours and MSM, and
the quantile level for the empirical baseline. We evaluated
grids of these sensitivity parameters for each experiment,
while ensuring that they overlapped as closely as possible in
terms of relative performance. Then we identified the best-
performing sensitivity value for each method and compared
its total reward against that of the naive controller. These
values are positive, since the possibility of no calibration is
included in the search grid, setting the naive controller’s total
reward as a lower bound. An example calibration curve is
shown in Figure 4 to illustrate how reward tends to increase,
saturate, and then decrease with 𝛤.

For maximal generality in the simulations, we sampled
multivariate stochastic differential equations (SDEs) of
the Ornstein-Uhlenbeck (OU) process form [Karatzas and
Shreve, 2019], with varying dimensionality and degree of
nonlinearity. These processes had completely random struc-
ture, and were filtered for stability and significant confound-
ing. We tested three distinct settings—“easy”, “medium”,
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Figure 5. Comparing the pairwise results of Table 1 between
our sensitivity model and the MSM baseline. We display
improvements in reward over the naive controller for each of
the 256 experiments. More points being to the right of the
diagonal suggests that our model performed better.

and “hard”—with 256 independent experiments each. For the
easy setting we trained simple linear SDE models, whereas
for the medium and hard settings we trained neural models
with longer windows into the past. For all settings, the con-
troller’s task was to minimize the squared value of the first
dimension by controlling the second dimension. Concretely,
the SDEs took the form d𝑆𝑡 = −ℎ(𝐴𝑆𝑡 )d𝑡 +𝜎d𝑊𝑡 where 𝑆𝑡
is the full state vector, 𝐴 is a mixing matrix, and ℎ(·) is the
optional nonlinearity given as a gradient of a convex func-
tion. 𝑅𝑡 is given by 𝑅𝑡 = −

(
𝑆
[0]
𝑡

)2 where the ·[𝑖 ] superscript
represents the 𝑖th component of 𝑆𝑡 . The control is imposed
on 𝑆

[1]
𝑡 , and the observed component is d𝑂𝑡 = d𝑆 [0:𝑘 ]

𝑡 where
𝑘 is the set of dimensions observed. The action 𝑎𝑡 is applied
to 𝑂

[1]
𝑡 at each time step. Different realizations of processes

were simulated in discrete time through the Euler-Maruyama
scheme. Additional details are available in §B.

Results are mainly displayed as relative improvements in
reward over the naive controller. Table 1 shows average im-
provements for our method compared with the baselines,
across the three experimental settings described in Table 2.
Improvements per experiment are plotted for our method ver-
sus the MSM in Figure 5. In aggregate, our method appears
to yield a 20%+ increase in reward over the MSM.

6 DISCUSSION

The empirical results (§5) present two key findings. First,
there is value to augmenting model predictive control (MPC)
with a causal sensitivity analysis even in realistic settings.
Second, the proposed sensitivity model (§3.3) that lever-

ages a norm in the action-trajectory space is more helpful to
MPC than more classical sensitivity models derived from the
marginal sensitivity model (MSM) [Tan, 2006]. We also in-
stantiate the partially identified MPC algorithm in the form of
an augmented model predictive path integral (MPPI). MPPI
is employed in several deep model-based RL algorithms that
achieve the state of the art [e.g. Hansen et al., 2024].

The theoretical results (§3) motivate our sensitivity model in
the context of recent developments in causal inference, and
show the flexibility of the potential-outcomes notation. Our
analysis (§3.4) reveals that the sharp partial identification
is relatively simple, computationally tractable, and leads to
minimax controllers (§4), in the sense that it finds the best
policy for the worst-case scenario [Kallus and Zhou, 2021].

Notably, unlike previous work on sensitivity analysis for off-
policy evaluation and learning, our approach does not require
the hidden confounders to be memoryless or static [Kausik
et al., 2024]. Instead, it allows the domain expert to select
a norm that suits the action-trajectory space on which they
wish to design an MPC algorithm. We look forward to further
studying how to select these norms for different processes.

6.1 FUTURE WORK

A number of distinct avenues exist for extension of the current
work. We consider two main threads in generative AI and
online calibration.

Generative AI. The proposed methodology is general
enough to suit various modalities, including text through
large language models (LLMs). It appears that fine-tuning
LLMs for specific tasks often reduces the diversity of their
generations [Mohammadi, 2024, Kirk et al., 2024]. For this
and other practical reasons, it may be more useful to use an
LLM foundation model in combination with our sensitivity
analysis for agents to solve tasks that are novel to the LLM.
Simple algorithms in the spirit of MPC already find success
in guiding LLMs [Beirami et al., 2024].

Online calibration. This paper considers the problem of
partial identification and minimax control under a general
class of sensitivity models. While the empirical evaluations
show the utility of a calibrated sensitivity model, they do not
show how to calibrate it online (its 𝛤 parameter, or its choice
of norm). There are numerous established solutions includ-
ing bandits for online calibration. The sensitivity model’s
parameters are extremely low-dimensional and should there-
fore be easy to learn online, and much more data-efficient
than wholesale online reinforcement learning.

6.2 LIMITATIONS

While we expand the existing theory on causal sensitivity
analysis to make partial identification more data-adaptive,



especially in the novel action-trajectory setting, there are still
fundamental limitations to the family of sensitivity models
related to the MSM [Huang and Pimentel, 2025]. Our model
shares the shortcomings of a pointwise hard constraint across
all counterfactuals, namely that it can be untenable to use
the 𝛤 that absolutely covers all possible hidden confounders.
Practically, there tends to be a 𝛤 that is most helpful for
achieving positive rewards, and this could be lower than
the true 𝛤. A natural next step for this line of work is to
turn the sensitivity model’s constraint into a probabilistic
statement, increasing its flexibility—especially at the tails
of the conditional outcome distributions.

7 CONCLUSION

Our causal sensitivity analysis of action trajectories bridges
recent developments in causal inference with off-policy learn-
ing. Model predictive control is becoming more popular for
learning generalizable agents, and our contribution on deal-
ing with partial observability is a promising step towards
making them more reliable in the real world.
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A PROOFS

A.1 LEMMA 2

Proof. We reproduce the target bound in Equation 8 below.

E[𝑌 (𝜋) | 𝑋] ≥ E[𝑌 �̃�
(−)
𝜋 (𝑌, 𝑋) | 𝛱 = 𝜋, 𝑋] .

An intermediate result is that the proposed balancing criterion (Proposition 1) is sufficient to induce sharpness.

E
[ d𝑃𝑌 (𝜋 ) |𝑋 (𝑌 | 𝑋)
d𝑃𝑌 |𝛱=𝜋,𝑋 (𝑌 | 𝑋)

��� 𝛱 = 𝜋, 𝑋

]
= 1

Following these conditions, we can use the proposed form for �̃� (−)
𝜋 ,

�̃�
(−)
𝜋 (𝑌, 𝑋) ≜

{
E
[
𝛤+∥𝛱 −𝜋 ∥ �� 𝑋]

if 𝑌 ≤ 𝑄𝜏 (𝜋, 𝑋),
E
[
𝛤−∥𝛱 −𝜋 ∥ �� 𝑋]

if 𝑌 > 𝑄𝜏 (𝜋, 𝑋),
𝜏 ≜

E
[
𝛤+∥𝛱 −𝜋 ∥ | 𝑋

]
− 1

E
[
𝛤+∥𝛱 −𝜋 ∥ | 𝑋

]
− E

[
𝛤−∥𝛱 −𝜋 ∥ | 𝑋

] .
In the rest of the proof, we omit 𝑋 in order to relieve the notational burden. Assume that the expectations are all implicitly
conditioned on 𝑋 . The results are invariant to its conditioning. Additionally, the outcome spaceY, which represents cumulative
non-negative rewards, must itself be assumed to be a connected subset of R≥0.

We note that since the construction �̃�
(−)
𝜋 (𝑌, 𝑋) is already constrained by the proposed sensitivity model as well as the putative

balancing criterion, the burden of proof has shifted to the validity of the bound rather than its sharpness.

First, we prove validity. Suppose that there exists a system in which E[𝑌 (𝜋)] < E[𝑌 �̃�
(−)
𝜋 | 𝛱 = 𝜋] for some fixed 𝜋.

By implication of Equation 6, there is an oracle �̃�𝜋 such that

E[𝑌 �̃�𝜋 | 𝛱 = 𝜋] < E[𝑌 �̃�
(−)
𝜋 | 𝛱 = 𝜋], and E[(�̃�𝜋 − �̃�

(−)
𝜋 )𝑌 | 𝛱 = 𝜋] < 0.

Both kernels must be balanced in the sense that E𝑌 [�̃�𝜋 − �̃�
(−)
𝜋 | 𝛱 = 𝜋] = 0. They are also both positive for all 𝑦 ∈ Y, as

required for the existence of the proposed sensitivity model (Definition 4). It stands to reason that the oracle kernel �̃�𝜋 has
moved probability mass in �̃�

(−)
𝜋 from some points to other points (both sets with nonzero measure in Y). In fact, for the

�̃�𝜋-weighted conditional expectation of 𝑌 to be lowered, there must be probability mass that is moved down, i.e. from a point
in Y to a lower point in the same domain. Take any such pair of points for which that is the case:

𝑦1 > 𝑦2 ∧ �̃�𝜋 (𝑦1) < �̃�
(−)
𝜋 (𝑦1) ∧ �̃�𝜋 (𝑦2) > �̃�

(−)
𝜋 (𝑦2).

The kernels are subject to the sensitivity bounds of Equation 7:

E
[
𝛤−∥𝛱 −𝜋 ∥ ] ≤ �̃�𝜋 (𝑌 ) ≤ E

[
𝛤+∥𝛱 −𝜋 ∥ ] .
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We must analyze where (𝑦1, 𝑦2) fall around the threshold 𝑄𝜏 (𝜋). If they are both on one side, so either {𝑄𝜏 (𝜋) ≥ 𝑦1 > 𝑦2}
or {𝑦1 > 𝑦2 > 𝑄𝜏 (𝜋)}, then the sensitivity bounds are trivially violated since 𝑔

(−)
𝜋 lies at the boundary.

The remaining case is {𝑦1 > 𝑄𝜏 (𝜋) ≥ 𝑦2}. There, it follows that

�̃�𝜋 (𝑦1) < �̃�𝜋 (𝑦1) = E[𝛤−∥𝛱 −𝜋 ∥ ],
�̃�𝜋 (𝑦2) > �̃�𝜋 (𝑦2) = E[𝛤+∥𝛱 −𝜋 ∥ ],

which both violate the sensitivity bounds, concluding the proof by contradiction.

Second, we prove sharpness. For any 𝜋, we seek a feasible 𝑌 (𝜋) such that E[𝑌 (𝜋)] = E[𝑌 �̃�
(−)
𝜋 | 𝛱 = 𝜋]. For the present

purposes, it is enough to treat 𝑌 (𝜋) as some latent variable, as long as it satisfies the various conditions imposed by the
problem. If we show that �̃� (−)

𝜋 is a valid Radon-Nikodym derivative of the form

�̃�
(−)
𝜋 (𝑦) = d𝑃𝑍 (𝑦)

d𝑃𝑌 |𝛱=𝜋 (𝑦)

for some hypothetical 𝑍 , then we can have 𝑌 (𝜋) ≜ 𝑍 . The latent 𝑍 is completely determined by 𝑌 and 𝜋, with measure

𝑃𝑍 (𝑌 ) =
∫
𝑌

�̃�
(−)
𝜋 (𝑦) d𝑃𝑌 |𝛱=𝜋 (𝑦).

A.2 LEMMA 3

Proof. The main idea is that for every 𝑌 (𝜋), there exists a sequence (𝑢0, 𝑢1, . . . ) giving that expected discounted reward. To
do this, we will first illustrate the equivalence of the value function and the MPC problem we are solving. Next, we will
define a lower bound of the value function conditioned on an uncertainty variable. Finally, we will show that the infimum of
this function over the uncertainty set is equal to the value function under the proposed objective.

A point-identified MPC would solve a global optimization over future action trajectories.

𝑉 (𝑥) = max
𝜋=[𝑎0 𝑎1 · · · ]∈T

E
[
𝑌 (𝜋) | 𝛱 = 𝜋, 𝑋 = 𝑥

]
= max

𝜋=[𝑎0 𝑎1 · · · ]∈T
E
[
𝑅0 + 𝛾𝑅1 + 𝛾2𝑅2 + · · · | 𝛱 = 𝜋, 𝑋 = 𝑥

]
= max

𝜋=[𝑎0 𝑎1 · · · ]∈T
E
[
𝑅0 | 𝛱 = 𝜋, 𝑋 = 𝑥

]
+ 𝛾E

[
𝑅1 + 𝛾𝑅2 + 𝛾2𝑅3 + · · · | 𝛱 = 𝜋, 𝑋 = 𝑥

]
= max

𝜋=[𝑎0 𝑎1 · · · ]∈T

(
E
[
𝑅0 | 𝐴0 = 𝑎0, 𝑋 = 𝑥

]
+ 𝛾E

[
E
[
𝑅0 + 𝛾𝑅1 + 𝛾2𝑅2 + · · · | 𝛱 = [𝑎1 𝑎2 · · · ], 𝑋 = 𝑋 ′]︸                                                                  ︷︷                                                                  ︸

(shifting one step ahead in time)

| 𝐴0 = 𝑎0, 𝑋 = 𝑥

] )

= max
𝑎0∈A

(
E
[
𝑅0 | 𝐴0 = 𝑎0, 𝑋 = 𝑥

]
+ 𝛾E

[
max

𝜋′=[𝑎1 𝑎2 · · · ]∈T
E
[
𝑅0 + 𝛾𝑅1 + 𝛾2𝑅2 + · · · | 𝛱 = 𝜋′, 𝑋 = 𝑋 ′]︸                                                                         ︷︷                                                                         ︸

𝑉 (𝑋′ )

| 𝐴0 = 𝑎0, 𝑋 = 𝑥

])

= max
𝑎0∈A

E
[
𝑅0 + 𝛾𝑉 (𝑋 ′) | 𝐴0 = 𝑎0, 𝑋 = 𝑥

]
The time shift fromE

[
𝑅1+𝛾𝑅2+𝛾2𝑅3+· · · | 𝛱 = [𝑎0 𝑎2 · · · ], 𝑋 = 𝑥

]
toE

[
𝑅0+𝛾𝑅1+𝛾2𝑅2+· · · | 𝛱 = [𝑎1 𝑎2 · · · ], 𝑋 = 𝑋 ′]

is justified by the observable-state transition distribution 𝑋 ′ |𝐴0, 𝑋 . Recall that the rewards are structured as A×X → 𝛥(R≥0).



The blue outer expectation in the line following the time shift is over the next observable-state transitions 𝑋 ′ |𝐴0, 𝑋 . The
red inner expectation is a shifted version of the MPC objective, which we also mark as red on an earlier line. By iterated
expectation, the red and blue expectations together are identical to the yellow expectation shown earlier. However, since the
blue outer expectation is over a variable (𝑋 ′) that is invariant to future actions 𝑎1, 𝑎2, . . . , we can safely break apart the join
maximization and move the maximization over future actions inside the blue outer expectation. This gives us equivalence
between the value function viewpoint and the MPC problem we are solving.

Now we define a compact uncertainty set U(𝐴0, 𝑋) conditioned on an initial action and state action transitions. By the
compactness of U, there exists a sequence (𝑢0, 𝑢1, . . .) ∈ U that minimizes the expected reward. From the definition of the
sensitivity model in Definition 4, the reward is bounded below by (8). By assumption, all hidden confounding is incorporated
within the uncertainty set and the infimum of the value function over all elements within the uncertainty set provides the
lowest expected reward.

Under partial identification, our MPC instead maximizes a lower bound:

𝑉 𝑓MPC (𝑥) = max
𝜋=[𝑎0 𝑎1 · · · ]∈T

E
[
𝑌�̃�

(−)
𝜋 | 𝛱 = 𝜋, 𝑋 = 𝑥

]
= max

𝜋=[𝑎0 𝑎1 · · · ]∈T
inf

(𝑢0 ,𝑢1 ,𝑢2 ,... )
E
[
𝑅0 + 𝛾𝑅1 + 𝛾2𝑅2 + · · · | 𝛱 = 𝜋, 𝑋 = 𝑥,𝑈0 = 𝑢0,𝑈1 = 𝑢1,𝑈2 = 𝑢2, . . .

]
= max

𝑎0∈A
inf

𝑢∈U(𝑎0 ,𝑥 )
E
[
𝑅0 + 𝛾𝑉 (𝑋 ′) | 𝐴0 = 𝑎0, 𝑋 = 𝑥

]
= 𝑉∗ (𝑥)

giving us the equivalence between the value functions.

B EXPERIMENTAL DETAILS

Source code for all experiments is included in the supplementary material. Key details are listed below.

MPC instantiation. The partially identified MPPI algorithm described in Algorithm 1 was run with the following uniformly
set hyperparameters: sample 512 action trajectories during search iteration, sample 64 reward trajectories for each action
trajectory, and then choose the top 32 action trajectories for updating the policy estimate. We used five search iterations.
Additionally, since MPPI computes weights based on a softmax on the rewards, we first normalized the rewards by dividing
them by their mean across action trajectories and then set a temperature of 0.01. We used a horizon of 16 with un-discounted
rewards as a practical substitute for the infinite-horizon, discounted ideal setting.

Simulation. The simulations for the easy, medium, and hard settings described in Table 2 all used a simulation time step of
d𝑡 = 0.1 and noise scale of 𝜎 = 0.1, though the learning and control was performed at unit time intervals. The mixing matrix
was kept relatively sparse in order to induce a variety of dependencies among the variables in the SDE. Specifically, an
entry in the mixing matrix was nonzero with probability 2/𝑛 where 𝑛 was the dimensionality of the whole SDE—including
the hidden variables. Nonzero entries were drawn from a standard normal distribution. Then, dimensions in the stochastic
process were reordered such that the first dimension “received” the most influence from the other dimensions and the second
dimension “gave” the most influence to the others. This arrangement made it more feasible for the second dimension to have a
chance at controlling the first dimension, as the control problem was posed. Finally, through rejection sampling on candidate
mixing matrices, we ensured a high degree of hidden confounding. We estimated the Pearson correlation coefficients between
a) the hidden dimensions and the action dimension’s future, and b) the hidden dimensions and the reward dimension’s future.
We required the geometric mean of (a) and (b) to be greater than 0.33, a threshold that rejected the majority of the processes.
For the hard setting, we lowered that threshold to 0.20 because it was difficult to find processes that would not be rejected.

Estimation. The easy setting was learned with a linear model while the medium and hard settings relied on a neural
network (multilayer perceptron) with two hidden layers of size 256 and SELU activations. The neural networks had access to
the past four time points for predicting the drift term (sans noise) of the next time point.

Calibration. The grid search to choose the top sensitivity parameter across our method and the MSM & empirical baselines
was tuned for efficiency and balance. Figure 6 shows the frequencies of these calibrations along respective grids.
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Figure 6. Histograms of the occurrence of the top reward along the calibration grids for log𝛤 that were considered for each
experimental setting. Since the sensitivity parameters were generally incommensurable between our formulation and the
MSM, we verified empirically that their respective grids were balanced, and with overlap in frequencies.
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