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Abstract

Due to deteriorating environmental conditions and increasing human activity, con-
servation efforts directed towards wildlife is crucial. Motion-activated camera traps
constitute an efficient tool for tracking and monitoring wildlife populations across
the globe. Supervised learning techniques have been successfully deployed to
analyze such imagery, however training such techniques requires annotations from
experts. Reducing the reliance on costly labelled data therefore has immense poten-
tial in developing large-scale wildlife tracking solutions with markedly less human
labor. In this work, we propose a novel zero-shot species classification framework
that leverages multimodal foundation models. In particular, we instruction tune
vision-language models to generate detailed visual descriptions of camera trap
images using similar terminology to experts. Then, we match the generated caption
to an external knowledge base of descriptions in order to determine the species in a
zero-shot manner. We investigate techniques to build instruction tuning datasets for
detailed animal description generation and propose a novel knowledge augmenta-
tion technique to enhance caption quality. We demonstrate the performance of our
proposed method on a new camera trap dataset collected in the Magdalena Medio
region of Colombia.

1 Introduction

Camera traps are motion-activated remote cameras that are used extensively to monitor wildlife
populations. They are deployed worldwide for tasks such as density estimation of animal populations,
species inventory and analysis of animal behavior [11, 16, 3]. Wildlife monitoring is more important
than ever due to the devastating effects of increasing human activity and climate change on natural
habitats. Camera traps offer a non-invasive and scalable solution, however the analysis of obtained
imagery requires significant effort from wildlife experts [13].

Supervised machine learning approaches have been proposed and successfully deployed for wildlife
detection and species classification in camera trap imagery [13, 17, 20, 12]. Even though these
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Figure 1: Overview of our proposed pipeline. We instruction tune a large multimodal model for
detailed animal description generation. We extract visual features of camera trap imagery in the form
of fine-grained captions. We leverage a knowledge base of animal descriptions to find the best match
in order to identify the species.

techniques can help automate much of the visual recognition pipeline, they suffer from the well-
known shortcomings of supervised techniques. First, massive amounts of annotated data is required
to train the models. As the distribution of camera trap images exhibits strong domain variations
(different environment, local species, camera setup), a new dataset needs to be collected for every
region. Therefore supervised models are unfit for use-cases where such annotated dataset is not
available yet. The problem of data collection is compounded by the fact that expert annotators
with specialized knowledge of the local species are needed to label the images. Second, supervised
models often lack robustness when deployed on data even slightly different from the training set [22].
Therefore, these models have difficulties when encountering low-quality and corrupted images, both
very common in camera trap imagery due to motion blur, low-light conditions and occlusions.

Multimodal foundation models, such as Multimodal GPT-4 [14], Flamingo [2], LLaVA [10], Instruct-
BLIP [4] and Otter [7] have been the driving force behind the revolution of artificial intelligence
recently (see [8] for a comprehensive survey). Large multimodal models (LMMs) ground images
to the natural language domain and demonstrate strong capabilities in image understanding and
reasoning. Multimodal models such as CLIP [15] have proven to have strong zero-shot classification
performance and are able to generalize to novel concepts and categories not directly seen in the train-
ing set. Moreover, recent work [6] serves as a strong indicator that in-context language descriptions
can guide LMMs to differentiate between fine-grained categories, a crucial requirement in animal
species classification.

In this work, we propose a pipeline for fine-grained zero-shot classification for animal species
classification leveraging vision-language foundation models (see overview in Figure 1). We extract
visual features in the natural language domain from camera trap images in the form of detailed image
descriptions. Then, we compare the extracted features to a pre-compiled external knowledge base
and output the category with the closest match, a technique we call description matching. We observe
that out-of-the-box LMMs are incapable of generating detailed enough image descriptions and the
captions are often ridden by irrelevant information and hallucinations. To tackle this, we propose an
instruction tuning pipeline for detailed animal description generation by injecting common-sense and
expert knowledge into vanilla LMM-generated image descriptions. We demonstrate the performance
of our pipeline on a new camera trap dataset collected from a novel region in Colombia. Our method
shows promising performance without the need for any in-domain training data.

2 Method

In this work, we propose a zero-shot animal species classification pipeline that leverages natural
language descriptions rather than vision representations directly. The key component of traditional
supervised vision models is a feature extractor that learns the relevant visual features in images
from a training set. The extracted vision feature vectors are then passed through a classifier head
that maps the vision features to discrete class labels. In stark contrast, our extracted features are
in natural language in the form of image captions obtained from a LMM. The extracted natural
language description is then compared with descriptions in an external knowledge base (summarized
from online sources) and the entry with the closest match is selected as our final prediction. We
introduce our matching technique in Section 2.4. The efficiency of the proposed pipeline therefore

2



Figure 2: The general-domain LMMs trained on web data are unable to generate captions suitable for
species identification out-of-the-box: the captions often miss relevant details, add excessive irrelevant
information and often contain hallucinations. Domain-specific instruction tuned LMMs generate
more relevant and succinct captions.

depends on the two key components of our framework: 1) the quality of the knowledge base and 2)
the quality of captions obtained from the LMM.

2.1 Building a knowledge base

We obtain a list of 668 species appearing in the publicly available LILA BC Camera Traps [1], a
collection of 18 camera trap datasets with species annotations. We scrape the Wikipedia article of
each species and summarize the appearance and visual details of the animals using GPT-4. Details on
prompts for summarization and text processing can be found in Appendix A.

2.2 Shortcomings of out-of-the-box LMMs

The performance of our pipeline strongly depends on the quality of image captions obtained from the
LMM. However, we observe that most currently available LMMs (e.g. LLaVA, InstructBLIP or Otter)
out-of-the-box are not suitable for extracting relevant details for species identification (Figure 2, left).
First, LMM captions often miss relevant and characteristic features of animals that are necessary for
correctly identifying the species. Second, out-of-the-box LMMs tend to generate excessive irrelevant
information (e.g. speculations about the image or comments on the beauty of the scene) that has no
use to or even mislead the matching algorithm. Lastly, hallucinations are very common in LMM
captions [9], such as hallucinated colors, body parts, other animals or entities appearing in the image.

LMMs have been pretrained on massive amounts of multimodal data scraped from the internet, and
as such they are imbued with a rich understanding of visual concepts. However, as these models have
been mostly trained on generic ’internet data’, they are not suitable for the specific task of generating
detailed descriptions of animals with the focus on species identification. Therefore, we propose
adapting LMMs for detailed animal description generation via instruction tuning. Our goal with
instruction tuning is to guide the model to generate captions that leverage language used by experts
in describing animals.

2.3 Instruction tuning for detailed visual descriptions

In order to instruction tune the model, we need paired data of wildlife imagery with detailed
enough captions for species identification. Even though some datasets exist with species annotations
(ImageNet [5], iNaturalist [18]), bounding boxes (most LILA Camera Traps [1]) or even short
captions (Caltech-UCSD Birds [19]), there is no available large-scale dataset with detailed visual
descriptions of animals. In fact, collecting such a dataset requires significant effort from experts far
exceeding simple species annotations. We tackle the challenge of instruction tuning data collection
from two directions.

First, we collect a small dataset of human-captioned wildlife imagery. In order to circumvent the
need for biologists for annotations, we extract visual features of species from their corresponding
Wikipedia articles and ask human annotators to select the features that are visible in the image. We
collect approximately 1.5k manually annotated samples from volunteers. Human-annotated data
collection is detailed in Appendix F.
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Figure 3: To improve caption quality of LMMs on wildlife images, we perform two processing steps
on the vanilla LMM captions: 1) we filter out color related information if we detect that colors are
not discernible in the image and 2) we inject expert knowledge from the species’ Wikipedia article
pertaining to visual characteristics of the animal that might be visible in the image. We leverage the
resulting augmented captions to instruction tune a LMM for detailed animal description generation.

Second, we propose a scalable and automatic method of generating captions for species identification
via augmenting vanilla out-of-the-box LMM captions with common-sense and expert knowledge. In
particular, we process the vanilla LMM captions the following ways:

• Color filtering – LMMs often hallucinate colors even on grayscale or night time imagery
that may entirely derail species identification. To tackle this, we filter out any color related
information if we detect that it should not be identifiable from the image.

• Expert knowledge – We inject information from the species’ Wikipedia article pertaining
to visual characteristics of the animal that might be visible in the image. Furthermore, we
remove details that directly contradict the knowledge base. This step enhances the captions
with relevant expert terminology used to describe animal species.

We perform these steps using GPT-4 prompting (details in Appendix B). We refer to the obtained
descriptions as pseudo-captions (analogous to pseudo-labels in semi-supervised learning). In order to
build the instruction tuning dataset, we generate single-turn conversations from the animal descrip-
tions, where the instruction is sampled from various prompts asking to describe visual characteristics
of the animal in the photo (details in Appendix C).

We apply an iterative instruction tuning scheme, where we train multiple generations of models. The
first generation is instruction tuned on pseudo-captions generated by out-of-the-box LMMs, or the
human-annotated samples. Subsequent generations are then instruction tuned on pseudo-captions
from the previous generation’s LMM captions.

2.4 Animal species classification via description matching

The key idea of our proposed pipeline is to caption camera trap images of animals via LMMs and
subsequently find the closest matching species in a knowledge base. In particular, we sample a
detailed description from our instruction tuned LMM and compare the generated caption to the
description of each species in the knowledge base via a large language model (in this work GPT-
4). The LLM is instructed to answer with the name of the species which best matches the LMM
description. As we provide the knowledge base to the LLM before eliciting an answer, the matching
algorithm can be thought of as an example of in-context learning. Details of the prompt used to
instruct the LLM to perform the matching can be found in Appendix G.

4



Model Pseudo-captioning LMM Instruction tuning data
LLaVA-7B-M-gen1 - Manual-1.5k
LLaVA-7B-M-gen2 LLaVA-7B-M-gen1 LILA-40k
LLaVA-7B-P-gen1 LLaVA-7B LILA-10k
LLaVA-7B-P-gen2 LLaVA-7B-P-gen1 LILA-40k

Table 1: Summary of models we instruction
tune for animal description generation.

Magdalena Camera Traps
Method Micro acc. Macro acc.

Supervised 93.94% 85.50%
CLIP (category name) 35.85 % 33.13 %
CLIP (description) 44.28 % 36.16 %
LLaVA-7B 54.96% 50.76%
LLaVA-7B-M-gen1 62.00% 59.28%
LLaVA-7B-M-gen2 70.12% 64.75%
LLaVA-7B-P-gen1 65.23% 61.57%
LLaVA-7B-P-gen2 69.94% 64.36%

Table 2: Results on the Magdalena Camera Traps
dataset.

We further improve the performance of our method through a technique analogous to self-consistency
in chain-of-thought reasoning [21]. Self-consistency appeals to the intuition that the correct answer
can be obtained from multiple valid reasoning paths. In particular, we sample N independent captions
from the instruction tuned LMM and match each descriptions individually. We obtain the final
prediction via majority voting between the N resulting predictions.

3 Experiments

Model – We leverage the LLaVA framework for our LMM and instruction tune LLaVA-7B models
on our animal description instruction tuning datasets.

Instruction tuning data – We create two splits from LILA BC Camera Traps datasets: 1) LILA-10k
consists of image crops of the approx. 10k highest confidence bounding boxes from MegaDetector
and all human-annotated bounding boxes where we limit the maximum number of crops per species
to 25; 2) LILA-40k is created similarly but with maximum number of crops per species set to 100.
Moreover, we create a human-annotated dataset of approx. 1.5k images, where we sample image
crops of the 2 highest confidence bounding boxes for each species appearing in the LILA BC datasets,
and also add the Wikipedia image from their corresponding article. We refer to this dataset as
Manual-1.5k.

Evaluation data – We evaluate our technique’s performance on a new camera trap dataset collected
in the Magdalena Medio region in Colombia. As the dataset has not yet been publicly released, the
LMM has not seen our validation dataset neither during pretraining nor during instruction tuning.
The dataset consists of 41904 samples (33569 train, 8335 validation) with 36 discrete labels with
genus level annotation. The image resolution is 256× 256. For benchmarking, we sample 20 classes
with imbalanced data distribution to simulate a realistic camera trap setting. We refer to this dataset
as Magdalena Camera Traps. We use micro and macro classification accuracy as evaluation metrics,
where micro accuracy refers to accuracy in the traditional sense and macro accuracy is the average of
individual class accuracies across all classes.

Instruction tuned models – We investigate the value of both the number of samples used in
instruction tuning as well as the quality of descriptions. To this end, we instruction tune various
models on both pseudo-captioned and human-annotated data (see Table 1). We build a knowledge
base of all species occuring in the LILA datasets for expert knowledge augmentation. We use 4×
A100 GPUs for instruction tuning.

Inference setting – We build separate knowledge bases for the Magdalena Camera Traps dataset,
consisting of summaries of each genus appearing in the dataset. We leverage GPT-4 for description
matching and we utilize self-consistency (SC) with majority voting to obtain the final predictions.
We use N = 5 independent samples in the experiments unless mentioned otherwise.

Main results – An overview of our main results is depicted in Table 2. We train a ResNet-50 classifier
on the full dataset to provide a supervised baseline. For a zero-shot baseline, we use CLIP (ViT
L/14) where the text embeddings are either category names (genus in this case) or the description
of the category from the knowledge base. We observe significant improvement over the naive CLIP
baseline of close to +25% in a 20-way classification problem using our best instruction tuned model.
Furthermore, generation 2 models consistently outperform their predecessors indicating the utility of
additional instruction tuning data and improved data quality. However, we observe only a small gap
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Magdalena Camera Traps Qualitative
Instruction tuning data Micro acc. Macro acc. Relevance (↑) Hallucination (↑)

None 54.96 % 50.76 % 3.98 (1.92) 4.30 (1.83)
Pseudo-captions 57.20 % 57.10 % 4.25 (1.89) 4.41 (1.77)
Manual captions 62.00% 59.28% 5.10 (1.98) 5.33 (1.85)

Table 3: Experiments on the effect of instruction tuning data quality on performance. We evaluate
relevance and hallucination scores via GPT-4 prompting (higher the better). Standard deviation of
scores in parentheses.

between generation 2 models that have been trained on either pseudo-captions or human annotations
in the first generation.

Impact of instruction tuning data quality – As collecting human annotated wildlife imagery is
costly, it is crucial to investigate how our automatic captioning technique with knowledge augmen-
tation compares to human annotated captions. To this end, we create train and test splits from
Manual-1.5k and instruction tune two models: one on human-annotated captions of the train split
and a second on pseudo-captions of the same split. Pseudo-captions are generated via out-of-the-box
LLaVA-7B and our knowledge augmentation method. We evaluate the generated captions quanti-
tatively via classification accuracies when used in our pipeline, and qualitatively via GPT scoring.
In particular, we prompt GPT-4 to score the generated caption based on how close they are to the
corresponding human annotated ground truth caption. We define two scores: 1) relevance score,
which measures how much of the information in the ground truth caption is captured in the generated
caption and 2) hallucination score, which assigns higher scores to captions that have less excess
details compared to the ground truth. More details and the specific prompts are in Appendix E. We
evaluate these qualitative scores on the test split of Manual-1.5k. The results are summarized in
Table 3. Overall, we observe consistent improvement in all metrics when using human-annotated
data compared to automatically generated pseudo-captions for instruction tuning. Our experiments
indicate that collecting large-scale human captioned wildlife image datasets may enable further
improvements in the zero-shot performance of our proposed pipeline.

4 Conclusion

In this work, we have proposed a novel zero-shot classification framework for wildlife species
recognition leveraging multimodal foundation models. We instruction tune vision-language models
for detailed animal description generation and utilize a large language model to match the generated
description to a pre-compiled external knowledge base. As datasets with detailed enough descriptions
of animals are lacking, we propose a novel pipeline for leveraging a combination of human-annotated
data and automatically generated (knowledge augmented) captions for instruction tuning. We evaluate
the quality of generated descriptions both via their utility in our zero-shot classification framework,
and via GPT scoring methods. Our instruction tuned models far surpass the performance of naive
zero-shot baselines and out-of-the-box models in animal species classification. The main limitation
of the current framework is its high compute requirement compared to supervised models, which we
address in future work.
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A Wikipedia article summarization

We build the knowledge base from Wikipedia articles of species that are present in either of the
LILA BC Camera Trap datasets or the Amazon dataset used for evaluation. We extract the page
summary and any sections where the section title contains any of the following words: description,
characteristics, appearance, anatomy. We use GPT-4 to summarize features of the animal that may
be visible in a photograph, but without referring to specific physical measurements of the animal as
those are typically not possible to determine from an image (exact height, weight etc). The following
prompt is used for the summarization:

System message: You are an AI assistant specialized in biology and providing
accurate and detailed descriptions of animal species.

Prompt: You are given the description of an animal species. Provide a
very detailed description of the appearance of the species and describe
each body part of the animal in detail. Only include details that can be
directly visible in a photograph of the animal. Only include information
related to the appearance of the animal and nothing else. Make sure to
only include information that is present in the species description and
is certainly true for the given species. Do not include any information
related to the sound or smell of the animal. Do not include any numerical
information related to measurements in the text in units: m, cm, in,
inches, ft, feet, km/h, kg, lb, lbs. Remove any special characters such
as unicode tags from the text. Return the answer as a single paragraph.
Species description: <WIKI_ARTICLE> Answer:

B Knowledge augmentation

We use GPT-4 to enhance the quality of LMM-generated captions with external knowledge and
common sense.

Color filtering – We detect low color variation in images via the condition

max
i∈C

[max (|Ri −Gi|, |Ri −Bi|, |Bi −Gi|)] < ϵ, (1)

where C denotes pixels of a center crop of an image and Ri, Gi, Bi denote the R, G, B channel
values of pixel i correspondingly. We perform center cropping in order to discard various external
markings on the camera trap image (date, brand etc) that may be in color. We set ϵ = 10. If low color
variation is detected, we consider color related information in captions a hallucination. We use the
following prompt to remove color information in this case:

Prompt: This is the description of an animal in a photograph: <LMM_CAPTION>.
Remove any mentions of color other than black or white. Answer:

Expert knowledge – We enhance LMM captions with knowledge from our external knowledge
base by adding details that may be visible in the image and removing information that directly
contradicts the expert knowledge (extracted from Wikipedia articles). We use the following prompt
for augmentation:
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Figure 4: A sample conversation from our
instruction tuning pipeline.

Figure 5: Overview of GPT scores used to eval-
uate caption quality.

System message: You are an AI assistant specialized in biology and providing
accurate and detailed descriptions of animal species.

Prompt: This is an expert description of the appearance of an animal
species: <EXPERT_DESCR>. This is an image description of the same species
I can see in a photograph: <LMM_CAPTION>. Imagine that you can also see
this photo and perform the following steps:
1. Rewrite the image description by adding details from the expert
description of the species that are visible in the photo. Make sure you
only add details about body parts of the animal already present in the
image description.
2. Remove any information from the image description which directly
contradicts the expert description.
3. Do not mention the species name in the description and do not try to
guess the species.
Answer:

C Instruction tuning data

We build instruction tuning datasets of single-turn conversations where the model is asked to describe
the animal in the image in great detail. In particular, we randomly sample from the following
instructions:

- Give a very detailed visual description of the animal in the photo.

- Describe in detail the visible body parts of the animal in the photo.

- What are the visual characteristics of the animal in the photo?

- Describe the appearance of the animal in the photo.

- What are the identifying characteristics of the animal visible in the
photo?

- How would you describe the animal in the photo?

- What does the animal in the photo look like?

We randomly place the image either before or after the instruction. The expected response is either the
human-annotated caption we collected (Manual-1.5k) or the automatically generated pseudo-caption
corresponding to the image. A sample conversation is depicted in Figure 4.
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Figure 6: We observe consistent improvement as we increase the number of independent samples for
inference (Amazon 20-class, LLaVA-7B-P-gen1).

D Self-consistency ablations

We analyze the effect of the number of independent LMM captions drawn (N ) for inference in our
pipeline. Due to the stochasticity in LMM-generated text, independently sampled captions may
contain complementary information. To investigate this effect, we run experiments on the Amazon
20-class benchmark with LLaVA-7B-P-gen1 and vary N (Figure 6). We observe steady increase
in classification accuracy in both metrics as N increases, hinting at potential for further zero-shot
performance improvement with large N . The current pipeline leverages LLMs for description
matching during inference which results in high compute costs with increasing N . We investigate
opportunities to reduce the cost and increase N in future work.

E GPT-4 scoring

We perform qualitative analysis of generated captions via GPT-4 scoring. Assume that the image
contains a set of ground truth details G that can be found in an image description provided by an
expert. Our LMM generates an image caption that covers some details from G and we call this
intersection relevant details denoted by R. The rest of the details constitute the set of hallucinated
details, denoted by H . An overview is depicted in Figure 5.

Relevance score – The relevance score evaluates the portion of ground truth details captured by
the LMM caption. The more details are covered, the higher the score and no penalty is assigned
for generating hallucinations. That is, the relevance score is proportional to R

G .The prompt used to
evaluate the relevance score is as follows:

Prompt: You are given two descriptions of an image: Description A and
Description B. Description A is the correct and accurate description of the
image. Your job is to score on a scale from 1 to 10 how well Description B
describes the image. Follow these rules:
1. Only give the maximum score of 10, if Description B contains all the
information in Description A.
2. Only give the score of 1 if Description B contains no information that
is given in Description A.
3. Otherwise, assign scores from 2 to 9 to assess how much information
from Description A is mentioned in Description B (the higher score the more
information from Description A is present in Description B).
4. Disregard any information in Description B that is not mentioned in
Description A in your scoring.
5. Your answer is a single score from 1 to 10 without accompanying

11



explanation of the score.
Description A: <EXPERT_DESCR>
Description B: <LMM_CAPTION>
Your score:

Hallucination score – This score measures how much additional information is included in the
generated caption that is not present in the ground truth description and thus it is likely hallucinated or
irrelevant. A higher score is assigned when the ratio R

H is higher. That is as opposed to the relevance
score, the hallucination score penalizes generated content not in the ground truth description. We use
the following prompt to evaluate the hallucination score:

Prompt: You are given two descriptions of an image: Description A and
Description B. Description A is the correct and accurate description of
the image. Definition of a hallucination: a hallucination is a detail in
Description B that is not mentioned in Description A. Your job is to score
on a scale from 1 to 10 how accurately Description B describes the image,
assigning higher score to descriptions with less hallucinations. Follow
these rules:
1. Only give the maximum score of 10, if Description B contains all
information from Description A and Description B does not contain any
hallucinations.
2. Only give the score of 1 if Description B contains no information
that is given in Description A, but may contain any number of hallucinated
details.
3. Otherwise, assign scores from 2 to 9 to assess how much hallucinated
information is present in Description B: the higher the score the less
hallucinations are present in Description B.
5. Your answer is a single score from 1 to 10 without accompanying
explanation of the score.
Description A: <EXPERT_DESCR>
Description B: <LMM_CAPTION>
Your score:

F Human-annotated data collection

In order to measure the quality of pseudo-captions, we also collect a small dataset of human-captioned
wildlife images. The dataset contains 2 images of each species from the LILA camera traps and 1
corresponding ’clean’ image from the species’ Wikipedia article.

Instead of relying on expert annotators, we extract a list of visible features of each animal species
in the dataset from Wikipedia using GPT-4. Then, the annotators are presented each of the features
along with the image and are asked to select whether the feature is fully visible, partially visible or
not visible in the image. Furthermore, we ask annotators whether colors are discernible in the image
in order to filter out color information from captions if needed.

Finally, we use GPT-4 to combine the features annotated as visible for each image into a descriptive
image caption, and we apply post-processing to remove color information if it shouldn’t be discernible.

G Description matching details

In our proposed classification framework, we leverage an LLM to match the generated image
description to an entry in the knowledge base. The label of the matched entry is used as the predicted
label. In particular, we use GPT-4 to perform the matching step with the following prompt:
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System message: You are an AI expert in biology specialized in animal species
identification.
Prompt: <KNOWLEDGE_BASE>
Question: You are given the following description of an animal:
<LMM_CAPTION>. What is the most likely animal being described from the
following list: <SPECIES_LIST>. Make sure your answer is a single word
from the list <SPECIES_LIST>.
Answer:

In the above prompt, the knowledge base is given as a list of entries in the form of
<SPECIES>:<DESCRIPTION>. We collect all <SPECIES> labels into a list <SPECIES_LIST> in
order to encourage the model to select one of the valid categories.

Hierarchical predictions – The above method becomes infeasible with large knowledge bases and a
large number of possible output labels. Therefore, instead of predicting the most fine-grained label
directly (species or genus), we use hierarchical predictions to iteratively narrow down the possible
fine-grained classes. As animal taxonomy is inherently hierarchical, species recognition lends itself to
hierarchical classification. One may build separate knowledge bases for each taxonomic rank (class,
order, family, genus, species) and perform the matching technique on a reduced set of categories. In
this work, we use a two-step prediction scheme. First, we predict the class (in the sense of taxonomic
rank) the animal belongs to, that is Mammalia (mammal) or Aves (bird). Then, in the fine-grained
prediction step we only include categories that are under the super-class predicted in the previous
step. A more extensive hierarchical prediction framework for species classification is going to be
discussed in-depth in future work.
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