
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LAM: LANGUAGE ARTICULATED OBJECT MODELERS

Anonymous authors
Paper under double-blind review

A Humanoid Robot A Robot Arm

A Cabinet with Five Drawers

A Camera

An Oven

A Stapler Scissors

Figure 1: Our proposed pipeline can generate diverse articulated objects from text prompts, both
without texture (left) and with texture (right). Users can easily control the articulations.

ABSTRACT

We introduce LAM, a system that explores the collaboration of large-language mod-
els and vision-language models to generate articulated objects from text prompts.
Our approach differs from previous methods that either rely on input visual structure
(e.g., an image) or assemble articulated models from pre-built assets. In contrast,
we formulate articulated object generation as a unified code generation task, where
geometry and articulations can be co-designed from scratch. Given an input text,
LAM coordinates a team of specialized modules to generate code to represent the
desired articulated object procedurally. The LAM first reasons about the hierarchi-
cal structure of parts (links) with Link Designer, then writes code, compiles it, and
debugs it with Geometry & Articulation Coders and self-corrects with Geometry
& Articulation Checkers. The code serves as a structured and interpretable bridge
between individual links, ensuring correct relationships among them. Representing
everything with code allows the system to determine appropriate joint types and
calculate their exact placements more reliably. Experiments demonstrate the power
of leveraging code as a generative medium within an agentic system, showcasing
its effectiveness in automatically constructing complex articulated objects.

1 INTRODUCTION

Articulated objects are widespread in daily life, playing a crucial role in building realistic and
interactive virtual environments for robotics, embodied AI, gaming, and VR/AR applications (Shen
et al., 2021; Li et al., 2023; Ge et al., 2024; O’Neill et al., 2024; Liu et al., 2024a). Despite recent
progress in simulation technology that significantly accelerates training through large-scale virtual
environments (Xiang et al., 2020; Makoviychuk et al., 2021), the creation of articulated 3D assets
remains a critical bottleneck. Unlike static 3D objects, which are abundantly available in large
open-source datasets (Deitke et al., 2023b;a), articulated 3D models require expert manual annotation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Ours

Articulation Generation

Ours

Neural Models

Image Graph 3D Object

LAM

Text

“A beautiful laptop
with a keyboard”

Previous WorksPrevious Works

Rotate<base, display>

……

Geometry Generation

Part Generation & Retrieval

Representation Part Assets

- Bounding box b
- Latent Feature f
- ……

…

LAM

Text

Display=<Box(w,h,l)>

……

“A beautiful laptop
with a keyboard”

Figure 2: For geometry generation, previous works either rely on the 3D prior or retrieve pre-built
3D assets, the latter of which often leads to size mismatches as shown. For articulation generation,
prior methods typically require an explicit arrangement representation as a learning medium, which
imposes additional constraints on the range of possible articulation outcomes.

This is time-consuming, as complex objects are represented as hierarchical trees of parts and sub-
parts (which are called links in this literature), along with corresponding joints, articulation types,
and ranges of motion. This results in existing articulated object datasets having a relatively small
scale (Mo et al., 2019; Liu et al., 2022). This limits the ability to leverage digital twins to train robots
to interact with a broad variety of articulated objects. Automating the generation of articulation-ready
models from textual descriptions represents a promising approach that we explore here to address
this gap and enhance scalability in the creation of interactive virtual environments.

As shown in Figure 2, previous work on articulated object modeling has primarily relied on in-
puts that contain structural information, such as images or videos (Mandi et al., 2024; Aygun &
Mac Aodha, 2024; Yang et al., 2021; Song et al., 2024), graphs (Lei et al., 2023; Liu et al., 2024b), and
meshes (Song et al., 2025; Qiu et al., 2025b), to reconstruct or generate objects with movable parts,
often using predefined annotations and part graphs to guide the process. However, these methods
are constrained by their reliance on structured data as input, which limits the diversity of producible
articulated objects. Meanwhile, they cannot natively interpret abstract design descriptions and place
parts without explicit structural guidance. In contrast, we introduce text-to-articulated-object genera-
tion as a natural language interface that leverages large-scale language models to infuse semantic
understanding into the generation process, thereby potentially reducing dependence on extensive 3D
annotations and enabling more interactive and intuitive design iterations.

An articulated object consists of multiple parts (links) along with their corresponding 3D positions
and connectivity relationships, which must be optimized simultaneously. Our key insight is to unify
the complex, coupled problem of geometry and articulation generation into a single, expressive code
representation. To manage this, our method — LAM — implements a collaborative framework where
a team of specialized modules (composed by LLMs and 2D&3D VLMs) work together to generate a
complete, articulated 3D object from a single text prompt. This process begins with Link Designer
that reasons about the user’s text to decompose the object into a hierarchical structure from shapes to
parts to links and their relationships. Following this plan, Geometry & Articulation Coders translate
the structure into executable code for both the precise geometry of each part and their kinematic joints.
That code is checked by Debuggers for abnormalities. A cornerstone of our system is the automated,
multi-modal feedback loop, which features Geometry & Articulation Checkers powered by 2D and
3D Vision-Language Models (VLMs). These modules render and analyze the current object design.
Then, they provide targeted feedback, enabling the Coders to refine the code iteratively, ensuring the
final model is both physically plausible and visually realistic before it is compiled.

The key contributions of our work include: (1) We introduce LAM, a collaborative system where
a team of specialized agents (including Designer, Coders, Debuggers, and Checkers) generates
articulated objects by operating on a unified code representation for both geometry and articulation.
(2) We design an automated, multi-modal feedback system where 2D and 3D VLM-powered Checkers
analyze rendered outputs to guide iterative code refinement, enabling self-correction without requiring
pre-built assets or structural annotations. (3) Extensive experiments on the Part-Mobility dataset
validate that our method achieves state-of-the-art performance in generation quality.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

Articulated Objects Reconstruction. Early methods train end-to-end models on synthetic data, si-
multaneously segmenting parts and predicting joint parameters through either interaction-based (Jiang
et al., 2022; Hsu et al., 2023; Nie et al., 2022; Mu et al., 2021) or single-stage observations Heppert
et al. (2023); Kawana et al. (2022); Wei et al. (2022). Per-object optimization techniques Liu et al.
(2023b;a) avoid training but face scalability issues with multiple joints. Real2code Mandi et al. (2024)
addresses this by leveraging LLMs to generate codes for each joint. Another line of work aims to
predict articulation from pre-built meshes. Articulate AnyMesh Qiu et al. (2025a) and MagicArticu-
late Song et al. (2025) retrofit static meshes using VLMs and transformers, while IAAO Zhang &
Lee (2025) enhances reconstruction via joint affordance prediction. Recent advances employ 3D
Gaussian Splatting Kerbl et al. (2023). For example, ArticulatedGS Junfu et al. (2025) builds digital
twins from multi-state point clouds, RigGS Yao et al. (2025) processes dynamic video input, and
other works Yu et al. (2025); Wu et al. (2025); Kim et al. (2025) integrate visual-physical modeling
with kinematic constraints.

Articulated Objects Generation. Diffusion-based methods have dominated recent advances.
NAP Lei et al. (2023) utilizes graph-attention networks. CAGE Liu et al. (2024b) and ArtFormer Su
et al. (2024) add user controllability for specifying constraints. Single-image generation also emerged
as a key direction with SINGAPO Liu et al. (2025) learning plausible geometric variations, Phys-
Part Luo et al. (2024) integrating physics constraints, and DreamArt Lu et al. (2025) employing
three-stage pipelines with diffusion priors. Meanwhile, Infinite Mobility Lian et al. (2025) scales
via procedural generation. Articulate-Anything Le et al. (2024) synthesizes Python code compiled
to URDF, Real2Code Mandi et al. (2024) reconstructs up to 10 articulated parts via LLM-based
code generation, and MeshArt Gao et al. (2025) employs hierarchical transformers for structured
part-by-part generation.

In contrast, we introduce a collaborative system built upon a unified code representation that jointly
models both object geometry and articulation. This integrated framework enables a closed-loop
refinement process, allowing for the generation of physically plausible objects from text alone,
without relying on the visual or structural priors required by previous methods.

3 LAM

3.1 PRELIMINARIES

Representation of articulated objects. We represent articulated objects using the Unified Robot
Description Format (URDF), which encodes the geometry and kinematics of object parts, called links.
Each link Li = {Mi,Ti} consists of a 3D mesh Mi and a pose Ti ∈ SE(3), defined by its position
pi and roll-pitch-yaw (RPY) orientation θi. A joint Jpc defines the kinematic connection between
a parent link Lp and a child link Lc. It is formally defined as Jpc = (Tpc, tpc, apc, ℓpc), where
Tpc ∈ SE(3) is the joint’s pose relative to the parent, tpc is its type (e.g., revolute, prismatic),
apc ∈ R3 is the motion axis, and ℓpc = [ℓmin, ℓmax] are the motion limits. With the parent link Lp at
the origin, the child link’s pose Tc is updated by the joint motion as:

T
′

c = Tp ·Tpc ·X(qpc) ·Tc, (1)

where X(qpc) ∈ SE(3) is the joint transformation parameterized by the motion value qpc (e.g.,
rotation angle).

Problem Formulation. Given a textual description x, our goal is to generate an articulated object
A = (L,J). The object is composed of a link set L = {Li = (Mi,Ti)}Ni=1, containing N meshes
with corresponding poses, and a joint set J =

{
Jpc = (Tpc, tpc, apc, ℓpc)

}
(p,c)∈E , defining the

kinematic connections. A compiler Ψ then converts A into a collision-free and physically plausible
URDF model U = Ψ(A).

3.2 ARTICULABLE GEOMETRY GENERATION

Code-based Representation. To make the structure of articulated objects tractable for LL, we
introduce a hierarchical code-based representation progressing from shape primitives (S) to parts

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

User
Input

“Create an
office chair”

Link
Designer

Articulable
Geometry Coder

Articulation
Builder

Texture
Generator

(Optional)

The Overall Framework of LAM

Articulated
Object

Figure 3: The overall framework of our proposed LAM. From a user’s text prompt, LAM first designs
a hierarchical structure of the object. It iteratively generates and refines code for both the geometry
and articulation, resulting in an articulated object.

Critic: “The legs are misaligned.”

Link
Layout

Geometry
Coder

Geometry
Debugger

Geometry
Visualizer

Rendering

Geometry
Checker

Articulable Shape Coder

- Backrest = Box(w, h, l)

- Caster = Cylinder(r, h)

- ……

Critic: “The object

is well built.”

Multi-view

 Images

Point Cloud

Figure 4: An overview of the Articulable Shape Coder. Given a hierarchical link layout output by
Link Designer, our Geometry Coder generates code to define the shape and position of each link.
Then, a VLM-powered Geometry Checker analyzes the rendered images and provides feedback,
enabling an iterative refinement loop to correct geometric errors.

(P), and finally to links (L). This structured representation circumvents the control limitations
of end-to-end text-to-3D methods Shi et al. (2024); Long et al. (2024); Yan et al. (2024) and the
oversimplification inherent in direct URDF generation. We define a set of parametric primitives,
S = { sk(ϕk) }Kk=1, built by calling functions like <BoxGeometry>(l,w,h) from the Three.js
library. All primitives are normalized to a shared coordinate system for consistent alignment. Given a
text instruction x, the Geometry Coder uses these primitive functions to generate shape primitives
{sn(ϕn) }Nn=1, which can be hierarchically assembled into parts and then links. The final mesh
geometry Mi and pose Ti for each link are thus defined within this program.

Articulable Shape Generation with Iterative Refinement. As illustrated in Figure 4, we frame the
synthesis of link geometry and poses as a code-generation task orchestrated by LAM. Given an input
text, the Link Designer (powered by an LLM) first reasons about the prompt to decompose the target
object into a hierarchical structure of links and components. The Geometry Coder translates the
generated link layout into executable code by selecting and parameterizing a library of predefined
functions for both shape and pose. For shape generation, it employs primitive factory functions to
instantiate and compose the mesh Mi for each link Li. Concurrently, it determines the appropriate
pose Ti (including position pi and orientation θi) for each link. This methodology offers far greater
control than generating raw URDF files or using text-to-3D models, thereby mitigating issues such as
oversimplification or geometric uncontrollability. Usually, the initial code may contain geometric
errors or physical implausibilities due to hallucinations. Therefore, we first employ Geometry
Debugger to automatically fix grammar issues and then develop Geometry Checker to correct
geometric errors, which is composed of 2D VLMs (e.g., GPT-4o (Hurst et al., 2024)) or 3D VLMs
(e.g., PointLLM (Xu et al., 2024)). The Geometry Visualizer rendered multi-view images and
a point cloud of the object (each link will be assigned a specific color for the Checker to refer
to conveniently). Then, the Geometry Checker provides targeted feedback (e.g., "The legs are
misaligned") to enable an iterative refinement loop that corrects these errors. The final, validated link
set, L = {Li = (Mi,Ti)}Ni=1, forms the complete object geometry A.

3.3 ARTICULATION GENERATION

Once the set of links L = {Li = (Mi,Ti)}Ni=1 is generated, the next crucial step is to define the
kinematic joint set J that enables their articulation. This process is orchestrated by Articulation

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Shape
Code

Articulation
Coder

Articulation
Debugger

- Revolute<Door, Body>

- Prismatic<Drawer, Body>

- ……

Articulation
Visualizer

Simulation Test

Articulation
Checker

Checker: “The rotation direction of

The blue revolute joint is wrong.

It should open outwards.” Articulation Builder

Articulated Object of
text prompt:

Checker: “The articulations

are well defined.”

Code of Shape:

- Drawer = Box(w, h, l)

- Door = Box(w2, h2, l2)
……

Shape

“Create a cabinet”

Figure 5: The Articulation Builder takes the generated shape code to define the object’s articulation
through a closed-loop process. An Articulation Coder generates code of joints, which the Articulation
Visualizer then simulates to create a sequence of images to indicate the motion of joints. The
Articulation Checker provides corrective feedback to iteratively refine the code until the motion is
physically plausible and functionally correct.

Builder, as shown in Figure 5, which interprets the geometric and semantic properties of the links to
produce a functionally correct articulation structure.

Joint Assembly Solver. Our approach first simplifies the complex problem of joint placement. Since
the geometry generation stage (Section 3.2) produces links that are already well-aligned within a
shared world matrix system, we bypass the need to predict complex relative joint poses. Instead,
we focus on predicting the essential joint parameters: the joint type tpc, the parent-child link pair
(Lp, Lc), and the absolute 3D position of the joint, ppc. The Articulation Builder achieves this by
invoking the pre-defined meta-functions for formulating the articulable geometry to analyze the
spatial relationships and functional affordances of the links based on their geometry (Mi), pose (Ti).

Algorithm 1. Joint Assemble Solver

Require: Initial poses {Ti}, Joint set J = {Jpc}
with type tpc, joint position ppc, and link poses
Tp,Tc.

Ensure: Updated link poses {T′
i}.

1: Designate a base link Lbase.
2: for each joint Jpc in J :
3: if tpc is revolute:
4: Compute rotation matrix Rpc

5: pnew
c ← ppc +Rpc(pc − ppc).

6: Update child pose T′
c based on pnew

c .
7: else (prismatic or fixed):
8: Add Jpc without pose changes.
9: Recursively propagate pose updates for any sub-

sequent joints connected to the updated Lc.

To correctly assemble the links according to the
generated joint specifications, we introduce the
Joint Assemble Solver, detailed in Algorithm 1.
After designating a base link, the algorithm iter-
ates through each joint. For revolute joints,
it recalculates the child link’s position to en-
sure it pivots correctly around the joint’s position.
The updated child position pnew

c is computed as
pnew
c = ppc +Rpc(pc − ppc), where Rpc is the

rotation matrix derived from the joint parameters.
For prismatic and fixed joints, no position
update is needed as their alignment is determined
during geometry generation. Finally, any pose
updates are recursively propagated down the kine-
matic chain.

Articulation Generation Using Shape Code
with Checker. As illustrated in Fig. 5, the generation and validation of the joint set J is per-
formed through a closed-loop, multi-agent pipeline. Taking the generated shape code as input, the
Articulation Coder generates executable code that defines the kinematic structure. It reasons about
the object’s components to establish parent-child hierarchies. It determines the appropriate joint
type (tpc), position (ppc), and motion axis (apc) for each connection. Concurrently, a Articulation
Debugger collaborates to resolve any syntax or code-level errors, ensuring the generated script is
valid. The validated code is then passed to the Articulation Visualizer. To enable the Articulation
Checker to provide targeted feedback, the Articulation Visualizer assigns a unique color to the
child link of each joint. The corresponding mapping between colors and link semantics is then passed
to the 2D VLM-powered Articulation Checker. It assesses the functional plausibility of the object’s
movement. For instance, it can detect if a cabinet door opens in the wrong direction or if a drawer’s
movement is unnatural (as shown in Figure 5). Based on its assessment, it provides feedback (e.g.,
"The rotation direction of the blue revolute joint is wrong. It should open outwards."). This feedback
guides the Articulation Coder to refine the code iteratively. This loop continues until the critic

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparisons on the success rate of text-based joint prediction. (a) To fairly
compare our method with the Real2Code, we use the 5 classes from their paper: Laptop, Box,
Refrigerator, Storage-Furniture, and Table categories for comparison. (b) URDF-
former, Articulate Anything, and LAM (ours) support any number of classes; results here are for all
40 classes of the Part-Mobility dataset.

(a) Results on Five classes

Method Success Rate

Real2Code 13.5%
Articulate Anything 40.3%
LAM (ours) 77.1%

(b) Results on General Classes

Method Success Rate

URDFormer 14.6%
Articulate Anything 48.9%
LAM (ours) 63.7%

confirms that the articulations are well-defined and physically correct, resulting in the final, validated
joint set J .

4 EXPERIMENT

Datasets. To ensure a fair comparison with prior works (Liu et al., 2025; Su et al., 2024), we conduct
evaluations on the same subsets of the Part-Mobility dataset as the prior papers (5 classes for Mandi
et al. (2024); 6 classes for Su et al. (2024)). Furthermore, to provide a more comprehensive analysis
of our method’s capabilities in generating diverse articulated objects, we also extend our experiments
to include all 46 object categories available in the Part-Mobility dataset, referred to as General
Classes. For each category, we use the official rendered images to generate one caption per category.
Meanwhile, we also collect a more challenging set of 27 descriptions of complex articulated objects,
noted as Open-World Classes. The descriptions can be found in the Appendix A.5.

Benchmark and Metrics. We first adopt a masked URDF reconstruction task to validate joint
placement ability and evaluate the success rate as defined in work (Le et al., 2024). We also measure
geometric quality and diversity using Minimum Matching Distance (MMD), Coverage (COV), and
1-Nearest Neighbor Accuracy (1-NNA) (Su et al., 2024; Liu et al., 2024b). Text-to-image alignment
is quantified via CLIP (Radford et al., 2021) and BLIP (Li et al., 2022) scores. For automated
evaluation, GPT-4o (Lin et al., 2024) performs articulation examinations and pairwise preference
comparisons. Finally, we use the accuracy of the generated articulated objects (both the links and the
articulations should be correct) of the collected 83 captions to ablate the variant designs of LAM.

Implementation Details. Our framework centrally employs LLMs and VLMs for generating the code
that defines object geometry and articulation. The Linker Designer is implemented by GPT-4o. For
the Articulable Geometry Generation, we use Gemini-2.5-pro and functions defined from the Three.js
library by default. We use o3 equipped with the proposed Joint Assembly Solver as Articulation
Coder. Geometry & Articulation Checkers are based on the Gemini-2.5-flash and PointLLM (Xu
et al., 2024). The Debuggers are also Gemini-2.5-flash with deterministic Python & JavaScript scripts
to verify the issues. More details of each module are listed in the Appendix A.7.

4.1 MAIN RESULTS

Success Rate Comparison of Joint Prediction. In Table 1, on the dataset classes from Real2Code,
our LAM model achieves a success rate of 77.1%, which significantly surpasses both Articulate
Anything (40.3%) and Real2Code (13.5%). This robust performance is consistent even on the more
diverse General Classes, where LAM attains a 63.7% success rate, again outperforming the strongest
baseline, Articulate Anything (48.9%). These experiments validate the superior capability of our
proposed method in accurately predicting and placing joints based on textual descriptions.

Visual Alignment and Generation Quality Comparisons. Table 2 presents a comprehensive evalu-
ation of our LAM model against several baselines, assessing both the visual-semantic alignment with
text prompts and the quality of in-distribution generation. In the visual alignment and articulation
preference comparisons, our method demonstrates clear superiority. LAM achieves the highest CLIP
and BLIP scores (31.94 and 63.76, respectively), indicating a stronger semantic correspondence
between the generated 3D objects and the input text compared to CAGE, SINGAPO, and Articulate

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Quantitative comparisons on (Storage Furniture, Table, Refrigerator,
Dishwasher, Oven, and Washer), which are the shared classes among CAGE and Singapo.
(a) Visual alignment (CLIP, BLIP scores; higher is better) and articulation modeling (GPT-4o pass
rate). (b) In-distribution generation quality using MMD (lower is better), COV (higher is better), and
1-NNA (lower is better) metrics. ArtFormer-PR means ArtFormer framework with part retrieval.

(a) Visual alignment and GPT-4o pass rate.

Method CLIP ↑ BLIP ↑ GPT-4o ↑
CAGE 27.65 53.92 58.8%
SINGAPO 30.43 56.21 61.4%
Articulate Anything 28.23 56.99 70.2%
LAM (Ours) 31.94 63.76 78.6%

(b) Generation quality Comparisons.

Method MMD ↓ COV ↑ 1-NNA ↓
CAGE 0.0193 0.6064 0.5319
ArtFormer 0.0292 0.5213 0.5266
ArtFormer-PR 0.0214 0.6400 0.3950
LAM (Ours) 0.0149 0.6871 0.3599

Anything. Furthermore, our model achieves a GPT-4o pass rate of 78.6%, indicating that its gener-
ated articulations are overwhelmingly considered functionally correct and plausible, substantially
outperforming all baselines. For in-distribution generation quality, our approach continues to excel,
achieving the best performance across all standard metrics. It records the lowest MMD (0.0149)
and 1-NNA (0.3599), which confirms that the distribution of our generated shapes is closer to the
ground-truth data and more realistic. Concurrently, LAM scores the highest in COV (0.6871), reflect-
ing its capability to produce a more diverse set of objects that better covers the data manifold. These
combined results underscore the effectiveness of our code-based framework in producing not only
visually and semantically accurate but also high-quality and diverse articulated objects.

Comparisons on General Classes. As shown in Figure 6, our LAM model demonstrates substantially
better performance than Articulate Anything on both General and the more challenging Open-World
object classes. For General Classes, LAM achieves significantly higher visual-semantic alignment
with CLIP and BLIP scores of 31.21 and 58.94, respectively, compared to the baseline’s 25.34 and
48.32. More importantly, it garners an overwhelming preference from both GPT-4o (81.1%) and
human users (84.6%). These strong preference rates from both automated and human evaluators
underscore that the objects generated by LAM are not only semantically aligned but also perceived as
more functionally plausible and visually coherent. This performance gap widens in the Open-World
evaluation, where LAM’s user preference score reaches 91.7%, showcasing its superior generalization
and ability to generate plausible articulated objects from diverse, unseen text prompts.

31.21

26.75

25.34

19.89

15

20

25

30

58.94

47.6248.32

33.46

30

39

48

57

C
L

IP
 S

co
re

General

Class

Open-World

Classes

B
L

IP
 S

co
re

LAM (Ours)

Articulate Anything

81.1

18.9

89.6

10.4

84.6

15.4

91.7

8.3

(1) GPT-4o

(2) User

(3) GPT-4o

(4) User

(a) CLIP Score (↑) Comparisons (b) BLIP Score (↑) Comparisons (c) Preference Rate (↑) Studies

General

Class

Open-World

Classes
General

Class

Open-World

Classes

Figure 6: System-level comparisons for General and Open-World classes. For open-world classes,
we collect a list of text descriptions about diverse articulated objects in the world, such as Ferris
wheel, shutter, etc. (a) LAM achieves the best CLIP score on both General Classes and the new
Open-World Classes. (b) LAM also achieves the best BLIP scores. (c) Both GPT-4o and human
participants in our user study prefer the objects (given simulated videos to show motion) generated
by LAM over those generated by Articulate Anything.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Ablation Studies on the effect of Checkers and their designs. Multi-view refers to using four
images rather than one image for the Geometry Checker to provide feedback. Image Sequence means
using multiple intermediate motion statuses to pass to the Articulation Checker to get feedback.

(a) Effects of Checkers

Geometry
Checker

Articulation
Checker

Max
Iter Acc. ↑

% % - 50.6%
✓ % - 61.4%
% ✓ 1 56.6%
✓ ✓ 1 66.3%
✓ ✓ 3 75.9%

(b) Effects of the design of Checkers

Geometry
Checker Type

Multi-
View

Images
Sequence Acc. ↑

2D % % 60.2%
2D ✓ % 65.1%
2D ✓ ✓ 71.1%
3D ✓ ✓ 62.7%

2D & 3D ✓ ✓ 75.9%

4.2 ABLATION STUDIES

We utilize the combination of captions from General Classes from the Part-Mobility dataset and
self-collected descriptions of Open-World Classes to evaluate the performance of different settings,
resulting in a total of 83 classes. For each category, I generate one object per class for validation. We
use accuracy (Acc.) to judge each setting, which means the generated objects should at least include
the correct shape layout and joints with accurate placements.

Effects of Checkers. As shown in Table 3a, our proposed Geometry & Articulation Checkers are
vital. The baseline accuracy without any Checker is 50.6%. Introducing the Geometry Checker or
Articulation Checker alone improves accuracy to 61.4% and 56.6%, respectively. Employing them
together raises the accuracy to 66.3%, indicating their complementary roles. Increasing the refinement
iterations to three achieves the highest accuracy of 75.9%, which highlights the effectiveness of the
iterative feedback loop in generating plausible objects.

Effects of the design of Checkers. Table 3b shows the impact of Checker design choices. A
basic 2D Checker using a single image yields 60.2% accuracy. This increases to 65.1% when using
multi-view images and further to 71.1% with the addition of image sequences to evaluate motion.
While a 3D-only Checker is less effective (62.7%), a hybrid approach combining both 2D and 3D
Checkers achieves the best performance at 75.9%. This suggests that 2D and 3D Checkers provide
complementary feedback, making their combination the most effective configuration.

3-Drawer Cabinet 5-Drawer Cabinet

KeyboardLaptop

SINGAPO Articulate Anything Ours

Cabinet with 2 Doors

Scissors

SINGAPO Articulate Anything Ours SINGAPO Articulate Anything Ours SINGAPO Articulate Anything Ours

SINGAPO Articulate Anything Ours SINGAPO Articulate Anything Ours

Figure 7: Six examples, where only the Cabinet classes is ID for SINGAPO, illustrating generation
quality across different difficulty levels. Not unexpectedly, SINGAPO fails to produce sensible
objects on the OOD classes. Articulate Anything also struggles on keyboard, laptop and scissors.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Container

Articualte
Anything

Blender

Ours

Shutter2Bottle Nut Cracker Stapler Shutter1

Tool Complex Furniture

Figure 8: Open-Vocabulary Scenarios. Our model consistently outperforms Articulate Anything.

Step1 Step2 Step3 Step4

“Add 1 drawer

and 2 doors.”

“ Add 1 drawer.

Delete 2 doors.”
“Add 2 drawers.”“Generate a prototype

Drawer. ”

Figure 9: Instruction-following ability. In four steps, including adding and removing sub-objects, a
one-drawer cabinet is guided to be a five-drawer cabinet.

4.3 QUALITATIVE RESULTS

Overall qualitative comparisons. Figure 7 illustrates our method’s performance across six diverse
zero-shot targets: simple (3- and 5-drawer cabinets), moderate (laptop, high-end cabinet), and OOD
(keyboard, scissors). Our pipeline successfully encodes each link as a precisely posed URDF mesh
and accurately predicts all joints. The output is always collision-free and correctly articulated,
whereas Singapo and Articulate Anything frequently misplace parts or omit hinges and keys. The
combination of stability on simpler tasks, excellent visual quality on more challenging ones, and
strong generalization to OOD examples clearly demonstrates the superiority of our approach.

Open-Vocabulary Scenarios. Figure 8 compares our model with Articulate Anything across
three domains—containers (spatial reasoning), tools (precision), and complex furniture (structural
complexity). Our system shows stronger command understanding and physical common sense: it
tracks part-to-part spatial relations more accurately, identifies movable or interactive components
more explicitly, and handles highly intricate, mesh-like structures and dense layouts.

Instruction-following Ability. Integrating high-context LLMs into our pipeline makes the system
portable and reusable, chiefly by enabling instruction following. Prior outputs can feed later stages,
so the model refines its own work—cutting users’ descriptive burden, supporting incremental edits
of complex objects, and allowing repeated iterations. Figure 9 shows that in four steps (including
adding and removing), a one-drawer cabinet can be instructed to become a five-drawer cabinet.

5 CONCLUSION

We introduced LAM, a pioneering system that generates articulated 3D objects from text by unifying
geometry and articulation within a single code representation. Our framework uniquely employs
a collaborative team of specialized AI modules—including Designers, Coders, and Checkers—to
iteratively write, debug, and refine this code through a closed-loop, multi-modal feedback process.
Extensive experiments demonstrate that LAM significantly surpasses previous methods in generation
quality, text alignment, and diversity, particularly showcasing robust generalization on challenging
open-world classes. By streamlining the creation of articulation-ready assets, LAM offers a promising
solution for applications in robotics, VR/AR, and simulation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mehmet Aygun and Oisin Mac Aodha. Saor: Single-view articulated object reconstruction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10382–10391, 2024.

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan
Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A universe of
10m+ 3d objects. Advances in Neural Information Processing Systems, 36:35799–35813, 2023a.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated
3d objects. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 13142–13153, 2023b.

Daoyi Gao, Yawar Siddiqui, Lei Li, and Angela Dai. Meshart: Generating articulated meshes with
structure-guided transformers. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2025.

Yunhao Ge, Yihe Tang, Jiashu Xu, Cem Gokmen, Chengshu Li, Wensi Ai, Benjamin Jose Martinez,
Arman Aydin, Mona Anvari, Ayush K Chakravarthy, et al. Behavior vision suite: Customizable
dataset generation via simulation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 22401–22412, 2024.

Nick Heppert, Muhammad Zubair Irshad, Sergey Zakharov, Katherine Liu, Rares Andrei Ambrus,
Jeannette Bohg, Abhinav Valada, and Thomas Kollar. Carto: Category and joint agnostic recon-
struction of articulated objects. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21201–21210, 2023.

Cheng-Chun Hsu, Zhenyu Jiang, and Yuke Zhu. Ditto in the house: Building articulation models of
indoor scenes through interactive perception. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3933–3939. IEEE, 2023.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto: Building digital twins of articulated objects
from interaction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5616–5626, 2022.

Guo Junfu, Yu Xin, Liu Gaoyi, et al. Articulatedgs: Self-supervised digital twin modeling of
articulated objects using 3d gaussian splatting. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2025.

Yuki Kawana, Yusuke Mukuta, and Tatsuya Harada. Unsupervised pose-aware part decomposition
for man-made articulated objects. In European Conference on Computer Vision, pp. 558–575.
Springer, 2022.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Seungyeon Kim, Junsu Ha, Young Hun Kim, Yonghyeon Lee, and Frank C Park. Screwsplat: An
end-to-end method for articulated object recognition. arXiv preprint arXiv:2508.02146, 2025.

Long Le, Jason Xie, William Liang, Hung-Ju Wang, Yue Yang, Yecheng Jason Ma, Kyle Vedder,
Arjun Krishna, Dinesh Jayaraman, and Eric Eaton. Articulate-anything: Automatic modeling of
articulated objects via a vision-language foundation model. arXiv preprint arXiv:2410.13882,
2024.

Jiahui Lei, Congyue Deng, William B Shen, Leonidas J Guibas, and Kostas Daniilidis. Nap: Neural
3d articulated object prior. Advances in Neural Information Processing Systems, 36:31878–31894,
2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A
benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In Conference
on Robot Learning, pp. 80–93. PMLR, 2023.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Xinyu Lian, Zichao Yu, Ruiming Liang, Yitong Wang, Li Ray Luo, Kaixu Chen, Yuanzhen Zhou,
Qihong Tang, Xudong Xu, Zhaoyang Lyu, et al. Infinite mobility: Scalable high-fidelity synthesis
of articulated objects via procedural generation. arXiv preprint arXiv:2503.13424, 2025.

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In European
Conference on Computer Vision, pp. 366–384. Springer, 2024.

Jiayi Liu, Ali Mahdavi-Amiri, and Manolis Savva. PARIS: Part-level reconstruction and motion
analysis for articulated objects. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pp. 352–363, 2023a.

Jiayi Liu, Manolis Savva, and Ali Mahdavi-Amiri. Survey on modeling of articulated objects. arXiv
e-prints, pp. arXiv–2403, 2024a.

Jiayi Liu, Hou In Ivan Tam, Ali Mahdavi-Amiri, and Manolis Savva. CAGE: Controllable Articulation
GEneration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2024b.

Jiayi Liu, Denys Iliash, Angel X. Chang, Manolis Savva, and Ali Mahdavi-Amiri. SINGAPO: Single
Image Controlled Generation of Articulated Parts in Objects. In Proceedings of the International
Conference on Learning Representations (ICLR), 2025.

Liu Liu, Wenqiang Xu, Haoyuan Fu, Sucheng Qian, Qiaojun Yu, Yang Han, and Cewu Lu. Akb-48:
A real-world articulated object knowledge base. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14809–14818, 2022.

Shaowei Liu, Saurabh Gupta, and Shenlong Wang. Building rearticulable models for arbitrary 3d
objects from 4d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21138–21147, 2023b.

Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma,
Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single image to 3d
using cross-domain diffusion. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9970–9980, 2024.

Ruijie Lu, Yu Liu, Jiaxiang Tang, Junfeng Ni, Yuxiang Wang, Diwen Wan, Gang Zeng, Yixin Chen,
and Siyuan Huang. Dreamart: Generating interactable articulated objects from a single image.
arXiv preprint arXiv:2507.05763, 2025.

Rundong Luo, Haoran Geng, Congyue Deng, Puhao Li, Zan Wang, Baoxiong Jia, Leonidas Guibas,
and Siyuan Huang. Physpart: Physically plausible part completion for interactable objects. arXiv
preprint arXiv:2408.13724, 2024.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Zhao Mandi, Yijia Weng, Dominik Bauer, and Shuran Song. Real2code: Reconstruct articulated
objects via code generation. arXiv preprint arXiv:2406.08474, 2024.

Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi, Leonidas J Guibas, and Hao
Su. Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object
understanding. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 909–918, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiteng Mu, Weichao Qiu, Adam Kortylewski, Alan Yuille, Nuno Vasconcelos, and Xiaolong Wang.
A-sdf: Learning disentangled signed distance functions for articulated shape representation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13001–13011,
2021.

Neil Nie, Samir Yitzhak Gadre, Kiana Ehsani, and Shuran Song. Structure from action: Learning
interactions for articulated object 3d structure discovery. arXiv preprint arXiv:2207.08997, 2022.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Xiaowen Qiu, Jincheng Yang, Yian Wang, Zhehuan Chen, Yufei Wang, Tsun-Hsuan Wang, Zhou
Xian, and Chuang Gan. Articulate anymesh: Open-vocabulary 3d articulated objects modeling.
arXiv preprint arXiv:2502.02590, 2025a.

Xiaowen Qiu, Jincheng Yang, Yian Wang, Zhehuan Chen, Yufei Wang, Tsun-Hsuan Wang, Zhou
Xian, and Chuang Gan. Articulate anymesh: Open-vocabulary 3d articulated objects modeling.
arXiv preprint arXiv:2502.02590, 2025b.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Bokui Shen, Fei Xia, Chengshu Li, Roberto Martín-Martín, Linxi Fan, Guanzhi Wang, Claudia Pérez-
D’Arpino, Shyamal Buch, Sanjana Srivastava, Lyne Tchapmi, et al. igibson 1.0: A simulation
environment for interactive tasks in large realistic scenes. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7520–7527. IEEE, 2021.

Yichun Shi, Peng Wang, Jianglong Ye, Long Mai, Kejie Li, and Xiao Yang. Mvdream: Multi-view
diffusion for 3d generation. In The Twelfth International Conference on Learning Representations,
2024.

Chaoyue Song, Jiacheng Wei, Chuan Sheng Foo, Guosheng Lin, and Fayao Liu. Reacto: Recon-
structing articulated objects from a single video. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5384–5395, 2024.

Chaoyue Song, Jianfeng Zhang, Xiu Li, Fan Yang, Yiwen Chen, Zhongcong Xu, Jun Hao Liew,
Xiaoyang Guo, Fayao Liu, Jiashi Feng, and Guosheng Lin. Magicarticulate: Make your 3d models
articulation-ready. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2025.

Jiayi Su, Youhe Feng, Zheng Li, Jinhua Song, Yangfan He, Botao Ren, and Botian Xu. Artformer:
Controllable generation of diverse 3d articulated objects. arXiv preprint arXiv:2412.07237, 2024.

Fangyin Wei, Rohan Chabra, Lingni Ma, Christoph Lassner, Michael Zollhöfer, Szymon
Rusinkiewicz, Chris Sweeney, Richard Newcombe, and Mira Slavcheva. Self-supervised neural ar-
ticulated shape and appearance models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15816–15826, 2022.

Di Wu, Liu Liu, Zhou Linli, Anran Huang, Liangtu Song, Qiaojun Yu, Qi Wu, and Cewu Lu. Reartgs:
Reconstructing and generating articulated objects via 3d gaussian splatting with geometric and
motion constraints. arXiv preprint arXiv:2503.06677, 2025.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11097–11107, 2020.

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
Empowering large language models to understand point clouds. In European Conference on
Computer Vision, pp. 131–147. Springer, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Junkai Yan, Yipeng Gao, Qize Yang, Xihan Wei, Xuansong Xie, Ancong Wu, and Wei-Shi Zheng.
Dreamview: Injecting view-specific text guidance into text-to-3d generation. In European Confer-
ence on Computer Vision, pp. 358–374. Springer, 2024.

Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic, Forrester Cole, Huiwen Chang, Deva
Ramanan, William T Freeman, and Ce Liu. Lasr: Learning articulated shape reconstruction from a
monocular video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15980–15989, 2021.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4541–4550, 2019.

Yuxin Yao, Zhi Deng, and Junhui Hou. Riggs: Rigging of 3d gaussians for modeling articulated
objects in videos. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2025.

Qiaojun Yu, Xibin Yuan, Junting Chen, Dongzhe Zheng, Ce Hao, Yang You, Yixing Chen, Yao Mu,
Liu Liu, Cewu Lu, et al. Artgs: 3d gaussian splatting for interactive visual-physical modeling and
manipulation of articulated objects. arXiv preprint arXiv:2507.02600, 2025.

Can Zhang and Gim Hee Lee. Iaao: Interactive affordance learning for articulated objects in 3d
environments. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

CONTENTS OF THIS APPENDIX

A.1 Ethics of Statement . 15

A.2 Reprodicibility Statement . 15

A.3 Use of LLMs . 15

A.4 Limitations .15

A.5 Collected 27 Descriptions of Open-World Classes . 16

A.6 Texture Generation . 16

A.7 More Details of Each Module . 17

Link Designer – Geometry Coder – Geometry Debugger – Geometry Visualizer – Geometry Checker –
Articulation Coder.

A.8 Cost & Time Analysis . 19

A.9 The Summary of LLM Models Used for Experiments . 20

A.10 Definitions of the shape primitives . 20

A.11 More Experimental Details and Results . 27

More details of the used metrics.

A.12 More Visualizations .29

Analysis of Failure Cases – More Comparisons with Previous works.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.1 ETHICS OF STATEMENT

The LAM system offers significant societal benefits by simplifying the creation of articulated 3D
assets, which are essential in fields like robotics, embodied AI, gaming, and virtual or augmented
reality. Making asset creation more accessible could democratize content production and enhance
the diversity of interactive objects available for AI training. Nonetheless, generative AI technologies
such as LAM come with certain risks. These include potential misuse, such as generating deceptive
or misleading content. Furthermore, biases present in training datasets might inadvertently be
perpetuated, and automation facilitated by such technologies may result in job displacement in
creative industries.

A.2 REPRODICIBILITY STATEMENT

To ensure the reproducibility of our research, we have provided the complete source code for our
proposed LAM pipeline in the supplementary material. Our experiments are primarily conducted
on the publicly available Part-Mobility dataset. For our open-world evaluations, the complete list of
text descriptions used is also available in the appendix, allowing for a comprehensive replication of
our results. Our framework is built upon large-scale language and vision-language models that are
publicly accessible via APIs, including GPT-4o, Gemini-2.5-pro, and PointLLM. We believe that
the combination of our provided code, the public dataset, and the detailed model specifications will
enable the research community to verify and build upon our work.

A.3 USE OF LLMS

In the development and preparation of this research paper, Large Language Models (LLMs) served as
a valuable assistive tool. During the implementation phase of our project, we utilized LLMs to aid in
debugging our codebase and to accelerate the development process. Furthermore, for the manuscript
itself, an LLM was employed to perform grammar and syntax checks, thereby enhancing the overall
clarity and readability of the text. It is important to note that this application of LLMs is limited to
the development and writing process, and is distinct from the role of LLMs as a core component of
our proposed methodology.

A.4 LIMITATIONS

While our method represents a notable advancement in generating articulated objects from text, it faces
certain limitations. The reliance on a predefined set of geometric primitives constrains the generation
of highly detailed and intricate shapes, limiting its suitability for applications that demand fine-grained
precision. Beyond geometry, accurately capturing complex kinematics remains a significant challenge.
Even when individual parts are well-formed, the model can produce subtle inaccuracies in joint
definitions, particularly for objects with multiple degrees of freedom or unconventional articulation
mechanisms. These errors often manifest as plausible yet functionally incorrect joint axis orientations,
motion ranges, and movement directions, indicating a need for more nuanced kinematic reasoning.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.5 COLLECTED 27 DESCRIPTIONS OF OPEN-WORLD CLASSES

1: A Ferris Wheel;
2: A bicycle wheel;
3: A Robot Arm consists of a Base (fixed or mobile), a series of rigid Links (segments), and
Joints connecting them, terminating in an End Effector (gripper, tool);
4: A Tripod has three adjustable Legs connected to a central Head/Mounting Plate;
5: A shutter;
6: A bi-fold closet door system;
7: A four-wheeled golf cart with bag storage compartment;
8: A shopping cart;
9: A blender;
10: Portable folding chair;
11: A bicycle;
12: A common nutcracker design uses two rigid Lever Arms joined at one end by a
Hinge/Pivot;
13: A Car Door consists of the main Door Panel (outer skin, inner panel, window frame);
14: A spring-type Clothespin consists of two identical Lever Arms (wood or plastic);
15: An Action Figure represents a character with multiple points of articulation (joints)
connecting body parts like Head, Torso, Upper Arms, Forearms, Hands, Upper Legs, Lower
Legs, Feet;
16: A Bicycle Chain is composed of many interconnected Links. Each link consists of Inner
Plates, Outer Plates, Pins, and Rollers;
17: A Gate Leg Table has a fixed Top Center Section and one or two hinged Leaves (Side
Sections);
18: A Metal Link Watch Band consists of numerous small, interconnected metal Links that
articulate to conform to the wrist.;
19: A Makeup Compact is typically a small, flattened case (often round or square) with a
hinged Lid.;
20: Retractable patio awning;
21: A piano;
22: A bookshelf;
23: A Caliper;
24: A mobile crane with telescopic boom extension;
25: A crimping tool;
26: An excavator arm;
27: A professional hydraulic jack with safety valve and wide base;

A.6 TEXTURE GENERATION

In addition to geometry and articulation, the LAM framework includes an optional module for
programmatic texture generation to enhance the visual realism of the final objects. As shown in the
overall framework (Figure 3), this process is initiated after the articulable geometry is finalized.

To achieve this, we employ a Texture Generator module, which is powered by a large language
model (LLM) such as Gemini-2.5-pro. This module is tasked with generating three.js code to
define the material properties for each link. The generated code specifies the material type (e.g.,
MeshStandardMaterial) and its associated parameters, such as color, roughness, and metalness,
tailored to the object’s components. This code is then executed to render the object with the specified
textures before being exported.

While this module allows for the creation of high-fidelity, textured assets, it remains an optional
step within our pipeline. To ensure a fair and direct comparison with prior works, all quantitative
experiments and results reported in the main body of this paper were conducted on objects generated
without textures.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.7 MORE DETAILS OF EACH MODULE

More technical details for the main modules are listed here. For the prompt of each module, please
refer to the code in the supplementary material.

A.7.1 LINK DESIGNER

This module is the foundational module in the LAM framework, tasked with interpreting a user’s text
prompt and decomposing the target object into a hierarchical structure of its constituent parts, known
as links. This process results in a structured link layout, typically formatted as a JSON tree, which
serves as a comprehensive blueprint for the downstream Coders and Builders.

To accurately represent kinematic relationships, the module organizes the object’s components into
a clear hierarchy that naturally encodes the parent-child relationships essential for defining the
kinematic chain. Each component within this tree is annotated with descriptions for its geometry
(shaping) and its spatial relationship to other components (positioning). To ensure the process remains
tractable for highly complex objects, the Link Designer intelligently aggregates repetitive elements,
such as the casters on an office chair or the keys on a keyboard, into single logical groups. This
structured link layout is then passed to the subsequent modules in the pipeline. The Articulable
Geometry Coder uses the geometric and positional descriptions to generate executable code defining
the 3D mesh (Mi) and pose (Ti) for each individual link. Following that, the Articulation Builder
leverages the same hierarchy and semantic information to infer and generate code for the joints that
connect these links. This modular approach, which hinges on the structured output from the Link
Designer, ensures that the coupled problem of geometry and articulation generation is grounded in a
unified and coherent plan derived directly from the initial text prompt.

A.7.2 GEOMETRY CODER

The Geometry Coder transforms the hierarchical link layout, as specified by the Link Designer,
into executable Three.js code for 3D mesh generation. This module is designed to convert abstract
structural descriptions into geometrically valid 3D models, ensuring that the output is organized into
articulation-ready groups.

The coder leverages a comprehensive Three.js geometry library including 15 primitive types (Box-
Geometry, CylinderGeometry, ExtrudeGeometry, LatheGeometry) and advanced operations (CSG
boolean operations, Matrix4 transformations). Complex shapes are constructed through hierarchical
composition—a laptop hinge might combine CylinderGeometry for the pivot, BoxGeometry for
mounting brackets, and TorusGeometry for washers. The coder averages 8.3 primitives per link,
balancing geometric fidelity with computational efficiency. Then, the coder processes the hierarchical
structure from the Link Designer, implementing a strict mapping policy: parent link nodes become
THREE.Group containers, while child components become meshes within their parent groups. This
preserves kinematic relationships—components that articulate together remain in the same group,
enabling proper transformation propagation. This grouping strategy reduces the number of exported
components from potentially 100+ individual meshes to 10–20 logically organized groups.

A.7.3 GEOMETRY DEBUGGER

The Geometry Debugger is a specialized module designed to address a critical inefficiency in
the iterative generation process: syntax and grammar errors in the Three.js code produced by the
Geometry Coder. Instead of resorting to a computationally expensive full regeneration of the code, this
module employs lightweight LLMs (e.g., gemini-2.5-flash) to perform targeted repairs. This
approach significantly reduces both cost and latency while preserving the geometric integrity of the
object’s links. To handle variability in LLM output formats, the Geometry Debugger utilizes a multi-
tier extraction hierarchy to robustly parse the corrected code from the model’s response. Following
extraction, a dual validation pipeline is executed. This combines automated syntax checking using a
Node.js subprocess with heuristic validation that checks for delimiter balance, import consistency,
and correct function patterns. Rather than attempting a single-shot fix, the debugger engages in
an incremental refinement loop. If a fix attempt fails, the resulting error message is fed back into
the context for the next attempt, allowing the model to learn from its previous failures within the
same session. Throughout this process, explicit instructions are provided to avoid modifying shape

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

parameters, ensuring that the geometric definitions remain faithful to the Geometry Coder’s original
output.

A.7.4 GEOMETRY VISUALIZER

The Geometry Visualizer module transforms the executable code generated by the Geometry Coder
into multi-modal visual representations—multi-view images and a point cloud—for analysis by the
Geometry Checker. The process begins by orchestrating the transformation from Three.js code to
OBJ meshes within a headless Node.js execution environment, which features dynamic ES module
path resolution and regex-based error pattern extraction to provide targeted feedback on code-level
issues. The core contribution for visual analysis is link-based semantic coloring; instead of coloring
each shape primitive independently, the visualizer groups primitives by their parent link as defined
in the hierarchical structure and assigns a unique, perceptually uniform color (generated in HSV
space) to each link. This simplifies the visual complexity and allows the Geometry Checker to refer
to specific links conveniently. Using a pyrender EGL backend for headless operation, it generates
four canonical multi-view images with quaternion-based camera positioning to ensure comprehensive
object coverage.

Concurrently, a colored point cloud is sampled from the meshes for 3D VLM analysis. This involves
a robust process of proportional sampling, allocating points based on the relative surface area of each
link to ensure smaller links are not underrepresented, followed by farthest point sampling to guarantee
uniform spatial coverage. This converter maintains color consistency with the rendered images by
using the identical link-to-color mapping, enabling cross-modal alignment. All generated outputs
undergo a unified coordinate normalization process—centering the object at the origin and scaling it
to a unit sphere while preserving aspect ratios—to ensure consistency for the downstream Checker
modules. The entire pipeline is optimized for the iterative refinement loop, using techniques such as
connected component analysis with caching for mesh splitting, parallel rendering, and vectorized
NumPy operations for point cloud generation, achieving an end-to-end latency suitable for real-time
feedback.

A.7.5 GEOMETRY CHECKER

The Geometry Checker is a crucial component of our iterative refinement loop, designed to correct
geometric errors and physical implausibilities in the initial code generated by the Geometry Coder.
This module is powered by a dual-modality system of 2D and 3D Vision-Language Models (VLMs),
specifically Gemini-2.5-flash and PointLLM, which provide complementary visual and structural
analysis. The Geometry Visualizer first renders multi-view images and a colored point cloud of the
object, assigning a unique color to each link. The 2D VLM then analyzes these rendered images
from four canonical viewpoints. It leverages the color-to-link mapping to provide precise, localized
feedback, such as identifying misaligned components. To ensure this feedback is actionable, the
system uses structured extraction and iteration-adaptive prompting that becomes progressively stricter,
guiding the Geometry Coder to make targeted corrections.

To detect geometric issues invisible in 2D projections, such as internal intersections or minor
disconnections, the 3D VLM analyzes the colored point cloud. This process uses link-proportional
sampling, which allocates points based on component surface area to ensure that small but critical
parts like hinges are adequately represented. The feedback is structured into a JSON schema with
severity-tagged issues (e.g., CRITICAL, MAJOR, MINOR) and requires geometric evidence for
each detected fault, significantly reducing false positives. The combined feedback from both 2D
and 3D checkers is prioritized based on confidence and severity scores, with critical structural flaws
forcing a regeneration cycle. This multi-modal validation ensures that the system corrects for common
failures—including floating components, penetrating geometries, and scale inconsistencies—resulting
in a final link set that is both visually coherent and physically plausible.

A.7.6 ARTICULATION CODER

As a core component of the Articulation Builder, the Articulation Coder is responsible for defining the
kinematic joint set J that enables object motion. Taking the validated shape code from the geometry
generation stage as input, which specifies the set of links L = {Li = (Mi, Ti)}Ni=1, the coder’s
primary task is to generate executable code defining the complete kinematic structure. It reasons

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

about the object’s components to establish parent-child hierarchies and form a valid kinematic chain,
bridging the geometric representation with a functionally correct articulation structure.

The coder determines the essential parameters for each joint Jpc, including the joint type (tpc),
position (ppc), motion axis (apc), and motion limits (lpc). This is achieved by analyzing the spatial
relationships and functional affordances of the links based on their geometry and poses. For instance,
it infers joint types (e.g., revolute, prismatic) from semantic cues in the initial prompt and geometric
analysis of the links’ bounding boxes. The coder also calculates the joint’s pose (Tpc) relative
to the parent link and defines its motion axis, considering both local geometry and global object
semantics to ensure physically plausible movement. This process operates within a closed-loop,
multi-agent pipeline. Concurrently, an Articulation Debugger collaborates with the Coder to resolve
any syntax or code-level errors, ensuring the generated script is valid. The validated code is then
passed to the Articulation Visualizer for simulation and subsequently assessed by the Articulation
Checker. The feedback from the Checker guides the Articulation Coder to iteratively refine the code,
correcting functional implausibilities until the final joint set J is confirmed to be physically correct
and well-defined.

A.8 COST & TIME ANALYSIS

Table 4: Price Comparisons

Model Input Price ($) Cached Input ($) Output Price ($)

OpenAI

gpt-5 $1.25 $0.125 $10.00
gpt-5-mini $0.25 $0.025 $2.00
gpt-4o $2.50 $1.25 $10.00
o3 $2.00 $0.50 $8.00
o3-pro $20.00 — $80.00
o1 $15.00 $7.50 $60.00
o1-pro $150.00 — $600.00

Google

gemini-2.5-pro $1.25 — $10.00
gemini-2.5-flash $0.30 — $2.50

Anthropic

Claude Opus 4.1* $15.00 $1.50 $75.00
Claude Sonnet 4* $3.00 $0.30 $15.00
Claude Haiku 3* $0.25 $0.03 $1.25

To assess the practical viability and efficiency of the LAM framework, we conducted a detailed
cost and time analysis based on a representative run generating 15 complex articulated objects. Our
implementation strategically utilizes a combination of models: GPT-4o for the high-level reasoning
required by the Link Designer, the cost-effective Gemini 2.5 Flash for the iterative VLM feedback
in the Geometry and Articulation Checkers, and the powerful Gemini 2.5 Pro for the precise code
generation tasks of the Coders. The total cost for generating 15 objects was $0.99, yielding an average
cost of just $0.066 per object. The primary cost driver was the 3D Shape Generation stage, which
accounted for 39.1% of the total expense, largely due to the 3-5 VLM feedback iterations required
per object. The Articulation Logic stage followed closely, consuming 38.1% of the cost with 2-3
feedback iterations, while the initial Link Structure Generation was the least expensive component at
22.8%.

The total pipeline duration for the 15-object batch was approximately 25 minutes, demonstrating the
framework’s efficiency. On average, generating a single object took 151.4 seconds, with the majority
of the time spent in the Shape Generation (85.4s) and Articulation (45.2s) stages. The initial Linker
stage was significantly faster, averaging 20.8 seconds. This performance suggests that while the
iterative feedback loops are crucial for quality, they are also the main bottleneck. Projecting these
figures, generating a larger batch of 1,000 objects would cost an estimated $66.00.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Furthermore, we can project costs for alternative model configurations to balance performance
and expense. For example, if we were to use GPT-4o for generating the linker description and a
hypothetical, more powerful model like the conceptualized GPT-5 for generating the codes of shape
and articulation, the cost profile would change. Based on initial estimates, such a configuration would
result in a total cost of approximately $19.50 for generating 159 articulated objects. This highlights
the modularity of the LAM framework, where different AI modules can be swapped to meet varying
budget and quality requirements. A comprehensive list of current popular LLMs pricing is available.

A.9 THE SUMMARY OF LLM MODELS USED FOR EXPERIMENTS

OpenAI: gpt-5, gpt-4o, o3, o3-pro https://platform.openai.com/docs/pricing?ft-pricing=standard

Google: gemini-2.5-flash, gemini-2.5-pro. Reference official page https://ai.google.dev/gemini-
api/docs/pricing

Anthropic: claude-opus-4.1, claude-sonnet-4 https://docs.anthropic.com/en/docs/about-
claude/models/overview#model-comparison-table

A.10 DEFINITIONS OF THE SHAPE PRIMITIVES

The LAM framework constructs articulated objects using a comprehensive set of geometric
tools from the Three.js library. The process begins with fundamental 3D primitives that serve
as building blocks, including BoxGeometry for rectangular components, SphereGeometry,
CylinderGeometry, ConeGeometry for various curved shapes, TorusGeometry for ring-
like structures, and PlaneGeometry for flat surfaces. For more complex forms, the sys-
tem supports advanced methods such as creating 3D geometry by extruding 2D shapes along
a path (ExtrudeGeometry, TubeGeometry), generating rotationally symmetric objects
(LatheGeometry), or defining custom 2D profiles (ShapeGeometry, RingGeometry).

These generated shapes are then combined and modified using several composition techniques.
Primitives are organized into complex, articulated hierarchies using THREE.Group() for logical as-
sembly. Geometries can be combined through Constructive Solid Geometry (CSG) boolean operations
(union, intersection, subtraction) or merged directly for optimization. Custom 2D profiles for these
operations are defined using path-based drawing with THREE.Shape() and THREE.Path(),
which utilize commands like moveTo() and bezierCurveTo(). Finally, each component is
precisely positioned, oriented, and scaled in 3D space using transformations for position, rotation,
and scale, as well as direct matrix operations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Implementation Example (an example by using text prompt "A Rectangular Wooden Cabinet")

1 import * as THREE from ’three’;
2

3 export function createScene() {
4 const root = new THREE.Group();
5 root.name = ’CabinetArticulatedObject’;
6

7 // --- Configuration and Dimensions ---
8 const SCALE_FACTOR = 0.1; // 10cm = 1 Three.js unit. This ensures all

dimensions are >= 0.1 units.
9

10 // Helper function to scale dimensions from cm to Three.js units
11 const s = (val) => val * SCALE_FACTOR;
12

13 // Cabinet overall dimensions (based on JSON description of "
cabinet_frame")

14 const cabinetWidth = s(100); // 10 units
15 const cabinetHeight = s(90); // 9 units
16 const cabinetDepth = s(45); // 4.5 units
17

18 // Frame element thicknesses for planks
19 const frameThickness = s(2); // 0.2 units (e.g., outer planks for

sides, top, bottom, internal dividers)
20 const backPanelThickness = s(1); // 0.1 units (thin back panel)
21

22 // Functional gap between components, e.g., doors/drawer and frame.
(2mm)

23 const targetMinimalGap = s(0.2); // 0.02 units
24

25 // Drawer dimensions (based on JSON description of "top_drawer")
26 const drawerHeightLink = s(15); // 1.5 units (from JSON description)
27 // FIXING: Adjust drawerFaceWidth to allow for 2mm gaps on each side

(left & right) within the cabinet’s internal opening.
28 // Cabinet internal width: cabinetWidth - 2*frameThickness = 10 -

2*0.2 = 9.6
29 // Drawer width: 9.6 (inner width) - 2*targetMinimalGap (for left/

right gaps) = 9.6 - 2*0.02 = 9.56
30 const drawerFaceWidth = s(95.6); // 9.56 units (for 2mm left/right

gaps)
31 const drawerDepth = s(40); // 4 units (assumed for internal drawer

box depth)
32

33 // Door dimensions (based on JSON descriptions of "left_door", "
right_door")

34 // FIXING: Adjust doorWidth to allow for 2mm gaps on each side (left
frame, right frame) and 2mm in the center.

35 // Total door opening width: cabinetWidth - 2*frameThickness = 9.6
36 // Total gaps needed: targetMinimalGap (left frame) +

targetMinimalGap (right frame) + targetMinimalGap (center) = 3*
targetMinimalGap = 3*0.02 = 0.06

37 // Total width for two doors = 9.6 - 0.06 = 9.54
38 // Each door width = 9.54 / 2 = 4.77
39 const doorWidth = s(47.7); // 4.77 units.
40 const doorHeight = s(75); // 7.5 units
41 const doorThickness = s(2); // 0.2 units
42

43 // Handle dimensions
44 // FIXING: Reduce handleCylinderRadius for better proportion from s

(1) to s(0.5).
45 const handleCylinderRadius = s(0.5); // 0.5cm = 0.05 unit
46 const drawerHandleLength = s(20); // 2 units (no change)
47 // FIXING: Increase doorHandleLength for better grab proportion from

s(10) to s(15).
48 const doorHandleLength = s(15); // 1.5 units

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

49 const handleProtrusion = s(2); // 0.2 units (how far handle
sticks out from surface)

50 // FIXING: Handle offset from inner edge for doors (average of 2-3cm)
51 const doorHandleInnerOffset = s(2.5); // 2.5cm offset
52

53

54 // --- Cabinet Frame (Main Group: all static, non-articulated parts
of the cabinet structure) ---

55 // This group’s origin is set at the center of its base, so that its
Y=0 is on the floor.

56 const cabinetFrameGroup = new THREE.Group();
57 cabinetFrameGroup.name = ’cabinet_frame’; // From JSON, this is the

root and contains static parts
58 root.add(cabinetFrameGroup);
59

60 const cabinetFrameRootYOffset = cabinetHeight / 2; // Offset to place
the cabinet’s base at Y=0

61 cabinetFrameGroup.position.y = cabinetFrameRootYOffset;
62

63 // 1. Bottom Panel (was "frame_bottom_plank")
64 // FIXING: Renamed to ‘bottom_panel‘ as per VLM feedback, replacing ‘

frame_bottom_plank‘.
65 const bottomPlankGeometry = new THREE.BoxGeometry(cabinetWidth,

frameThickness, cabinetDepth);
66 const bottomPanelMesh = new THREE.Mesh(bottomPlankGeometry);
67 bottomPanelMesh.name = ’bottom_panel’;
68 bottomPanelMesh.position.y = -cabinetHeight / 2 + frameThickness / 2;
69 cabinetFrameGroup.add(bottomPanelMesh);
70

71 // 2. Left Side Plank (one of the "side_panels" sub_assembly)
72 const leftSidePlankGeometry = new THREE.BoxGeometry(frameThickness,

cabinetHeight, cabinetDepth);
73 const leftSidePlankMesh = new THREE.Mesh(leftSidePlankGeometry);
74 leftSidePlankMesh.name = ’frame_left_side_panel’;
75 leftSidePlankMesh.position.x = -cabinetWidth / 2 + frameThickness /

2;
76 cabinetFrameGroup.add(leftSidePlankMesh);
77

78 // 3. Right Side Plank (the other "side_panels" sub_assembly)
79 const rightSidePlankGeometry = new THREE.BoxGeometry(frameThickness,

cabinetHeight, cabinetDepth);
80 const rightSidePlankMesh = new THREE.Mesh(rightSidePlankGeometry);
81 rightSidePlankMesh.name = ’frame_right_side_panel’;
82 rightSidePlankMesh.position.x = cabinetWidth / 2 - frameThickness /

2;
83 cabinetFrameGroup.add(rightSidePlankMesh);
84

85 // 4. Top Surface (explicitly named "top_surface" in JSON)
86 const topSurfaceGeometry = new THREE.BoxGeometry(cabinetWidth,

frameThickness, cabinetDepth);
87 const topSurfaceMesh = new THREE.Mesh(topSurfaceGeometry);
88 topSurfaceMesh.name = ’top_surface’;
89 topSurfaceMesh.position.y = cabinetHeight / 2 - frameThickness / 2;
90 cabinetFrameGroup.add(topSurfaceMesh);
91

92 // 5. Back Panel (explicitly named "back_panel" in JSON)
93 const backPanelWidth = cabinetWidth - 2 * frameThickness;
94 const backPanelHeight = cabinetHeight - 2 * frameThickness;
95 const backPanelGeometry = new THREE.BoxGeometry(backPanelWidth,

backPanelHeight, backPanelThickness);
96 const backPanelMesh = new THREE.Mesh(backPanelGeometry);
97 backPanelMesh.name = ’back_panel’;
98 backPanelMesh.position.z = -cabinetDepth / 2 + backPanelThickness /

2;
99 cabinetFrameGroup.add(backPanelMesh);

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

100

101 // 6. Horizontal Divider (internal frame structure below the drawer)
102 const horizontalDividerWidth = cabinetWidth - 2 * frameThickness; //

Spans between side panels
103 const horizontalDividerDepth = cabinetDepth - backPanelThickness; //

Accounts for back panel
104 const horizontalDividerGeometry = new THREE.BoxGeometry(

horizontalDividerWidth, frameThickness, horizontalDividerDepth);
105 const horizontalDividerMesh = new THREE.Mesh(

horizontalDividerGeometry);
106 horizontalDividerMesh.name = ’frame_horizontal_divider’;
107

108 // FIXING: Y-position adjustment for horizontal divider to properly
define the drawer compartment.

109 // The top of the drawer compartment is defined by the bottom of the
top plank, minus a minimal gap.

110 const drawerCompartmentTopY = topSurfaceMesh.position.y -
frameThickness / 2 - targetMinimalGap;

111 // The top surface of this divider should be ’drawerHeightLink’ below
drawerCompartmentTopY, minus another gap, and accounting for its
own thickness.

112 horizontalDividerMesh.position.y = drawerCompartmentTopY -
drawerHeightLink - targetMinimalGap - frameThickness / 2;

113 horizontalDividerMesh.position.z = 0; // Centered depth-wise for the
inner space

114 cabinetFrameGroup.add(horizontalDividerMesh);
115

116

117 // --- Top Drawer (Articulated Group) ---
118 const topDrawerGroup = new THREE.Group();
119 topDrawerGroup.name = ’top_drawer’; // From JSON
120 root.add(topDrawerGroup);
121

122 // FIXING: Y-position, X-position, Z-position for ‘top_drawer‘
adjusted to remove floating gap and be flush.

123 // Drawer slot bounding Y coordinates within cabinetFrameGroup’s
local system:

124 const drawerSlotTopY = drawerCompartmentTopY; // Already calculated
for minimal gap below top surface

125 const drawerSlotBottomY = horizontalDividerMesh.position.y +
frameThickness / 2 + targetMinimalGap; // Top of horizontal
divider + minimal gap

126

127 const drawerCenterY_relativeToCabinetFrameCenter = (drawerSlotTopY +
drawerSlotBottomY) / 2;

128

129 // Z-position for top_drawer group: Aligns its local Z=0 (where
drawer face front will be) with the cabinet’s front.

130 const drawerGroupZ_frontFlush = cabinetDepth / 2;
131

132 topDrawerGroup.position.set(
133 0, // Centered horizontally
134 cabinetFrameRootYOffset +

drawerCenterY_relativeToCabinetFrameCenter, // Global Y
position to center it in its slot

135 drawerGroupZ_frontFlush // Global Z position so its front surface
is flush

136);
137

138 // 1. Drawer Face (explicitly named "drawer_face" in JSON)
139 const drawerFaceGeometry = new THREE.BoxGeometry(drawerFaceWidth,

drawerHeightLink, frameThickness);
140 const drawerFaceMesh = new THREE.Mesh(drawerFaceGeometry);
141 drawerFaceMesh.name = ’drawer_face’;

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

142 // Positioned relative to its parent group. Its front surface is
placed at Z=0 of the group (which is ‘cabinetDepth/2‘ globally).

143 drawerFaceMesh.position.set(0, 0, -frameThickness / 2);
144 topDrawerGroup.add(drawerFaceMesh);
145

146 // 2. Drawer Body (sides, back, bottom to make it a physically
plausible drawer box)

147 const drawerInnerWallThickness = s(1); // 0.1 units for inner drawer
box planks

148 const drawerInternalWidth = drawerFaceWidth - 2 *
drawerInnerWallThickness; // Adjusted for new drawerFaceWidth

149 const drawerInternalHeight = drawerHeightLink -
drawerInnerWallThickness; // Accommodate bottom

150 const actualDrawerBoxDepth = drawerDepth;
151 // Center Z of the internal box relative to ‘topDrawerGroup‘ Z=0 (

cabinet front).
152 const innerDrawerBodyZ = -frameThickness / 2 - actualDrawerBoxDepth /

2;
153

154 // Drawer Sides (left and right interior panels)
155 const drawerSideGeometry = new THREE.BoxGeometry(

drawerInnerWallThickness, drawerInternalHeight,
actualDrawerBoxDepth);

156 const drawerLeftPanel = new THREE.Mesh(drawerSideGeometry);
157 drawerLeftPanel.name = ’drawer_left_panel’;
158 drawerLeftPanel.position.set(-drawerFaceWidth / 2 +

drawerInnerWallThickness / 2, 0, innerDrawerBodyZ);
159 topDrawerGroup.add(drawerLeftPanel);
160

161 const drawerRightPanel = new THREE.Mesh(drawerSideGeometry);
162 drawerRightPanel.name = ’drawer_right_panel’;
163 drawerRightPanel.position.set(drawerFaceWidth / 2 -

drawerInnerWallThickness / 2, 0, innerDrawerBodyZ);
164 topDrawerGroup.add(drawerRightPanel);
165

166 // Drawer Back (interior panel)
167 const drawerBackGeometry = new THREE.BoxGeometry(drawerInternalWidth,

drawerInternalHeight, drawerInnerWallThickness);
168 const drawerBackPanel = new THREE.Mesh(drawerBackGeometry);
169 drawerBackPanel.name = ’drawer_back_panel’;
170 drawerBackPanel.position.set(0, 0, innerDrawerBodyZ -

actualDrawerBoxDepth / 2 + drawerInnerWallThickness / 2);
171 topDrawerGroup.add(drawerBackPanel);
172

173 // Drawer Bottom (interior panel)
174 const drawerBottomGeometry = new THREE.BoxGeometry(

drawerInternalWidth, drawerInnerWallThickness,
actualDrawerBoxDepth);

175 const drawerBottomPanel = new THREE.Mesh(drawerBottomGeometry);
176 drawerBottomPanel.name = ’drawer_bottom_panel’;
177 drawerBottomPanel.position.set(0, -drawerInternalHeight / 2 +

drawerInnerWallThickness / 2, innerDrawerBodyZ);
178 topDrawerGroup.add(drawerBottomPanel);
179

180 // 3. Drawer Handle (explicitly named "drawer_handle" in JSON)
181 const drawerHandleGeometry = new THREE.CylinderGeometry(

handleCylinderRadius, handleCylinderRadius, drawerHandleLength,
12);

182 const drawerHandleMesh = new THREE.Mesh(drawerHandleGeometry);
183 drawerHandleMesh.name = ’drawer_handle’;
184 drawerHandleMesh.rotation.z = Math.PI / 2; // Rotate to be horizontal
185 // FIXING: Z-position adjusted to be precisely flush with ‘

drawer_face‘ front.
186 // The handle’s back surface should align with the drawer face’s

front surface.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

187 // Y-position is already 0, which is vertically centered on the
drawer face, as requested by VLM.

188 drawerHandleMesh.position.set(
189 0, // Centered X on drawer face
190 0, // Centered Y on drawer face
191 handleCylinderRadius // Positioned so its back is flush with

drawer face (front).
192);
193 topDrawerGroup.add(drawerHandleMesh);
194

195

196 // --- Left Door (Articulated Group) ---
197 const leftDoorGroup = new THREE.Group();
198 leftDoorGroup.name = ’left_door’; // From JSON
199 root.add(leftDoorGroup);
200

201 // FIXING: Y-position: Calculate vertical center for door opening,
including gaps.

202 const doorOpeningBottomY = bottomPanelMesh.position.y +
frameThickness / 2 + targetMinimalGap; // Top of bottom panel +
minimal gap

203 const doorOpeningTopY = horizontalDividerMesh.position.y -
frameThickness / 2 - targetMinimalGap; // Bottom of horizontal
divider - minimal gap

204 const doorOpeningCenterY_relativeToCabinetFrameCenter = (
doorOpeningBottomY + doorOpeningTopY) / 2;

205

206 // FIXING: Hinge at the inner left cabinet edge, offset by
targetMinimalGap for spacing between door and frame.

207 const leftDoorHingeX = -cabinetWidth / 2 + frameThickness +
targetMinimalGap;

208

209 // Z-position: Aligns the group’s Z origin with the front of the
cabinet.

210 const doorFrontZ = cabinetDepth / 2;
211

212 leftDoorGroup.position.set(
213 leftDoorHingeX, // Pivot at the inner left edge of the cabinet

frame, accounting for slot gap.
214 cabinetFrameRootYOffset +

doorOpeningCenterY_relativeToCabinetFrameCenter, // Global Y
position to center it in its compartment.

215 doorFrontZ // Global Z position so its front surface is flush.
216);
217

218 // 1. Left Door Panel (the main part of "left_door" from JSON)
219 const leftDoorPanelGeometry = new THREE.BoxGeometry(doorWidth,

doorHeight, doorThickness);
220 const leftDoorPanelMesh = new THREE.Mesh(leftDoorPanelGeometry);
221 leftDoorPanelMesh.name = ’left_door_panel’;
222 // Positioned relative to its parent group (‘leftDoorGroup‘).
223 // Since the group’s origin is the left hinge, the panel extends to

the right.
224 // The panel’s left edge is at the group’s origin (hinge). Its center

is at doorWidth/2.
225 leftDoorPanelMesh.position.set(
226 doorWidth / 2, // Center of panel is at half its width from the

hinge (group origin)
227 0, // Centered vertically within group
228 -doorThickness / 2 // Back half of the thickness, to make its

front face at Z=0 of the group
229);
230 leftDoorGroup.add(leftDoorPanelMesh);
231

232 // 2. Left Door Handle (explicitly named "left_door_handle" in JSON)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

233 const leftDoorHandleGeometry = new THREE.CylinderGeometry(
handleCylinderRadius, handleCylinderRadius, doorHandleLength, 12)
;

234 const leftDoorHandleMesh = new THREE.Mesh(leftDoorHandleGeometry);
235 leftDoorHandleMesh.name = ’left_door_handle’;
236 // FIXING: Y-position adjusted to a "more ergonomic" height: 45cm

from the bottom edge of the door.
237 const newHandleY = -doorHeight / 2 + s(45);
238 // FIXING: X-position consistently "near the edge", 2.5cm from the

inner (right) vertical edge of the left door.
239 // Door panel extends from 0 to doorWidth in local X. Inner edge is

at doorWidth.
240 leftDoorHandleMesh.position.set(
241 doorWidth - doorHandleInnerOffset,
242 newHandleY,
243 handleCylinderRadius // Positioned so its back is flush with door

face (front).
244);
245 leftDoorGroup.add(leftDoorHandleMesh);
246

247

248 // --- Right Door (Articulated Group) ---
249 const rightDoorGroup = new THREE.Group();
250 rightDoorGroup.name = ’right_door’; // From JSON
251 root.add(rightDoorGroup);
252

253 // FIXING: Hinge at the inner right cabinet edge, offset by
targetMinimalGap for spacing between door and frame.

254 const rightDoorHingeX = cabinetWidth / 2 - frameThickness -
targetMinimalGap;

255

256 // Y-position: Same as left door.
257 // Z-position: Same as left door.
258 rightDoorGroup.position.set(
259 rightDoorHingeX, // Pivot at the inner right edge of the cabinet

frame, accounting for slot gap.
260 cabinetFrameRootYOffset +

doorOpeningCenterY_relativeToCabinetFrameCenter, // Global Y
position to center it in its compartment.

261 doorFrontZ // Global Z position so its front surface is flush.
262);
263

264 // 1. Right Door Panel (the main part of "right_door" from JSON)
265 const rightDoorPanelGeometry = new THREE.BoxGeometry(doorWidth,

doorHeight, doorThickness);
266 const rightDoorPanelMesh = new THREE.Mesh(rightDoorPanelGeometry);
267 rightDoorPanelMesh.name = ’right_door_panel’;
268 // Positioned relative to its parent group (‘rightDoorGroup‘).
269 // Since the group’s origin is the right hinge, the panel extends to

the left.
270 // The panel’s right edge is at the group’s origin (hinge). Its

center is at -doorWidth/2.
271 rightDoorPanelMesh.position.set(
272 -doorWidth / 2, // Center of panel is at half its width to the

left of the hinge (group origin)
273 0, // Centered vertically within group
274 -doorThickness / 2 // Back half of the thickness, to make its

front face at Z=0 of the group
275);
276 rightDoorGroup.add(rightDoorPanelMesh);
277

278 // 2. Right Door Handle (explicitly named "right_door_handle" in JSON
)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

279 const rightDoorHandleGeometry = new THREE.CylinderGeometry(
handleCylinderRadius, handleCylinderRadius, doorHandleLength, 12)
;

280 const rightDoorHandleMesh = new THREE.Mesh(rightDoorHandleGeometry);
281 rightDoorHandleMesh.name = ’right_door_handle’;
282 // FIXING: Y-position adjusted to a "more ergonomic" height (same as

left door handle).
283 // FIXING: X-position consistently "near the edge", 2.5cm from the

inner (left) vertical edge of the right door.
284 // Door panel extends from -doorWidth to 0 in local X. Inner edge is

at -doorWidth.
285 rightDoorHandleMesh.position.set(
286 -doorWidth + doorHandleInnerOffset,
287 newHandleY,
288 handleCylinderRadius // Positioned so its back is flush with door

face (front).
289);
290 rightDoorGroup.add(rightDoorHandleMesh);
291

292 return root;
293 }

A.11 MORE EXPERIMENTAL DETAILS AND RESULTS

A.11.1 MORE DETAILS OF THE USED METRICS

Coverage (COV) Definition: Coverage (COV) assesses the diversity of generated samples, indicating
how comprehensively the model can represent the range of real-world objects. Higher coverage
suggests that the generated samples adequately capture the diversity within the reference dataset.

Calculation: For each generated object, its closest object in the real dataset is identified using a
predefined distance measure. Coverage is then the fraction of unique real objects matched by at least
one generated sample:

The formula is:

COV (Sg, Sr) =
|{argminY ∈Sr

D(X,Y)|X ∈ Sg}|
|Sr|

where D(X,Y) is the distance between object X and object Y Yang et al. (2019).

In the articulated object context, a high coverage means the model successfully generates diverse
structures and movements, minimizing issues like mode collapse. The typical distance measure used
here is Instantiation Distance (ID).

Minimum Matching Distance (MMD) Definition: Minimum Matching Distance (MMD) measures
the quality or realism of the generated samples by comparing them to the ground truth set Yang et al.
(2019). It calculates, on average, how close each ground truth object is to its nearest neighbor in
the generated set Liu et al. (2024b); Yang et al. (2019). A lower MMD indicates that the generated
objects are, on average, more similar to real objects, implying higher fidelity Liu et al. (2024b).

Calculation: For each reference object Y ∈ Sr, the distance D(X,Y) to its closest generated object
X ∈ Sg is found. The MMD is the average of these minimum distances over all objects in the
reference set Sr Yang et al. (2019).

The formula is:
MMD(Sg, Sr) =

1

|Sr|
∑
Y ∈Sr

minX∈Sg
D(X,Y)

where D(X,Y) is the distance between object X and object Y Yang et al. (2019).

When evaluating articulated objects, MMD assesses the realism of the generated part geometries and
their articulation parameters Liu et al. (2024b). A low MMD score, using ID or AID as the distance
D, suggests that the model generates articulated objects whose shapes and motions closely resemble
those in the ground truth set Liu et al. (2024b).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

1-Nearest Neighbor Accuracy (1-NNA) Definition: 1-Nearest Neighbor Accuracy (1-NNA) is a
metric used to assess the similarity between the distributions of the generated set Sg and the reference
set Sr Yang et al. (2019). It employs a 1-NN classifier to determine if it can distinguish samples
from Sg versus Sr based on their nearest neighbors in the combined set Yang et al. (2019). If the
two distributions are identical, the 1-NNA should be close to 50% (chance level) Yang et al. (2019).
Deviations from 50% indicate discernible differences between the distributions. Thus, a score closer
to 50% is better, suggesting that the generated distribution is a good approximation of the true data
distribution Yang et al. (2019).

Calculation:

1. Combine the generated set Sg and the reference set Sr into a single dataset Sall = Sg ∪ Sr.

2. For each sample Z ∈ Sall, find its nearest neighbor NZ in Sall − {Z} using a distance
metric D.

3. The sample Z is classified as “generated” if NZ ∈ Sg and “real” if NZ ∈ Sr.

4. 1-NNA is the accuracy of this classification: the proportion of samples whose predicted
label (based on their nearest neighbor’s origin) matches their true origin Yang et al. (2019).

The formula is:

1−NNA(Sg, Sr) =

∑
X∈Sg

I[NX ∈ Sg] +
∑

Y ∈Sr
I[NY ∈ Sr]

|Sg|+ |Sr|

where I[·] is the indicator function, and NX (or NY) is the nearest neighbor of X (or Y) in (Sg ∪
Sr)− {X or Y } Yang et al. (2019). An ideal score is 0.5 (or 50%).

For articulated objects, 1-NNA provides a measure of how well the overall distribution of generated
shapes and articulations matches the ground truth distribution Liu et al. (2024b). It considers both
the quality (similarity to individual real objects) and diversity (coverage of the true distribution’s
modes) Yang et al. (2019). The CAGE paper reports 1-NNA using Abstract Instantiation Distance
(AID) as the distance metric Liu et al. (2024b). A 1-NNA score closer to 50% indicates that the
generated articulated objects are hard to distinguish from real ones distributional.

Ensuring that the generated 3D scene aligns with the input text prompt is crucial for text-based scene
generation methods. We assess this controllability using the following established metrics:

CLIP Score Definition: The CLIP (Contrastive Language-Image Pre-training) Score measures the
semantic alignment between an image and its corresponding text description. It calculates the cosine
similarity between the image embedding and text embedding derived from the CLIP model. Higher
scores reflect better semantic consistency between the visual content and textual prompt.

Usage: Within the domain of 3D scene generation, the CLIP Score quantitatively assesses how
closely the rendered images from a generated 3D scene match the semantic content specified in the
input textual description. It serves as an objective metric for evaluating the fidelity of generated
scenes in capturing the intended textual semantics.

BLIP Score Definition: The BLIP (Bootstrapping Language-Image Pre-training) Score evaluates
the correspondence between an image and its caption. Specifically, it employs the Image-Text
Matching (ITM) head from the BLIPv2 model, which classifies image-text pairs as either matching
or non-matching. A higher BLIP score indicates a stronger image-text relationship.

Usage: Analogous to the CLIP Score, the BLIP Score is utilized to measure how well the generated
3D scene aligns visually with the provided textual prompt. It provides complementary insights into
the controllability and semantic accuracy of the generated outputs.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

A.12 MORE VISUALIZATIONS

A.12.1 ANALYSIS OF FAILURE CASES

Eye Glasses
View View2 View3

Oven
View View2 View3

Figure 10: Qualitative comparison of articulated object generation from text prompts.

Figure 10 from the supplementary material highlights the comparative strengths of the iArt model
in generating articulated objects, demonstrating notable improvements over existing methods like
Singapo and Articulate Anything. Examples such as the "Pliers," "Door," and "USB" illustrate that
iArt can produce coherent structures with plausible articulations. Nonetheless, generating accurately
articulated 3D objects remains inherently challenging. Beyond correctly forming individual parts, the
model must precisely capture complex kinematic relationships and constraints between these parts.
Even when part geometry is acceptable, subtle inaccuracies often occur in defining joints, particularly
for objects featuring multiple degrees of freedom or uncommon articulation mechanisms.

Ensuring perfect articulation, especially the precise orientation of joint axes and the accurate range
and direction of movement, continues to pose significant difficulties. For example, complex objects
like the multi-joint "Lamp" or the "Faucet" generated by iArt might appear structurally sound in static
images. However, precisely controlling each rotation axis and maintaining realistic motion limits is
intricate. An incomplete or partially incorrect interpretation of the object’s functional design might
cause joints to be assigned plausible yet practically inaccurate rotational directions or axes. Despite
significant advancements shown by models such as iArt, accurately interpreting and implementing
nuanced joint orientations and movements remains a challenging area requiring further refinement.

A.12.2 MORE COMPARISONS WITH PREVIOUS WORKS

Figure 11 illustrates a qualitative comparison of our method against Singapo and Articulate Anything
across nine object categories (Cart, Chair, Door, Faucet, Lamp, Lighter, Pliers, Camera, and USB).
Our approach, iArt, consistently generates more recognizable, coherent, and accurately articulated
3D objects. For instance, where Singapo often produces jumbled or abstract forms and Articulate
Anything may result in disconnected or simplistic representations, our method successfully yields
well-defined structures like complete carts, realistic chairs, and identifiable faucets with distinct
components. This visual evidence underscores our method’s superior capability in capturing essential
geometry and articulation from text, leading to more realistic and functionally plausible models
across a diverse set of objects.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Cart

Singapo
Articualte
Anything Ours

Chair

Singapo
Articualte
Anything Ours

Door

Singapo
Articualte
Anything Ours

Faucet

Singapo
Articualte
Anything Ours

Lamp

Singapo
Articualte
Anything Ours

Lighter

Singapo
Articualte
Anything Ours

USB

Singapo
Articualte
Anything Ours

Pliers

Singapo
Articualte
Anything Ours

Camera

Singapo
Articualte
Anything Ours

Figure 11: Qualitative comparison of articulated object generation from text prompts.

30

	Introduction
	Related Works
	LAM
	Preliminaries
	Articulable Geometry Generation
	Articulation Generation

	Experiment
	Main Results
	Ablation Studies
	Qualitative Results

	Conclusion
	Appendix
	Ethics of Statement
	Reprodicibility Statement
	Use of LLMs
	Limitations
	Collected 27 Descriptions of Open-World Classes
	Texture Generation
	More Details of Each Module
	Link Designer
	Geometry Coder
	Geometry Debugger
	Geometry Visualizer
	Geometry Checker
	Articulation Coder

	Cost & Time Analysis
	The Summary of LLM Models Used for Experiments
	Definitions of the shape primitives
	More Experimental Details and Results
	More details of the used metrics

	More Visualizations
	Analysis of Failure Cases
	More Comparisons with Previous works

