

000 001 002 003 004 005 SERI: GRADIENT-FREE SENSITIVE REGION IDENTIFI- 006 CATION IN DECISION-BASED BLACK-BOX ATTACKS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035

ABSTRACT

036 Deep neural networks (DNNs) are highly vulnerable to adversarial attacks, where
037 small, carefully crafted perturbations are added to input images to cause misclassifi-
038 cation. These perturbations are particularly effective when concentrated in *sensi-
039 tive regions* of an image. However, in decision-based black-box settings, where
040 only the top-1 predicted label is observable and query budgets are strictly limited,
041 identifying sensitive regions becomes extremely challenging. This issue is critical
042 because without accurate region information, decision-based attacks cannot refine
043 adversarial examples effectively, limiting both their efficiency and accuracy. We
044 propose *Sensitive Region Identification (SeRI)*, the first decision-based method
045 that assigns a continuous sensitivity score to each image pixel. It enables fine-
046 grained region discovery and substantially improves the efficiency of adversarial
047 attacks, all without access to gradients, confidence scores, or surrogate models.
048 SeRI progressively partitions the image into finer sub-regions and refines a con-
049 tinuous sensitivity score to capture their true importance. At each iteration, it
050 generates two perturbation variants of the selected region by scaling its magnitude
051 up or down, and compares their decision boundaries to derive an accurate, con-
052 tinuous characterization of pixel sensitivity. SeRI further divides selected region
053 into smaller sub-regions, recursively refining the search for sensitive areas. This
054 recursive refinement process enables more precise sensitivity estimation through
055 fine-grained analysis, distinguishing SeRI from prior binary or one-shot region
056 selection approaches. Experiments on two benchmark datasets show that SeRI
057 significantly enhances state-of-the-art decision-based attacks in both targeted and
058 non-targeted attack scenarios. Moreover, SeRI produces precise heatmaps of sen-
059 sitive image regions, providing strong validation of the attack process. The code
060 is available at <https://anonymous.4open.science/r/SeRI-5310>.
061
062

1 INTRODUCTION

063 Deep neural networks (DNNs) have achieved superiority in tasks such as image classification Brun-
064 ner et al. (2019). However, they remain highly susceptible to carefully crafted adversarial examples
065 generated by adversarial attacks Dong et al. (2020); Chen & Gu (2020); Chen et al. (2020a). Since
066 these vulnerabilities undermine the reliability and security of machine learning systems, adversarial
067 robustness has emerged as a central research focus. Li et al. (2021).

068 Adversarial attacks are typically grouped into **white-box** attacks Goodfellow et al. (2015); Carlini
069 & Wagner (2017); Madry et al. (2018), **gray-box** attacks (or soft-label attacks, score-based attacks,
070 confidence-based attacks) Chen et al. (2017); Ilyas et al. (2019), and **black-box** attacks Brendel
071 et al. (2018); Cheng et al. (2019); Chen & Gu (2020), based on how much information the attacker
072 can obtain about the target models. White-box and gray-box attacks require full or partial access to
073 the target model, such as its network architectures, parameters, or confidence scores, which is rarely
074 available in real-world scenarios Chen & Gu (2020). Consequently, black-box attacks have drawn
075 significant interest in the research community Cai et al. (2022).

076 Black-box attacks fall into two main categories: **transfer-based** Wang et al. (2024); Sun et al.
077 (2024); Park et al. (2024) and **decision-based** Chen & Gu (2020); Chen et al. (2020a); Reza et al.
078 (2023); Wang et al. (2025). Transfer-based attacks train a surrogate model using the target model’s
079 data and then generate adversarial examples via white-box attack techniques. However, poor per-

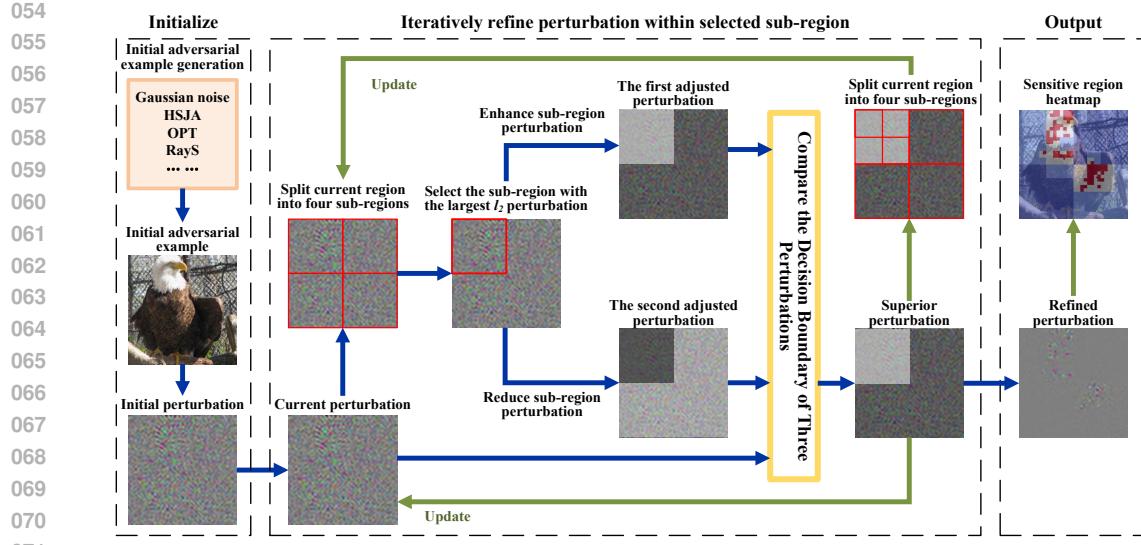


Figure 1: **Perturbation optimization process of SeRI.** The process starts by generating an initial adversarial example using Gaussian noise or a classical decision-based attack such as HSJA. The perturbation is split into four sub-regions, and the one with the highest ℓ_2 -norm is selected. Two new perturbations are created by enhancing or reducing the perturbation in that sub-region. SeRI compares their decision boundaries and keeps the one with the lowest value. In the next iteration, the selected sub-region is further subdivided for fine-grained optimization. A heatmap highlighting sensitive regions is then generated from the refined perturbation.

turbation transferability often limits their attack success rate Reza et al. (2023). Decision-based attacks Brendel et al. (2018); Chen et al. (2020a); Chen & Gu (2020); Reza et al. (2023); Wang et al. (2025) aim to mislead a target DNN model by introducing minimal perturbations while operating under a limited query budget Li et al. (2021). Unlike white-box, gray-box, or transfer-based attacks, they do not rely on the target model’s training data, architecture, or output confidence scores. Instead, they operate purely on the model’s top-1 predicted label, which is often available in real-world systems Dong et al. (2019); Brunner et al. (2019).

The role of sensitive regions in adversarial attacks. It is well known that an image typically consists of both **sensitive regions** (i.e., salient objects like an eagle’s head in Figure 2-(b)) and **non-sensitive regions** (i.e., irrelevant backgrounds in Figure 2-(b)). Focusing perturbations on sensitive regions, which are areas that contribute mostly to the model’s prediction, has been shown to significantly improve the success rate of adversarial attacks. However, due to the limited information access and strict query constraints in black-box attack settings, identifying sensitive regions becomes a significant challenge Shi et al. (2022); Lin et al. (2023). Existing black-box attacks generally adopt two primary strategies to exploit sensitive regions.

The **first strategy** gives rise to the **transfer-based region-aware approaches** Chen et al. (2020b); Dong et al. (2020); Lovisotto et al. (2022); Lin et al. (2023). These methods generate sensitive region heatmaps from a surrogate model using white-box interpretability techniques, and then use the heatmaps to guide perturbation generation on the target model. However, models with different architectures, such as Vision Transformers Dosovitskiy (2020) and ResNets He et al. (2016), often focus on distinct features or regions Shi et al. (2022). As a result, the heatmaps generated from the surrogate model may fail to capture the decision-critical regions of the target model, leading to suboptimal attack performance.

The **second strategy** relies on **decision-based region sensitivity estimation**, where sensitivity is inferred from the model’s top-1 prediction. PAR Shi et al. (2022) is the primary method that exemplifies this approach with a patch-wise removal strategy: it deletes a perturbation block, queries the model, and labels the region as sensitive or not based on the hard-label prediction. To reduce query cost, PAR further uses a binary decision process that either keeps or removes the perturbation in a region, without any fine-grained adjustment. This approach restricts exploration of the solution

space, leading to lower attack success rates. In reality, different pixels respond to perturbations with varying levels of sensitivity. This means *perturbations should be weighted in proportion to each pixel's sensitivity*, rather than applied in an all-or-nothing manner where an entire region is either kept or removed.

We introduce a **new definition of region sensitivity** grounded in the perturbation decision boundary (see Section 4 for details). Unlike prior binary formulations, this new definition enables a continuous and fine-grained quantification of sensitivity, providing a principled foundation for adaptive perturbation refinement in decision-based attacks. Different from PAR that treats each region as either sensitive or insensitive in PAR, our approach introduces an innovative *continuous sensitivity formulation* that assigns a perturbation weight score to each pixel. It enables *fine-grained control* over perturbation strength across regions, leading to targeted and effective perturbation optimization.

Building on this definition, we propose *Sensitive Region Identification* (SeRI), an approach that is efficient in both computation and queries, to adaptively optimize perturbations down to the level of individual pixels. SeRI is simple to implement in decision-based attack settings and can be seamlessly integrated as a plug-in perturbation optimizer to refine the perturbations generated by various baseline attackers like CGBA Reza et al. (2023). This “Attacker + SeRI” framework significantly enhances baseline attacker with minimal query-budget.

An overview of our approach is illustrated in Figure 1. Specifically, we generate two perturbation variants by either increasing or decreasing the perturbation strength within the selected region. These two variants, along with the original perturbation, are then compared based on their decision boundaries. For this comparison, we adopt the Approximation Decision Boundary Approach (ADBA) Wang et al. (2025), which operates effectively with a minimal query budget. The current perturbation is subsequently updated with the variant that yields the smallest estimated decision boundary. Experimental results on two datasets and three models confirm its effectiveness and generalizability. The sensitivity-region heatmaps and the corresponding optimized perturbations produced by Seri are shown in Figure 1. The perturbation optimization by focusing on the regions that align with human visual perception, the

2 RELATED WORK

Decision-based attacks represent one of the most challenging setting in adversarial robustness, as only the model’s top-1 predicted label is observable and no gradient information is available Chen & Gu (2020). Boundary Attack Brendel et al. (2018), Biased Boundary Attack Brunner et al. (2019) and AHA Li et al. (2021) perform random walks along the decision boundary to gradually reduce the perturbation strength. Triangle Attack Wang et al. (2022) designs a structured triangle-based perturbation in the low-frequency domain to improve efficiency. SurFree Maho et al. (2021) explores

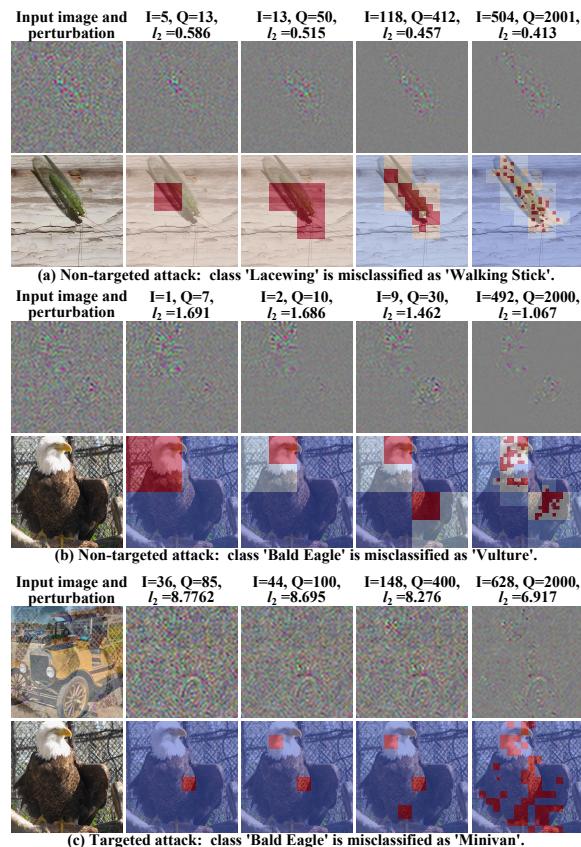


Figure 2: Heatmaps generated by SeRI, showing how the heatmaps, perturbations, and their ℓ_2 -norms evolve over iterations (I) and queries (Q).

2. SeRI's precise thermal grading not only accelerates the most influential regions, but also produces heatmaps thereby enhancing the interpretability of the attack process.

multiple carefully chosen perturbation directions simultaneously, without relying on gradient estimation. OPT Cheng et al. (2019) and Sign-OPT Cheng et al. (2020) reformulate the decision-based attacks as continuous optimization problem solvable via zeroth-order methods. RayS Chen & Gu (2020) and ADBA Wang et al. (2025) use a progressive search strategy that adaptively subdivides perturbation directions to accelerate convergence. Some attacks guide perturbation optimization by estimating the normal vector of the decision boundary at a boundary point. For example, qFool Liu et al. (2019) and GeoDA Rahmati et al. (2020) improve gradient estimation efficiency by leveraging the fact that decision boundaries near adversarial examples typically have low curvature. QEBA Li et al. (2020) reduces query complexity by performing subspace optimization in both the spatial and the frequency domains. HSJA Chen et al. (2020a), TA Ma et al. (2021), and BounceAttack Wan et al. (2024) estimates normal vectors to generate adversarial example. Achieving state-of-the-art performance under the ℓ_2 -norm, CGBA Reza et al. (2023) introduces a novel semicircular search strategy within a two-dimensional subspace to effectively navigate geometric complexities.

Although recent decision-based attacks achieve good performance, they usually ignore which region of the image are more sensitive to the model. Because they generate global perturbations without considering regional differences, the perturbations are often large and easy to notice.

Sensitive region-based attacks. Many classical XAI methods such as Grad-CAM Selvaraju et al. (2017), Occlusion Zeiler & Fergus (2014), LIME Ribeiro et al. (2016), and SHAP Lundberg & Lee (2017) can highlight important or influential regions of an input image. However, these methods are primarily designed to explain the prediction behavior of a model rather than to identify regions that are most useful for generating adversarial perturbations. In addition, they rely on gradients, confidence scores, or internal activations to compute importance, all of which are unavailable in hard-label decision-based attacks. Nonetheless, these interpretability techniques provide a natural motivation for using sensitive regions to guide perturbation generation in adversarial attacks.

Building on this idea, existing work attempts to explicitly use sensitive regions to improve attack quality. These methods can be broadly categorized into three groups: (1) attention-based methods Dong et al. (2020); Chen et al. (2020b), (2) surrogate-based methods Lin et al. (2023) and (3) decision-based methods Shi et al. (2022); Tao et al. (2023).

Superpixel-guided Attentional Attack (SGA) Dong et al. (2020) perturbs only the regions selected by attention maps. Attack on Attention (AoA) Chen et al. (2020b) optimizes an attention-based loss to improve transferability. However, both SGA and AoA need attention maps or activation features, which require white-box access and cannot be used in hard-label black-box settings. To avoid these requirements, SRA Lin et al. (2023) uses a surrogate model to generate sensitivity maps, but it needs the target dataset to be known. SaliencyAttack Dai et al. (2023) uses model-agnostic saliency detection, but the saliency maps may be inaccurate and fail to locate the truly important regions. Decision-based attacks such as HardBeat Tao et al. (2023) search for one vulnerable patch and perturb only that patch. However, when multiple regions jointly affect the classifier, focusing on only one patch becomes incomplete. PAR Shi et al. (2022) estimates region sensitivity through a patch-wise removal strategy, but its binary keep/remove decision is coarse and cannot reflect continuous importance inside each region. Overall, current methods cannot provide *continuous* region sensitivity under the strict decision-based setting.

3 PROBLEM DEFINITION

Let $p \in [0, 1]$ be an image pixel and $x = p^{C \times W \times H}$ represent a source image with channels C , width W , and height H , respectively, and $y(x)$ denote the true label of x . Let $f : x \rightarrow \{1, \dots, K\}$ represent a K -class image classification model. Given a source image x which is classified correctly by model f (i.e., $f(x) = y(x)$). The goal of a *decision-based black-box attacker* is to find an adversarial example $\tilde{x} = \tilde{p}^{C \times W \times H}, \tilde{p} \in [0, 1]$, such that $f(\tilde{x}) \neq y(x)$ for *non-targeted attacks*, or $f(\tilde{x}) = f(x_{\text{tar}})$ for *targeted attacks*, while minimizing the perturbation strength $\|\tilde{x} - x\|_2$. Here, x_{tar} is a given target image and $f(x_{\text{tar}}) \neq y(x)$, and $\|\cdot\|_2$ stands for the ℓ_2 -norm used to measure the perturbation strength. The problem of optimizing the adversarial example \tilde{x} can be formulated as:

$$\arg \min_{\tilde{x}} \|\tilde{x} - x\|_2 \quad \text{s.t. } I(\tilde{x}) = 1, \quad (1)$$

216 where $I(\cdot)$ is an indicator function that determines whether the adversarial example \tilde{x} is in the
 217 adversarial regions. For a non-targeted attack:

$$219 \quad I(\tilde{x}) = \begin{cases} 1, & \text{if } f(\tilde{x}) \neq y(x), \\ 220 & -1, \quad \text{otherwise.} \end{cases} \quad (2)$$

221 For a targeted attack with a targeted image x_{target} :

$$223 \quad I(\tilde{x}) = \begin{cases} 1, & \text{if } f(\tilde{x}) = f(x_{\text{target}}), \\ 224 & -1, \quad \text{otherwise.} \end{cases} \quad (3)$$

225 Let a perturbation be denoted as $d = v^{C \times W \times H}$, where $v \in [-1, 1]$. An adversarial example \tilde{x} is
 226 then given by $\tilde{x} = \text{clamp}(x + (\tilde{x} - x)) = \text{clamp}(x + d) = \text{clamp}(x + \|d\|_2 \cdot \frac{d}{\|d\|_2})$, where $\text{clamp}(\cdot)$
 227 constrains each image pixel to the range $[0, 1]$. We define the decision boundary for any perturbation
 228 d as $g(d) = \min\{r > 0 : I(x + r \cdot \frac{d}{\|d\|_2}) = 1\}$. Consequently, the optimization problem in Eq. 1
 229 can be reformulated as:

$$231 \quad \arg \min_d g(d) \quad \text{s.t. } I(x + g(d) \cdot \frac{d}{\|d\|_2}) = 1. \quad (4)$$

234 4 PROPOSED APPROACH

235 The proposed SeRI approach is applied after a base attacker (e.g., HSJA), refining its perturbation
 236 by identifying sensitive regions through additional queries. With total query budget Q and SeRI
 237 query budget fraction P , query allocation is $(1 - P) \cdot Q$ for the base attacker and $P \cdot Q$ for SeRI. In
 238 this paper, we set $P = 20\%$ for all datasets and models, based on the parameter sensitivity analysis
 239 presented in Appendix C of the supplementary material. The introduction of base attackers are
 240 introduced in Section 2. Here, we focus on our proposed SeRI approach.

243 4.1 DEFINITION OF PERTURBATION SENSITIVITY

244 Existing sensitivity definitions can be roughly grouped into two families: gradient-based definitions
 245 and perturbation-based definitions. **Gradient-based definitions**, such Integrated Gradients (IG)
 246 Sundararajan et al. (2017), Grad-CAM Selvaraju et al. (2017), and their variants, define the sensitivity
 247 of a pixel by the gradient of a target score with respect to the input. Let $x \in [0, 1]^{C \times W \times H}$
 248 denote the input image, $y(x)$ its true label, and $f_{y(x)}(x)$ the logit (or score) for class $y(x)$. A typical
 249 pixel-wise sensitivity can be written as

$$251 \quad s_{c,w,h} = \left| \frac{\partial f_{y(x)}(x)}{\partial x_{c,w,h}} \right|, \quad s_{w,h} = \sum_{c=1}^C \left| \frac{\partial f_{y(x)}(x)}{\partial x_{c,w,h}} \right|. \quad (5)$$

252 Such definitions capture which pixels or regions are most influential for the model’s internal decision.
 253 However, they are not directly usable in decision-based black-box attacks, where gradients
 254 with respect to the input are completely unavailable.

255 **Perturbation-based definitions** estimate sensitivity by actively modifying the input and observing
 256 how the model output changes. Representative examples include Occlusion-Based explanations
 257 Zeiler & Fergus (2014), SRA Lin et al. (2023), and PAR Shi et al. (2022). Occlusion and SRA
 258 define pixel-wise sensitivity via the drop in the predicted confidence of the true class after perturbing
 259 a single pixel. Let $p_{y(x)}(x)$ denote the predicted probability of class $y(x)$. For each spatial location
 260 (w, h) , they consider a small ℓ_∞ perturbation of size $t > 0$ on all channels at that pixel:

$$263 \quad s_{w,h} = \frac{p_{y(x)}(x) - p_{y(x)}(x + t \mathbf{e}_{w,h})}{t}, \quad (6)$$

264 where $\mathbf{e}_{w,h} \in \mathbb{R}^{C \times W \times H}$ is zero everywhere except at pixel (w, h) , with all C channels equal to 1.
 265 Intuitively, $s_{w,h}$ measures how much the true-class probability decreases when only pixel (w, h) is
 266 slightly perturbed, and thus serves as a pixel-wise sensitivity score in the black-box setting.

267 PAR, on the other hand, defines sensitivity at the patch level. Let \tilde{x} be an adversarial example
 268 for x , and $d = \tilde{x} - x$ the corresponding perturbation. For a region (patch) b with binary mask

270 $M_b \in \{0, 1\}^{C \times W \times H}$, PAR uniformly rescales the perturbation inside b by a factor $\kappa \in [0, 1]$, and
 271 the region-wise sensitivity of b is then defined as:
 272

$$273 \quad 274 \quad S_{\text{PAR}}(b) = \min \left\{ \kappa \in [0, 1] : I(x + d^{(b, \kappa)}) = 1 \right\}, \quad d^{(b, \kappa)} = d - (1 - \kappa) d \odot M_b, \quad (7)$$

275

276 where \odot denotes element-wise multiplication and $I(\cdot)$ is an indicator function. A smaller value of
 277 $S_{\text{PAR}}(b)$ means that more perturbation in region b can be removed while keeping the perturbation
 278 adversarial, hence b is less sensitive; a larger value indicates a more sensitive region.
 279

280 **Limitations of existing perturbation-based sensitivity definitions.** Although intuitively appealing,
 281 the above perturbation-based sensitivity notions have fundamental limitations when applied to
 282 *continuously optimizing adversarial perturbations* in decision-based attacks. While the sensitivity
 283 scores in Occlusion, SRA, and PAR are real-valued, they do not provide guidance on how to adjust
 284 perturbation strength in a smooth, continuous manner.
 285

286 For Occlusion and SRA, the sensitivity $s_{w, h}$ indicates the drop in confidence when pixel (w, h) is
 287 perturbed, but it does not specify how the perturbation strength at each pixel should be rescaled
 288 relative to others to make the global adversarial perturbation more effective, e.g., to reduce the
 289 decision-boundary. For PAR, $S_{\text{PAR}}(b)$ gives the maximal compression ratio that preserves attack
 290 success for each patch b , but this value still cannot serve as a continuous scaling factor for perturba-
 291 tion refinement. Reducing perturbation strength in a patch exactly to its PAR threshold produces an
 292 adversarial example that is only barely successful; any further reduction in other regions may cause
 293 immediate attack failure. This makes smooth, iterative refinement essentially infeasible.
 294

295 In summary, these sensitivity definitions characterize *local relationships* between perturbation
 296 changes and model outputs (scores or labels), but they do not explicitly capture how local adjust-
 297 ments influence the *global effectiveness* of the perturbation. For decision-based black-box attacks,
 298 we argue that a more appropriate notion of perturbation sensitivity should be defined in terms of its
 299 impact on the overall adversarial effectiveness, as quantified by the decision-boundary $g(d)$.
 300

301 **Our decision-boundary-based sensitivity definition.** Given a target DNN model f , its indicator
 302 function $I(\cdot)$, an original image x , and an initial perturbation d that successfully deceives the model
 303 (i.e., $I(x + d) = 1$), we define the model’s adversarial perturbation sensitivity as a tensor $S \in \mathbb{R}^{C \times W \times H}$, where each element $s_{c, w, h} \geq 0$ represents the sensitivity weight of pixel (c, w, h) . In
 304 the decision-based setting, we seek a transformed perturbation $S \cdot d$ (element-wise product) that
 305 minimizes the decision boundary $g(S \cdot d)$. To ensure that the overall perturbation strength remains
 306 unchanged, we enforce an ℓ_2 -norm constraint $\|S \cdot d\|_2 = \|d\|_2$. Accordingly, the task of optimizing
 307 perturbations based on sensitivity becomes
 308

$$309 \quad \arg \min_S g(S \cdot d), \quad \text{subject to } \|S \cdot d\|_2 = \|d\|_2. \quad (8)$$

310

311 SeRI perturbation refinement

312 Eq. 8 defines a continuous optimization problem over a high-dimensional space $S \in \mathbb{R}^{C \times W \times H}$,
 313 which makes the problem especially challenging to solve. To manage this complexity, we adopt
 314 an iterative region-splitting strategy. We start from the initial region $b^0 = \{1:C, 1:W, 1:H\}$ and
 315 maintain a set of non-overlapping blocks \mathcal{B}^i at iteration i , with $\mathcal{B}^0 = \{b^0\}$. At each iteration, we
 316 adjust the perturbation only within a single block and then subdivide this block into smaller sub-
 317 regions. In practice, each selected block is split into four equal sub-regions; Appendix B.1 shows
 318 that the efficiency of SeRI is largely insensitive to this choice.
 319

320 Given the current perturbation d^i and block set \mathcal{B}^i , we select one region to optimize based on its
 321 local ℓ_2 -norm: we set $b^* = \arg \max_{b \in \mathcal{B}^i} \|d^i_{[b]}\|_2$, where $d^i_{[b]}$ denotes the restriction of d^i to region
 322 b . This heuristic prioritizes regions with larger local perturbation, which have greater potential for
 323 perturbation reduction. After updating d^i within b^* , we replace b^* in \mathcal{B}^i by its four sub-regions to
 324 obtain \mathcal{B}^{i+1} , enabling progressively finer control.
 325

326 Once a region b^* is selected, we assess its sensitivity by measuring how local rescaling of the pertur-
 327 bation in b^* changes the overall decision boundary. Let $M_{b^*} \in \{0, 1\}^{C \times W \times H}$ be the binary mask
 328

324 of b^* , where entries inside b^* are 1 and 0 elsewhere. We construct three candidate perturbations:
 325

$$\begin{aligned} 326 \quad d_0^i &= d^i, \\ 327 \quad d_1^i &= \frac{\|d^i\|_2}{\|d^i + (\check{k} - 1) d^i \odot M_{b^*}\|_2} (d^i + (\check{k} - 1) d^i \odot M_{b^*}), \\ 328 \quad d_2^i &= \frac{\|d^i\|_2}{\|d^i + (\hat{k} - 1) d^i \odot M_{b^*}\|_2} (d^i + (\hat{k} - 1) d^i \odot M_{b^*}), \\ 329 \end{aligned} \quad (9)$$

330 where $0 < \check{k} < 1 < \hat{k}$ and \odot denotes element-wise multiplication. To keep the overall perturbation
 331 strength unchanged, all candidates are normalized to have the same ℓ_2 -norm as d^i . We then choose
 332

$$333 \quad j^* = \arg \min_{j \in \{0, 1, 2\}} g(d_j^i), \text{ and update } d^{i+1} = d_{j^*}^i. \quad (10)$$

334 If $j^* = 1$, the perturbation in b^* is reduced; if $j^* = 2$, it is enhanced; if $j^* = 0$, no change is applied,
 335 indicating that b^* is already close to locally optimal.
 336

337 This adaptive update strategy guarantees a monotonic decrease of the decision-boundary distance at
 338 each iteration and progressively steers the perturbation of each pixel toward its optimal sensitivity
 339 level under the ℓ_2 constraint. Theoretical justifications of this monotonic improvement and conver-
 340 gence to a stationary perturbation are provided in Appendix A. The complete procedure of SeRI is
 341 summarized in Algorithm 1 of Appendix B.
 342

343 Comparing decision boundaries of candidate perturbations

344 In Eq. 10, SeRI updates the current perturbation by selecting the best candidate among d_0 , d_1 , and d_2
 345 based on their decision-boundary. This requires a query-efficient procedure to compare the decision
 346 boundaries. We adopt the Approximation Decision Boundary Approach (ADBA) Wang et al. (2025),
 347 which is specifically designed for low-cost decision-boundary comparisons (see Appendix B.2 for
 348 details). As a result, SeRI is highly query-efficient. For example, as shown in Figure 2(a), optimizing
 349 a single perturbation over 504 SeRI iterations consumes only 2001 queries in total, i.e., about four
 350 queries per iteration ($2001/504 \approx 3.97$).
 351

352 The effectiveness of ADBA relies on several standard assumptions, SeRI, which builds upon ADBA,
 353 also inherits these assumptions (stated in detail in Appendix A.1): (1) local Lipschitz continuity of
 354 the decision boundary, (2) locally bounded curvature of the decision boundary, and (3) deterministic
 355 hard-label outputs of the target model. Assumptions (1) and (2) are mild and are typically satisfied
 356 by modern deep networks such as CNNs and Vision Transformers. Assumption (3), however, rules
 357 out randomized defenses (e.g., randomized smoothing or random input transformations Xie et al.
 358 (2018); Raff et al. (2019)), and thus SeRI is not intended for such settings. But for other defenses
 359 that would not break these three assumptions, such as adversarial training (AT) Zagoruyko (2016)
 360 and Lipschitz-based defenses Tsuzuku et al. (2018); Araujo et al. (2023)
 361

362 5 EXPERIMENTS

363 SeRI improves the perturbations generated by base attackers (e.g., HSJA) by identifying and refin-
 364 ing sensitive regions through additional queries. To be effective, the combined ‘‘Attacker + SeRI’’
 365 pipeline must offer better overall query efficiency than the base attacker alone. SeRI is also ex-
 366 pected to outperform other sensitivity-aware refinement methods in terms of query usage. To verify
 367 these questions, SeRI is evaluated on two famous image classification datasets. SeRI is further
 368 compared against multiple decision-based and sensitivity-based attack methods in both targeted and
 369 non-targeted settings. All experiments were performed using an Intel Xeon Gold 6330 CPU and four
 370 NVIDIA GeForce RTX 4090 GPUs with PyTorch 2.3.0, Torchvision 0.18.0, and Python 3.11.5.
 371

372 5.1 EXPERIMENT SETTINGS

373 **Competing approaches.** We compare the performance of SeRI with five well-known decision-
 374 based attacks, including HSJA, Chen et al. (2020a), CGBA Reza et al. (2023), RayS Chen & Gu
 375 (2020), ADBA Wang et al. (2025), and PAR Shi et al. (2022). HSJA and CGBA operate under the
 376 ℓ_2 -norm constraint, with CGBA representing the state of the art among such attacks. Additionally,
 377

378
379
380
Table 1: Average (median) ℓ_2 perturbation norms for targeted and non-targeted attacks on ImageNet
using a VGG model.

381 382 Total Query	383 384 385 386 387 388 389 390 391 392 393 Non-targeted attacks			383 384 385 386 387 388 389 390 391 392 393 Targeted attacks		
	2,000	3,000	10,000	2,000	5,000	10,000
HSJA	8.18(5.29)	4.43(2.51)	3.39(1.91)	72.3(66.5)	50.6(36.9)	33.7(20.8)
HSJA+PAR	6.65(3.61)	3.88(2.35)	3.08(1.82)	53.0(50.1)	35.4(32.3)	20.4(14.0)
HSJA+SeRI	6.47(3.55)	3.63(2.22)	2.85(1.51)	48.3(46.5)	32.0(29.9)	18.5(12.3)
CGBA	3.91(2.02)	1.91(1.10)	1.19(0.75)	77.4(74.9)	58.8(56.4)	40.2(33.1)
CGBA+PAR	2.81(1.55)	1.46(0.85)	1.03(0.64)	58.3(55.1)	39.4(37.8)	23.1(15.6)
CGBA+SeRI	2.92(1.39)	1.36(0.70)	0.96(0.54)	53.0(50.0)	36.0(33.2)	21.1(13.3)
RayS	5.14(3.50)	3.54(2.27)	2.72(1.76)	-	-	-
RayS+PAR	3.48(2.38)	2.23(1.37)	1.75(1.07)	-	-	-
RayS+SeRI	3.46(2.29)	2.16(1.27)	1.56(0.92)	-	-	-
ADBA	4.04(2.77)	3.03(1.94)	2.44(1.53)	-	-	-
ADBA+PAR	2.82(1.74)	2.02(1.19)	1.67(0.99)	-	-	-
ADBA+SeRI	2.78(1.71)	1.95(1.07)	1.49(0.87)	-	-	-

394
395
396
Table 2: Average (median) ℓ_2 perturbation norms for targeted and non-targeted attacks on ImageNet
using a ViT model.

397 398 Total Query	399 399 Non-targeted attacks			399 399 Targeted attacks		
	2,000	3,000	10,000	2,000	5,000	10,000
HSJA	13.2(9.47)	6.78(4.27)	4.18(2.88)	34.3(30.0)	16.0(15.2)	8.09(7.94)
HSJA+PAR	9.62(6.19)	4.98(3.33)	3.85(2.46)	27.7(24.1)	13.0(9.13)	6.35(5.54)
HSJA+SeRI	9.02(4.40)	4.13(1.95)	3.25(2.21)	26.9(23.1)	12.0(8.81)	6.15(5.27)
CGBA	4.59(3.13)	2.33(1.52)	1.59(1.05)	36.6(31.3)	14.1(10.3)	5.80(4.73)
CGBA+PAR	3.67(2.36)	2.08(1.45)	1.40(0.94)	29.3(25.6)	12.4(8.42)	4.79(4.26)
CGBA+SeRI	3.53(1.99)	1.89(1.29)	1.27(0.85)	29.0(24.0)	11.9(8.09)	4.61(3.91)
RayS	10.7(5.24)	7.20(3.50)	5.15(2.79)	-	-	-
RayS+PAR	7.05(3.75)	4.62(2.61)	3.33(2.02)	-	-	-
RayS+SeRI	7.01(3.69)	4.52(2.00)	3.20(1.55)	-	-	-
ADBA	7.56(5.06)	5.03(3.63)	3.65(2.71)	-	-	-
ADBA+PAR	5.67(3.65)	3.87(2.60)	2.82(1.95)	-	-	-
ADBA+SeRI	5.53(3.62)	3.59(2.10)	2.39(1.26)	-	-	-

411
412
413
414
415
416
417
418
419
420
both methods support both targeted and non-targeted attack scenarios. Meanwhile, RayS and ADBA
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
499
500
501
502
503
504
505
506
507
508
509
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
50100
50101
50102
50103
50104
50105
50106
50107
50108
50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
50121
50122
50123
50124
50125
50126
50127
50128
50129
50130
50131
50132
50133
50134
50135
50136
50137
50138
50139
50140
50141
50142
50143
50144
50145
50146
50147
50148
50149
50150
50151
50152
50153
50154
50155
50156
50157
50158
50159
50160
50161
50162
50163
50164
50165
50166
50167
50168
50169
50170
50171
50172
50173
50174
50175
50176
50177
50178
50179
50180
50181
50182
50183
50184
50185
50186
50187
50188
50189
50190
50191
50192
50193
50194
50195
50196
50197
50198
50199
50200
50201
50202
50203
50204
50205
50206
50207
50208
50209
50210
50211
50212
50213
50214
50215
50216
50217
50218
50219
50220
50221
50222
50223
50224
50225
50226
50227
50228
50229
50230
50231
50232
50233
50234
50235
50236
50237
50238
50239
50240
50241
50242
50243
50244
50245
50246
50247
50248
50249
50250
50251
50252
50253
50254
50255
50256
50257
50258
50259
50260
50261
50262
50263
50264
50265
50266
50267
50268
50269
50270
50271
50272
50273
50274
50275
50276
50277
50278
50279
50280
50281
50282
50283
50284
50285
50286
50287
50288
50289
50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
502100
502101
502102
502103
502104
502105
502106
502107
502108
502109
502110
502111
502112
502113
502114
502115
502116
502117
502118
502119
502120
502121
502122
502123
502124
502125
502126
502127
502128
502129
502130
502131
502132
502133
502134
502135
502136
502137
502138
502139
502140
502141
502142
502143
502144
502145
502146
502147
502148
502149
502150
502151
502152
502153
502154
502155
502156
502157
502158
502159
502160
502161
502162
502163
502164
502165
502166
502167
502168
502169
502170
502171
502172
502173
502174
502175
502176
502177
502178
502179
502180
502181
502182
502183
502184
502185
502186
502187
502188
502189
502190
502191
502192
502193
502194
502195
502196
502197
502198
502199
502200
502201
502202
502203
502204
502205
502206
502207
502208
502209
502210
502211
502212
502213
502214
502215
502216
502217
502218
502219
502220
502221
502222
502223
502224
502225
502226
502227
502228
502229
5022210
5022211
5022212
5022213
5022214
5022215
5022216
5022217
5022218
5022219
5022220
5022221
5022222
5022223
5022224
5022225
5022226
5022227
5022228
5022229
50222210
50222211
50222212
50222213
50222214
50222215
50222216
50222217
50222218
50222219
50222220
50222221
50222222
50222223
50222224
50222225
50222226
50222227
50222228
50222229
502222210
502222211
502222212
502222213
502222214
502222215
502222216
502222217
502222218
502222219
502222220
502222221
502222222
502222223
502222224
502222225
502222226
502222227
502222228
502222229
5022222210
5022222211
5022222212
5022222213
5022222214
5022222215
5022222216
5022222217
5022222218
5022222219
5022222220
5022222221
5022222222
5022222223
5022222224
5022222225
5022222226
5022222227
5022222228
5022222229
50222222210
50222222211
50222222212
50222222213
50222222214
50222222215
50222222216
50222222217
50222222218
50222222219
50222222220
50222222221
50222222222
50222222223
50222222224
50222222225
50222222226
50222222227
50222222228
50222222229
502222222210
502222222211
502222222212
502222222213
502222222214
502222222215
502222222216
502222222217
502222222218
502222222219
502222222220
502222222221
502222222222
502222222223
502222222224
502222222225
502222222226
502222222227
502222222228
502222222229
5022222222210
5022222222211
5022222222212
5022222222213
5022222222214
5022222222215
5022222222216
5022222222217
5022222222218
5022222222219
5022222222220
5022222222221
5022222222222
5022222222223
5022222222224
5022222222225
5022222222226
5022222222227
5022222222228
5022222222229
50222222222210
50222222222211
50222222222212
50222222222213
50222222222214
50222222222215
50222222222216
50222222222217
50222222222218
50222222222219
50222222222220
50222222222221
50222222222222
50222222222223
50222222222224
50222222222225
50222222222226
50222222222227
50222222222228
50222222222229
502222222222210
502222222222211
502222222222212
502222222222213
502222222222214
502222222222215
502222222222216
502222222222217
502222222222218
502222222222219
502222222222220
502222222222221
502222222222222
502222222222223
502222222222224
502222222222225
502222222222226
502222222222227
502222222222228
502222222222229
5022222222222210
5022222222222211
5022222222222212
5022222222222213
5022222222222214
5022222222222215
5022222222222216
5022222222222217
5022222222222218
5022222222222219
5022222222222220
5022222222222221
5022222222222222
5022222222222223
5022222222222224
5022222222222225
5022222222222226
5022222222222227
5022222222222228
5022222222222229
50222222222222210
50222222222222211
50222222222222212
50222222222222213
50222222222222214
50222222222222215
50222222222222216
50222222222222217
50222222222222218
50222222222222219
50222222222222220
50222222222222221
50222222222222222
50222222222222223
50222222222222224
50222222222222225
50222222222222226
50222222222222227
50222222222222228
50222222222222229
502222222222222210
502222222222222211
502222222222222212
502222222222222213
502222222222222214
502222222222222215
502222222222222216
502222222222222217
502222222222222218
502222222222222219
502222222222222220
502222222222222221
502222222222222222
502222222222222223
502222222222222224
502222222222222225
502222222222222226
502222222222222227
502222222222222228
502222222222222229
5022222222222222210
5022222222222222211
5022222222222222212
5022222222222222213
5022222222222222214
5022222222222222215
5022222222222222216
5022222222222222217
5022222222222222218
5022222222222222219
5022222222222222220
5022222222222222221
5022222222222222222
5022222222222222223
5022222222222222224
5022222222222222225
5022222222222222226
5022222222222222227
5022222222222222228
5022222222222222229
50222222222222222210
50222222222222222211
50222222222222222212
50222222222222222213
50222222222222222214
50222222222222222215
50222222222222222216
50222222222222222217
50222222222222222218
50222222222222222219
50222222222222222220
50222222222222222221
50222222222222222222
50222222222222222223
50222222222222222224
50222222222222222225
50222222222222222226
50222222222222222227
50222222222222

432 size to 56 and 1, respectively. In SeRI, according to the parameter sensitive analysis in Appendix C,
 433 the thresholds $\hat{k} = 0.2$ and $\hat{k} = 1.8$, and the query budget percentage P is set to $P = 20\%$.
 434

435 **5.2 EXPERIMENT RESULTS**
 436

437 For each model, we randomly select 1000 test images. Tables 1 and 2 present the average and
 438 median ℓ_2 -norms achieved by all competing approaches under query budgets of 2,000, 5,000, and
 439 10,000, for both non-targeted and targeted attacks. The best values are highlighted in bold.
 440

441 **Main results.** As shown in Table 1, CGBA+SeRI achieves the best non-targeted attack performance
 442 at both 5,000 and 10,000 queries, outperforming others in terms of average and median ℓ_2 -norms. At
 443 2,000 queries, it achieves the best median performance, while ADBA+SeRI obtains the lowest av-
 444 erage ℓ_2 norm. For targeted attacks, HSJA+SeRI consistently achieves the best performance across
 445 all query budgets. As evidenced in Table 2, CGBA+SeRI consistently outperforms other methods in
 446 both non-targeted and targeted attacks at 5,000 and 10,000 queries, achieving the lowest average and
 447 median ℓ_2 norms. The only exception is at 2,000 queries for targeted attacks, where HSJA+SeRI
 448 performs better.
 449

450 The results show that the “Attacker + SeRI” variants consistently deliver the best performance across
 451 all attack settings. For any given base attacker (e.g., CGBA), combining it with SeRI outperforms
 452 both the attacker alone and its “Attacker + PAR” counterpart. Particularly, for the targeted attack
 453 results in Table 1, “Attacker + SeRI” achieves superior performance across all query budgets. These
 454 results confirm that SeRI’s region sensitivity estimation significantly enhances the query efficiency
 455 of decision-based attacks.
 456

457 **Results on adversarially trained
 458 WRN model.** Similar to the results
 459 on non-adversarially trained VGG
 460 and ViT models, Table 3 shows that
 461 CGBA+SeRI achieves the best per-
 462 formance at 2,000, 5,000, and 10,000
 463 queries. Additionally, in Table 3,
 464 “Attacker + SeRI” reduces the ℓ_2 -
 465 norm of perturbations by approxi-
 466 mately 30% compared to “Attacker +
 467 PAR”. It also reduces the ℓ_2 -norm by
 468 15% compared to “Attacker + PAR”,
 469 as evidenced in Tables 1 and 2. These
 470 results indicate that SeRI provides a
 471 greater performance gain on ad-
 472 versarially trained WRN models than
 473 on non-adversarially trained models.
 474

475 This performance advantage is likely due to the increased difficulty of attacking adversarially trained
 476 WRN models, which demands more precise and adaptive perturbation optimization. PAR’s binary
 477 decision mechanism is less effective against the stronger defenses of adversarially trained WRN
 478 models. In contrast, SeRI’s fine-grained sensitivity search enables significantly better performance
 479 in this challenging setting.
 480

481 **5.3 HEATMAPS GENERATED BY SERI**
 482

483 Figure 2 shows the heatmaps over sensitivity regions generated by SeRI across different optimiza-
 484 tion iterations and queries. More heatmaps generated by SeRI and PAR can be found in Appendix D.
 485 In these heatmaps, regions with stronger red intensity indicate areas where SeRI increases pertur-
 486 bation strength, while regions with stronger blue intensity mark non-sensitive areas where pertur-
 487 bation strength is reduced. In Figure 2-(a), the class ‘Lacewing’ is initially misclassified as ‘Walking Stick’.
 488 With more iterations, the high-intensity regions in the heatmap increasingly converge and concen-
 489 trate on the lacewing itself. This example demonstrates the precise thermal grading capability of
 490 our SeRI method, which is superior than competing PAR method (see Appendix D for details). At
 491 the 504th iteration, the background is completely marked as blue low-intensity regions, most of the
 492 lacewing area is highlighted in intense red, indicating high sensitivity. The transitional areas, includ-
 493

494 **Table 3: Average (median) ℓ_2 perturbation norms for non-
 495 targeted attacks on CIFAR100 using a WideResNet model.**

Total Query	2,000	5,000	10,000
HSJA	3.26(2.22)	1.75(1.15)	1.26(0.88)
HSJA+PAR	2.59(1.74)	1.52(0.79)	1.18(0.83)
HSJA+SeRI	2.08(1.41)	1.40(0.70)	1.13(0.63)
CGBA	2.20(1.54)	1.48(1.01)	1.19(0.84)
CGBA+PAR	1.71(1.14)	1.22(0.73)	1.07(0.65)
CGBA+SeRI	1.48(0.86)	1.14(0.67)	1.02(0.62)
RayS	3.17(2.22)	2.68(1.84)	2.49(1.69)
RayS+PAR	2.54(1.79)	2.29(1.70)	2.15(1.49)
RayS+SeRI	1.79(1.28)	1.55(1.08)	1.44(1.01)
ADBA	2.93(2.13)	2.62(1.77)	2.46(1.67)
ADBA+PAR	2.41(1.80)	2.18(1.63)	2.09(1.50)
ADBA+SeRI	1.74(1.23)	1.50(1.09)	1.43(1.04)

486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 ing the lacewing’s wings and boundaries with the background, are marked in orange, corresponding to moderate-intensity regions. This precise thermal grading not only accelerates perturbation optimization but also aligns with human perception, making it highly interpretable.

498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 Similarly, in Figure 2-(b), the final heat regions converge on the bald eagle’s head and left wing areas. In the targeted attack shown in Figure 2-(c), the heatmap concentrates primarily on the Minivan’s wheel and door regions in the target image, which enables successful perturbations that misclassify the bald eagle as a Minivan. Note that the interpretive patterns suggested by these heatmaps are secondary effects of the optimization process and should not be interpreted as a complete explanation of model behavior.

496 5.4 FAILURE CASES AND WHEN SERI UNDER-PERFORMS

498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 While SeRI generally improves decision-based attack performance, its effectiveness can vary across different conditions. First, SeRI may under-perform on images with weak or diffuse salient structure, such as cluttered or texture-dominated scenes. In these cases, regional sensitivity becomes less informative, and SeRI provides only modest gains over the base attacker. Second, SeRI requires a moderate query budget to reliably estimate regional importance. Under very low query budgets (e.g., fewer than 50 queries), the region partition becomes too coarse for meaningful refinement, leading to diminishing improvements. Third, similar to all decision-based attacks, SeRI assumes stable outputs from the target model. Therefore, it is not applicable to randomized or stochastic defenses that introduce noise into model predictions, since such randomness breaks the boundary-consistency assumptions required for reliable sensitivity estimation. Recognizing these limitations helps clarify when SeRI is most effective and guides future extensions.

511 6 CONCLUSION AND FUTURE WORK

512
 513
 514
 515
 516
 517
 518
 519
 Sensitive regions in images play a crucial role in determining adversarial vulnerability. However, under strict decision-based black-box settings, it is challenging to identify such regions using only top-1 model predictions. To address this problem, we introduced a novel definition of region sensitivity based on perturbation decision boundaries. This formulation provides a principled and fine-grained way to characterize regional importance and is naturally suited for decision-based attacks. Building on this definition, we proposed SeRI, a new sensitivity-guided decision-based attack framework that adaptively allocates perturbations across regions. Extensive experiments demonstrate that SeRI not only improves the attack performance of state-of-the-art decision-based methods but also produces heatmaps that reliably highlight sensitive image areas, offering clear interpretability benefits.

520
 521
 522
 523
 524
 525
 526
 While our study focuses on image classification, the core idea of SeRI is general and can be extended to other vision tasks such as object detection and semantic segmentation. For multi-output models, SeRI can be adapted by replacing the current decision-boundary-based perturbation comparison with score-based or multi-output perturbation comparisons. This allows SeRI to estimate region sensitivity by examining how perturbations affect task-specific outputs. Exploring these extensions, as well as studying SeRI under stronger or task-specific defenses, represents a promising direction for future research.

527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 THE USE OF LARGE LANGUAGE MODELS
541

542 During the preparation of this manuscript, large language models (LLMs) were used sparingly to
543 enhance grammar, clarity, and readability. All conceptual contributions, technical methods, analy-
544 ses, and experimental results are entirely original and were developed solely by the authors. The
545 authors have carefully verified the accuracy of all claims and take full responsibility for the content
546 of this paper, in alignment with the ICLR Code of Ethics.

548 ETHICS STATEMENT
549

550 This research advances the field of AI security by developing efficient query-based black-box ad-
551 versarial attacks to explore vulnerabilities in deep learning models. As with all security research,
552 there is a potential for dual use, as these techniques could be misused to threaten AI system integrity.
553 However, we firmly believe that proactively uncovering and understanding these vulnerabilities is a
554 critical step towards building more robust and reliable AI systems. By addressing these weaknesses,
555 this work contributes to building more reliable and trustworthy AI, enhancing security across a wide
556 spectrum of applications. Furthermore, we emphasize that SeRI is designed solely for research into
557 adversarial robustness, with the goal of advancing defenses and ensuring the safe deployment of
558 machine learning systems.

559
560 REPRODUCIBILITY STATEMENT
561

562 We have made every effort to ensure the reproducibility of our results. The code is provided via the
563 anonymized link in the Abstract as well as in the supplementary material. In Section 4, we further
564 provided the full algorithm pseudocode. In Section 5.1, detailed parameter settings and experiment
565 environment are elucidated.

566
567 REFERENCES
568

569 Alexandre Araujo, Aaron Havens, Blaise Delattre, Alexandre Allauzen, and Bin Hu. A unified
570 algebraic perspective on lipschitz neural networks. *arXiv preprint arXiv:2303.03169*, 2023.

571 Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-Based Adversarial Attacks: Reli-
572 able Attacks Against Black-Box Machine Learning Models, 2018. *arXiv:1712.04248* [cs, stat].

573 Thomas Brunner, Frederik Diehl, Michael Truong Le, and Alois Knoll. Guessing smart: Biased
574 sampling for efficient black-box adversarial attacks. In *Proceedings of the IEEE/CVF Interna-
575 tional Conference on Computer Vision*, pp. 4958–4966, 2019.

576 Zikui Cai, Chengyu Song, Srikanth Krishnamurthy, Amit Roy-Chowdhury, and Salman Asif. Black-
577 box attacks via surrogate ensemble search. *Advances in Neural Information Processing Systems*,
578 35:5348–5362, 2022.

579 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017
580 IEEE Symposium on Security and Privacy*, pp. 39–57, 2017.

581 Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hopskipjumpattack: A query-efficient
582 decision-based attack. In *2020 IEEE Symposium on Security and Privacy*, pp. 1277–1294, 2020a.

583 Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-label adversarial attack.
584 In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
585 Data Mining*, pp. 1739–1747, 2020.

586 Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
587 mization based black-box attacks to deep neural networks without training substitute models. In
588 *Proceedings of the 10th ACM workshop on artificial intelligence and security*, pp. 15–26, 2017.

589 Sizhe Chen, Zhengbao He, Chengjin Sun, Jie Yang, and Xiaolin Huang. Universal adversarial
590 attack on attention and the resulting dataset damagenet. *IEEE Transactions on Pattern Analysis
591 and Machine Intelligence*, 44(4):2188–2197, 2020b.

594 Minhao Cheng, Huan Zhang, Cho Jui Hsieh, Thong Le, Pin Yu Chen, and Jinfeng Yi. Query-efficient
 595 hard-label black-box attack: An optimization-based approach. In *7th International Conference*
 596 *on Learning Representations*, 2019.

597

598 Minhao Cheng, Simranjit Singh, Patrick Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh. Sign-
 599 OPT: A Query-Efficient Hard-label Adversarial Attack, 2020. arXiv:1909.10773 [cs, stat].

600 Zeyu Dai, Shengcai Liu, Qing Li, and Ke Tang. Saliency attack: Towards imperceptible black-box
 601 adversarial attack. *ACM Transactions on Intelligent Systems and Technology*, 14(3):1–20, 2023.

602

603 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 604 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 605 pp. 248–255, 2009.

606 Xiaoyi Dong, Jiangfan Han, Dongdong Chen, Jiayang Liu, Huanyu Bian, Zehua Ma, Hongsheng
 607 Li, Xiaogang Wang, Weiming Zhang, and Nenghai Yu. Robust superpixel-guided attentional
 608 adversarial attack. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 609 *Recognition*, pp. 12895–12904, 2020.

610

611 Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and Jun Zhu. Effi-
 612 cient decision-based black-box adversarial attacks on face recognition. In *Proceedings of the*
 613 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7714–7722, 2019.

614

615 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
 arXiv preprint arXiv:2010.11929, 2020.

616

617 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 618 examples. In *International Conference on Learning Representations*, 2015.

619

620 Godfrey Harold Hardy and Edward Maitland Wright. *An introduction to the theory of numbers*.
 Oxford university press, 1979.

621

622 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 623 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 624 770–778, 2016.

625

626 Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-box adversarial
 627 attacks with bandits and priors. In *International Conference on Learning Representations*, 2019.

628

629 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 Technical Report, University of Toronto, 2009.

630

631 Huichen Li, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, and Bo Li. Qeba: Query-efficient boundary-
 632 based blackbox attack. In *Proceedings of the IEEE/CVF conference on computer vision and*
 633 *pattern recognition*, pp. 1221–1230, 2020.

634

635 Jie Li, Rongrong Ji, Peixian Chen, Baochang Zhang, Xiaopeng Hong, Ruixin Zhang, Shaoxin Li,
 636 Jilin Li, Feiyue Huang, and Yongjian Wu. Aha! adaptive history-driven attack for decision-
 637 based black-box models. In *Proceedings of the IEEE/CVF International Conference on Computer*
 Vision, pp. 16168–16177, 2021.

638

639 Chenhao Lin, Sicong Han, Jiongli Zhu, Qian Li, Chao Shen, Youwei Zhang, and Xiaohong Guan.
 Sensitive region-aware black-box adversarial attacks. *Information Sciences*, 637:118929, 2023.
 ISSN 00200255.

640

641 Yujia Liu, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. A geometry-inspired decision-
 642 based attack. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 643 4890–4898, 2019.

644

645 Giulio Lovisotto, Nicole Finnie, Mauricio Munoz, Chaithanya Kumar Mummadi, and Jan Hendrik
 646 Metzen. Give me your attention: Dot-product attention considered harmful for adversarial patch
 647 robustness. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 nition (CVPR)*, pp. 15234–15243, June 2022.

648 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances
649 in neural information processing systems*, 30, 2017.
650

651 Chen Ma, Xiangyu Guo, Li Chen, Jun-Hai Yong, and Yisen Wang. Finding optimal tangent points
652 for reducing distortions of hard-label attacks. *Advances in Neural Information Processing Sys-
653 tems*, 34:19288–19300, 2021.

654 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
655 Towards deep learning models resistant to adversarial attacks. In *International Conference on
656 Learning Representations*, 2018.
657

658 Thibault Maho, Teddy Furon, and Erwan Le Merrer. Surfree: a fast surrogate-free black-box attack.
659 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
660 10430–10439, 2021.

661 Jeonghwan Park, Paul Miller, and Niall McLaughlin. Hard-label based small query black-box adver-
662 sarial attack. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
663 Vision (WACV)*, pp. 3986–3995, 2024.
664

665 Edward Raff, Jared Sylvester, Steven Forsyth, and Mark McLean. Barrage of random transforms
666 for adversarially robust defense. In *2019 IEEE/CVF Conference on Computer Vision and Pattern
667 Recognition*, pp. 6521–6530, 2019.

668 Ali Rahmati, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Huaiyu Dai. Geoda: a geo-
669 metric framework for black-box adversarial attacks. In *Proceedings of the IEEE/CVF conference
670 on computer vision and pattern recognition*, pp. 8446–8455, 2020.
671

672 Md Farhamdur Reza, Ali Rahmati, Tianfu Wu, and Huaiyu Dai. CGBA: Curvature-aware geometric
673 black-box attack. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
674 pp. 124–133, 2023.
675

676 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
677 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference
678 on knowledge discovery and data mining*, pp. 1135–1144, 2016.

679 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
680 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
681 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
682 2017.
683

684 Yucheng Shi, Yahong Han, Yu-an Tan, and Xiaohui Kuang. Decision-based black-box attack against
685 vision transformers via patch-wise adversarial removal. *Advances in Neural Information Process-
686 ing Systems*, 35:12921–12933, 2022.

687 K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
688 tion. *3rd International Conference on Learning Representations*, 2015.
689

690 Xuxiang Sun, Gong Cheng, Hongda Li, Chunbo Lang, and Junwei Han. Stdavav2: Accessing
691 efficient black-box stealing for adversarial attacks. *IEEE Transactions on Pattern Analysis and
692 Machine Intelligence*, pp. 1–17, 2024.

693 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
694 *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.
695

696 Guanhong Tao, Shengwei An, Siyuan Cheng, Guangyu Shen, and Xiangyu Zhang. Hard-label black-
697 box universal adversarial patch attack. In *32nd USENIX Security Symposium (USENIX Security
698 23)*, pp. 697–714, 2023.
699

700 Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certi-
701 fication of perturbation invariance for deep neural networks. *Advances in neural information
processing systems*, 31, 2018.

702 Jie Wan, Jianhao Fu, Lijin Wang, and Ziqi Yang. Bounceattack: A query-efficient decision-based
 703 adversarial attack by bouncing into the wild. In *2024 IEEE Symposium on Security and Privacy
 704 (SP)*, pp. 1270–1286. IEEE, 2024.

705 Fan Wang, Mingwen Shao, Lingzhuang Meng, and Fukang Liu. Dual stage black-box adversarial
 706 attack against vision transformer. *International Journal of Machine Learning and Cybernetics*,
 707 pp. 1–12, 2024.

708 Feiyang Wang, Xingquan Zuo, Hai Huang, and Gang Chen. Adba: Approximation decision bound-
 709 ary approach for black-box adversarial attacks. In *Proceedings of the AAAI Conference on Artifi-
 710 cial Intelligence*, pp. 7628–7636, 2025.

711 Xiaosen Wang, Zeliang Zhang, Kangheng Tong, Dihong Gong, Kun He, Zhifeng Li, and Wei Liu.
 712 Triangle attack: A query-efficient decision-based adversarial attack. In *European conference on
 713 computer vision*, pp. 156–174, 2022.

714 Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
 715 models further improve adversarial training. In *International Conference on Machine Learning*,
 716 pp. 36246–36263, 2023.

717 Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
 718 adversarial polytope. In *International conference on machine learning*, pp. 5286–5295. PMLR,
 719 2018.

720 Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial
 721 effects through randomization. In *International Conference on Learning Representations*, 2018.

722 Sergey Zagoruyko. Wide residual networks. *arXiv preprint arXiv:1605.07146*, 2016.

723 Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
 724 *European conference on computer vision*, pp. 818–833. Springer, 2014.

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A THEORETICAL ANALYSIS OF SeRI
757758 In this appendix, we provide a formal theoretical analysis of SeRI to analyze its convergence and op-
759 timality properties. Let $g(d)$ denote the decision-boundary corresponding to perturbation direction
760 d as defined in eq.4. A smaller value of $g(d)$ implies a more effective adversarial perturbation.
761762 A.1 ASSUMPTIONS
763764 To analyze the convergence and optimality properties of SeRI, we introduce the following standard
765 assumptions commonly used in decision-based attack theory.
766767 **Assumption 1 (Local Lipschitzness of the decision boundary).** There exist $L > 0$ such that for
768 all perturbations d_1, d_2 in a neighborhood of the search trajectory:
769

770
$$|g(d_1) - g(d_2)| \leq L\|d_1 - d_2\|_2.$$

771 **Assumption 2 (Bounded curvature of the decision boundary).** Let $\kappa = \|\nabla^2 f(x)\|$ denote the
772 local curvature of the classifier’s decision boundary. There exists a constant $C > 0$ such that $\kappa \leq C$
773 in the neighborhood of interest.
774775 **Assumption 3 (Deterministic hard-label output of the target model).** The classifier f is query-
776 stable: for any input z , repeated queries to the black-box oracle always return the same top-1 label,
777 i.e., $f(z)$ is deterministic.
778779 In particular, there is no randomized defense mechanism such as randomized smoothing, random
780 input transformations (e.g., random translation, rotation, crop), or stochastic ensembling that would
781 change the hard label between queries.
782783 **Lemma 1** (Stable ADBA comparison). *Under Assumption 3, the outcome of ADBA’s comparison
784 between any two perturbations d_1, d_2 is deterministic: running ADBA multiple times with the same
785 hyperparameters and query budget always yields the same ordering between $g(d_1)$ and $g(d_2)$.*
786787 *Proof.* ADBA is a deterministic algorithm once the sequence of oracle outputs is fixed. Under
788 Assumption 3, the hard-label oracle is deterministic, so the entire sequence of labels queried during
789 ADBA is fixed. Therefore, the returned boundary estimates and the induced ordering between $g(d_1)$
790 and $g(d_2)$ are also deterministic. \square
791792 These assumptions are mild and standard: Assumption 1 holds for ReLU, ViT, and CNN classifiers
793 almost everywhere; Assumption 2 states that the decision boundary has locally bounded curvature;
794 Assumption 3 follows from the concentration guarantees of ADBA Wang et al. (2025).
795796 Assumption 3 acknowledges that SeRI, like all decision-based black-box attacks, may degrade
797 or even fail under randomized defenses such as random cropping, random resizing, randomized
798 smoothing, or stochastic input transformations. This is not a limitation specific to SeRI: in the
799 decision-based setting, the attacker only has access to a single hard label per query, and it is funda-
800 mentally impossible to detect or compensate for stochastic transformations applied inside the
801 black-box oracle. Consequently, all existing decision-based attacks, including HSJA, CGBA, RayS,
802 ADBA, and region-based baselines such as PAR, are equally unable to guarantee stable compar-
803 isons under such randomized defenses. Our assumption therefore reflects an inherent limitation of
804 the decision-based black-box threat model rather than a deficiency of SeRI itself.
805806 A.2 SeRI CAN GENERATE FINE-GRAINED SENSITIVITY HEATMAPS
807808 Here, we demonstrate that our SeRI approach can produce fine-grained sensitivity heatmaps. Sup-
809 pose SeRI performs I iterations to generate such a heatmap. In each iteration, it either increases
810 the perturbation strength within a selected region by a factor $k_1 = 1.8$, or decreases it by a factor
811 $k_2 = 0.2$. To analyze this process, we reformulate the problem as follows: Given any initial per-
812 turbation pixel $\tilde{p} \in [-1, 1]$ with $\tilde{p} \neq 0$, we aim to show that, after I iterations of multiplicative
813 updates that either $\tilde{p} \leftarrow 1.8 \cdot \tilde{p}$ or $\tilde{p} \leftarrow 0.2 \cdot \tilde{p}$, the perturbation can be adjusted to approach any target
814

value $\tilde{p}^* \in [-1, 1]$. This guarantees that SeRI can converge to an optimal perturbation configuration consistent with fine-grained sensitivity patterns.

Perturbation Adjustability of SeRI. Let $\tilde{p}_0 \in [-1, 1] \setminus \{0\}$ be an initial perturbation value, and let $\tilde{p}^* \in [-1, 1]$ be an arbitrary target value. Under the multiplicative update rule:

$$\tilde{p}_{i+1} = \begin{cases} 1.8 \cdot \tilde{p}_i & (\text{increase}), \\ 0.2 \cdot \tilde{p}_i & (\text{decrease}), \end{cases} \quad (11)$$

for any $\epsilon > 0$, there exists a finite sequence of I such updates such that:

$$|\tilde{p}_I - \tilde{p}^*| < \epsilon. \quad (12)$$

Proof. We prove the theorem in two parts: (1) by showing that the ratio \tilde{p}_I/\tilde{p}_0 can approximate any positive real number arbitrarily closely using multiplicative updates, and (2) by extending this to match the signed target value \tilde{p}^* .

Step 1: Logarithmic Density of the Multiplicative Process. After I updates of comprising m increases ($\times 1.8$) and $n = I - m$ decreases ($\times 0.2$), the perturbation becomes:

$$\tilde{p}_I = \tilde{p}_0 \cdot (1.8)^m \cdot (0.2)^n \quad (13)$$

Taking logarithms:

$$\log \tilde{p}_I = \log |\tilde{p}_0| + m \log 1.8 + n \log 0.2 \quad (14)$$

Let $\alpha = \log 1.8$ and $\beta = \log 0.2$. Then:

$$\log \left(\frac{|\tilde{p}_I|}{|\tilde{p}_0|} \right) = m\alpha + n\beta \quad (15)$$

Since $\alpha/\beta \notin \mathbb{Q}$, the set of linear combinations $\{m\alpha + n\beta \mid m, n \in \mathbb{Z}\}$ is dense in \mathbb{R} (this is a standard result from Diophantine approximation Hardy & Wright (1979)).

Exponentiating both sides, the set $\{(1.8)^m (0.2)^n \mid m, n \in \mathbb{Z}\}$ is dense in \mathbb{R}^+ . Thus, for any positive target ratio $r = |\tilde{p}^*|/|\tilde{p}_0|$ and any $\delta > 0$, there exist integers m, n such that:

$$|(1.8)^m (0.2)^n - r| < \delta \quad (16)$$

Step 2: Matching Sign and Closeness

Choose $\delta = \epsilon/|\tilde{p}_0|$. Then:

$$|\tilde{p}_0 \cdot (1.8)^m (0.2)^n - |\tilde{p}^*|| < \epsilon \quad (17)$$

Now, since all multiplicative updates preserve the sign of \tilde{p}_0 , we ensure that:

If $\tilde{p}^* > 0$, use $\tilde{p}_0 > 0$ If $\tilde{p}^* < 0$, use $\tilde{p}_0 < 0$

This ensures the **sign of \tilde{p}_I matches that of \tilde{p}^* **.

Hence:

$$|\tilde{p}_I - \tilde{p}^*| < \epsilon \quad (18)$$

Since m and n are finite, the total number of operations $I = m + n$ is also finite. The corresponding update sequence can be constructed by applying m increases and n decreases in any order, due to the commutativity of multiplication.

864 **Conclusion.** Therefore, for any $\epsilon > 0$, any initial $\tilde{p}_0 \in [-1, 1] \setminus \{0\}$, and any target $\tilde{p}^* \in [-1, 1]$, a
 865 finite sequence of updates exists such that:

$$867 \quad |\tilde{p}_I - \tilde{p}^*| < \epsilon \quad (19)$$

869 **A.3 MONOTONIC IMPROVEMENT OF SERI UPDATES**

871 In each iteration i , SeRI constructs three candidate perturbations: $\{d^i, \check{d}^i, \hat{d}^i\}$, where \check{d}^i and \hat{d}^i are
 872 obtained by scaling the perturbation on the selected region b^i by factors $\check{k} < 1 < \hat{k}$ (followed by
 873 ℓ_2 -norm to match $\|d^i\|_2$), as described in Algorithm 1.

875 **Theorem 1** (Monotonic Decision-Boundary Descent). *Under Assumptions 1-3, the iterates of SeRI
 876 satisfy*

$$877 \quad g(d^{i+1}) \leq g(d^i)$$

878 for all iterations i .

879 Moreover, suppose that the selected region b^i has nonzero sensitivity, i.e.,

$$881 \quad \frac{\partial g(d^i)}{\partial d^i[b^i]} \neq 0,$$

884 and that the scaling factors $\check{k} < 1 < \hat{k}$ are chosen sufficiently close to 1 so that the corresponding
 885 perturbation changes remain in a local neighborhood of d^i where a first-order descent direction
 886 exists. If, in addition, the ADBA tolerance τ is chosen sufficiently small and thus can successfully
 887 compare the decision boundary of d^i, \check{d}^i and \hat{d}^i , then the inequality is strict:

$$888 \quad g(d^{i+1}) < g(d^i).$$

890 However, if the scaling factors are chosen too close to 1, then the perturbation updates in each
 891 refinement iteration become excessively small, which slows down the optimization process and
 892 reduces the overall attack efficiency. Therefore, the scaling factors should strike a balance: they
 893 must be close enough to 1 to ensure that the updates stay within the local descent region, yet not
 894 so close that the algorithm makes negligible progress in each iteration. Based on the empirical
 895 results reported in Section C, we adopt $\check{k} = 0.8$ and $\hat{k} = 1.2$ as suitable choices that satisfy both
 896 requirements.

897 *Proof.* By Lemma 1 and Assumption 3, the hard-label oracle is deterministic, hence ADBA
 898 produces a deterministic approximation $\hat{g}(d)$ of the true decision boundary $g(d)$ for each candidate
 899 perturbation. The stopping criterion of ADBA implies that there exists a tolerance $\tau > 0$ such that
 900 $|\hat{g}(d) - g(d)| \leq \tau$ for all candidates considered in SeRI at iteration t .

902 Let d^i be the current perturbation and let d^{i+1} denote the candidate selected by SeRI among
 903 $\{d^i, \check{d}^i, \hat{d}^i\}$ using ADBA's estimates. Then we have

$$904 \quad \hat{g}(d^{i+1}) \leq \hat{g}(d^i),$$

906 which implies

$$907 \quad g(d^{i+1}) \leq \hat{g}(d^{i+1}) + \tau \leq \hat{g}(d^i) + \tau \leq g(d^i) + 2\tau.$$

908 Thus, up to an additive error of order τ , the update is non-increasing.

909 We now show strict descent under the additional conditions. Let u^i denote the perturbation direction
 910 that is nonzero only on the selected region b^* , so that the effect of scaling on b^i can be parameterized
 911 by a scalar α along u^i . Consider the one-dimensional function

$$913 \quad \varphi_i(\alpha) = g(d^i + \alpha u^i).$$

914 The assumption $\partial g(d^i)/\partial d^i[b^i] \neq 0$ is equivalent to $\varphi'_i(0) \neq 0$. By continuity of φ'_i and the local
 915 Lipschitz property in Assumption 1, there exists $\alpha_0 > 0$ and a constant $c > 0$ such that, along the
 916 descent direction, we have

$$917 \quad \varphi_i(\alpha) \leq \varphi_i(0) - c\alpha \quad \text{for all } \alpha \in (0, \alpha_0].$$

918 The multiplicative scaling on region b^* induces two perturbations \check{d}^i and \hat{d}^i which can be written as
 919

$$920 \quad \check{d}^i = d^i + \alpha_{\check{k}} u^i, \quad \hat{d}^i = d^i + \alpha_{\hat{k}} u^i,$$

921 for some scalars $\alpha_{\check{k}}, \alpha_{\hat{k}}$ determined by \check{k}, \hat{k} and the subsequent normalization. By choosing $\check{k} <$
 922 $1 < \hat{k}$ sufficiently close to 1, we can ensure that both $|\alpha_{\check{k}}|$ and $|\alpha_{\hat{k}}|$ lie within $(0, \alpha_0]$, i.e., the two
 923 scaled candidates stay inside the local neighborhood where the first-order descent behaviour of φ_i
 924 is valid.
 925

926 Therefore, at least one of the two scaled candidates, say $d'^i \in \{\check{d}^i, \hat{d}^i\}$, satisfies
 927

$$928 \quad g(d'^i) = \varphi_i(\alpha') \leq \varphi_i(0) - c|\alpha'| \leq g(d^i) - c',$$

929 for some constant $c' > 0$ that depends on c and the chosen scaling factors. Choosing $\tau < c'/2$ yields
 930

$$931 \quad g(d^{i+1}) \leq g(d'^i) + 2\tau \leq g(d^i) - c' + 2\tau < g(d^i),$$

932 which gives strict descent.
 933

934 If no region has nonzero sensitivity, then $\varphi'_i(0) = 0$ for all directions considered, and the candidates
 935 coincide up to higher-order terms and numerical tolerance. In that case, the above argument shows
 936 that the update is non-increasing but not necessarily strictly decreasing. \square
 937

938 Theorem 1 establishes that SeRI is a **greedy descent method** for minimizing the decision boundary
 939 distance. This formally justifies the empirical observation that SeRI consistently strengthens the
 940 attack.
 941

A.4 CONVERGENCE OF THE ITERATIVE PERTURBATION PROCESS

943 We now show that SeRI converges to a fixed point under the above assumptions.
 944

945 **Theorem 2** (Convergence to Stationary Point). *Assume Theorem 1 holds and that $g(\cdot)$ is lower
 946 bounded. Then the sequence $\{g(d^i)\}$ converges, and any limit point d^* satisfies:*

$$947 \quad \frac{\partial g(d^*)}{\partial d[b]} = 0 \quad \text{for all subregions } b.$$

950 *Proof.* Since $g(d^{i+1}) \leq g(d^i)$ and g is non-negative, the sequence is monotonically decreasing
 951 and bounded below. Thus it converges. If a limit point d^* had nonzero partial derivative in some
 952 region b , the multiplicative update with sufficiently small scaling factor would strictly decrease g ,
 953 contradicting convergence. Hence all directional derivatives vanish. \square
 954

955 This establishes that SeRI converges to a **stationary perturbation** under its multiplicative refine-
 956 ment mechanism.
 957

A.5 CONSISTENCY OF THE REGION-SENSITIVITY ESTIMATION

959 Recall that SeRI recursively partitions current region b into four equal sub-regions (Algorithm 2),
 960 producing a quad-tree hierarchy. Let S^* denote the true optimal pixel-wise sensitivity map, and let
 961 S_k denote the piecewise-constant approximation obtained after k refinement iterations.
 962

963 To formalize the convergence analysis, we first define the notion of the *cell size* of a region.
 964

965 **Definition (Cell size).** For any region $b \subset \mathbb{R}^2$, we define its cell size $h(b)$ as the side length of the
 966 smallest axis-aligned square containing b . Equivalently, $h(b)$ is proportional to the diameter of b up
 967 to a constant factor:
 968

$$\text{diam}(b) \leq \sqrt{2} h(b).$$

969 Under the 2×2 recursive split used by SeRI, every refinement iteration reduces the cell size by half.
 970 If h_0 denotes the initial cell size (corresponding to the entire image domain), then the cell size after
 971 k refinement levels is

$$h_k = 2^{-k} h_0.$$

972 **Regularity assumption.** We assume that S^* is piecewise Hölder continuous of order $\alpha > 0$,
 973 meaning that the image domain can be partitioned into finitely many subdomains $\{\Omega_i\}$ such that for
 974 each Ω_i ,

$$975 \quad |S^*(x) - S^*(y)| \leq C\|x - y\|^\alpha, \quad \forall x, y \in \Omega_i,$$

976 for some constant $C > 0$. This assumption allows S^* to have discontinuities across object bound-
 977 aries or semantic edges, while maintaining smoothness within each piece.

978 **Theorem 3** (Consistency of Region Refinement). *Let S_k be the region-wise sensitivity estimate
 979 produced after k levels of quad-tree refinement. If S^* is piecewise Hölder continuous of order
 980 $\alpha > 0$, then*

$$981 \quad \|S_k - S^*\|_2 = O(2^{-k\alpha}).$$

983 *Sketch.* Consider any region b at refinement level k . Since S_k assigns a constant value to b , the
 984 approximation error on this region satisfies

$$985 \quad \sup_{x \in b} |S_k(x) - S^*(x)| \leq C h(b)^\alpha = C h_k^\alpha,$$

988 by the Hölder condition on each smooth piece. Summing over the quad-tree cells and noting that
 989 the number of cells grows only polynomially while the per-cell error decays as h_k^α , we obtain

$$990 \quad \|S_k - S^*\|_2^2 = O(h_k^{2\alpha}) = O(2^{-2k\alpha}),$$

992 which proves the stated $O(2^{-k\alpha})$ convergence rate in the L^2 norm. \square

994 This theorem shows that SeRI’s region-refinement strategy is **provably consistent**: as the quad-tree
 995 becomes finer, the region-wise sensitivity estimate S_k converges to the true underlying sensitivity
 996 S^* . In Appendix B.1, we further conduct an empirical comparison among several partitioning strate-
 997 gies (1×2 , 2×2 , 3×3 , and 4×4). The results show that the 2×2 split provides the best trade-off
 998 between refinement granularity and query efficiency, while the other strategies produce comparable
 999 but slightly inferior results. This empirical evidence supports the theoretical analysis by demon-
 1000 strating that recursive region refinement is robust to the exact splitting scheme, and that the 2×2 strategy
 1001 achieves both strong practical performance and favorable theoretical properties.

1002 A.6 ROBUSTNESS UNDER MODEL VARIATIONS

1004 Using Assumption 2, we show that ADBA remains robust even under boundary curvature.

1005 **Proposition 1** (ADBA Robustness Under Bounded Curvature). *Let d_1, d_2 be two candidate pertur-
 1006 bations. Under Assumption 2,*

$$1008 \quad |g(d_1) - g(d_2)| \leq O(\|d_1 - d_2\|_2) + O(\kappa\|d_1 - d_2\|_2^2).$$

1009 *Thus, for perturbations differing only on a single region scaling (as in SeRI), the second-order term
 1010 is negligible, and ADBA’s ranking of candidates is stable.*

1012 *Sketch.* A second-order Taylor expansion of the boundary distance along the perturbation direction
 1013 yields the claim. \square

1015 This establishes that SeRI is robust to model architectural variations, since curvature only affects
 1016 second-order terms.

1018 A.7 CONNECTION BETWEEN DECISION-BOUNDARY AND ATTACKABILITY

1020 In this subsection we clarify why minimizing the decision-boundary $g(d)$ is closely aligned with
 1021 improving the attackability of a model. Recall that for a fixed clean image x and perturbation
 1022 direction d , the decision-boundary distance is defined as

$$1023 \quad g(d) = \min\{r > 0 : I(x + r d / \|d\|_2) = 1\},$$

1024 that is, the smallest radius at which the perturbed point leaves the original class (non-targeted attack)
 1025 or enters the target class (targeted attack).

1026 **Attackability under an ℓ_2 norm budget.** Suppose an attacker is allowed to use any perturbation
 1027 with ℓ_2 norm at most $\epsilon > 0$. For a fixed direction d , the attack succeeds within this budget if and
 1028 only if there exists $r \leq \epsilon$ such that $I(x + r d / \|d\|_2) = 1$, which is equivalent to $g(d) \leq \epsilon$. Hence,
 1029 for a fixed ϵ we have

$$1\{\text{attack succeeds within norm } \epsilon\} = 1\{g(d) \leq \epsilon\}.$$

1030 Consequently, among two perturbation directions d_1 and d_2 , if $g(d_1) < g(d_2)$ then for any fixed
 1031 norm budget ϵ ,

$$1\{g(d_1) \leq \epsilon\} \geq 1\{g(d_2) \leq \epsilon\}.$$

1032 This shows that a smaller decision-boundary is strictly more favorable for achieving successful
 1033 attacks under the same ℓ_2 constraint: any budget for which d_2 can succeed, d_1 can also succeed,
 1034 while the converse is not true.

1035 **Attackability under random perturbation magnitudes.** The above argument can be generalized
 1036 to randomized attack procedures. Let R be a non-negative random variable describing the perturba-
 1037 tion magnitude produced by some attack algorithm along direction d (for example, the final radius
 1038 found by a boundary search under a fixed query budget). The attack succeeds if $R \geq g(d)$. Denot-
 1039 ing the cumulative distribution function of R by $F_R(r) = \Pr(R \leq r)$, the success probability for
 1040 direction d is

$$\Pr(\text{success} \mid d) = \Pr(R \geq g(d)) = 1 - F_R(g(d)).$$

1041 If F_R is strictly increasing, then for any two directions d_1 and d_2

$$g(d_1) < g(d_2) \implies 1 - F_R(g(d_1)) > 1 - F_R(g(d_2)),$$

1042 which means that a smaller decision-boundary distance implies a larger success probability under the
 1043 same attack procedure and query budget. Therefore, minimizing $g(d)$ is equivalent to maximizing
 1044 the attack success probability for any fixed distribution of perturbation magnitudes.

1045 **Empirical correlation between $g(d)$ and attackability.** To complement this theoretical argu-
 1046 ment, we conduct an additional experiment where, for each test image, we record the estimated
 1047 decision-boundary distance $\hat{g}(d)$ produced by ADBA and the corresponding attack outcome (suc-
 1048 cess or failure) under a fixed norm threshold ϵ . We then group samples by quantiles of $\hat{g}(d)$ and
 1049 report the empirical attack success rate in each bin. The results, shown in Figure A.7, display a
 1050 clear monotone trend: bins with smaller $\hat{g}(d)$ exhibit substantially higher attack success rates, while
 1051 bins with larger $\hat{g}(d)$ have markedly lower success rates. This empirical evidence supports our the-
 1052 oretical analysis, and confirms that SeRI’s objective of reducing the approximate decision-boundary
 1053 distance directly translates into higher attackability under practical query budgets.

B PSEUDOCODE OF SERI

1064 In Algorithm 1, SeRI iteratively enhances or reduces the perturbation strength within the selected
 1065 sub-region to identify whether the selected sub-region is sensitive to perturbation, and then splits
 1066 the sub-region into four smaller parts. Splitting each region into four parts offers the best trade-off
 1067 between precision and efficiency. As shown in both our theoretical analysis and the experimental
 1068 results in Appendix B.1, this strategy achieves superior performance compared to alternative parti-
 1069 tioning schemes. The initial region b_0 has a shape of $C \times W \times H$. Algorithm 2 splits b_0 into four
 1070 smaller sub-regions, forming the initial sub-region set \mathcal{B} (see Appendix B.1 for details).

1071 In line 2 of Algorithm 1, at each iteration, the sub-region b^* with the highest ℓ_2 -norm perturba-
 1072 tion is selected. Then in lines 3-5, SeRI generates two new perturbations, \check{d}^i and \hat{d}^i , by respectively
 1073 reducing and enhancing the perturbation within sub-region b^* . The reduction and amplification
 1074 multipliers are denoted by \check{k} and \hat{k} , respectively. In line 5, the perturbations \check{d}^i and \hat{d}^i are normalized
 1075 to match the overall perturbation strength of d^i , ensuring a fair comparison among d^i , \check{d}^i and \hat{d}^i
 1076 as defined in Eq. 8. In line 6, we use ADBA Wang et al. (2025) to compare the decision bound-
 1077 aries of d^i and \check{d}^i to determine the best perturbation (see Algorithm 3 in Appendix B for details).
 1078 Specifically, Algorithm 3 takes as input the current best perturbation d^i , along with its approximate
 1079 decision boundaries R_{\min} and R_{\max} (lower and upper bounds of the true decision boundary), as well
 as a candidate perturbation \check{d}^i . The algorithm then outputs the superior perturbation d_s together

1080 **Algorithm 1** Perturbation Optimization via Gradient-Free Sensitivity Region Identification

1081 **Input:** Original image x , initial adversarial example \tilde{x}^0 , indicator $I(\cdot)$, query budget Q ;

1082 **Output:** Adversarial sensitive region heatmap S , optimized adversarial example \tilde{x} ;

1083 **Initialization:** Iteration number $i \leftarrow 1$, initial perturbation $d^1 \leftarrow \tilde{x}^0 - x$, approximation decision

1084 boundary $R_{\min} \leftarrow 0$, and $R_{\max} \leftarrow 1$; initial region $b_0 \leftarrow \{1 : C, 1 : W, 1 : H\}$, sub-region set

1085 $\mathcal{B} \leftarrow$ Algorithm 2 (b_0); perturbation multipliers $\check{k} \leftarrow 0.2$, and $\hat{k} \leftarrow 1.8$;

1086 1: **while** remaining query budget > 0 **do**

1087 2: $b^* \leftarrow \arg \max_{b \in \mathcal{B}} \|d^i_{[b]}\|_2$

1088 3: $\check{d}^i, \hat{d}^i \leftarrow d^i.\text{copy}(), d^i.\text{copy}()$

1089 4: $\check{d}^i_{[b]}, \hat{d}^i_{[b]} \leftarrow \check{k} \cdot d^i_{[b]}, \hat{k} \cdot d^i_{[b]}$

1090 5: $\check{d}^i, \hat{d}^i \leftarrow \frac{\|d^i\|_2}{\|\check{d}^i\|_2} \cdot \check{d}^i, \frac{\|d^i\|_2}{\|\hat{d}^i\|_2} \cdot \hat{d}^i$

1091 6: $d_s, R_{\min}, R_{\max} \leftarrow$ Algorithm 3 ($d^i, R_{\min}, R_{\max}, \check{d}^i$)

1092 7: **if** $d_s = \check{d}^i$ **then**

1093 8: $d^{i+1} \leftarrow \check{d}^i$

1094 9: **else**

1095 10: $d_s, R_{\min}, R_{\max} \leftarrow$ Algorithm 3 ($d^i, R_{\min}, R_{\max}, \hat{d}^i$)

1096 11: **if** $d_s = \hat{d}^i$ **then**

1097 12: $d^{i+1} \leftarrow \hat{d}^i$

1098 13: **else**

1099 14: $d^{i+1} \leftarrow d^i$

1100 15: **end if**

1101 16: **end if**

1102 17: $\mathcal{B} \leftarrow (\mathcal{B} \setminus \{b^*\}) \cup$ Algorithm 2 (b^*);

1103 18: $i \leftarrow i + 1$

1104 19: $S \leftarrow d^i \oslash d^1 // s_{c,w,h} = d^i_{c,w,h} / d^1_{c,w,h}$

1105 20: $\tilde{x} \leftarrow x + R_{\max} \cdot d^i$

1106 21: **end while**

1107 22: **return** S, \tilde{x}

1108

1109

1110

1111

1112 **Algorithm 2** Split Perturbation Into Four sub-regions

1113 **Input:** Initial region $b_0 \leftarrow \{1 : C, x_1 : x_2, y_1 : y_2\}$;

1114 **Output:** sub-region set of b_0 ;

1115 1: $x_{\text{mid}} \leftarrow \lfloor \frac{x_1+x_2}{2} \rfloor, y_{\text{mid}} \leftarrow \lfloor \frac{y_1+y_2}{2} \rfloor$

1116 2: $b_1 \leftarrow \{1 : C, x_1 : x_{\text{mid}}, y_1 : y_{\text{mid}}\}$

1117 3: $b_2 \leftarrow \{1 : C, x_{\text{mid}} + 1 : x_2, y_1 : y_{\text{mid}}\}$

1118 4: $b_3 \leftarrow \{1 : C, x_1 : x_{\text{mid}}, y_{\text{mid}} + 1 : y_2\}$

1119 5: $b_4 \leftarrow \{1 : C, x_{\text{mid}} + 1 : x_2, y_{\text{mid}} + 1 : y_2\}$

1120 6: **return** $\{b_1, b_2, b_3, b_4\}$

1121

1122

1123

1124 with updated boundary estimates R_{\min} and R_{\max} . If \check{d}^i outperforms d^i , as determined in line 7-8, this indicates that perturbations within region b^* do not contribute positively to the attack's success. Hence \check{d}^i is deemed the best perturbation among d^i , \check{d}^i and \hat{d}^i , and the updated perturbation d^{i+1} is set to \check{d}^i . In line 10, if d^i performs better than \check{d}^i , d^i is further compared with \hat{d}^i using Algorithm 3. In lines 11–15, d^{i+1} is updated to match the better perturbation between d^i and \hat{d}^i , based on their decision boundaries. In line 17, the selected region b^* is removed from the sub-region set \mathcal{B} and replaced with its four child sub-regions generated by Algorithm 2. In line 19, the heatmap S is updated by performing element-wise division between d^i and d^1 . Subsequently in line 20, the current adversarial example \tilde{x} is updated. In lines 21–22, if the query budget is reached, the algorithm stops and returns the sensitive region heatmap S together with the optimized adversarial example \tilde{x} as the final output.

1134 Table 4: Average (median) ℓ_2 norms for non-targeted attacks on ImageNet using a VGG model.
1135

Total Query	2,000	5,000	10,000
1×2 split	3.292(1.429)	1.630(0.811)	1.024(0.569)
2×2 split	3.234(1.385)	1.589(0.771)	1.020(0.562)
3×3 split	3.290(1.410)	1.598(0.776)	1.029(0.569)
4×4 split	3.311(1.444)	1.645(0.800)	1.040(0.570)

1141
1142 B.1 SPLIT SELECTED REGION INTO FOUR SUB-REGIONS
1143

1144 To capture adversarial perturbation sensitivity at a fine granularity, the current region b_0 is divided
1145 into four sub-regions after each iteration. The detailed procedure is shown in Algorithm 2. In line
1146 1, x_{mid} and y_{mid} denote the horizontal and vertical midpoints of the current region b_0 . Lines 2–5
1147 generate four sub-regions b_1, b_2, b_3, b_4 based on these midpoints. Line 6 returns the set of newly
1148 created sub-regions.

1149 To determine the optimal number of sub-regions per split, we conducted an experimental compar-
1150 ison of a 2×2 split against three alternatives: a 1×2 binary split (direction chosen by aspect ratio),
1151 a 3×3 split, and a 4×4 split. The evaluation was performed on 100 images from the ImageNet
1152 dataset using a VGG model. We report the average (median) ℓ_2 perturbation norms achieved by the
1153 “CGBA+SeRI” attack. The results, presented in Table 4, demonstrate that the 2×2 split yields the
1154 best performance across 2,000, 5,000, and 10,000 total queries. However, the performance of other
1155 split settings is comparable, as their norms are only marginally higher (by approximately 3%). This
1156 indicates that the overall performance of SeRI is not highly sensitive to the exact number of splits.

1157
1158 B.2 COMPARE TWO PERTURBATIONS USING APPROXIMATION DECISION BOUNDARY

1159 To compare perturbations effectively in decision-based attack setting, we follow the cutting-edge
1160 Approximate Decision Boundary Approach (ADBA) recently proposed in Wang et al. (2025).
1161 ADBA avoids the need to precisely compute decision boundaries with high query cost. Instead,
1162 it compares two perturbations by identifying a perturbation strength where one successfully fools
1163 the model but the other fails. This indicates that the successful perturbation has a smaller decision
1164 boundary and is more effective.

1165 The main idea of ADBA is that, it is unnecessary to precisely identify the decision boundaries of
1166 two perturbations to compare them. Instead, if we can identify an Approximate Decision Boundary
1167 (ADB), such that at this perturbation strength, one perturbation d_1 successfully fools the model
1168 while another direction d_2 fails, then we can infer that the decision boundary of d_1 , $g(d_1)$, is smaller
1169 than that of d_2 , i.e., $g(d_1) \leq \text{ADB} < g(d_2)$. This implies that d_1 outperform d_2 .

1170 The procedure is summarized in Algorithm 3. In this algorithm, R_{max} and R_{min} represent the upper
1171 and lower bounds of the ADB for d_1 . Specifically, d_1 successfully fools the model at perturbation
1172 strength R_{max} (i.e., $I(x + R_{\text{max}} \cdot d_1) = 1$, indicating $g(d_1) \leq R_{\text{max}}$), but fails to fool the model at
1173 perturbation strength R_{min} (i.e., $I(x + R_{\text{min}} \cdot d_1) = 0$, indicating $R_{\text{min}} < g(d_1)$). In lines 1–3, if
1174 perturbation d_2 fails to fool the model at ADB R_{max} , it indicates that its true decision boundary is
1175 greater than R_{max} , i.e., $g(d_1) \leq R_{\text{max}} < g(d_2)$. In this case, d_2 is less effective than d_1 and Algo-
1176 rithm 3 return d_1 as the superior perturbation. Otherwise, in lines 4–6, if perturbation d_2 successfully
1177 fools the model at ADB R_{min} , it indicates that its true decision boundary is smaller than R_{min} , i.e.,
1178 $g(d_2) \leq R_{\text{min}} < g(d_1)$. This implies that d_2 is more effective than d_1 , and Algorithm 3 returns
1179 d_2 as the superior perturbation. In lines 7–13, if both d_1 and d_2 either succeed or fail at the current
1180 approximation R , then R_{max} or R_{min} are updated accordingly to narrow the search interval for R . In
1181 lines 14–17, if the current value of R leads to a successful attack for one perturbation but not the
1182 other, the successful perturbation is returned along with the updated ADBs, R_{min} and R_{max} . These
1183 updated bounds are carried into the next iteration to narrow the search range and reduce the number
1184 of queries required in lines 1–6 of Algorithm 3.

1185 Finally, in line 20, if the search interval $R_{\text{max}} - R_{\text{min}}$ becomes smaller than a search tolerance thresh-
1186 old τ , indicating that $g(d_1)$ and $g(d_2)$ are nearly equivalent, it becomes unnecessary to distinguish
1187 between them. Hence, the algorithm directly returns d_2 along with the current R_{min} and R_{max} .
1188 Returning d_1 produces similar results in our experiments.

1188 **Algorithm 3** Compare Two Perturbations Using Approximation Decision Boudnary
1189
1190 **Input:** Current best perturbation d_1 with approximation decision boundaries R_{\min}, R_{\max} ; candidate
1191 perturbation d_2 , and search tolerance $\tau = 10^{-5}$;
1192 **Output:** Superior perturbation d_s with updated approximation decision boundary $R_{\min},$
1193 R_{\max} .

1193 1: **if** $I(x + R_{\max} \cdot d_2) = 0$ **then**
1194 2: **return** d_1, R_{\min}, R_{\max}
1195 3: **end if**
1196 4: **if** $I(x + R_{\min} \cdot d_2) = 1$ **then**
1197 5: **return** $d_2, 0, R_{\min}$
1198 6: **end if**
1199 7: **while** $R_{\max} - R_{\min} > \tau$ **do**
1200 8: **if** $I(x + R \cdot d_2) = 1$ and $I(x + R \cdot d_1) = 1$ **then**
1201 9: $R \leftarrow (R_{\min} + R_{\max})/2$
1202 10: $R_{\max} \leftarrow R$
1203 11: **else if** $I(x + R \cdot d_2) = 0$ and $I(x + R \cdot d_1) = 0$ **then**
1204 12: $R \leftarrow (R_{\min} + R_{\max})/2$
1205 13: $R_{\min} \leftarrow R$
1206 14: **else if** $I(x + R \cdot d_2) = 1$ and $I(x + R \cdot d_1) = 0$ **then**
1207 15: $R_{\max} \leftarrow R$
1208 16: **return** d_2, R_{\min}, R_{\max}
1209 17: **else if** $I(x + R \cdot d_2) = 0$ and $I(x + R \cdot d_1) = 1$ **then**
1210 18: $R_{\max} \leftarrow R$
1211 19: **return** d_1, R_{\min}, R_{\max}
1212 20: **end if**
1213 21: **end while**
1214 22: **return** d_2, R_{\min}, R_{\max}

C PARAMETER SENSITIVITY ANALYSIS

1217 Our SeRI approach summarized in Algorithm 1 introduces several parameters, including the thresh-
1218 olds $\check{k} = 0.2$ and $\hat{k} = 1.8$, as well as the SeRI query budget percentage $P = 20\%$. These parameter
1219 settings are based on preliminary experiments with the ImageNet-VGG19 model. Similar results
1220 have been observed across other datasets and models.

1222 Table 5: ℓ_2 -norm of perturbation for varying SeRI hyperparameters (\hat{k}, \check{k}) under 5,000 query budget.

	$\hat{k} = 1.7$	$\hat{k} = 1.8$	$\hat{k} = 1.9$	$\hat{k} = 2.0$
$\check{k} = 0.05$	1.261	1.258	1.257	1.262
$\check{k} = 0.10$	1.258	1.251	1.251	1.259
$\check{k} = 0.15$	1.251	1.247	1.260	1.249
$\check{k} = 0.20$	1.243	1.239	1.246	1.255
$\check{k} = 0.25$	1.258	1.256	1.251	1.265

1231 Table 6: ℓ_2 -norm of perturbation for varying SeRI hyperparameter P under different query budget.

Total Query→	2,000	5,000	10,000	20,000
$P = 10\%$	3.475	1.330	0.857	0.700
$P = 20\%$	3.112	1.259	0.823	0.670
$P = 30\%$	3.304	1.480	0.873	0.747
$P = 40\%$	3.332	1.719	0.994	0.819
$P = 100\%$	4.174	2.826	2.237	1.914

1240 To evaluate the impact of different parameter settings, we conduct a sensitivity analysis. Specifically,
1241 we vary the threshold \check{k} and \hat{k} (Table 5) and the percentage P (Table 6) across a range of values. For

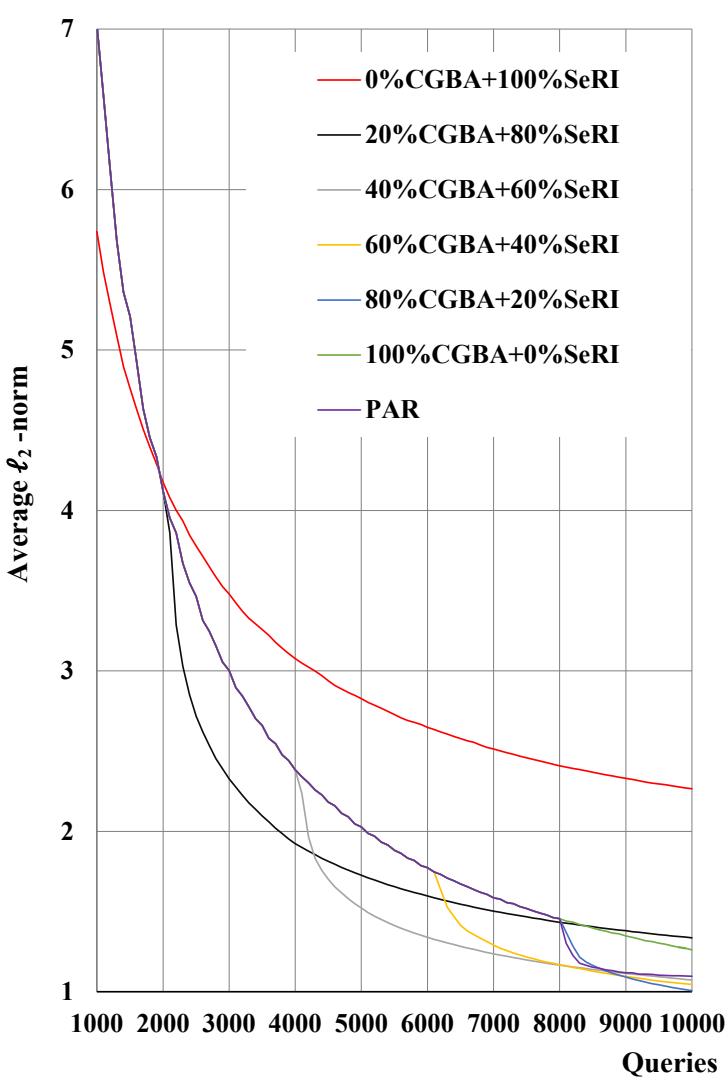


Figure 3: Decrease of the perturbation ℓ_2 -norm under different P settings of SeRI on the ImageNet-VGG model.

each setting, attack performance is assessed using the ℓ_2 -norm of the final perturbation. The total query budget is set to 5,000 for threshold \check{k} and \hat{k} . Regarding P , we evaluate the attack under query budgets of 2,000, 5,000, 10,000, and 20,000. This analysis examines whether the optimal choice of P depends on the total query budget. A lower ℓ_2 -norm indicates a more effective attack.

We conduct experiments on the ImageNet dataset using VGG19 model for non-targeted attack. This model have been introduced in Subsection 4.1. The results are presented in Tables 5 and 6, with the best values highlighted in bold.

Our experimental results demonstrate that the parameter combination $(\hat{k} = 0.2, \check{k} = 1.8)$ and $P = 20\%$ consistently yields the best performance. As shown in Table 5, the setting $(\hat{k} = 0.2, \check{k} = 1.8)$ achieves the lowest ℓ_2 -perturbation of 1.239. Additionally, Table 6 confirms that $P = 20\%$ results in the lowest ℓ_2 -perturbation across all four query budget settings.

1296 We also plot the decrease of the perturbation ℓ_2 -norm under different P settings of SeRI on the
 1297 ImageNet-VGG model (Fig.3). From the figure, we observe that when the query budget is small
 1298 (before approximately 1900 queries), the setting $P = 0\%$ achieves the lowest ℓ_2 -norm. However,
 1299 as the query budget increases, the performance of $P = 0\%$ becomes significantly worse. This
 1300 is expected because $P = 0\%$ corresponds to initializing SeRI with a random perturbation, which
 1301 allows for a rapid early reduction of the ℓ_2 -norm but provides no meaningful optimization direction
 1302 for later refinement.

1303 For $P = 20\%, 40\%, 60\%$, and 80% , we observe a noticeable “jump” in the ℓ_2 -norm when SeRI
 1304 begins operating, indicating that SeRI can effectively refine and further optimize the perturbation
 1305 produced by the base attacker.

1306 The setting $P = 100\%$ corresponds to using the base attacker alone (CGBA) with no SeRI refine-
 1307 ment. In this case, no second-stage improvement occurs, and thus the ℓ_2 -norm does not decrease
 1308 significantly at 10,000 queries.

1311 D COMPARISON OF HEATMAPS GENERATED BY SERI, PAR, LIME, AND 1312 SHAP

1313 Figure4 provides a qualitative comparison of seven input images alongside the corresponding
 1314 heatmaps and perturbation produced by SeRI and PAR. In this experiment, we adopt CGBA as
 1315 the base attacker and set the total query budget to 10,000. As illustrated in the figure, the proposed
 1316 SeRI method yields significantly more informative and concentrated heatmaps than PAR, leading
 1317 to both improved interpretability and attack quality. The advantages of SeRI can be summarized in
 1318 two major aspects:

1319 1. Semantically concentrated perturbations. SeRI naturally guides perturbations toward semanti-
 1320 cally meaningful object regions (e.g., a dog’s head or a whale’s tail), while PAR often generates
 1321 artifacts scattered across background areas. These background perturbations are visually disruptive
 1322 and lack semantic relevance. By effectively suppressing such noise, SeRI achieves a substantially
 1323 reduced perturbation strength and produces adversarial examples that are less perceptible to human
 1324 observers.

1325 2. Continuous and fine-grained saliency modeling. SeRI provides continuous-valued regional im-
 1326 portance estimates: highly influential areas are highlighted in dark red, moderately relevant areas
 1327 appear in orange or yellow, and unimportant background regions are represented in blue. This con-
 1328 tinuous sensitivity landscape more faithfully reflects the underlying structure of the model’s decision
 1329 surface. By contrast, PAR applies a binary patch-retention mechanism, either preserving or remov-
 1330 ing an entire patch, thus failing to capture nuanced differences in regional contributions and often
 1331 hindering the optimization performance.

1332 Furthermore, the heatmaps generated by SeRI enhance the interpretability of the attack, exhib-
 1333 iting strong consistency with those produced by classical explainable AI (XAI) methods. Figure5
 1334 compares the heatmaps generated by SeRI, PAR, LIME, and Kernel SHAP.

1335 LIME is a model-agnostic local explanation method based on superpixel perturbation and sparse
 1336 regression. In our implementation, LIME is configured with 1,000 perturbation samples and uses
 1337 superpixel boundaries (yellow contours) to highlight high-importance regions.

1338 Kernel-based SHAP is the black-box variant of SHAP, requiring only model output scores rather
 1339 than gradients. It estimates Shapley values by solving a locally weighted linear regression. In our
 1340 experiments, Kernel SHAP is configured with 50 superpixels (SLIC segmentation), 300 sampled
 1341 coalition evaluations. Regions important to the model are visualized in red, moderately relevant
 1342 areas in yellow/green, and unimportant areas in blue.

1343 To quantify the agreement between our sensitivity maps and classical XAI methods, we compute
 1344 the Pearson correlation coefficient (PCC) between the heatmaps produced by SeRI/PAR and those
 1345 generated by LIME and SHAP. As shown in Table7, SeRI achieves PCC scores of 0.723 with LIME
 1346 and 0.786 with SHAP values commonly interpreted as indicating strong correlation. In comparison,
 1347 PAR exhibits noticeably lower correlations (0.610 with LIME and 0.637 with SHAP). These results
 1348 suggest that SeRI captures more consistent and meaningful saliency structure than PAR, and aligns

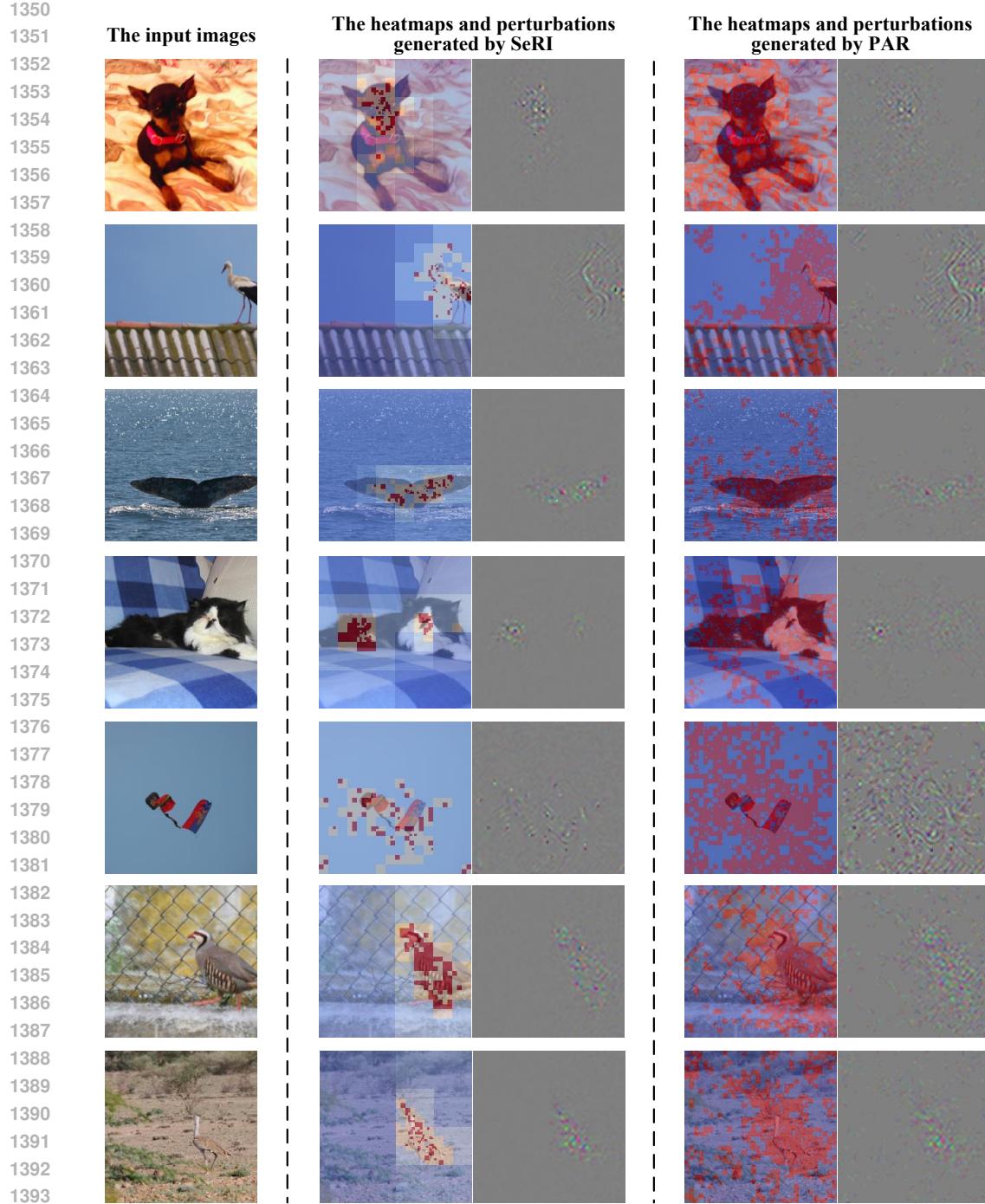


Figure 4: Heatmaps and perturbations generated by SeRI and PAR.

more closely with the explanations provided by established XAI methods, despite relying only on hard-label queries.

This quantitative evidence is further supported by the qualitative comparisons in Figure 5. For the first-row dog example, both LIME and SHAP assign the highest importance to the dog's head, and SeRI similarly concentrates its heatmap on this region. A similar pattern is observed in the

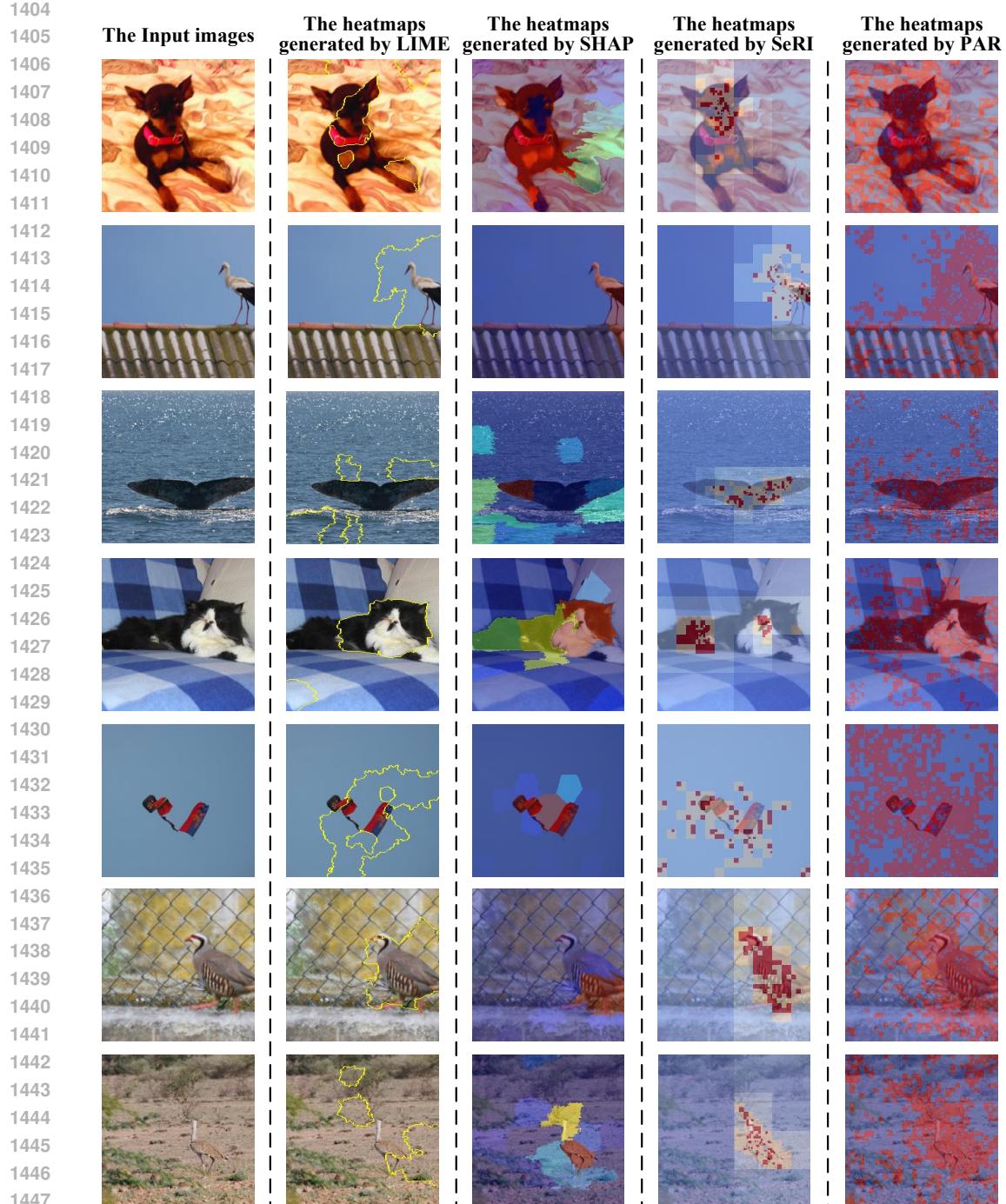


Figure 5: Heatmaps generated by LIME, SHAP, SeRI, and PAR.

1448
1449
1450
1451
1452
1453
1454 second-row bird image: LIME and SHAP highlight the bird's torso, wings, and legs, and SeRI again
1455 identifies these same regions with high saliency.

1456
1457 Interestingly, the third-row whale-tail example reveals an even clearer distinction. While LIME
1458 and SHAP partially capture the whale's tail but fail to fully localize it, SeRI successfully places
1459 nearly all of its saliency on the tail, closely matching the true decision-critical region. This high-

1458 Table 7: Average Pearson Correlation Coefficient (PCC) between the heatmaps produced by
 1459 SeRI/PAR and those from LIME and SHAP.

Method	PCC w/ LIME	PCC w/ SHAP
SeRI	0.723	0.786
PAR	0.610	0.637

1466 lights SeRI’s ability to more accurately approximate the model-dependent sensitivity landscape than
 1467 existing black-box XAI baselines.

1469 Overall, both the quantitative PCC analysis and qualitative heatmap comparisons indicate that SeRI
 1470 not only delivers more semantically accurate and interpretable region sensitivity estimates than PAR,
 1471 but also maintains a strong alignment with classical XAI methods such as LIME and SHAP. These
 1472 results further validate the reliability and effectiveness of SeRI’s boundary-driven sensitivity estima-
 1473 tion framework.

1474 **E COMPARE ATTACK SUCCESS RATE (ASR), STRUCTURAL SIMILARITY
 1475 INDEX (SSIM), AND STANDARD DIVISION OF ℓ_2 -NORM (ℓ_2 -STD)**

1478 To further verify that SeRI provides advantages beyond ℓ_2 -norm reduction, we conduct additional
 1479 experiments on three complementary metrics: (1) Attack Success Rate (ASR), (2) Structural Simi-
 1480 larity Index (SSIM), and (3) Standard Deviation of ℓ_2 -norm (ℓ_2 -STD). These metrics jointly capture
 1481 attackability, perceptual imperceptibility, and optimization stability.

1482 We evaluate on ImageNet, CIFAR-100, and MNIST datasets with diverse model architectures:
 1483 ResNet50, Inception-v3, VGG19, ViT, WideResNet (WRN), Engstrom Wong & Kolter (2018), and
 1484 Lipschitz Tsuzuku et al. (2018). For each model, we randomly sample 500 images from the test set.
 1485 We adopt untargeted attacks with a query budget of 10,000 queries. Perturbation thresholds are set
 1486 to $\epsilon = 2.5$ on ImageNet, $\epsilon = 1.0$ on CIFAR-100, and $\epsilon = 3.0$ on MNIST. We evaluate two base
 1487 attackers, CGBA and ADBA, optionally enhanced with PAR or SeRI.

1488 Table 8: Attack success rate (ASR) of SeRI measured under a query budget of 10,000.

	Imagenet -ResNet50	Imagenet -InceptionV3	Imagenet -VGG19	Imagenet -Engstrom	CIFAR100 -ViT	CIFAR100 -WRN	MNIST -Lipschitz
CGBA	49.8%	77.6%	86.4%	28.4%	79.4%	55.6%	76.6%
CGBA+PAR	56.0%	82.8%	87.2%	38.8%	84.6%	58.4%	82.8%
CGBA+SeRI	64.6%	86.8%	91.0%	46.8%	87.2%	61.8%	88.0%
ADBA	46.0%	58.6%	61.2%	18.0%	36.0%	27.2%	51.2%
ADBA+PAR	52.6%	62.8%	71.0%	41.0%	47.8%	36.6%	72.6%
ADBA+SeRI	57.8%	66.2%	79.4%	49.8%	58.0%	43.8%	87.0%

1498 Table 9: Average Structural Similarity Index (SSIM) of SeRI on the ImageNet dataset, measured
 1499 under a query budget of 10,000.

	Imagenet -ResNet50	Imagenet -InceptionV3	Imagenet -VGG19	Imagenet -Engstrom	CIFAR100 -ViT	CIFAR100 -WRN	MNIST -Lipschitz
CGBA	0.959	0.982	0.994	0.903	0.996	0.964	0.449
CGBA+PAR	0.963	0.985	0.996	0.940	0.998	0.971	0.751
CGBA+SeRI	0.964	0.986	0.996	0.946	0.998	0.973	0.786
ADBA	0.962	0.972	0.982	0.903	0.981	0.910	0.445
ADBA+PAR	0.966	0.977	0.983	0.951	0.985	0.930	0.723
ADBA+SeRI	0.967	0.979	0.984	0.958	0.987	0.933	0.745

1508 The results in Tables 8, 9, and 10 collectively highlight the clear and consistent advantages brought
 1509 by SeRI across all datasets and model architectures. Most notably, SeRI provides a substantial
 1510 improvement in attackability, achieving the highest ASR in every tested setting and outperforming
 1511 both base attacker and PAR by large margins. This demonstrates that SeRI’s sensitivity-guided

1512

Table 10: STD of ℓ_2 -norm under a query budget of 10,000.

1513

1514

	Imagenet -ResNet50	Imagenet -InceptionV3	Imagenet -VGG19	Imagenet -Engstrom	CIFAR100 -ViT	CIFAR100 -WRN	MNIST -Lipschitz
CGBA	7.404	4.297	1.318	16.99	0.484	1.001	3.214
CGBA+PAR	5.972	3.661	1.265	4.891	0.432	0.933	1.997
CGBA+SeRI	4.636	2.398	1.124	3.628	0.390	0.853	0.939
ADBA	3.648	3.700	2.294	7.508	1.321	1.902	1.034
ADBA+PAR	3.211	3.505	2.007	4.659	1.165	1.451	0.871
ADBA+SeRI	2.789	3.448	1.856	3.653	1.032	1.126	0.738

1520

1521

refinement is highly effective in driving perturbations toward the true decision boundary even under strict query constraints.

1522

1523

At the same time, SeRI preserves exceptional perceptual quality, achieving SSIM scores that match or exceed both the base attackers and PAR, and often approaching values near 1.0, indicating that SeRI generates adversarial examples that remain visually indistinguishable from clean images.

1524

1525

Furthermore, SeRI consistently achieves the lowest ℓ_2 -STD, revealing that its continuous region-aware optimization yields far more stable and reliable perturbation magnitudes across images. Importantly, these improvements occur simultaneously: higher ASR, better perceptual quality, and greater optimization stability, demonstrating that SeRI offers a comprehensive enhancement rather than a trade-off. Overall, the results confirm that SeRI is a robust and broadly effective refinement module that significantly strengthens decision-based black-box attacks across diverse architectures and evaluation metrics, establishing it as a strong and practical advancement for the field.

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565