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Abstract

Current LLM alignment techniques use pairwise
human preferences at a sample level, and as such,
they do not imply an alignment on the distribu-
tional level. We propose in this paper Alignment
via Optimal Transport (AOT), a novel method
for distributional preference alignment of LLMs.
AOT aligns LLMs on unpaired preference data
by making the reward distribution of the positive
samples stochastically dominant in the first or-
der on the distribution of negative samples. We
introduce a convex relaxation of this first-order
stochastic dominance and cast it as an optimal
transport problem with a smooth and convex cost.
Thanks to the one-dimensional nature of the result-
ing optimal transport problem and the convexity
of the cost, it has a closed-form solution via sort-
ing on empirical measures. We fine-tune LLMs
with this AOT objective, which enables alignment
by penalizing the violation of the stochastic dom-
inance of the reward distribution of the positive
samples on the reward distribution of the nega-
tive samples. We analyze the sample complexity
of AOT by considering the dual of the OT prob-
lem and show that it converges at the parametric
rate. Empirically, we show on a diverse set of
alignment datasets and LLMs that AOT leads to
state-of-the-art models in the 7B family of models
when evaluated with Open LLM Benchmarks and
AlpacaEval.

1. Introduction
Aligning Large Language Models (LLMs) with human pref-
erences is a crucial step in making these models safe and
having them follow instructions faithfully. By ensuring that
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LLMs adhere to human preferences, values, ethics, and de-
sired behaviors we can reduce the risk of generating harmful,
biased, or inappropriate content.

Reinforcement Learning from Human Feedback, RLHF
(Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al.,
2022; Bai et al., 2022), achieves this by learning a reward
model on human preference data, followed by fine-tuning
the LLM to maximize the reward score while staying close
to the initial reference policy to retain utility from the pre-
trained model. Recently, new paradigms departed from
RLHF towards direct preference optimization methods such
as DPO (Rafailov et al., 2024), SLIC (Zhao et al., 2023),
and Identity Policy optimization (Azar et al., 2024). In these
approaches, the reward is expressed in terms of the log-
likelihood ratio between the LLM policy and the reference
model. The training is done on paired preference data, i.e.
as triplets of prompts, chosen and rejected sentences, where
for each prompt a chosen and a rejected sample are available.
The training objective is to maximize the margin between
the log-likelihood ratio evaluated on the chosen sentence
versus the log-likelihood ratio on rejected sentences. When
paired preference data is not available, and the preference
data instead takes the form of distinct marginals of chosen
prompt/response pairs and rejected prompt/response pairs,
we refer to this setup as the unpaired data setting. (Etha-
yarajh et al., 2024) used Kahneman & Tversky’s prospect
theory in the unpaired setting and proposed the KTO method
that maximizes the margin between the chosen reward and
the average reward of rejected sentences and pushes the
reward of a rejected sentence below the average reward of
chosen sentences.

In this paper, we introduce a new distributional optimiza-
tion method for fine-tuning LLMs from human preference
data. Previous work in the paired setting focused on improv-
ing the reward of chosen sentences over rejected sentences
on a per-sample basis. This procedure does not lead to a
preference on a distributional level of the chosen marginal
on the rejected marginal. In probabilistic terms, we would
like to induce stochastic dominance of the reward of chosen
sentences on the reward of rejected ones. First order Stochas-
tic Dominance (FSD, see e.g. Ogryczak and Ruszczynski,
2002) of a random variable X on a random variable Y ,
means that all quantiles values of X are larger than those

1



Distributional Preference Alignment of LLMs via Optimal Transport

of Y . Our main contribution is introducing AOT, Align-
ment via Optimal Transport, a new method that enables
distributional alignment. We do so by devising a new AOT
objective function that induces in the unpaired setting FSD
dominance of chosen reward’s distribution over rejected
reward’s distribution. We call this unpaired variant uAOT.
In the paired setting, we introduce pAOT that encourages a
dominance of chosen to rejected log likelihood ratio of the
optimized policy on that ratio for the reference base policy.
We show that the AOT cost can be cast as a one-dimensional
optimal transport problem that can be solved via sorting and
efficiently optimized for the LLM. AOT enjoys also nice sta-
tistical proprieties and achieves the parametric rate since its
objective can be seen as a smooth one-dimensional optimal
transport problem. AOT achieves state-of-the-art results
on the Alpaca leaderboard (Dubois et al., 2024) using the
Merlinite 7B model (Sudalairaj et al., 2024) as a base
and scores among the highest 7B model at the time of writ-
ing this paper.

To introduce the important concepts of our work pictori-
ally, we show in Figure 1a the quantile plots of the rewards
of AOT and alternative alignment strategies (DPO, KTO)
for chosen responses (in green) and rejected responses in
(red). The quantile plots are estimated on a paired test
set. We see that AOT leads to chosen rewards that have
larger margins than those of rejected rewards across all per-
centiles. More importantly, this margin is larger in AOT
models than in policies coming from alternative alignment
strategies. We then show in Figure 1b how the AOT aligned
policy’s chosen-to-rejected log-likelihood ratio dominates
that same ratio evaluated on the base model’s ratio across all
percentiles. The distributional alignment induced by AOT
ensures a large margin between all quantiles so that the pref-
erence is reflected not only on average but distributionally.
We formalize distributional preference in the next section.

2. Distributional Preference via First Order
Stochastic Dominance

First Order Stochastic Dominance For a real random
variableZ we denoteF (−1)

Z : [0, 1]→ R the left-continuous
inverse of the Cumulative Distribution Function (CDF) FZ :

QZ(p) = F
(−1)
Z (p) = inf{η : FZ(η) ≥ p} for p ∈ [0, 1].

Given two random variables Z1 and Z2, we say that Z1

dominates Z2 in the first order if Z1 has larger quantiles
than Z2 for all percentiles p:

Z1 ≽
FSD

Z2 ⇐⇒ QZ1
(p) ≥ QZ2

(p), ∀p ∈ [0, 1]. (1)

Let X be the space of prompts X and Y be the space of
responses Y from an LLM conditioned on a prompt X ∈ X .
The reference LLM is represented as policy πref(Y |X), i.e.,

as a conditional probability on Y given a prompt X ∈ X .
We note the LLM policy we are optimizing by πθ where
θ is a parameter belonging to a bounded parameter space
Θ ⊂ Rdθ . For a measure µ ∈ P(X × Y) and a mapping
r : X × Y → R, we note as r♯µ the pushforward map
of µ through r. In particular, for empirical measures µ =
1
n

∑n
i=1 δ(xi,yi), we have that r♯µ = 1

n

∑n
i=1 δr(xi,yi).

DPO as a Pointwise Preference Approach In Direct Prefer-
ence Optimization (DPO, Rafailov et al., 2024), the reward
being optimized by the LLM has the following form :

rθ(x, y) = β log
πθ(y|x)
πref(y|x)

+ β log(Z(x)),

where Z(x) is a normalization constant. DPO assumes ac-
cess to a paired preference dataset (X,Y+, Y−) ∼ µ where
Y+ denotes a positive (chosen) response to which we would
like to assign a high reward, and Y− a negative (rejected) re-
sponse to which we would like to assign a low reward. This
can be formalized as minimizing the logarithmic sigmoid
loss :

min
θ∈Θ
−E(x,y+,y−)∼µ log(σ(β(rθ(x, y+)− rθ(x, y−)))),

and since the difference is taken for the same x, the normal-
ization Z(x) disappears resulting in:

min
θ
ℓ(θ),

where ℓ(θ) = −E log
(
σ
(
β log πθ(y+|x)

πref (y+|x) − β log
πθ(y−|x)
πref (y−|x)

))
.

We can interpret this as a pointwise constraint inducing
preference for positive over negative reward outcomes as
follows:

log

(
πθ(y+|x)
πref(y+|x)

)
≥ log

(
πθ(y−|x)
πref(y−|x)

)
,∀(x, y+, y−) ∼ µ.

(2)
DPO can then be interpreted as a relaxation of this constraint
through the logistic loss, which also suggests other prefer-
ence optimization algorithms through relaxations using, for
example, the hinge loss as proposed in SLIC (Zhao et al.,
2023).

2.1. Distributional Preference via Stochastic Dominance

Our main insight from looking at the pointwise constraint
in Equation (2) is that we can recast it as a distributional
constraint in terms of stochastic dominance of the random
variable Z+

θ = log( πθ(Y+|X)
πref (Y+|X) ) of positive outcomes on

the random variable Z−
θ = log( πθ(Y−|X)

πref (Y−|X) ) of negative out-
comes. This is especially valuable in the unpaired setting
without access to triplets of prompts and positive and nega-
tive responses as required by DPO. This is indeed the same
setting considered by KTO (Ethayarajh et al., 2024). The
following paragraph formalizes this unpaired distributional
preference.
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(a) Stochastic Dominance of Reward of Chosen on Rejected:
AOT achieves a larger margin between the quantile plots of
chosen and rejected rewards.
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(b) Stochastic Dominance of AOT’s optimized policy margin
(between Chosen on Rejected) on the margin of the reference
policy.

Figure 1: AOT in the paired & unpaired settings enables first-order stochastic dominance of the chosen reward distribution
on the rejected distribution (a). The margin between the quantiles of chosen and rejected rewards is larger than alternative
strategies. In (b), we see that AOT’s policy chosen to rejected log-likelihood ratio dominates that ratio for the base model
and alternative strategies.

Distributional Unpaired Preference We assume here
that we don’t have access to triplets of prompts and pos-
itive/negative responses (x, y+, y−). Instead, we assume
separate access to µ+ ∈ P(X×Y), a distribution of positive
prompt/response pairs (X+, Y+) we would like to be highly
rewarded and reinforce in the policy, and µ− ∈ P(X × Y)
the distribution of the negative samples (X−, Y−) to be
associated with low reward. We define the distributional
preference as follows:

Definition 2.1 (Distributional Preference in the Unpaired
Setting). A policy π prefers distributionally µ+ on µ− with
respect to a reference policy πref if:

log
πθ(Y+|X+)

πref(Y+|X+)
≽

FSD
log

πθ(Y−|X−)

πref(Y−|X−)
.

In other words, noting ru ◦ πθ(x, y) = log πθ(y|x)
πref (y|x) , the

distributional preference in the unpaired setting means that
we have the following constraint:

(ru ◦ πθ)♯µ+ ≽
FSD

(ru ◦ πθ)♯µ−. (3)

Distributional Paired Preference Note that we can rewrite
Equation (2) in the equivalent form:

log
πθ(y+|x)
πθ(y−|x)

≥ log
πref(y+|x)
πref(y−|x)

, ∀(x, y+, y−) ∼ µ.
(4)

In order to turn this into a distributional constraint we
need access to a paired preference dataset as in DPO
(X,Y+, Y−) ∼ µ, and impose stochastic dominance of

the random variable Zθ = log πθ(Y+|X)
πθ(Y−|X) indexed by the

policy we are optimizing on the random variable Zref =

log πref (Y+|X)
πref (Y−|X) indexed by the reference policy. Zθ and Zref

represent here the log likelihood ratio of positive to nega-
tive outcome under the policies πθ and πref , respectively.
Hence, it is desirable to constrain the policy πθ to have a
larger excess log probability between positive and negative
outcomes than that resulting from the reference policy πref .

We define below more formally the paired distributional
preference via stochastic dominance:

Definition 2.2 (Distributional Preference in the Paired Set-
ting). We say that the policy πθ distributionally dominates
πref in terms of log probability ratio of positive and negative
responses if:

log
πθ(Y+|X)

πθ(Y−|X)
≽

FSD
log

πref(Y+|X)

πref(Y−|X)
.

Noting rp ◦ πθ(x, y+, y−) = log πθ(y+|x)
πθ(y−|x) this can be writ-

ten as follows:

(rp ◦ πθ)♯µ ≽
FSD

(rp ◦ πref)♯µ. (5)

3. AOT: Alignment via Optimal Transport a
Convex Relaxation Approach

Note that the paired and unpaired distributional preference
constraints in Definitions 2.1 and 2.2 can be used in LLM
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alignment as follows:

Find πθ ∈ H such that (ru ◦ πθ)♯µ+ ≽
FSD

(ru ◦ πθ)♯µ−

(FSD unpaired)
and

Find πθ ∈ H such that (rp ◦ πθ)♯µ ≽
FSD

(rp ◦ πref)♯µ
(FSD paired)

where ru are rp are given in Definitions 2.1 and 2.2 respec-
tively, andH is a hypothesis class. Those two problems are
instances of learning with stochastic orders introduced in
(Domingo-Enrich et al., 2022), but in a simpler setting since
the constraints are on one-dimensional distributions and the
order considered is the first order rather than the convex
order as considered in (Domingo-Enrich et al., 2022). Note
that both problems are special cases of the following generic
optimization problem:

Find θ ∈ Θ such that : Uθ ≽
FSD

Vθ (6)

where Uθ and Vθ are real-valued random variables whose
distributions depend on a parameter vector θ ∈ Θ. Note that
for our FSD paired setting, Vθ = V (independent of θ). Let
µUθ

and µVθ
be the probability measures of Uθ and Vθ resp.

By the definition of FSD in Equation (1) we have:

Uθ ≽
FSD

Vθ ⇐⇒ QUθ
(t) ≥ QVθ

(t),∀t ∈ [0, 1].

We can relax this problem to the following minimization
problem:

min
θ∈Θ

ε(θ) :=

∫ 1

0

h(QUθ
(t)−QVθ

(t))dt, (7)

where h is a function penalizing each quantile’s violation
of FSD. The objective function (7) seeks to measure the
violation of FSD, so that it can be minimized or eliminated.
For instance, with h the 0/1 loss (here 1 is the indicator
function):

min
θ∈Θ

∫ 1

0

1QUθ
(t)<QVθ

(t)dt, (8)

This loss reminds us the misclassification 0/1 loss. Fol-
lowing classical convex relaxation of 0/1 losses in binary
classification (Bartlett et al., 2006), we consider surrogates
h of the indicator function. Our choices for h are moti-
vated by the “almost-FSD” notions in the literature (See
Appendix F for a discussion). In practice, we use smooth
convex approximations of the 0/1 loss (1x<0) (Bartlett et al.,
2006), for example for a margin β > 0 h(x) = (β − x)2+
the β− squared hinge loss or h(x) = log(1 + exp(−βx))
the β-logistic loss. Although not a convex relaxation of the

0/1 loss, the least squares loss has been used in classifica-
tion (Rosasco et al., 2004), and in the context of alignment,
it was used in IPO (Azar et al., 2024) hence we use also
h(x) = (β − x)2, and refer to it as β-Least Squares. Fur-
ther discussion of tradeoffs and benefits of different losses
is in Appendix F, and formal assumptions on h needed for
the statistical theory are given in Assumption 4.1.

The cost function in (7) is still computationally challenging,
if we were to solve the problem via gradient descent on θ
this would require us to differentiate through the quantile
operation. The following theorem from (Santambrogio,
2015) will be instrumental for us to cast the loss in (7) as an
optimal transport problem with a convex cost h:

Theorem 3.1 (Theorem 2.9 and Proposition 2.17 in (San-
tambrogio, 2015)). Let h : R→ R+ be a convex function
we have for two real random variables U, V , with measures
µU , µV :∫ 1

0

h(QU (t)−QV (t))dt = min
γ∈Π(µU ,µV )

∫
h(u− v)dγ(u, v)

= OTh(µU , µV )

and γ∗ = (QU , QV )♯L1([0, 1]) is a minimizer (where L1 is
the Lebesgue measure on [0, 1] ). If furthermore h is strictly
convex γ∗ is the unique minimizer.

Thanks to Theorem 3.1 we can write the problem (7), in
the following equivalent form that we call Alignment via
Optimal Transport (AOT) :

min
θ∈Θ

∫ 1

0

h(QUθ
(t)−QVθ

(t))dt = min
θ∈Θ

OTh(µUθ
, µVθ

)

(9)

= min
θ∈Θ

min
γ∈Π(µUθ

,µVθ
)

∫
h(u− v)dγ(u, v). (10)

This formulation reveals that we have turned the stochastic
dominance constraint to an inner one-dimensional optimal
transport problem with a convex cost h. OTh(µUθ

, µVθ
)

can be thought as a soft measure of the violation of the
stochastic dominance of Uθ on Vθ, hence by minimizing
it as function of θ we are ensuring the optimal θ∗ results
in Uθ∗ dominating Vθ∗ . Such OT problems with a smooth
cost have been subject to theoretical and statistical study in
one dimension as well as in high dimensions. For instance,
(Manole and Niles-Weed, 2024) considered smooth convex
costs, and (Hundrieser et al., 2022) considered more general
smooth costs. (Groppe and Hundrieser, 2023) considered
entropic regularization of optimal transport with general
smooth costs.

Computational Algorithm via Sorting We consider here
empirical measures and turn to solve the inner problem
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for a fixed θ. We omit θ in what follows to simplify no-
tation. We are interested in OTh(µ̂U , µ̂V ) where µ̂U =
1
n

∑n
i=1 δui µ̂V = 1

n

∑n
i=1 δvi . Given the convexity of

h and thanks to Theorem (3.1), the optimal coupling of
OTh(µ̂Uθ

, µ̂Vθ
) is given by the north-west corner solution

(Peyré and Cuturi, 2019) (Chapter 3, Section 3.4.2) that
informally matches the i−th smallest element of U with the
i−th smallest element from V . More formally, if we sort
the variables ui and get the order statistics (from min to
max) u(1) ≤ ... ≤ u(n) and same for vi: v(1) ≤ ... ≤ v(n).
We have:

OTh(µ̂U , µ̂V ) =
1

n

n∑
i=1

h(u(i) − v(i)). (11)

Back to (10), given empirical samples µ̂Uθ
= 1

n

∑n
i=1 δui

θ

and µ̂Vθ
= 1

n

∑n
i=1 δvi

θ
, let u(i)θ , v

(i)
θ be the order statistics

as function of θ. We have therefore:

min
θ∈Θ

OTh(µ̂Uθ
, µ̂Vθ

) = min
θ∈Θ

1

n

n∑
i=1

h(u
(i)
θ − v

(i)
θ ) (AOT)

(12)

In Appendix G, we show that the gradients of the objective
(12) are asymptotically unbiased for bounded distributions
(see the statement for all conditions). Note that the sorting
operation in (12) is a 1-Lipschitz function with discontin-
uous Jacobian.1 Like the ReLU activation function, it can
be easily optimized by gradient descent (Anil et al., 2019)
(compare also sliced Wasserstein GANs). In practice, com-
puting the gradient at any given step is done by first running
the sorting algorithm and taking the gradient with respect to
θ with the current assignment held fixed.

AOT for Unpaired Preference Let µ̂n
+ =

1
n

∑n
i=1 δ(xi,+,yi,+) and µ̂n

− = 1
n

∑n
i=1 δ(xi,−,yi,−).

Our convex relaxation approach for unpaired FSD align-
ment given in (FSD unpaired) can therefore be cast as an
AOT problem (given in Equation (12)) for i = 1, . . . , n

uiθ = log
πθ(yi,+|xi,+)
πref(yi,+|xi,+)

, viθ = log
πθ(yi,−|xi,−)
πref(yi,−|xi,−)

,

AOT for Paired Preference Let µ̂n =
1
n

∑n
i=1 δ(xi,yi,+,yi,−) be a paired preference empiri-

cal measure. Our convex relaxation approach for paired
FSD alignment given in (FSD paired) can be there cast as
an AOT problem (given in Equation (12)) for:

uiθ = log
πθ(yi,+|xi)
πθ(yi,−|xi)

, viθ = log
πref(yi,+|xi)
πref(yi,−|xi)

, i = 1, . . . , n.

1Its Jacobian is a permutation matrix at every point except a
measure-zero set where it is not differentiable.

AOT with Soft Sorting One caveat of the alternating opti-
mization for AOT between θ and solving the inner optimal
transport problem with hard sorting is that the gradient with
respect to the parameter θ for fixed permutations has depen-
dency in θ on the order statistics level only and not through
the sorting routine. To alleviate that, we propose to use
SoftSorting (Blondel et al., 2020; Cuturi et al., 2019) that
uses an entropic regularization to find a smoothed permu-
tations via a Sinkhorn algorithm, which in turn allows the
back-propagation on θ to depend not only via the order statis-
tics but also via the computational graph of SoftSorting.

Algorithms 1 and 2 in Appendix B summarize our AOT
approach for distributional preference alignment in the un-
paired and paired setting.

4. Statistical Analysis
In this section, we focus on the statistical analysis of
unpaired-AOT and defer paired-AOT to Appendix E since it
has a similar analysis. We make the following assumptions
on the OT cost h, the reward r, and the policy hypothesis
classH.

Assumption 4.1 (OT cost). Let M,R > 0 be finite positive
constants. We assume that the loss h : [−M,M ]→ [0, R],
is convex L-Lipchitz and bounded. h is a convex function
(E.g. a relaxation of the 0/1 loss such that h(t) > h(t′), for
t < 0 and t′ > 0).

Assumption 4.2 (Reward). We assume that r is bounded
so that r ◦ πθ(x, y) ∈ [−M,M ].

Assumption 4.3 (Assumption on the hypothesis class of the
policy). We assume πref , πθ ∈ H = {πθ : such that r ◦
πθ differentiable in θ and supx∈X ,y∈Y ∥∇θr ◦ πθ(y|x)∥ ≤
L′, θ ∈ Θ ⊂ B2(r0, dθ)}, for L′, r0 > 0. .

Assumption 4.4. There exists πθ ∈ H such that (r ◦
πθ)♯µ+ ≽

FSD
(r ◦ πθ)♯µ−.

Assumption 4.1 is satisfied for example by the hinge squared
loss h(t) = (−t)2+ by the logistic loss h(t) = log(1+e−βt),
for t ∈ [−M,M ]. Assumption 4.2 on the boundedness
of the rewards can be imposed by clamping the values of
the logits of the policies to [−M,M ], which is common
practice in practical implementations of LLM alignment.
Assumption 4.3 is a technical assumption needed to control
the covering number of the r ◦ H. Assumption 4.4 ensures
the existence of the minimizer inH. We overload notations
in what follows and refer to ru and rp as r to simplify
the presentation. By our relaxation approach described in
Section 3 we can relax the unpaired stochastic dominance
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constraint problem given in (FSD unpaired) to:

min
πθ∈H

∫ 1

0

h
(
Q(r◦πθ)♯µ+

(t)−Q(r◦πθ)♯µ−(t)
)
dt (13)

= min
πθ∈H

OTh ((r ◦ πθ)♯µ+, (r ◦ πθ)♯µ−) (uAOTh)

Define the OT cost c : [−M,M ]× [−M,M ]→ [0, R] such
that c(z, z′) = h(z − z′), for z, z ∈ [−M,M ]. Define the
c-transform of a function φ : [−M,M ]→ R:

φc(z) = inf
z′∈[−M,M ]

h(z − z′)− φ(z).

In our setting, a function is called c-concave if there exists
ψ : [−M,M ] → R such that φ = ψc. Define: Fc = {φ :
[−M,M ] → [−R,R], φ is c-concave, with ||φc||∞ ≤ R}
By duality (Theorem 5.10 in (Villani, 2009)) we have:

OTh ((r ◦ πθ)♯µ+, (r ◦ πθ)♯µ−) =

sup
φ∈Fc

∫
φ(r ◦ πθ)dµ+ −

∫
φc(r ◦ πθ)dµ−.

Replacing the dual expression of OTh in (uAOTh), we see
that (uAOTh) can be cast as a min-max problem:

min
πθ∈H

sup
φ∈Fc

∫
φ(r ◦ πθ)dµ+ −

∫
φc(r ◦ πθ)dµ−. (14)

Given samples µ̂n
+ = 1

n

∑n
i=1 δ(xi,+,yi,+) and µ̂n

− =
1
n

∑n
i=1 δ(xi,−,yi,−), the empirical problem is:

min
πθ∈H

sup
φ∈Fc

∫
φ(r ◦ πθ)dµ̂n

+ −
∫
φc(r ◦ πθ)dµ̂n

−. (15)

Recall that OTh is a measure of the violation of stochastic
dominance of (r ◦ πθ)♯µ+ on (r ◦ πθ)♯µ−. We have the
following result on the sample complexity of the violation
of stochastic dominance:
Theorem 4.5 (Sample Complexity of Dominance Violation
for AOT Unpaired). Let πθ∗ be the population minimizer of
(uAOTh) and πθ̂n be the solution of the empirical problem
(15). We have the following sample complexity bound for
the violation of stochastic dominance in AOT unpaired:

E OTh

(
(r ◦ πθ̂n)♯µ+, (r ◦ πθ̂n)♯µ−

)
≤ OTh ((r ◦ πθ∗)♯µ+, (r ◦ πθ∗)♯µ−)︸ ︷︷ ︸

Optimal Almost FSD Violation

+ 2Rn(Fc; (r ◦ πθ∗)♯µ+) + 2Rn(Fc
c ; (r ◦ πθ∗)♯µ−)︸ ︷︷ ︸

One dimensional OT sample complexity with optimal θ∗

+ 2Rn(Fc ◦ r ◦ H;µ+) + 2Rn(Fc
c ◦ r ◦ H;µ−)︸ ︷︷ ︸

Complexity of learning in H via the 1D OT problem

,

where Rn(F ; ν) = E supφ∈F
∣∣ 1
n

∑n
i=1 σiφ(Zi)

∣∣ is the
Rademacher Complexity and for i = 1 . . . n, σi are in-
dependent Rademacher random variables and Zi ∼ ν iid.

By considering our assumptions on the cost, the reward, and
the hypothesis class, we obtain the parametric rate in n:

Corollary 4.6. (Informal) Under Assumptions 4.1, 4.2 and
4.3 we have:

1. E OTh

(
(r ◦ πθ̂n)♯µ+, (r ◦ πθ̂n)♯µ−

)
−

OTh ((r ◦ πθ∗)♯µ+, (r ◦ πθ∗)♯µ−) ≲ n−
1
2 , where ≲

refers to inequality up to constants that depend only
on constants in the assumptions.

2. If in addition Assumption 4.4 holds and h(t) = (−t)2+,

we have: E OTh

(
(r ◦ πθ̂n)♯µ+, (r ◦ πθ̂n)♯µ−

)
≲

n−
1
2 .

We see that under our assumptions and for the hinge loss
squared, the expected violation of the desired dominance in
AOT unpaired converges to zero as n→∞.
Remark 4.7. While in Section 3, we used the primal for-
mulation to compute OTh due to its computational appeal
thanks to the sorting algorithm we used for analyzing the
sample complexity the dual of OTh. The dual reveals the
game theoretic aspect of AOT as a min-max game between
the policy πθ and the dual potential φc that imposes FSD
on the preference we want to infuse to the policy.

5. Experiments
In this section, we evaluate the performance of the proposed
AOT method on a diverse set of base LLMs and datasets,
comparing with currently available alternative alignment
algorithms.

LLM Alignment Alternatives We compared AOT with
current state-of-the-art alignment approaches, specifically
Direct Preference Optimization (DPO) (Rafailov et al.,
2024), Kahneman-Tversky Optimization (KTO) (Ethayarajh
et al., 2024) and Identity Policy Optimization (IPO) (Azar
et al., 2024). DPO and IPO operate on paired preference
data, while KTO can handle both paired and unpaired
prompt/response samples.

Reference Models Traditionally, model alignment is the
third and final step applied to the LLM that already has
gone through original pretraining and supervised fine-
tuning. For our experiments, we selected a range of
models at various stages and with different levels of
performance, all in the family of 7B-parameter models.
Specifically, we used Merlinite-7B (Sudalairaj et al.,
2024), which is a variant of Mistral-7B-v0.1 that
has been instruction-tuned (SFT) on data from a syn-
thetic data generator using a taxonomy-driven data cu-
ration process. In Appendix H we also cover other
popular LLMs, such as Mistral-7B (Jiang et al.,
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AlpacaEval
(GPT4) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 29.9 82.5 66.1 62.9 50.8 74.4 53.1
AOT unpaired 31.3 82.5 66.2 62.8 51.1 74.4 51.8
DPO 27.4 82.8 65.8 63.1 50.6 74.3 52.0
KTO 24.9 82.7 65.4 63.0 48.7 74.9 53.9
IPO 27.7 82.4 65.1 63.0 46.5 74.0 52.3
Merlinite-7B 17.1 81.6 63.2 62.6 42.0 73.9 45.2

Table 1: Merlinite-7B trained on UltraFeedback Binarized. AOT results in the best performing LLM as compared to
the alternative alignment algorithms on AlpacaEval, and is competitive across the other benchmarks that are evaluated in the
zero shot regime.

2023), OpenHermes-2.5-Mistral-7B (Teknium,
2024), Starling (Zhu et al., 2023), Mistral-7B (Jiang
et al., 2023), and Llama3-8B (AI@Meta, 2024).

Figure 2: Impact of batch size and loss type on AOT perfor-
mance. The batch size is the effective number of samples
in the mini-batch per GPU. We found the logistic loss to
be performing better than least squared or hinge squared
losses (all using β = 0.01). As we increase batch size, we
also observed improvement in AOT performance, which is
expected as more samples per minibatch results in a better
effect of stochastic dominance (conforming Corollary 4.6).

Datasets For our experiments, we used both paired and
unpaired datasets. For the paired dataset, we used the Ultra-
Feedback binarized dataset from (Tunstall et al., 2023b),
containing over 60K training samples, where for each
prompt, there is a pair of chosen (preferred) and rejected
(not preferred) responses. This alignment dataset is widely
used, and all compared alignment techniques are well-suited
for it. For unpaired datasets, we used PKU BeaverTails (Ji
et al., 2023) with over 300K samples and HelpSteer (Wang
et al., 2023) with around 35K samples. Here, for each
prompt, there is only a single response with a score defined
by some attributes (e.g., safety, faithfulness, helpfulness,
etc.). We used the sum of attribute values and thresholded
by the median to binarize the responses into chosen and
rejected. For this unpaired dataset, only KTO and our AOT
are applicable.

Metrics To measure the performance of different align-
ment methods, we used popular evaluation metrics, Al-
pacaEval (Dubois et al., 2024) and Open LLM benchmark
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Figure 3: Impact of (β) parameter on performance of dif-
ferent alignment algorithms. β controls the divergence of
the policy model from the initial reference model (low beta -
more divergence, high beta - less divergence). We see a gen-
eral trend that with higher betas, LLMs alignment decreases
the performance. Hence, for all experiments, we selected
β = 0.01 as a default value.

(Beeching et al., 2023). We note that Alpaca uses GPT4
model as a judge to compare candidate responses to GPT4-
based references on a set of 805 challenging questions.
The GPT4-based evaluations are expensive, so to limit our
expenses, we also employed a very strong and capable
Llama3-70B-Instruct (AI@Meta, 2024) as a judge.
As we show in Appendix H in Table 2, the order determined
by Llama3-70B-Instruct and GPT4 is the same (the
absolute score values are different), providing a better free
alternative LLM-judge for local Alpaca evaluations. For
intermediate results, we also employed Tiny Benchmarks
(Maia Polo et al., 2024) to approximate original metrics
and provide fast feedback during the initial development.
We also evaluated the aligned models on six key bench-
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marks from the Open LLM Leaderboard: AI2 Reasoning
Challenge - ARC (grade-school science questions), Hel-
laSwag (commonsense inference), MMLU (multi-task ac-
curacy), TruthfulQA (tendency to reproduce falsehoods),
Winogrande (commonsense reasoning) and GSM8K (grade
school math word problems). Note that in all the above
benchmarks we use 0-shot prompts, a more challenging
setting as opposed to commonly used few-shot prompting.

Experimental Setup Our implementation is based on the
HuggingFace Alignment Handbook (Tunstall et al., 2023a).
As we show in Appendix in Section B, the changes needed
to adapt HF TRL trainer (von Werra et al., 2020) for AOT
are minimal and therefore can easily be adapted by the
community. For each run our compute setup consisted of 8
H100 GPUs. We used LoRA (Hu et al., 2021) for parameter-
efficient fine-tuning during alignment and the FSDP (Fully-
Sharded Data-Parallel) setup to train the model over multiple
GPUs. Under this setup, the training of each 7B-parameter
model on the UltraFeedback dataset took approximately
one hour. The evaluation on AlpacaEval and Open LLM
benchmarks took one additional hour to get the final results.

Results In Table 1, we present the main results of compar-
ing AOT to other baselines (KTO, DPO, and IPO) on paired
UltraFeedback binarized dataset. On AlpacaEval (GPT4),
our AOT unpaired approach scores 31.3%, which is a sig-
nificant gain from the base Merlinite-7B model. As of time
of this writing (May 22nd, 2024), this result places our
AOT aligned LLM on AlpacaEval LeaderBoard ahead of
such strong competitors as KTO-Mistral-PAIR (Etha-
yarajh et al., 2023) and other 7B-parameter models, reaching
the level of Mixtral-8x22B-v0.1 (see Figure 4 in Ap-
pendix for an illustration). On other LLM benchmarks AOT
performs competitively to other baselines. As mentioned
earlier, these evaluations are done using 0-shot prompts,
leading to a more challenging setting and resulting in over-
all lower performance across metrics and baselines. For
other base LLMs we show their performance in Appendix
H (see Tables 3, 4, 5, and 6).

We also examined the effect of batch size and the choice
of loss function on AOT performance, results shown in
Figure 2. As the batch size increases, AlpacaEval (based on
Llama3-70B-instruct) also increases in line with our
theory in Corollary 4.6. Note that our current setup (FSDP
over 8 H100 GPUs) limits our batch size to 35 samples per
GPU. We have also examined the impact of beta (controlling
divergence of policy from reference) on AOT performance
in Fig. 3. We noticed a trend that with higher betas the
performance of LLMs alignment decreases, thus we set
β = 0.01. Ablation results comparing hard and soft sorting
as well as the variance of AlpacaEval scores across multiple
runs in Appendix H (Tables 7 and 10) show the overall
robustness of AOT .

6. Conclusion
We present in this paper Distributional Alignment via Opti-
mal Transport (AOT) for large language models. The AOT
cost can be cast as a one-dimensional optimal transport
problem with a smooth and convex cost that penalizes viola-
tions of the dominance of the chosen on rejected marginals.
AOT enjoys parametric statistical rates. We showed with
extensive experimentation on various paired and unpaired
datasets, base models, and different loss functions, that AOT
alignment robustly leads to aligned models that outperform
alternative alignment strategies such as DPO, KTO and IPO
on the Alpaca Benchmark, leading to one of the best 7B
models on that benchmark as of the time of writing. On
other benchmarks such as the open LLM leaderboard AOT
leads to competitive results.
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A. Broader Impact and Limitations
In this paper, we introduced an alignment method for LLMs that can capture rewards at the distributional level without the
requirement of paired preference data. Our algorithm was derived by imposing the stochastic dominance of positive reward
distribution over negative distributions through an Optimal Transport formulation. It enjoys a very simple algorithmic
implementation in terms of a closed-form expression via sorting on empirical measures. Empirically, our algorithm
demonstrates excellent results by allowing us to train 7B parameter models that achieve state-of-the-art evaluation results on
Open LLM Benchmarks and AlpacaEval.

In terms of broader societal impact, we would like to highlight the benefits that our AOT algorithm will bring to RLHF
by enabling a more robust distributional alignment of LLMs, improving their ability to follow instructions accurately, and
aligning their responses with human values.

Our work shares the same limitations and possible negative broader societal impacts as the majority of RLHF work. The
algorithm is fundamentally limited by the training dataset used for alignment and might, therefore, contribute to amplifying
various types of bias present in the data. In addition, alignment through AOT is not enough to address aspects related to the
security and safety of LLM deployment. In general, better performance on a given set of benchmarks following alignment
does not imply better performance across the board in other tasks, and ad-hoc evaluation specific to each task of interest is
warranted.
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B. Algorithms and Pytorch Code In Hugging Face TRL
Algorithm 1 AOT Unpaired

1: Input: πθ, πref , β > 0, ε > 0,
2: Unpaired Preference Data: “Chosen” µ̂n

+ =
1
n

∑n
i=1 δ(xi,+,yi,+) and “Rejected”

3: µ̂n
− = 1

n

∑n
i=1 δ(xi,−,yi,−).

4: for iter← 1, niter do
5: Get a Positive/Negative mini-batch
6: {(xi,+, yi,+) ∼ µ̂n

+, i = 1 . . . b}
7: {(xi,−, yi,−) ∼ µ̂n

−, i = 1 . . . b}
8: Compute Rewards for i = 1 . . . b

9: uiθ = log
πθ(yi,+|xi,+)
πref (yi,+|xi,+)

10: viθ = log
πθ(yi,−|xi,−)
πref (yi,−|xi,−)

11: Sort Rewards
12: if hard sort then
13: (u(1) . . . u(b)) = Sort(uiθ)
14: (v(1) . . . v(b)) = Sort(viθ)
15: else if soft sort then
16: (u(1) . . . u(b)) = SoftSort(uiθ, ε)
17: (v(1) . . . v(b)) = SoftSort(viθ, ε)
18: end if
19: Compute AOT logistic loss
20: ℓθ = − 1

b

∑b
i=1 log σ(β(u

(i)
θ − v

(i)
θ ))

21: Update θ
22: θ ← PagedAdamw32bit(∇θℓ(θ))
23: end for
24: Return πθ

Algorithm 2 AOT Paired

1: Input: πθ, πref , β > 0, ε > 0,
2: Paired Preference Data: µ̂n =

1
n

∑n
i=1 δ(xi,yi,+,yi,−)

3: for iter← 1, niter do
4: Get a Positive/Negative mini-batch
5: {(xi, yi,+, yi,−) ∼ µ̂n, i = 1 . . . b}
6: Compute Margins for i = 1 . . . b

7: uiθ = log
πθ(yi,+|xi)
πθ(yi,−|xi)

8: viθ = log
πref (yi,+|xi)
πref (yi,−|xi)

9: Sort Margins
10: if hard sort then
11: (u(1) . . . u(b)) = Sort(uiθ)
12: (v(1) . . . v(b)) = Sort(viθ)
13: else if soft sort then
14: (u(1) . . . u(b)) = SoftSort(uiθ, ε)
15: (v(1) . . . v(b)) = SoftSort(viθ, ε)
16: end if
17: Compute AOT logistic loss
18: ℓθ = − 1

b

∑b
i=1 log σ(β(u

(i)
θ − v

(i)
θ ))

19: Update θ
20: θ ← PagedAdamw32bit(∇θℓ(θ))
21: end for
22: Return πθ

1 i m p o r t t o r c h
2 i m p o r t t o r c h s o r t

1 d e f d p o _ l o s s ( . . .
2 . . .
3 e l i f s e l f . l o s s _ t y p e == " AOT_unpair " :
4 c h o s e n _ l o g r a t i o s = p o l i c y _ c h o s e n _ l o g p s − r e f e r e n c e _ c h o s e n _ l o g p s
5 r e j e c t e d _ l o g r a t i o s = p o l i c y _ r e j e c t e d _ l o g p s − r e f e r e n c e _ r e j e c t e d _ l o g p s
6 i f s e l f . s o r t _ t y p e == " h a r d _ s o r t " :
7 c h o s e n _ l o g r a t i o s _ s o r t e d , _ = t o r c h . s o r t ( c h o s e n _ l o g r a t i o s , dim =0)
8 r e j e c t e d _ l o g r a t i o s _ s o r t e d , _ = t o r c h . s o r t ( r e j e c t e d _ l o g r a t i o s , dim =0)
9 e l i f s e l f . s o r t _ t y p e == " s o f t _ s o r t " :

10 c h o s e n _ l o g r a t i o s _ s o r t e d = t o r c h s o r t . s o f t _ s o r t ( c h o s e n _ l o g r a t i o s , r e g u l a r i z a t i o n _ s t r e n g t h = 0 . 1 )
11 r e j e c t e d _ l o g r a t i o s _ s o r t e d = t o r c h s o r t . s o f t _ s o r t ( r e j e c t e d _ l o g r a t i o s , r e g u l a r i z a t i o n _ s t r e n g t h = 0 . 1 )
12 d e l t a _ s o r t e d = c h o s e n _ l o g r a t i o s _ s o r t e d − r e j e c t e d _ l o g r a t i o s _ s o r t e d
13 i f s e l f . AOT_loss == " h i n g e " :
14 l o s s e s = t o r c h . r e l u ( s e l f . b e t a − d e l t a _ s o r t e d ) **2
15 e l i f s e l f . AOT_loss == " l o g i s t i c " :
16 l o s s e s = (
17 −F . l o g s i g m o i d ( s e l f . b e t a * d e l t a _ s o r t e d ) * (1 − s e l f . l a b e l _ s m o o t h i n g )
18 − F . l o g s i g m o i d ( − s e l f . b e t a * d e l t a _ s o r t e d ) * s e l f . l a b e l _ s m o o t h i n g
19 )

1 e l i f s e l f . l o s s _ t y p e == " AOT_pair " :
2 p i _ l o g r a t i o s = p o l i c y _ c h o s e n _ l o g p s − p o l i c y _ r e j e c t e d _ l o g p s
3 r e f _ l o g r a t i o s = r e f e r e n c e _ c h o s e n _ l o g p s − r e f e r e n c e _ r e j e c t e d _ l o g p s
4 i f s e l f . s o r t _ t y p e == " h a r d _ s o r t " :
5 p i _ l o g r a t i o s _ s o r t e d , _ = t o r c h . s o r t ( p i _ l o g r a t i o s , dim =0)
6 r e f _ l o g r a t i o s _ s o r t e d , _ = t o r c h . s o r t ( r e f _ l o g r a t i o s , dim =0)
7 e l i f s e l f . s o r t _ t y p e == " s o f t _ s o r t " :
8 p i _ l o g r a t i o s _ s o r t e d = t o r c h s o r t . s o f t _ s o r t ( p i _ l o g r a t i o s , r e g u l a r i z a t i o n _ s t r e n g t h = 0 . 1 )
9 r e f _ l o g r a t i o s _ s o r t e d = t o r c h s o r t . s o f t _ s o r t ( r e f _ l o g r a t i o s , r e g u l a r i z a t i o n _ s t r e n g t h = 0 . 1 )

10 d e l t a _ s o r t e d = p i _ l o g r a t i o s _ s o r t e d − r e f _ l o g r a t i o s _ s o r t e d
11 i f s e l f . AOT_loss == " h i n g e " :
12 l o s s e s = t o r c h . r e l u ( s e l f . b e t a − d e l t a _ s o r t e d ) **2
13 e l i f s e l f . AOT_loss == " l o g i s t i c " :
14 l o s s e s = (
15 −F . l o g s i g m o i d ( s e l f . b e t a * d e l t a _ s o r t e d ) * (1 − s e l f . l a b e l _ s m o o t h i n g )
16 − F . l o g s i g m o i d ( − s e l f . b e t a * d e l t a _ s o r t e d ) * s e l f . l a b e l _ s m o o t h i n g
17 )

12
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C. Proofs
Proof of Theorem 4.5. Let

ε(θ, µ+, µ−) = sup
φ∈Fc

∫
φ(r ◦ πθ)dµ+ −

∫
φc(r ◦ πθ)dµ−

where for z, z′ ∈ R :
φc(z) = inf

z′∈[−M,M ]
h(z − z′)− φ(z)

and (a function f is c− concave if there exits g such that f = gc).

The population problem :
min
πθ∈H

ε(θ, µ+, µ−) (16)

Given samples µ̂n
+ = 1

n

∑n
i=1 δ(xi

+,yi
+) and µ̂m

− = 1
m

∑m
i=1 δ(xi

−,yi
−), the empirical problem is :

ε(θ, µ̂n
+, µ̂

m
− ) = sup

φ∈Fc

∫
φ(r ◦ πθ)dµ̂n

+ −
∫
φc(r ◦ πθ)dµ̂m

−

and the ERM problem is :
min
πθ∈H

ε(θ, µ̂n
+, µ̂

m
− )

Let θ̂m,n be the minimizer of the ERM we have for any θ, by the definition of the minimizer:

ε(θ̂m,n, µ̂
n
+, µ̂

m
− ) ≤ sup

φ∈Fc

∫
φ(r ◦ πθ)dµ̂n

+ −
∫
φc(r ◦ πθ)dµ̂m

−

≤ sup
φ∈Fc

∫
φ(r ◦ πθ)dµ+ −

∫
φc(r ◦ πθ)dµ−

+ sup
φ∈Fc

∫
φ(r ◦ πθ)d(µ̂n

+ − µ+)

+ sup
φ∈Fc

∫
φc(r ◦ πθ)d(µ− − µ̂m

− )

Let θ∗ be the minimizer of (16) for θ = θ∗ in the above inequality, and taking expectations on the randomness of the samples
we obtain

Eε(θ̂m,n, µ̂
n
+, µ̂

m
− ) ≤ Eε(θ∗, µ+.µ−) + E sup

φ∈Fc

∫
φ(r ◦ πθ∗)d(µ̂n

+ − µ+)

+ E sup
φ∈Fc

∫
φc(r ◦ πθ∗)d(µ− − µ̂m

− )

On the other hand by symmetrization we have:

E sup
φ∈Fc

∫
φ(r ◦ πθ∗)d(µ̂n

+ − µ+) ≤ 2Rn(Fc), (17)

whereRn(F) = E supφ∈F

∣∣∣ 1N ∑N
i=1 σiφ(Xi)

∣∣∣ , σi are independent rademacher random variables and Xi ∼ (r ◦ πθ∗)♯µ+

iid (Xi ∈ R). and similarly we have:

E sup
φ∈Fc

∫
φc(r ◦ πθ∗)d(µ− − µ̂m

− ) ≤ E sup
φc∈Fc

c

∫
φc(r ◦ πθ∗)d(µ− − µ̂m

− ) ≤ 2Rm(Fc
c )

13
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We have finally:
Eε(θ̂m,n, µ̂

n
+, µ̂

m
− ) ≤ ε(θ∗, µ+.µ−) + 2Rn(Fc) + 2Rm(Fc

c ) (18)

Turning now to :

ε(θ̂m,n, µ+, µ−) = sup
φ∈Fc

∫
φ(r ◦ πθ̂m,n

)dµ+ −
∫
φc(r ◦ πθ̂m,n

)dµ−

≤ ε(θ̂m,n, µ̂
n
+, µ̂

m
− ) + sup

φ∈Fc

∫
φ(r ◦ πθ̂m,n

)d(µ+ − µn
+)

+ sup
φ∈Fc

∫
φc(r ◦ πθ̂m,n

)d(µm
− − µ−)

≤ ε(θ̂m,n, µ̂
n
+, µ̂

m
− ) + sup

πθ∈H
sup
φ∈Fc

∫
φ(r ◦ πθ)d(µ+ − µn

+)

+ sup
πθ∈H

sup
φ∈Fc

∫
φc(r ◦ πθ)d(µm

− − µ−)

Taking expectations we obtain:

Eε(θ̂m,n, µ+, µ−) ≤ Eε(θ̂m,n, µ̂
n
+, µ̂

m
− ) + E sup

πθ∈H
sup
φ∈Fc

∫
φ(r ◦ πθ)d(µ+ − µn

+)

+ E sup
πθ∈H

sup
φc∈(Fc)c

∫
φc(r ◦ πθ)d(µm

− − µ−)

≤ ε(θ∗, µ+.µ−)︸ ︷︷ ︸
Optimal FSD Violation

+ 2Rn(Fc) + 2Rm(Fc
c )︸ ︷︷ ︸

One dimensional OT complexity with optimal θ∗

+ 2Rn(Fc ◦ r ◦ H) + 2Rm(Fc
c ◦ r ◦ H)︸ ︷︷ ︸

Complexity of learning in H via the 1D OT problem

,

where

Rn(Fc ◦ r ◦ H) =
1

n
E sup

πθ∈H
sup
φ∈Fc

∣∣∣∣∣
n∑

i=1

σiφ(r ◦ πθ(x+i , y+i ))
∣∣∣∣∣ (19)

D. Bounding Rademacher Complexities
Proof of Corollary 4.6. Define the uniform metric entropy of a class of real valued functions F on a set X as the logarithm
of the covering number with respect to the uniform norm ∥.∥∞, for ε > 0, this is defined as follows:

N (ε,F , ∥.∥∞) := inf
{
n ∈ N

∣∣∣ there exists f1 . . . fn : X → R with sup
f∈F

min
1≤i≤n

∥f − fi∥∞ ≤ ε
}

As observed in (Hundrieser et al., 2022) the c-transformation with bounded cost is a lipchitz operation under the uniform
norm and since f cc = f we have by Lemma 2.1 in Munk :

N (ε,Fc
c , ∥.∥∞) = N (ε,Fc, ∥.∥∞) (20)

Now turning to the Rademacher complexity of a class F , it is dominated by Dudley’s entropy integral (Theorem 16 in
Luxburg and Bousquet ):

Rn(F) ≤ inf
δ∈[0,R]

(
2δ +

√
32

1√
n

∫ R

δ/4

√
logN (ε,F , ∥.∥∞)dε

)
(21)

Note that the cost we are using is c(z, z′) = h(z − z′), for z, z ∈ [−M,M ]. The domain on which the cost being a closed
interval is convex and compact. By lipchitzity of h (Assumption 4.1) and denoting L its lipchitz constant, c(, z′) is lipchitz

14
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for all z′ ∈ [−M,M ]. Equivalently c(, z′) is (α,Λ) Hölder smooth , for α = 1 and Λ = L, and hence our setup falls under
the Assumptions of Theorem 3.11 in (Hundrieser et al., 2022) for Holder smooth costs defined on convex and compact sets
and we have:

logN (ε,Fc, ∥.∥∞) ≲ ε−
d
α .

Hence in our case α = 1 and d = 1 this leads to

logN (ε,Fc, ∥.∥∞) ≲ ε−1

Replacing this in Equation (21) we obtain: Rn(Fc) ≲ n−
1
2 and by Equation (20) it follows that: Rm(Fc

c ) ≲ m− 1
2 .

Turning now to the Rademacher Complexity of the composition of the c-concave potentials Fc with r ◦ H (the composition
of a fixed reward function with the hypothesis classH ). Note since the cost c(., z′) is L Lipchitiz for all z′ ∈ [−M,M ] we
have Fc is included in the set of L lipchitz function that are bounded by R (See (Hundrieser et al., 2022) Lemma A.2 ). For
φ ∈ Fc and πθ ∈ H , let us note hφ,πθ

= φ(r ◦ πθ) we have:∥∥hφ,πθ
− hφ′,πθ′

∥∥
∞ = sup

x∈X ,y∈Y
|φ(r ◦ πθ(y|x))− φ′(r ◦ πθ′(y|x))|

We have:

|φ(r ◦ πθ(x))− φ′(r ◦ πθ′)| = |φ(r ◦ πθ(x))− φ(r ◦ πθ′) + φ(r ◦ πθ′)− φ′(r ◦ πθ′)|
≤ L ∥r ◦ πθ − r ◦ πθ′∥∞ + ∥φ− φ′∥∞ .

where we used lipchitzity of φ ∈ Fc and hence we have:∥∥hφ,πθ
− hφ′,πθ′

∥∥
∞ ≤ L ∥r ◦ πθ − r ◦ πθ′∥∞ + ∥φ− φ′∥∞ .

We have therefore the following bound on the covering number of the composition:

N (ε,Fc ◦ r ◦ H, ∥.∥∞) ≤ N
(ε
2
,Fc, ∥.∥∞

)
N
( ε

2L
, r ◦ H, ∥.∥∞

)
,

Plugging this in Equation (21) we obtain:

Rn(Fc ◦ r ◦ H) ≤ inf
δ∈[0,R]

(
2δ +

√
32

1√
n

∫ R

δ/4

√
logN (ε/2,Fc, ∥.∥∞) + logN

( ε

2L
, r ◦ H, ∥.∥∞

)
dε

)

Note that for a, b > 0 we have
√
a+ b ≤ √a+

√
b, hence we have:

Rn(Fc ◦ r ◦ H) ≤ inf
δ∈[0,R]

(
2δ +

√
32

1√
n

∫ R

δ/4

√
logN (ε/2,Fc, ∥.∥∞) +

√
logN

( ε

2L
, r ◦ H, ∥.∥∞

)
dε

)
We know by lipchitizty of the cost and being in one dimension that :

logN (ε,Fc, ∥.∥∞) ≲ ε−1

By lipchitizity of r ◦ πθ and using Assumption 4.3 we have therefore:

logN
( ε

2L
, r ◦ H, ∥.∥∞

)
≤ logN

( ε

2LL′ , B2(r0, dθ), ∥.∥∞
)
≤ dθ log

2r0L
′L

ε

We have therefore:

inf
δ∈[0,R]

2δ + 4

√
2√
n

∫ R

δ/4

K1

(ε
2

)−1/2

dε+ 4

√
2√
n

∫ R

δ/4

√
dθ log

2r0LL′

ε
dε ≲ n−

1
2 .

(For δ = 0, the upper bound is obtained.)

For 2) By assumption 4.4, there exists πθ∗ , such that we have for h = (−x)2+ : OTh ((r ◦ πθ∗)♯µ+, (r ◦ πθ∗)♯µ−) = 0.
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E. AOT paired
Similarly following the relaxation approach described in Section 3 and using the dual representation of the OT problem we
can relax the paired stochastic dominance constraint problem given in (FSD paired) to:

min
πθ∈H

sup
φ∈Fc

∫
φ(r ◦ πθ)dµ−

∫
φc(r ◦ πref)dµ, (22)

where µ is the paired measure representing (X,Y+, Y−). let πθ∗ be the minimizer of (22). Considering Problem (22), with
empirical samples µ̂n = 1

n

∑n
i=1 δ(xi,yi,+,yi,−) , denote πθ̂n its minimizer we have :

Theorem E.1 (Sample Complexity of Dominance Violation for AOT Paired). The following sample complexity bound for
the violation of stochastic dominance in AOT paired holds:

E OTh

(
(r ◦ πθ̂n)♯µ, (r ◦ πref)♯µ

)
≤ OTh ((r ◦ πθ∗)♯µ, (r ◦ πref)♯µ)︸ ︷︷ ︸

Optimal Almost FSD Violation

+ 2Rn(Fc; (r ◦ πθ∗)♯µ+) + 4Rn(Fc
c ; (r ◦ πref)♯µ)︸ ︷︷ ︸

One dimensional OT sample complexity with optimal θ∗

+ 2Rn(Fc ◦ r ◦ H;µ))︸ ︷︷ ︸
Complexity of learning in H via the 1D OT problem

,

where Rn(F ; ν) = E supφ∈F
∣∣ 1
n

∑n
i=1 σiφ(Zi)

∣∣ is the Rademacher Complexity and for i = 1 . . . n, σi are independent
rademacher random variables and Zi ∼ ν iid.

Similarly under Assumptions 4.1, 4.2 and 4.3 we have:

E OTh

(
(r ◦ πθ̂n)♯µ, (r ◦ πref)♯µ

)
− OTh ((r ◦ πθ∗)♯µ, (r ◦ πref)♯µ) ≲ n−

1
2 .

Proof of Theorem E.1. The proof can be simply obtained by inspecting the proof of Theorem 1, and we omit it.

Remark E.2. Although OTh is one dimensional, an entropic regularization of OTh has computational advantages as
discussed in Section 3. Results from (Groppe and Hundrieser, 2023) can be leveraged to obtain sample complexity bounds
and we obtain under our assumptions also a parametric rate of n−

1
2 . The main insight in (Groppe and Hundrieser, 2023) is

in introducing for an entropic regularization parameter ε > 0, the smoothed (c, ε, µ) transform and replacing the spaces Fc

by Fc,ε. In the 1D case, up to constants, these spaces have the same covering numbers.

F. Choice of violation penalty function h

Recall we proposed the following three classes of loss functions h in the main text:

1. Area of violation (“classification”) Setting h(x) to be the 0-1 loss (1x<0) measures the fraction of the interval [0, 1]
where a violation occurs, paralleling classification losses which count the number of misclassification.

2. Wasserstein-1 violation Setting h(x) to be the hinge loss (−x)+ reduces to measuring the Wasserstein-1 distance
from Uθ to the nearest distribution that has FSD over Vθ.

3. Wasserstein-2 violation Setting h(x) to be the squared hinge loss (−x)2+ reduces to measuring the Wasserstein-2
distance from Uθ to the nearest distribution that has FSD over Vθ.

Besides measuring different quantities, the optimization-theoretic properties of each are different:

1. The 0-1 loss This loss does not penalize the size of the violations, making gradient-based optimization difficult as large
violations have no gradient. Additionally, if FSD were not achievable (e.g. a strong teacher policy), not penalizing the
size of the violations could result in risky policies.
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2. The hinge loss, i.e. the Wasserstein-1 violation measure. By its nature, the gradient of small violations is just as large
as the gradient of large violations, which may be beneficial for convergence to an FSD result. When FSD is impossible
to achieve, this loss will also have the effect of encouraging sparse violations while still penalizing the size of the
violations, similar to the L1 norm in the classic Lasso algorithm. Smooth relaxations Smooth relaxations of the hinge,
e.g., the logistic loss described in the main text, have a nonzero gradient at zero and continue to have a gradient for
small positive values. This has the benefit of encouraging quantiles to continue improving after surpassing those of the
reference.

3. The squared hinge loss, i.e. the Wasserstein-2 violation measure. As a quadratic loss, it no longer prefers sparse
violations (c.f. L2 norm regularization). Indeed, the gradient signal vanishes as the violation becomes small, meaning
that dense violations are likely and slow to be removed. A potential failure mode would be that the new policy has a
small violation, but none of the quantiles outperform the baseline. Relaxation Introducing a bias β as in the main text
addresses this issue, ensuring the gradient at 0 is nonzero.

G. Gradients of the sorting-based objective (12)

We here repeat the sorting-based objective (12) that we propose, adding n as a superscript for clarity.

min
θ∈Θ

OTh(µ̂
(n)
Uθ
, µ̂

(n)
Vθ

) = min
θ∈Θ

1

n

n∑
i=1

h(u
(i)
θ − v

(i)
θ ). (23)

We use gradient-based optimization approaches in practice to find a minimizing θ. We have the following theorem showing
the gradients are asymptotically unbiased (and thus friendly to stochastic gradient methods).

Theorem G.1. Let h′ = dh/dt be L-lipschitz and the gradients of uθ and vθ with respect to θ have 1-norm bounded by
M , i.e. ∥∇θuθ∥1 ≤ M, ∥∇θvθ∥1 ≤ M for all θ ∈ Θ. Suppose further that the support of Uθ, Vθ are bounded and their
distributions have densities (i.e. are atomless).2 Then the gradient of the objective in (23) is asymptotically unbiased as
n→∞.

Proof. Observe that the gradients take the form

∇θOTh(µ̂
(n)
Uθ
, µ̂

(n)
Vθ

) = ∇θ
1

n

n∑
i=1

h(u
(i)
θ − v

(i)
θ ) (24)

=
1

n

n∑
i=1

h′(u
(i)
θ − v

(i)
θ )∇θ(u

(i)
θ − v

(i)
θ ). (25)

Note that as described in the main text, here, the current gradient is determined by the current state of the sorting of the
samples, but it is not necessary to differentiate through the sorting algorithm itself as it changes only discretely.

We wish to understand the convergence of the bias of these gradients as n→∞.

We can write (noting that the n atoms of the empirical Fn,Vθ
are distinct with probability 1)

1

n

n∑
i=1

h′(u
(i)
θ − v

(i)
θ )∇θ(u

(i)
θ − v

(i)
θ ) =

1

n

n∑
i=1

h′(u
(i)
θ − F−1

n,Vθ
(Fn,Uθ

(u
(i)
θ )))∇θ(u

(i)
θ )︸ ︷︷ ︸

I

− 1

n

n∑
i=1

h′(F−1
n,Uθ

(Fn,Vθ
(v

(i)
θ ))− v(i)θ )∇θ(v

(i)
θ )︸ ︷︷ ︸

II

.

Let’s consider the first term, the analysis for the second term is the same. Note that since h′ is L-Lipschitz∣∣∣h′ (u− F−1
n,Vθ

(Fn,Uθ
(u))

)
− h′

(
u− F−1

Vθ
(FUθ

(u))
)∣∣∣ ≤ L ∣∣∣F−1

n,Vθ
(Fn,Uθ

(u))− F−1
Vθ

(FUθ
(u))

∣∣∣ . (26)

2In our alignment setting, this is should not be an issue as our scores are real-valued.
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Let

I ′ =
1

n

n∑
i=1

h′(u
(i)
θ − F−1

Vθ
(FUθ

(u
(i)
θ )))∇θ(u

(i)
θ ).

Note I ′ is a simple empirical average and hence unbiased in the sense that E[I ′] is constant with n. Now by (26) we can
write

∥I − I ′∥1 ≤
L

n

n∑
i=1

∣∣∣F−1
n,Vθ

(Fn,Uθ
(u

(i)
θ ))− F−1

Vθ
(FUθ

(u
(i)
θ ))

∣∣∣ ∥∇θ(u
(i)
θ )∥1 (27)

We seek to bound this quantity as n→∞. By Cauchy-Schwarz,

∥I − I ′∥21 ≤ L2

(
1

n

n∑
i=1

(
F−1
n,Vθ

(Fn,Uθ
(u

(i)
θ ))− F−1

Vθ
(FUθ

(u
(i)
θ ))

)2)( 1

n

n∑
i=1

∥∇θ(u
(i)
θ )∥21

)

≤ L2M2

n

n∑
i=1

(
F−1
n,Vθ

(Fn,Uθ
(u

(i)
θ ))− F−1

Vθ
(FUθ

(u
(i)
θ ))

)2
=
L2M2

n

n∑
i=1

(
v
(i)
θ − F−1

Vθ
(FUθ

(u
(i)
θ ))

)2

where we’ve assumed that
(

1
n

∑n
i=1 ∥∇θ(u

(i)
θ )∥21

)
≤M2. Observe that F−1

Vθ
(FUθ

(·)) is the optimal transport plan from Uθ

to Vθ and is monotonic nondecreasing, hence F−1
Vθ

(FUθ
(u

(i)
θ )) are simply a new set of independently drawn order statistics

of vθ, i.e. v(i,2)θ .

We thus have

∥I − I ′∥21 ∼
L2M2

n

n∑
i=1

(
v
(i)
θ − v

(i,2)
θ

)2
(28)

= L2M2

∫ (
[F

(1)
n,Vθ

]−1(t)− [F
(2)
n,Vθ

]−1(t)
)2
dt (29)

where F (i)
n,Vθ

are independently realized empirical quantile functions.

Theorem 3.1 of (Del Barrio et al., 2018) with the subsequent Remark 3.2.1 therein applies directly to this regime, with the
following restated result:

Theorem G.2 (Special case of Theorem 3.1 in light of Remark 3.2.1 in (Del Barrio et al., 2018)). If F and G are CDFs of
1-dimensional distributions with bounded support and G−1 is continuous on (0, 1), then∫ 1

0

(
F−1
n −G−1

m

)2 − ∫ 1

0

(
F−1 −G−1

)2 →p 0

as n,m→∞.

Applying Theorem G.2 to our setting and noting that for us the second integral is zero, we have that if Vθ has bounded
support,

L2M2

∫ (
[F

(1)
n,Vθ

]−1(t)− [F
(2)
n,Vθ

]−1(t)
)2
dt→p 0

where→p indicates convergence in probability as n→∞. This implies that I − I ′ converges to 0 in probability. The proof
for II is identical. Since the gradient (25) is then a sum of two unbiased terms and two terms that converge in probability to
zero, the gradient is asymptotically unbiased.

18



Distributional Preference Alignment of LLMs via Optimal Transport

H. Additional Experiments
Tables 2, 3, 4, 5 and 6 are ablations on the reference base model used (Merlinite-7B,
OpenHermes-2.5-Mistral-7B, Sarling-LM-7B-alpha, Meta-LLama-3-8B-Instruct,
Mistral-7B-Instruct-v0.2). In these tables, we report only the AlpacaEval using Llama3-70B as a
judge to reduce the costs of evaluations. Note that we observed that while the absolute scoring of Llama3-70B is different
than GPT4, as it can be seen in Table 2, it preserves the rankings of the models. We see across all these models a better
performance of the distributional alignment AOT on AlpacaEval and a competitive performance on other benchmarks.

AlpacaEval
(Llama3-70B)

AlpacaEval
(GPT4) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 44.3 29.9 82.5 66.1 62.9 50.8 74.4 53.1
AOT unpaired 48.4 31.3 82.5 66.2 62.8 51.1 74.4 51.8
DPO 36.8 27.4 82.8 65.8 63.1 50.6 74.3 52.0
KTO 35.7 24.9 82.7 65.4 63.0 48.7 74.9 53.9
IPO 43.1 27.7 82.4 65.1 63.0 46.5 74.0 52.3
Merlinite-7B 28.8 17.1 81.6 63.2 62.6 42.0 73.9 45.2

Table 2: Merlinite-7B trained on UltraFeedback Binarized. Here we present full version of the results, including AlpacaEval
using Llama3-70B-instruct as a judge and GPT4 as a judge. The comparison reveals that although Llama3 inflates the
scores, the relative order between the two judges remains the same, suggesting the use of a cheaper AlpacaEval alternative
for local development.

AlpacaEval
(Llama3-70B) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 24.4 84.1 66.1 61.0 50.6 74.9 66.6
AOT unpaired 22.5 84.2 66.0 61.0 50.5 74.8 65.7
DPO 17.9 84.1 66.0 61.0 50.4 74.4 66.7
KTO 12.6 83.5 64.3 61.1 47.2 74.4 66.3
IPO 15.5 83.9 65.4 61.1 49.2 74.2 66.3
OpenHermes-7B 5.6 83.4 63.1 60.6 44.5 74.4 63.8

Table 3: OpenHermes-2.5-Mistral-7B trained on UltraFeedback Binarized
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AlpacaEval
(Llama3-70B) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 30.4 84.3 66.9 61.4 45.5 72.6 69.0
AOT unpaired 34.4 85.1 67.4 61.5 47.0 72.3 68.5
DPO 28.6 84.5 66.7 61.4 45.3 72.5 69.8
KTO 27.2 84.8 67.0 61.4 46.2 74.2 70.2
IPO 28.6 84.5 66.7 61.4 44.4 72.9 69.8
Starling-7B 14.3 83.4 64.4 60.9 39.4 72.5 66.6

Table 4: Starling-LM-7B-alpha trained on UltraFeedback Binarized

AlpacaEval
(Llama3-70B) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 33.6 81.7 59.4 64.1 47.7 72.6 78.0
AOT unpaired 35.8 81.8 59.4 64.0 47.8 72.8 77.5
DPO 33.1 82.1 59.5 64.0 47.3 73.1 77.9
KTO 28.5 81.9 59.0 63.9 46.5 73.4 77.7
IPO 33.2 81.9 59.1 63.9 46.7 72.9 77.7
Llama3-8B 25.4 81.6 57.7 63.8 43.9 72.5 75.9

Table 5: Meta-Llama-3-8B-Instruct trained on UltraFeedback Binarized

AlpacaEval
(Llama3-70B) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 32.8 81.6 67.6 58.9 62.7 74.3 41.9
AOT unpaired 34.3 81.7 67.6 59.1 63.0 74.4 41.9
DPO 28.8 81.7 67.6 58.8 62.3 74.2 42.0
KTO 27.4 81.9 67.7 58.8 62.5 74.3 41.7
IPO 28.4 81.9 67.1 58.8 60.5 74.0 41.9
Mistral-7B 25.6 81.3 66.0 58.8 59.7 74.1 41.7

Table 6: Mistral-7B-Instruct-v0.2 trained on UltraFeedback Binarized

Table 7 is an ablation on the sorting that is used in AOT with Merlinite-7B as a reference model. We see that hard and
soft sorting are on par in terms of overall performance.

Sort
Type

AlpacaEval
(Llama3-70B) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired Soft 44.3 82.5 66.1 62.9 50.8 74.4 53.1
Hard 43.8 82.7 66.2 62.9 50.7 74.5 53.9

AOT unpaired Soft 48.4 82.5 66.2 62.8 51.1 74.4 51.8
Hard 49.2 82.5 65.9 62.8 51.0 74.4 51.0

Table 7: The effect of sort type on performance in AOT alignment
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Tables 8 and 9 give a comparison between AOT and KTO on unpaired datasets (HelpSteer and PKU binarized) we see that
overall AOT leads to a better performance than KTO.

ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT unpaired 82.0 63.5 62.9 45.6 74.9 48.0
KTO 81.9 63.5 62.7 45.0 74.2 48.5
Merlinite-7B 81.6 63.2 62.6 42.0 73.9 45.2

Table 8: Merlinite-7B trained on unpaired HelpSteer (binarized)

ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT unpaired 82.0 64.1 63.0 56.3 74.6 49.7
KTO 82.1 63.5 62.9 43.5 74.5 50.4
Merlinite-7B 81.6 63.2 62.6 42.0 73.9 45.2

Table 9: Merlinite-7B trained on unpaired PKU (binarized)

Finally Figure 4 puts in context our best model Merlinite-7B-uAOT as the best 7B-family model on AlpacaEval
leaderboard at the time of writing this paper. Finally, we give in Table 10 the variance of the evaluation across 4 different
random seeds for training and evaluation each alignment strategy, we see very small variance in AOT, especially the
unpaired variant.

AlpacaEval
(Llama3-70B)

AOT paired 46.8± 1.48
AOT unpaired 48.1± 0.35
DPO 39.2± 2.35
KTO 33.8± 1.23
IPO 45.7± 1.56
Merlinite-7B 28.8

Table 10: Merlinite-7B trained on UltraFeedback Binarized. We evaluated the stability (variance) of the model evaluation on
AlpacaEval by running 4 separate training and evaluation cycles, then computing the mean and standard deviations. The
results are stable, especially for AOT unpaired, showing a low deviation from the mean.
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Figure 4: Our AOT algorithm gives a strong boost to Merlinite-7B model on AlpacaEval leaderboard (as of May 22nd,
2024). The original Merlinite-7B score is 17.1, and after the alignment, the model gained 83%.
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