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Abstract—Managing diabetes requires careful monitoring of
food intake, yet manual logging is burdensome and error-prone.
Prior research has shown that the macronutrient composition of a
meal (e.g., carbohydrates, protein, fat, and fiber) can be inferred
from its postprandial glucose response (PPGR). However, this is
a challenging problem given the large inter-individual differences
in PPGRs, and the complex interaction between macronutrients
in mixed meals. To address these issues, we propose RankPPGR, a
rank-learning framework that analyzes within-subject differences
in pairwise PPGRs from meals with varying macronutrient com-
position, and learns a non-linear embedding of meal macronu-
trients that reflects their joint impact to glycemic responses. We
also propose a few-shot regression module that uses outputs from
RankPPGR to infer macronutrient composition using a limited
number of labeled meals per individual. We evaluate the model on
an experimental dataset containing PPGRs to mixed meals from
45 participants. RankPPGR significantly improves both pairwise
classification and macronutrient inference performance over a
sample-based regression baseline.

Index Terms—Diet monitoring, continuous glucose monitors,
rank learning.

Clinical relevance. Monitoring food intake is an essen-
tial component in diabetes management. Current approaches
rely on manual entry, which is cumbersome and error-prone.
We propose a sensor-based methodology to monitor food
intake automatically from continuous glucose monitors. Our
approach may also be used to monitor patient adherence to
diets in nutritional therapy interventions aimed at adopting
low-glycemic load diets.

I. INTRODUCTION

Diabetes mellitus is a chronic metabolic disease that affects
over 500 million adults worldwide [1]. The most common
form, type 2 diabetes (T2D), is strongly associated with seden-
tary behavior, obesity, and poor dietary habits [2]. T2D results
from prolonged elevations in glucose levels (hyperglycemia),
which arises due to impaired insulin production or reduced
sensitivity to insulin. Sustained hyperglycemia can have disas-
trous long-term health consequences, including cardiovascular
diseases (the main cause of death in the developed world),
retinopathy, peripheral neuropathy, and nephropathy.

Monitoring and controlling diet is therefore critical to pre-
venting and managing diabetes. However, manual recording of
food intake is often time-consuming, error-prone, and difficult
to sustain over time [3]. Automated methods using various
sensing modalities (e.g., gestures, sound, vision) have been

developed to monitor food intake. Among these, continuous
glucose monitors (CGMs) represent a promising approach.
CGMs capture the increase and subsequent return to base-
line of glucose levels when individuals consume meals. The
primary contributor to these so-called postprandial glucose
responses (PPGRs) is carbohydrate (carb) intake, but other
macronutrients (i.e., protein, fat, and fiber) also contribute
albeit in the opposite direction, dampening or delaying the
glucose spike [4]. This suggests that the shape of a PPGR
can be used to infer, in part, the macronutrient content of
meals. However, predicting the full macronutrient composition
from PPGRs is a complex, many-to-one inverse problem [3].
Moreover, PPGRs are also affected by a variety of factors such
as metabolic parameters (e.g., HbA1c, insulin sensitivity), and
demographics (e.g., sex, age, ethnicity). As a result, PPGRs
exhibit substantial inter-individual variability, even in response
to the same meal, which can hinder the generalizability of
predictive models across subjects.

To address these two issues, we propose RankPPGR, a
rank-learning framework that (1) analyzes pairs of PPGRs to
meals with different macronutrient contents when consumed
by the same individual, and (2) learns a non-linear combination
(i.e., an embedding) of macronutrients that can be predicted
from PPGRs. By learning to rank meal pairs within-subject
from raw PPGRs, the model avoids the issue of individual
variability and the need for ad-hoc PPGR normalization strate-
gies [5]. Further, by learning which non-linear combination of
macronutrients can be extracted from PPGRs, the model avoids
the need for feature engineering. We extend this framework
with a few-shot learning model that predicts meal composi-
tions with limited data samples per individual.

In a first step, we establish the feasibility of the rank-
learning approach using the carb-caloric ratio (CCR) as the
dependent variable. The CCR is defined as the ratio of caloric
content from carbohydrates to all energetic intake, and there-
fore of clinical significance in medical nutrition therapy (e.g.,
adopting low-glycemic load diets) [6]. However, the CCR
assumes that non-glycemic macronutrients (i.e., protein, fat
and fiber) contribute in the same proportion to PPGRs. Thus,
in a second step, we extend the model so it simultaneously
learns to rank PPGRs and a non-linear parametric embedding
of macronutrients that best reflects information in PPGRs.

We evaluate the performance of the proposed rank-learning



model against an equivalent model that predicts macronutrient
compositions in a sample-based fashion, that is, from each
individual PPGR. The main contributions of this paper are:

• A rank-learning framework (RankPPGR) that can dis-
criminate between meals with high- and low-glycemic
loads.

• A few-shot model that can predict the caloric ratio of
carbohydrates to total energetic intake from pairwise
ranks of PPGRs

• Validation on an experimental dataset containing nearly
450 postprandial glucose responses to mixed meals.

II. RELATED WORK

Multiple studies have examined the effect of meal macronu-
trient amount and composition on PPGRs. The main determi-
nant of postprandial glucose is the amount and type of carbs.
Carbs are typically compared by their glycemic index (GI)
[7], a measure of how they raise glucose levels compared
to a reference food (typically glucose) defined as having
a GI=100. Most vegetables have low GIs (<55), whereas
sugars and starches have high GI (>70). However, the GI
does not consider the effect of other meal macronutrients.
Specifically, adding protein, fat or dietary fiber to a meal
reduces and/or slows down the PPGR [8], [9], typically due
to gastric emptying or insulin secretion [10]–[12].

Given the broad availability of continuous glucose monitors
(CGM) and advances in machine learning (ML), recent work
has explored predicting personalized glycemic responses to
food. In a seminal study, Zeevi et al. [13] collected CGM
data and meal logs from an 800-person cohort. They observed
substantial inter-individual variability in PPGRs to identical
meals. To address this, they developed an ML model that
integrated clinical features, dietary habits, physical activity,
and gut microbiome profiles to predict personalized glycemic
responses. Their approach was validated in a randomized
controlled intervention, where personalized dietary recommen-
dations significantly reduced PPGR excursions. Tily et al. [14]
also highlighted the importance of individual-specific features,
especially gut microbiome activity, in predicting PPGRs. ML
models trained on food composition, anthropometrics, and mi-
crobial pathway activity showed that gut microbiome features
significantly improved predictions.

These two studies sought to estimate PPGRs to meals
given their macronutrient composition (i.e., a direct prob-
lem). Its inverse counterpart, i.e., predicting macronutrient
compositions from PPGRs, is far more complex given that
meals with different macronutrient content can lead to the
same PPGR. In addition to its inverse nature, the PPGR-to-
macronutrient prediction problem is challenging because of
the significant effect that metabolic health parameters (e.g.,
HbA1c, insulin sensitivity, body mass index, gut microbiota)
as well as demographics (e.g., sex, age, ethnicity) play in
metabolism. Thus, PPGRs from two individuals cannot be
compared without controlling for these health/demographic
factors. The work proposed here address this complex issue
by viewing the inverse problem as one of rank learning.

III. METHODS

The overall system architecture for RankPPGR is shown in
Fig. 1. The model consists of two modules: (1) a Siamese
PPGR encoder network, and (2) an aggregator network. Dur-
ing training, the PPGR encoder learns to generate embed-
dings zi, zj from pairs of time-series glucose measurements
gi(t), gj(t), i.e., PPGRs for meals mi,mj such that zi > zj
if the macro composition of mi is greater than that of
mj . Given a test meal gtest(t) with unknown macronutrient
composition, the Siamese network generates a vector of proba-
bilities [p1, p2...] by comparing gtest(t) against sample PPGRs
[g1(t), g2(t)...] from the subject with known macros. It is this
probability vector that the aggregator network uses to estimate
the macronutrient composition of the test meal.

To establish proof of concept, we initially train the PPGR
encoder and aggregator networks using the carb-caloric-ratio
(CCR) as the dependent variable:

CCR =
C

C + P + F +B
, (1)

where C,P, F,B denotes the caloric amount of net carbs,
protein, fat and fiber in the meal, respectively. In Section III-C,
we replace the CCR (i.e., a “fixed” macronutrient embedding)
with one whose parameters can be learned in an end-to-end
fashion. The result is an interpretable embedding (a ratio
of macronutrients) that best represents how macronutrients
contribute to PPGRs.

A. PPGR encoder

We train the encoder and aggregator networks on the
CGMacros dataset publicly available on PhysioNet [15], which
contains PPGRs to ten mixed meals from N=45 participants;
see section III-F for details. Before training the model, we
generate input pairs gi(t), gj(t) of PPGRs in a within-subject
fashion to avoid inter-individual differences. Namely, for each
subject in the dataset, we consider all pairs of meals with
different CCRs. For each pair, we assign a binary label:

yij =

{
1 if CCR(gi(t)) > CCR(gj(t)),

0 otherwise.
(2)

We train the encoder network following RankNet [16].
Namely, a shared network takes two PPGRs as inputs and
predicts which of the two was induced by a meal with a higher
CCR. Once trained, the output of the model is a probability
score reflecting which of the two PPGRs is more likely to
correspond to a meal with higher CCR.

We evaluate for different deep-learning architectures for the
shared encoder: multi-layer perceptrons (MLPs), convolutional
neural networks (CNNs), gated recurrent units (GRUs) and
Transformers. For each model, we vary key hyperparameters
(e.g., hidden sizes, number of layers) to produce models with
different numbers of trainable parameters. We then evaluate
performance as a function of model type and model size (i.e.,
number of parameters).

Regardless of its architecture, the PPGR encoder produces
a latent score zi for each input gi(t), from which we compute
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Fig. 1. (a) Polar plot shows the composition of three meals m1,m2,m3 with different macro amounts (carbs C, protein P , fat F and fiber B). (b) Postprandial
glucose responses to meals m1,m2. Meal m1 has higher carb-caloric-ratio (CCR) than meal m2, therefore leads to higher PPGR peak with a faster recovery
to baseline than meal m2. (c) Architecture of the rank-learning model. The model uses a shared encoder network in a Siamese configuration. (d) Architecture
of the aggregator model. The aggregator computes the vector probability that a test PPGR gtest(t) has higher CCR than a set of reference PPGRs.

probability that CCR(gi(t)) > CCR(gj(t)) as pij = σ(zi −
zj), where σ(x) = (1 + e−x)−1. The model is trained to
minimize the binary cross-entropy (BCE) loss between the
predicted probabilities and the ground-truth pairwise labels,
averaged over all training pairs:

LBCE = − (yij log(pij) + (1− yij) log(1− pij)) , (3)

B. Aggregator network

The aggregator consumes probability estimates from the
shared encoder network and converts them into a CCR esti-
mate. Namely, given a test meal mtest, we compare its PPGR
gtest(t) against a set of reference PPGRs corresponding to a
fixed set of known CCR values:

R = {(g1(t), CCR1), . . . , (gM (t), CCRM )} (4)

This results in a vector of probabilities p1, p2...pM for
test meal having higher CCR than each of the reference
meals1, which the aggregator uses to estimate the CCR of
the unlabeled meal through a regression task. In this fashion,
each meal in the training set can be used both as a reference
meal and as a test meal2. For the aggregator network, we train
an MLP to minimize the mean squared error (MSE) between
the predicted and ground truth CCR values of the test meals.

C. Parametric macronutrient encoder

The carb-caloric ratio (CCR) assumes a uniform weighting
of macronutrients based on their caloric content. However,
the actual magnitude of each macronutrient’s contribution
to glycemic responses is unknown, even when matched by
caloric content. For this reason, the final module in RankPPGR
extends the fixed CCR in eq. (1) to have learnable coefficients:

WCCR(wP , wF , wB) =
C

C + wPP + wFF + wBB
(5)

where wP = softplus(θP ), wF = softplus(θF ), and wB =
softplus(θB), with θP , θF , θB ∈ R –see Fig.. 2 This allows

1In our experiments, we used a fixed reference set of 5 meals, each
corresponding to a distinct CCR value. This setup can be generalized to any
number of reference meals, provided sufficient PPGR data is available across
subjects for each meal to support few-shot comparisons.

2Pairs of test/reference PPGRs are taken from the same subject whenever
possible. Whenever a reference PPGR with a specific CCR is missing, we
replace it with that from another subject with the closest HbA1c. Further, when
multiple PPGRs from the same subject are available for a given reference
meal, we average the probabilities across those comparisons.
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Fig. 2. Learning a parameterized (CCR-based) macronutrient embedding
jointly with the PPGR encoder.

the model to find a macronutrient representation that can be
best predicted from PPGRs, within the constraints of a CCR
calculation that is both clinically interpretable and physio-
logically plausible. To ensure non-negativity and smoothness,
we define each coefficient wP , wF , wB as the softplus of
an unconstrained parameter θP , θF , θB , respectively, where
softplus(x) = log(1 + ex). Parameters θP , θF , θB are initial-
ized such that the corresponding coefficients wP , wF , wB are
equal to 1.

We learn the WCCR coefficients following the same pair-
wise learning framework described earlier. Namely, for each
subject, we create pairs of PPGRs from meals not with
different CCRs but different macronutrient composition, i.e.,
C,B, P, F . The label for each pair is determined based on the
WCCR ranking induced by the current coefficient values:

yij =

{
1 if WCCRi > WCCRj

0 otherwise
(6)

Note that this binary label is not differentiable with respect
to the coefficients. For this reason, we apply a sigmoid
function over the difference in WCCR values, as:

ỹij = σ (α · (WCCRi −WCCRj)) (7)

where σ(x) = (1+e−x)−1, and α is a tunable parameter that
controls the slope of the sigmoid. We train the PPGR encoder
and macronutrient encoder jointly using BCE via gradient
descent. After the PPGR and macronutrient encoders are
trained, we train the aggregator model to predict continuous
WCCR values based on pairwise probabilities computed with
the optimized WCCR formula.

D. Validation strategy

We validate the RankPPGR models through cross-validation
across subjects, as illustrated in Fig. 3. First, we sort sub-
jects in the CGMacros dataset according to HbA1c. Then,
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Fig. 3. Validation procedure. We sort subjects by A1c, then select two
adjacent subjects (red) for testing using a moving window. From the remaining
N-2 subjects, 4 are randomly selected as validation samples (blue) for
hyperparameter tuning. The remaining subjects (green) are used for training

we apply a moving window to select two adjacent subjects
as held-out samples for testing. This setup enables subject-
level generalization and supports the substitution of reference
PPGRs across held-out subjects, as described in the aggregator
model section, in cases where a given subject lacks a meal
corresponding to a specific reference CCR or WCCR.

Within each outer fold, we perform hyperparameter tuning
on 4 randomly held out validation subjects from the training
set. For the MLP models, we conduct a grid search over hidden
layer sizes (32, 16) and (64, 32); learning rates {10−2, 10−3};
batch sizes {16, 32}; and weight decay values {0, 10−4}. For
WCCR tuning, we tune the smoothing parameter α ∈ {3, 5, 7}.

We evaluate model performance using regression and classi-
fication metrics. For regression purposes, we report three met-
rics: Pearson correlation, the coefficient of determination (R²),
and Relative Root Mean Squared Error (RRMSE), defined as:

RRMSE =

√√√√ 1

N

N∑
i=1

(
yi − ŷi

yi

)2

(8)

where yi is the true value, ŷi is the predicted value, and N
is the number of test samples. Thus, the RRMSE represents
the percent error relative to the ground-truth value, which is
more meaningful when comparing predictions for meals with
different CCR or WCCR values.

For classification evaluation, we report accuracy and F1
score on the Siamese encoder, using all possible meal pairs
within each test subject. For each pair, we evaluate whether
the ordering of the predicted CCR or WCCR values matches
the ground-truth ordering. F1 scores are computed based on
the proportion of correctly ordered pairs.

E. Baseline model for comparison

For evaluation purposes, we used a baseline model with the
same configuration as the PPGR encoder, except the baseline
model is trained to predict CCRs directly from individual
PPGRs. When evaluating the baseline model in a classification
setting (i.e., which of two PPGRs in a pair has higher CCR?),
we follow the same pairwise evaluation strategy used for
RankPPGR: after training, we consider all meal pairs within
each test subject that differ in CCR. For each pair, we assess
whether the predicted CCRs preserve the correct ordering.
F1 scores are computed based on the proportion of correctly
ordered pairs. In addition to classification metrics, we also

compare the regression performance of the baseline and the
RankPPGR aggregator network.

F. Dataset description

We evaluated RankPPGR and the baseline model on the
CGMacros dataset publicly available on PhysioNet [15]. The
dataset contains 10 days of CGM recordings for 45 subjects
(age: 18-69, T2D: 14/45; pre-diabetes: 16/45; 4.6 ≤ HbA1c ≤
8.5). As part of the screening process, a number of variables
were measured for each subject, including body mass index
(BMI), glycated hemoglobin (HbA1c), fasting glucose, fast-
ing insulin, triglycerides, cholesterol levels and demographics
(age, gender, and race). Subjects wore an Abbott FreeStyle
Libre Pro CGM (15-min sampling period) and a Dexcom
G6 Pro CGM (5-min) on their upper arm and abdomen,
respectively. Both CGMs were blinded to prevent glucose
readings from influencing participants. Each subject recorded
their meals for 10 days, including breakfast, lunch and dinner.
Breakfasts consisted of protein shakes with varying amounts
of carbs, protein, fat, and fiber. Lunches were ordered from
a local, fast-casual restaurant chain (Chipotle Mexican Grill).
The breakfast and lunch meals were designed to cover a range
of macronutrient contents. For dinners, participants ate foods
of their own choice. To minimize interferences in glucose
responses from prior meals, participants were instructed to
eat lunch at least 3 hours after breakfast, with only water or
coffee (without sugar) in between, and dinner at least 3 hours
after lunch. In this study, we only analyze PPGRs from the
Abbott CGM for the breakfast meals, whose macronutrient
composition are shown in Table I.

IV. RESULTS

A. Encoder architecture

First, we examined how the choice of model architecture
and size affects the performance of the PPGR encoder on the
ranking task, i.e., identify which of two PPGRs is from the
meal with higher CCR. Results are summarized in Fig. 4 in
terms of the average F1 score across test folds as a function
of model size. For each model architecture, we repeated the
procedure five times and report the average results. Despite
having a simple architecture, MLPs achieve the highest F1
score across the range of model sizes. The CNN and Trans-
former architectures perform comparably to the MLP model

TABLE I
MACRONUTRIENT CONTENT OF BREAKFAST SHAKES, CODED AS HIGH (H)

OR LOW (L) AMOUNTS OF NET CARBS, PROTEINS, FAT, AND FIBER [17].

Day Meal Carbs (g) Prot (g) Fat (g) Fiber (g) CCR

4 HHHH 66 66 42 07 0.287
5 LLLL1 24 22 11 00 0.345
9 LLLL2 24 22 11 00 0.345
10 HLHH 66 22 42 07 0.355
3 HLHL1 66 22 42 00 0.362
8 HLHL2 66 22 42 00 0.362
2 HHLL1 66 66 11 00 0.424
7 HHLL2 66 66 11 00 0.424
1 HLLL1 66 22 11 00 0.591
6 HLLL2 66 22 11 00 0.591
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Fig. 4. Average F1 score across test folds for different encoder architectures
vs. number of trainable parameters.

for modest model sizes but their performance degrades as
parameters increase, suggesting potential overfitting, with the
GRU architecture showing the weakest performance of all
models. These results indicate that the more complex model
architectures offer limited benefits for the relatively short
PPGR sequences used here and dataset size. For this reason,
we use an MLP for the remaining sections of this manuscript.

B. Rank- vs. sample-based classification

In a second step, we compared RankPPGR against the
baseline model on the same binary classification task. As
shown in Table II, RankPPGR outperforms the baseline model
(F1 score of 0.72 ± 0.10 vs. 0.65 ± 0.08; paired t-test:
p < 0.0001), averaged across test folds using the leave-2-
subjects-out procedure described earlier. Because the main
difference between the two models is in the number of inputs
(i.e., pairs of PPGRs for our model, individual PPGRs for the
baseline), these results indicate that discrimination of low- vs.
high-glycemic loads is better approached as a rank-learning
task in a within-subject fashion to avoid the confounding
effect of inter-individual differences and metabolic health
across participants. While binary classification accuracies of
0.72/0.65 may appear to be modest, notice that differences in
CCRs across meals are in some cases in the second decimal
digit –see Table I.

C. Regression performance (aggregator model)

In a third step, we compare the aggregator and baseline
models in terms of their ability to estimate CCRs. We report
the average ± stdev across folds using a leave-2-subjects-
out procedure. Table II summarizes the results for Pearson
correlation (r), coefficient of determination (R2), and relative
RMSE (RRMSE). The aggregator model outperforms the base-
line model on all measures. A two-tailed paired t-test confirms
that the improvements are statistically significant for the three
measures (p < 0.05). In particular, the baseline model can only
explain 6% of the variance in the data, whereas the aggregator
explains 4 times as much (25% of the variance). As we will see
in Section IV-D , this is likely due to the large inter-individual
differences in postprandial glucose across participants, which
in our study is amplified by the broad range of metabolic health

Fig. 5. Latent RankPPGR scores plotted against subject HbA1c, with points
color-coded by WCCR.

TABLE II
COMPARISON OF RANKPPGR/AGGREGATOR VS. BASELINE ON BINARY

CLASSIFICATION AND REGRESSION OF CCR. (µ ± σ) ACROSS TEST
SUBJECT FOLDS. ∗p < 0.05, ∗∗∗p < 0.001

Model Classification Regression
F1∗∗∗ (↑) RRMSE∗ (↓) MAE∗ (↓) r∗∗∗ (↑) R2∗∗∗ (↑)

Baseline 0.65 ± 0.08 0.23 ± 0.04 0.08 ± 0.008 0.39 ± 0.24 0.06 ± 0.26
Aggregator 0.72 ± 0.10 0.20 ± 0.03 0.07 ± 0.006 0.53 ± 0.17 0.25 ± 0.19

parameters in the CGMacros dataset, with HbA1c between
4.5 and 8.5. As a reference, HbA1c<5.7% is considered
normal (healthy adults), 5.7%<HbA1c<6.4% is considered
pre-diabetes, and HbA1c>6.4% is considered type 2 diabetes.
D. Structure of latent scores

To interpret the RankPPGR model, we trained the model on
the full dataset and analyzed the scalar latent scores produced
for each PPGR. Fig. 5 shows the latent score for each PPGR,
color-coded by WCCR, plotted against the subjects’ HbA1c.
Two trends emerge: an increase in latent scores with HbA1c
(left-to-right) with corresponding increase by glycemic load
(bottom-to-top). This pattern indicates that RankPPGR learns a
representation that captures both subject-level metabolic state
and meal glycemic load. This latent structure helps explain
why our aggregator model outperforms the baseline model.
Whereas the baseline model attempts to learn a direct mapping
from PPGRs to glycemic load, without accounting for inter-
individual variability in glycemic responses and metabolic
health status, the aggregator model compares PPGRs across
meals from individuals with similar HbA1c values. In the
latent space, this corresponds to comparisons along the vertical
axis of Fig. 5. Direct comparison of PPGRs from meals with
different CCRs across individuals with different HbA1c, as
the baseline model attempts to do, is problematic because
the two variables (HbA1c and CCR) are confounded when
examining postprandial glucose. Instead, RankPPGR compares
PPGRs within phenotype-matched groups, thus focusing on
information along the vertical axis in Fig. 5, ignoring the
confounding effect of HbA1c along the horizontal axis.
E. Optimizing macronutrient encodings

Following the same leave-2-subjects-out procedure, we
trained the PPGR encoder and the macronutrient embedding
in eq. (5) jointly. The distribution of learned coefficients for
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Fig. 6. Distribution of learned macronutrient coefficients (wF , wP , wB). The
effect of fat, protein and fiber is 0.5×, 1.5× and 3× of what the standard
CCR calculation assumes, respectively.

protein (wP ), fat (wF ) and fiber (wB) across cross-validation
folds is shown in Fig. 6. The model consistently assigns the
highest weight to fiber (wB = 3.06), followed by protein
(wP = 1.56), with fat receiving the lowest weight on average
(wF = 0.54). These results are significant as they indicate that
the caloric content per gram of macronutrients is not the main
determinant of postprandial glucose responses.

Given that WCCR has a stronger association with post-
prandial glucose responses than the conventional (unweighted)
CCR, we reassessed the performance of RankPPGR when
using either of the two macronutrient embeddings (WCCR vs.
CCR). For this purpose, we evaluated classification perfor-
mance on pairwise comparisons between meals to determine
whether the model correctly identifies the meal with the higher
CCR/WCCR. Results are shown in Table III in terms of F1
scores across all test folds. RankPPGR achieves higher F1
scores with the tuned WCCR embedding than with the fixed
CCR embedding. A two-tailed paired t-test confirms that the
performance differences are statistically significant (p < 0.01).
This indicates that learning optimal macronutrient weights
leads to a CCR formulation that is more closely aligned with
the actual glycemic impact of the meals.

Likewise, we reassessed the performance of the aggregator
model when using fixed CCR vs. tuned WCCR embeddings.
Results are summarized in Table III across test folds. The ag-
gregator model achieves lower RRMSE and higher correlation
(r) and coefficient of determination (R2) when using the tuned
WCCR embedding, as compared to the fixed version. A two-
tailed paired t-test confirms that all differences between the
fixed and tuned models are statistically significant (p < 0.01).

To corroborate the results in Table III, we also visualized the
alignment between predicted and actual CCR/WCCR values.
Results are shown in Fig. 7 with box plots of predicted
CCR/WCCR grouped by ground-truth CCR/WCCR. With
the standard CCR calculation, the model estimates that the
fifth meal in group (CCR=0.424) has lower CCR than the
preceding meal in the sequence (CCR=0.362). Instead, the
WCCR formulation results in a monotonic relationship be-
tween predictions and ground truth, indicating that the WCCR
macronutrient embedding is a more accurate reflection of how
macronutrients contribute to postprandial glucose responses.

CCR WCCR

Fig. 7. Box plots of predicted CCR/WCCR grouped by ground-truth. WCCRs
have a monotonic relationship between predictions and ground truth, indicat-
ing that WCCRs are a better representation of the information embedded in
PPGRs than the standard CCR calculation.

TABLE III
COMPARISON OF CCR VS. WCCR ON BINARY CLASSIFICATION AND

REGRESSION OF RANKPPGR/AGGREGATOR

Embedding Classification Regression
F1∗∗ (↑) RRMSE∗∗ (↓) MAE∗ (↓) r∗∗∗ (↑) R2∗∗ (↑)

CCR 0.72 ± 0.10 0.20 ± 0.04 0.07 ± 0.006 0.53 ± 0.17 0.25 ± 0.19
WCCR 0.77 ± 0.08 0.18 ± 0.03 0.06 ± 0.009 0.61 ± 0.16 0.35 ± 0.20

F. Ablation on reference meal availability

To evaluate the practicality of RankPPGR in real-world
scenarios where only a limited number of reference meals are
available from phenotypically matched subjects, we conducted
an ablation study varying the number of reference meals from
1 to 5 (the original setup). This analysis focuses on WCCR
prediction using the aggregator model. As shown in Table IV,
model performance degrades only modestly as the number of
reference meals decreases. Even with just 2 or 3 reference
meals, the model retains most of its predictive power. These
results suggest that RankPPGR remains robust and practical
for use in low-data scenarios such as cold-start deployments.

V. DISCUSSION

Monitoring dietary intake is a major component of diabetes
interventions and nutrition therapies that promote the adoption
of low-glycemic load diets [6]. Conventional approaches to
monitoring diet require manual entry (food journals), which
is not only error-prone but places a high burden on patients.
Several technological solutions have been developed to assist
in automatic diet monitoring (e.g., accelerometers, gyroscopes,
microphones and cameras), but these modalities generally only
detect moments of food intake and not the compositions of
those foods. Instead, continuous glucose monitors (CGMs)
measure the effect of food choices on postprandial glucose,
which is a more direct measurement of food intake. The main

TABLE IV
ABLATION STUDY ON THE NUMBER OF REFERENCE MEALS USED FOR

WCCR PREDICTION. (µ ± σ) ACROSS TEST FOLDS.

# Ref. Meals RRMSE (↓) r (↑) R2 (↑)

1 0.20 ± 0.03 0.54 ± 0.14 0.21 ± 0.21
2 0.20 ± 0.03 0.57 ± 0.16 0.26 ± 0.21
3 0.19 ± 0.03 0.57 ± 0.16 0.27 ± 0.24
4 0.19 ± 0.03 0.59 ± 0.18 0.31 ± 0.23

5 (original) 0.18 ± 0.03 0.61 ± 0.16 0.35 ± 0.20
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challenge in CGM-based diet monitoring is that an identical
meal can lead to very different postprandial glucose depending
on the individual’s metabolic health status. Our proposed
solution addresses this challenge by treating the problem as
one of rank learning. By comparing PPGRs within-subject or
between-subjects with similar metabolic health status (HbA1c
in our study), RankPPGR avoids the confounding effect of
individual differences and glycemic load of meals. We vali-
dated RankPPGR on an experimental dataset of PPGRs with
different glycemic loads (i.e., carb-caloric-ratio) measured in
free-living conditions from patients with a broad range of
metabolic health status. RankPPGR consistently outperforms a
baseline model (with the same DL architecture but which pro-
cesses individual PPGRs) using binary classification (pairwise
ranking) and regression (prediction of CCRs) metrics.

The relationship between macronutrients in mixed meals
and postprandial glucose is complex and non-linear. A con-
ventional measure of glycemic load is the ratio of calories
from carbohydrates relative to total calories in the meal
(CCR). We find that CCR is not the optimal “embedding”
of macronutrients in a meal as it overestimates the effect
of fats relative to protein and fiber in a meal. This finding
is important for interventions aimed at reducing elevated
glucose levels after a meal (post-prandial hyperglycemia)
[18], because they suggest protein and fiber are significantly
more effective than fat at reducing postprandial glucose, let
alone healthier alternatives. According to our results on the
CGMacros dataset, protein is nearly 3 times more effective
than fat (wP /wF = 1.56/0.54 = 2.88) and fiber nearly 6
times more effective than fat (wB/wF = 1.56/0.54 = 5.67).
These learned WCCR weights can help clinicians design more
effective dietary interventions in nutritional therapy, as they
better reflect the physiological impact on PPGR, particularly
in distinguishing levels of glycemic load.

VI. LIMITATIONS AND FUTURE WORK

While our few-shot approach only requires a limited
amount of data, it assumes that reference meals with different
macronutrient combinations are available for each subject or
from subjects with similar metabolism or health status. This
limits the model’s applicability to scenarios where phenotype-
matched reference data is available.

Future work will extend this framework to zero-shot sce-
narios by integrating phenotype variables directly into the
RankPPGR model. For instance, incorporating subject-level
features such as A1c, age, or sex via a feature-wise linear
modulation (FiLM) layer could allow the model to account for
inter-individual variability explicitly. This would enable cross-
subject comparisons without requiring phenotype-matched ref-
erence CGM data, thereby improving scalability and general-
izability in real-world applications.

VII. CONCLUSION

Rank learning is an effective strategy to address inter-
individual differences in food metabolism. Given a small

number of reference meals from a given subject, or phenotype-
matched subjects, our model can be used to discriminate meals
with low- and high-glycemic loads. Our results indicate that
adding protein and fiber to a meal is far more effective at
reducing post-prandial hyperglycemia than fats.
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