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ABSTRACT

Deep neural networks (DNNs) are highly vulnerable to adversarial attacks, where
small, carefully crafted perturbations are added to input images to cause misclas-
sification. These perturbations are particularly effective when concentrated in sen-
sitive regions of an image. However, in decision-based black-box settings, where
only the top-1 predicted label is observable and query budgets are strictly limited,
identifying sensitive regions becomes extremely challenging. This issue is critical
because without accurate region information, decision-based attacks cannot refine
adversarial examples effectively, limiting both their efficiency and accuracy. We
propose Sensitive Region Identification (SeRI), the first decision-based method
that assigns a continuous sensitivity score to each image pixel. It enables fine-
grained region discovery and substantially improves the efficiency of adversarial
attacks, all without access to gradients, confidence scores, or surrogate models.
SeRI progressively partitions the image into finer sub-regions and refines a con-
tinuous sensitivity score to capture their true importance. At each iteration, it
generates two perturbation variants of the selected region by scaling its magnitude
up or down, and compares their decision boundaries to derive an accurate, con-
tinuous characterization of pixel sensitivity. SeRI further divides selected region
into smaller sub-regions, recursively refining the search for sensitive areas. This
recursive refinement process enables more precise sensitivity estimation through
fine-grained analysis, distinguishing SeRI from prior binary or one-shot region
selection approaches. Experiments on two benchmark datasets show that SeRI
significantly enhances state-of-the-art decision-based attacks in both targeted and
non-targeted attack scenarios. Moreover, SeRI produces precise heatmaps of sen-
sitive image regions, providing strong validation of the attack process. The code
is available at https://anonymous.4open.science/r/SeRI-5310.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved superiority in tasks such as image classification Brun-
ner et al. (2019). However, they remain highly susceptible to carefully crafted adversarial examples
generated by adversarial attacks Dong et al. (2020); Chen & Gu (2020); Chen et al. (2020a). Since
these vulnerabilities undermine the reliability and security of machine learning systems, adversarial
robustness has emerged as a central research focus. Li et al. (2021).

Adversarial attacks are typically grouped into white-box attacks Goodfellow et al. (2015); Carlini
& Wagner (2017); Madry et al. (2018), gray-box attacks (or soft-label attacks, score-based attacks,
confidence-based attacks) Chen et al. (2017); Ilyas et al. (2019), and black-box attacks Brendel
et al. (2018); Cheng et al. (2019); Chen & Gu (2020), based on how much information the attacker
can obtain about the target models. White-box and gray-box attacks require full or partial access to
the target model, such as its network architectures, parameters, or confidence scores, which is rarely
available in real-world scenarios Chen & Gu (2020). Consequently, black-box attacks have drawn
significant interest in the research community Cai et al. (2022).

Black-box attacks fall into two main categories: transfer-based Wang et al. (2024); Sun et al.
(2024); Park et al. (2024) and decision-based Chen & Gu (2020); Chen et al. (2020a); Reza et al.
(2023); Wang et al. (2025). Transfer-based attacks train a surrogate model using the target model’s
data and then generate adversarial examples via white-box attack techniques. However, poor per-
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Figure 1: Perturbation optimization process of SeRI. The process starts by generating an initial
adversarial example using Gaussian noise or a classical decision-based attack such as HSJA. The
perturbation is split into four sub-regions, and the one with the highest ℓ2-norm is selected. Two
new perturbations are created by enhancing or reducing the perturbation in that sub-region. SeRI
compares their decision boundaries and keeps the one with the lowest value. In the next iteration,
the selected sub-region is further subdivided for fine-grained optimization. A heatmap highlighting
sensitive regions is then generated from the refined perturbation.

turbation transferability often limits their attack success rate Reza et al. (2023). Decision-based
attacks Brendel et al. (2018); Chen et al. (2020a); Chen & Gu (2020); Reza et al. (2023); Wang et al.
(2025) aim to mislead a target DNN model by introducing minimal perturbations while operating
under a limited query budget Li et al. (2021). Unlike white-box, gray-box, or transfer-based attacks,
they do not rely on the target model’s training data, architecture, or output confidence scores. In-
stead, they operate purely on the model’s top-1 predicted label, which is often available in real-world
systems Dong et al. (2019); Brunner et al. (2019).

The role of sensitive regions in adversarial attacks. It is well known that an image typically
consists of both sensitive regions (i.e., salient objects like an eagle’s head in Figure 2-(b)) and non-
sensitive regions (i.e., irrelevant backgrounds in Figure 2-(b)). Focusing perturbations on sensitive
regions, which are areas that contribute mostly to the model’s prediction, has been shown to sig-
nificantly improve the success rate of adversarial attacks. However, due to the limited information
access and strict query constrains in black-box attack settings, identifying sensitive regions becomes
a significant challenge Shi et al. (2022); Lin et al. (2023). Existing black-box attacks generally adopt
two primary strategies to exploit sensitive regions.

The first strategy gives rise to the transfer-based region-aware approaches Chen et al. (2020b);
Dong et al. (2020); Lovisotto et al. (2022); Lin et al. (2023). These methods generate sensitive
region heatmaps from a surrogate model using white-box interpretability techniques, and then use
the heatmaps to guide perturbation generation on the target model. However, models with different
architectures, such as Vision Transformers Dosovitskiy (2020) and ResNets He et al. (2016), often
focus on distinct features or regions Shi et al. (2022). As a result, the heatmaps generated from
the surrogate model may fail to capture the decision-critical regions of the target model, leading to
suboptimal attack performance.

The second strategy relies on decision-based region sensitivity estimation, where sensitivity is
inferred from the model’s top-1 prediction. PAR Shi et al. (2022) is the primary method that ex-
emplifies this approach with a patch-wise removal strategy: it deletes a perturbation block, queries
the model, and labels the region as sensitive or not based on the hard-label prediction. To reduce
query cost, PAR further uses a binary decision process that either keeps or removes the perturbation
in a region, without any fine-grained adjustment. This approach restricts exploration of the solution

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

space, leading to lower attack success rates. In reality, different pixels respond to perturbations with
varying levels of sensitivity. This means perturbations should be weighted in proportion to each
pixel’s sensitivity, rather than applied in an all-or-nothing manner where an entire region is either
kept or removed.

We introduce a new definition of region sensitivity grounded in the perturbation decision boundary
(see Section 4 for details). Unlike prior binary formulations, this new definition enables a continuous
and fine-grained quantification of sensitivity, providing a principled foundation for adaptive pertur-
bation refinement in decision-based attacks. Different from PAR that treats each region as either
sensitive or insensitive in PAR, our approach introduces an innovative continuous sensitivity formu-
lation that assigns a perturbation weight score to each pixel. It enables fine-grained control over
perturbation strength across regions, leading to targeted and effective perturbation optimization.

I=1, Q=7, 
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(b) Non-targeted attack:  class 'Bald Eagle' is misclassified as 'Vulture'.

Input image and 
perturbation

(c) Targeted attack:  class 'Bald Eagle' is misclassified as 'Minivan'.
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perturbation

Figure 2: Heatmaps generated by SeRI, showing how
the heatmaps, perturbations, and their ℓ2-norms evolve
over iterations (I) and queries (Q).

Building on this definition, we propose
Sensitive Region Identification (SeRI), an
approach that is efficient in both compu-
tation and queries, to adaptively optimize
perturbations down to the level of individ-
ual pixels. SeRI is simple to implement
in decision-based attack settings and can
be seamlessly integrated as a plug-in per-
turbation optimizer to refine the perturba-
tions generated by various baseline attack-
ers like CGBA Reza et al. (2023). This
“Attacker + SeRI” framework significantly
enhances baseline attacker with minimal
query-budget.

An overview of our approach is illus-
trated in Figure 1. Specifically, we gen-
erate two perturbation variants by either
increasing or decreasing the perturbation
strength within the selected region. These
two variants, along with the original per-
turbation, are then compared based on
their decision boundaries. For this com-
parison, we adopt the Approximation De-
cision Boundary Approach (ADBA) Wang
et al. (2025), which operates effectively
with a minimal query budget. The cur-
rent perturbation is subsequently updated
with the variant that yields the smallest
estimated decision boundary. Experimen-
tal results on two datasets and three mod-
els confirm its effectiveness and general-
izability. The sensitivity-region heatmaps
and the corresponding optimized perturba-
tions produced by SeRI are shown in Figure 2. SeRI’s precise thermal grading not only accelerates
perturbation optimization by focusing on the most influential regions, but also produces heatmaps
that align with human visual perception, thereby enhancing the interpretability of the attack process.

2 RELATED WORK

Decision-based attacks represent one of the most challenging setting in adversarial robustness, as
only the model’s top-1 predicted label is observable and no gradient information is available Chen
& Gu (2020). Boundary AttackBrendel et al. (2018), Biased Boundary Attack Brunner et al. (2019)
and AHA Li et al. (2021) perform random walks along the decision boundary to gradually reduce
the perturbation strength. Triangle Attack Wang et al. (2022) designs a structured triangle-based per-
turbation in the low-frequency domain to improve efficiency. SurFree Maho et al. (2021) explores
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multiple carefully chosen perturbation directions simultaneously, without relying on gradient esti-
mation. OPT Cheng et al. (2019) and Sign-OPT Cheng et al. (2020) reformulate the decision-based
attacks as continuous optimization problem solvable via zeroth-order methods. RayS Chen & Gu
(2020) and ADBA Wang et al. (2025) use a progressive search strategy that adaptively subdivides
perturbation directions to accelerate convergence. Some attacks guide perturbation optimization by
estimating the normal vector of the decision boundary at a boundary point. For example, qFool Liu
et al. (2019) and GeoDA Rahmati et al. (2020) improve gradient estimation efficiency by leveraging
the fact that decision boundaries near adversarial examples typically have low curvature. QEBA Li
et al. (2020) reduces query complexity by performing subspace optimization in both the spatial and
the frequency domains. HSJA Chen et al. (2020a), TA Ma et al. (2021), and BounceAttack Wan
et al. (2024) estimates normal vectors to generate adversarial example. Achieving state-of-the-art
performance under the ℓ2-norm, CGBA Reza et al. (2023) introduces a novel semicircular search
strategy within a two-dimensional subspace to effectively navigate geometric complexities.

Although recent decision-based attacks achieve good performance, they usually ignore which region
of the image are more sensitive to the model. Because they generate global perturbations without
considering regional differences, the perturbations are often large and easy to notice.

Sensitive region-based attacks. Many classical XAI methods such as Grad-CAM Selvaraju et al.
(2017), Occlusion Zeiler & Fergus (2014), LIME Ribeiro et al. (2016), and SHAP Lundberg & Lee
(2017) can highlight important or influential regions of an input image. However, these methods
are primarily designed to explain the prediction behavior of a model rather than to identify regions
that are most useful for generating adversarial perturbations. In addition, they rely on gradients,
confidence scores, or internal activations to compute importance, all of which are unavailable in
hard-label decision-based attacks. Nonetheless, these interpretability techniques provide a natural
motivation for using sensitive regions to guide perturbation generation in adversarial attacks.

Building on this idea, existing work attempts to explicitly use sensitive regions to improve attack
quality. These methods can be broadly categorized into three groups: (1) attention-based methods
Dong et al. (2020); Chen et al. (2020b), (2) surrogate-based methods Lin et al. (2023) and (3)
decision-based methods Shi et al. (2022); Tao et al. (2023).

Superpixel-guided Attentional Attack (SGA) Dong et al. (2020) perturbs only the regions selected
by attention maps. Attack on Attention (AoA) Chen et al. (2020b) optimizes an attention-based
loss to improve transferability. However, both SGA and AoA need attention maps or activation
features, which require white-box access and cannot be used in hard-label black-box settings. To
avoid these requirements, SRA Lin et al. (2023) uses a surrogate model to generate sensitivity maps,
but it needs the target dataset to be known. SaliencyAttack Dai et al. (2023) uses model-agnostic
saliency detection, but the saliency maps may be inaccurate and fail to locate the truly important
regions. Decision-based attacks such as HardBeat Tao et al. (2023) search for one vulnerable patch
and perturb only that patch. However, when multiple regions jointly affect the classifier, focusing
on only one patch becomes incomplete. PAR Shi et al. (2022) estimates region sensitivity through
a patch-wise removal strategy, but its binary keep/remove decision is coarse and cannot reflect con-
tinuous importance inside each region. Overall, current methods cannot provide continuous region
sensitivity under the strict decision-based setting.

3 PROBLEM DEFINITION

Let p ∈ [0, 1] be an image pixel and x = pC×W×H represent a source image with channels C,
width W , and height H , respectively, and y(x) denote the true label of x. Let f : x → {1, . . . ,K}
represent a K-class image classification model. Given a source image x which is classified correctly
by model f (i.e., f(x) = y(x)). The goal of a decision-based black-box attacker is to find an
adversarial example x̃ = p̃C×W×H , p̃ ∈ [0, 1], such that f(x̃) ̸= y(x) for non-targeted attacks, or
f(x̃) = f(xtar) for targeted attacks, while minimizing the perturbation strength ∥x̃−x∥2. Here, xtar
is a given target image and f(xtar) ̸= y(x), and ∥ · ∥2 stands for the ℓ2-norm used to measure the
perturbation strength. The problem of optimizing the adversarial example x̃ can be formulated as:

argmin
x̃
∥x̃− x∥2 s.t. I(x̃) = 1, (1)
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where I(·) is an indicator function that determines whether the adversarial example x̃ is in the
adversarial regions. For a non-targeted attack:

I(x̃) =

{
1, if f(x̃) ̸= y(x),

−1, otherwise.
(2)

For a targeted attack with a targeted image xtarget:

I(x̃) =

{
1, if f(x̃) = f(xtarget),

−1, otherwise.
(3)

Let a perturbation be denoted as d = vC×W×H ,where v ∈ [−1, 1] . An adversarial example x̃ is
then given by x̃ = clamp(x+(x̃−x)) = clamp(x+d) = clamp(x+∥d∥2 · d

∥d∥2
), where clamp(·)

constrains each image pixel to the range [0, 1]. We define the decision boundary for any perturbation
d as g(d) = min{r > 0 : I(x + r · d

∥d∥2
) = 1}. Consequently, the optimization problem in Eq. 1

can be reformulated as:

argmin
d

g(d) s.t. I(x+ g(d) · d

∥d∥2
) = 1. (4)

4 PROPOSED APPROACH

The proposed SeRI approach is applied after a base attacker (e.g., HSJA), refining its perturbation
by identifying sensitive regions through additional queries. With total query budget Q and SeRI
query budget fraction P , query allocation is (1−P ) ·Q for the base attacker and P ·Q for SeRI. In
this paper, we set P = 20% for all datasets and models, based on the parameter sensitivity analysis
presented in Appendix C of the supplementary material. The introduction of base attackers are
introduced in Section 2. Here, we focus on our proposed SeRI approach.

4.1 DEFINITION OF PERTURBATION SENSITIVITY

Existing sensitivity definitions can be roughly grouped into two families: gradient-based definitions
and perturbation-based definitions. Gradient-based definitions, such Integrated Gradients (IG)
Sundararajan et al. (2017), Grad-CAM Selvaraju et al. (2017), and their variants, define the sensi-
tivity of a pixel by the gradient of a target score with respect to the input. Let x ∈ [0, 1]C×W×H

denote the input image, y(x) its true label, and fy(x)(x) the logit (or score) for class y(x). A typical
pixel-wise sensitivity can be written as

sc,w,h =

∣∣∣∣∂fy(x)(x)∂xc,w,h

∣∣∣∣ , sw,h =
C∑

c=1

∣∣∣∣∂fy(x)(x)∂xc,w,h

∣∣∣∣ . (5)

Such definitions capture which pixels or regions are most influential for the model’s internal deci-
sion. However, they are not directly usable in decision-based black-box attacks, where gradients
with respect to the input are completely unavailable.

Perturbation-based definitions estimate sensitivity by actively modifying the input and observing
how the model output changes. Representative examples include Occlusion-Based explanations
Zeiler & Fergus (2014), SRA Lin et al. (2023), and PAR Shi et al. (2022). Occlusion and SRA
define pixel-wise sensitivity via the drop in the predicted confidence of the true class after perturbing
a single pixel. Let py(x)(x) denote the predicted probability of class y(x). For each spatial location
(w, h), they consider a small ℓ∞ perturbation of size t > 0 on all channels at that pixel:

sw,h =
py(x)(x)− py(x)

(
x+ t ew,h

)
t

, (6)

where ew,h ∈ RC×W×H is zero everywhere except at pixel (w, h), with all C channels equal to 1.
Intuitively, sw,h measures how much the true-class probability decreases when only pixel (w, h) is
slightly perturbed, and thus serves as a pixel-wise sensitivity score in the black-box setting.

PAR, on the other hand, defines sensitivity at the patch level. Let x̃ be an adversarial example
for x, and d = x̃ − x the corresponding perturbation. For a region (patch) b with binary mask
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Mb ∈ {0, 1}C×W×H , PAR uniformly rescales the perturbation inside b by a factor κ ∈ [0, 1], and
the region-wise sensitivity of b is then defined as:

SPAR(b) = min
{
κ ∈ [0, 1] : I

(
x+ d(b,κ)

)
= 1

}
, d(b,κ) = d− (1− κ) d⊙Mb, (7)

where ⊙ denotes element-wise multiplication and I(·) is an indicator function. A smaller value of
SPAR(b) means that more perturbation in region b can be removed while keeping the perturbation
adversarial, hence b is less sensitive; a larger value indicates a more sensitive region.

Limitations of existing perturbation-based sensitivity definitions. Although intuitively appeal-
ing, the above perturbation-based sensitivity notions have fundamental limitations when applied to
continuously optimizing adversarial perturbations in decision-based attacks. While the sensitivity
scores in Occlusion, SRA, and PAR are real-valued, they do not provide guidance on how to adjust
perturbation strength in a smooth, continuous manner.

For Occlusion and SRA, the sensitivity sw,h indicates the drop in confidence when pixel (w, h) is
perturbed, but it does not specify how the perturbation strength at each pixel should be rescaled
relative to others to make the global adversarial perturbation more effective, e.g., to reduce the
decision-boundary. For PAR, SPAR(b) gives the maximal compression ratio that preserves attack
success for each patch b, but this value still cannot serve as a continuous scaling factor for perturba-
tion refinement. Reducing perturbation strength in a patch exactly to its PAR threshold produces an
adversarial example that is only barely successful; any further reduction in other regions may cause
immediate attack failure. This makes smooth, iterative refinement essentially infeasible.

In summary, these sensitivity definitions characterize local relationships between perturbation
changes and model outputs (scores or labels), but they do not explicitly capture how local adjust-
ments influence the global effectiveness of the perturbation. For decision-based black-box attacks,
we argue that a more appropriate notion of perturbation sensitivity should be defined in terms of its
impact on the overall adversarial effectiveness, as quantified by the decision-boundary g(d).

Our decision-boundary-based sensitivity definition. Given a target DNN model f , its indicator
function I(·), an original image x, and an initial perturbation d that successfully deceives the model
(i.e., I(x + d) = 1), we define the model’s adversarial perturbation sensitivity as a tensor S ∈
RC×W×H , where each element sc,w,h ≥ 0 represents the sensitivity weight of pixel (c, w, h). In
the decision-based setting, we seek a transformed perturbation S · d (element-wise product) that
minimizes the decision boundary g(S · d). To ensure that the overall perturbation strength remains
unchanged, we enforce an ℓ2-norm constraint ∥S · d∥2 = ∥d∥2. Accordingly, the task of optimizing
perturbations based on sensitivity becomes

argmin
S

g(S · d), subject to ∥S · d∥2 = ∥d∥2. (8)

SeRI perturbation refinement

Eq. 8 defines a continuous optimization problem over a high-dimensional space S ∈ RC×W×H ,
which makes the problem especially challenging to solve. To manage this complexity, we adopt
an iterative region-splitting strategy. We start from the initial region b0 = {1:C, 1:W, 1:H} and
maintain a set of non-overlapping blocks Bi at iteration i, with B0 = {b0}. At each iteration, we
adjust the perturbation only within a single block and then subdivide this block into smaller sub-
regions. In practice, each selected block is split into four equal sub-regions; Appendix B.1 shows
that the efficiency of SeRI is largely insensitive to this choice.

Given the current perturbation di and block set Bi, we select one region to optimize based on its
local ℓ2-norm: we set b∗ = argmaxb∈Bi ∥di[b]∥2, where di[b] denotes the restriction of di to region
b. This heuristic prioritizes regions with larger local perturbation, which have greater potential for
perturbation reduction. After updating di within b∗, we replace b∗ in Bi by its four sub-regions to
obtain Bi+1, enabling progressively finer control.

Once a region b∗ is selected, we assess its sensitivity by measuring how local rescaling of the pertur-
bation in b∗ changes the overall decision boundary. Let Mb∗ ∈ {0, 1}C×W×H be the binary mask
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of b∗, where entries inside b∗ are 1 and 0 elsewhere. We construct three candidate perturbations:

di0 = di,

di1 =
∥di∥2

∥di + (ǩ − 1) di ⊙Mb∗∥2

(
di + (ǩ − 1) di ⊙Mb∗

)
,

di2 =
∥di∥2

∥di + (k̂ − 1) di ⊙Mb∗∥2

(
di + (k̂ − 1) di ⊙Mb∗

)
,

(9)

where 0 < ǩ < 1 < k̂ and ⊙ denotes element-wise multiplication. To keep the overall perturbation
strength unchanged, all candidates are normalized to have the same ℓ2-norm as di. We then choose

j⋆ = arg min
j∈{0,1,2}

g
(
dij
)
, and update di+1 = dij⋆ . (10)

If j⋆ = 1, the perturbation in b∗ is reduced; if j⋆ = 2, it is enhanced; if j⋆ = 0, no change is applied,
indicating that b∗ is already close to locally optimal.

This adaptive update strategy guarantees a monotonic decrease of the decision-boundary distance at
each iteration and progressively steers the perturbation of each pixel toward its optimal sensitivity
level under the ℓ2 constraint. Theoretical justifications of this monotonic improvement and conver-
gence to a stationary perturbation are provided in Appendix A. The complete procedure of SeRI is
summarized in Algorithm 1 of Appendix B.

Comparing decision boundaries of candidate perturbations

In Eq. 10, SeRI updates the current perturbation by selecting the best candidate among d0, d1, and d2
based on their decision-boundary. This requires a query-efficient procedure to compare the decision
boundaries. We adopt the Approximation Decision Boundary Approach (ADBA) Wang et al. (2025),
which is specifically designed for low-cost decision-boundary comparisons (see Appendix B.2 for
details). As a result, SeRI is highly query-efficient. For example, as shown in Figure 2(a), optimizing
a single perturbation over 504 SeRI iterations consumes only 2001 queries in total, i.e., about four
queries per iteration (2001/504 ≈ 3.97).

The effectiveness of ADBA relies on several standard assumptions, SeRI, which builds upon ADBA,
also inherits these assumptions (stated in detail in Appendix A.1): (1) local Lipschitz continuity of
the decision boundary, (2) locally bounded curvature of the decision boundary, and (3) deterministic
hard-label outputs of the target model. Assumptions (1) and (2) are mild and are typically satisfied
by modern deep networks such as CNNs and Vision Transformers. Assumption (3), however, rules
out randomized defenses (e.g., randomized smoothing or random input transformations Xie et al.
(2018); Raff et al. (2019)), and thus SeRI is not intended for such settings. But for other defenses
that would not break these three assumptions, such as adversarial training (AT) Zagoruyko (2016)
and Lipschitz-based defenses Tsuzuku et al. (2018); Araujo et al. (2023)

5 EXPERIMENTS

SeRI improves the perturbations generated by base attackers (e.g., HSJA) by identifying and refin-
ing sensitive regions through additional queries. To be effective, the combined “Attacker + SeRI”
pipeline must offer better overall query efficiency than the base attacker alone. SeRI is also ex-
pected to outperform other sensitivity-aware refinement methods in terms of query usage. To verify
these questions, SeRI is evaluated on two famous image classification datasets. SeRI is further
compared against multiple decision-based and sensitivity-based attack methods in both targeted and
non-targeted settings. All experiments were performed using an Intel Xeon Gold 6330 CPU and four
NVIDIA GeForce RTX 4090 GPUs with PyTorch 2.3.0, Torchvision 0.18.0, and Python 3.11.5.

5.1 EXPERIMENT SETTINGS

Competing approaches. We compare the performance of SeRI with five well-known decision-
based attacks, including HSJA, Chen et al. (2020a), CGBA Reza et al. (2023), RayS Chen & Gu
(2020), ADBA Wang et al. (2025), and PAR Shi et al. (2022). HSJA and CGBA operate under the
ℓ2-norm constraint, with CGBA representing the state of the art among such attacks. Additionally,
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Table 1: Average (median) ℓ2 perturbation norms for targeted and non-targeted attacks on ImageNet
using a VGG model.

Non-targeted attacks Targeted attacks
Total Query 2,000 5,000 10,000 2,000 5,000 10,000

HSJA 8.18(5.29) 4.43(2.51) 3.39(1.91) 72.3(66.5) 50.6(36.9) 33.7(20.8)
HSJA+PAR 6.65(3.61) 3.88(2.35) 3.08(1.82) 53.0(50.1) 35.4(32.3) 20.4(14.0)
HSJA+SeRI 6.47(3.55) 3.63(2.22) 2.85(1.51) 48.3(46.5) 32.0(29.9) 18.5(12.3)

CGBA 3.91(2.02) 1.91(1.10) 1.19(0.75) 77.4(74.9) 58.8(56.4) 40.2(33.1)
CGBA+PAR 2.81(1.55) 1.46(0.85) 1.03(0.64) 58.3(55.1) 39.4(37.8) 23.1(15.6)
CGBA+SeRI 2.92(1.39) 1.36(0.70) 0.96(0.54) 53.0(50.0) 36.0(33.2) 21.1(13.3)

RayS 5.14(3.50) 3.54(2.27) 2.72(1.76) - - -
RayS+PAR 3.48(2.38) 2.23(1.37) 1.75(1.07) - - -
RayS+SeRI 3.46(2.29) 2.16(1.27) 1.56(0.92) - - -

ADBA 4.04(2.77) 3.03(1.94) 2.44(1.53) - - -
ADBA+PAR 2.82(1.74) 2.02(1.19) 1.67(0.99) - - -
ADBA+SeRI 2.78(1.71) 1.95(1.07) 1.49(0.87) - - -

Table 2: Average (median) ℓ2 perturbation norms for targeted and non-targeted attacks on ImageNet
using a ViT model.

Non-targeted attacks Targeted attacks
Total Query 2,000 5,000 10,000 2,000 5,000 10,000

HSJA 13.2(9.47) 6.78(4.27) 4.18(2.88) 34.3(30.0) 16.0(15.2) 8.09(7.94)
HSJA+PAR 9.62(6.19) 4.98(3.33) 3.85(2.46) 27.7(24.1) 13.0(9.13) 6.35(5.54)
HSJA+SeRI 9.02(4.40) 4.13(1.95) 3.25(2.21) 26.9(23.1) 12.0(8.81) 6.15(5.27)

CGBA 4.59(3.13) 2.33(1.52) 1.59(1.05) 36.6(31.3) 14.1(10.3) 5.80(4.73)
CGBA+PAR 3.67(2.36) 2.08(1.45) 1.40(0.94) 29.3(25.6) 12.4(8.42) 4.79(4.26)
CGBA+SeRI 3.53(1.99) 1.89(1.29) 1.27(0.85) 29.0(24.0) 11.9(8.09) 4.61(3.91)

RayS 10.7(5.24) 7.20(3.50) 5.15(2.79) - - -
RayS+PAR 7.05(3.75) 4.62(2.61) 3.33(2.02) - - -
RayS+SeRI 7.01(3.69) 4.52(2.00) 3.20(1.55) - - -

ADBA 7.56(5.06) 5.03(3.63) 3.65(2.71) - - -
ADBA+PAR 5.67(3.65) 3.87(2.60) 2.82(1.95) - - -
ADBA+SeRI 5.53(3.62) 3.59(2.10) 2.39(1.26) - - -

both methods support both targeted and non-targeted attack scenarios. Meanwhile, RayS and ADBA
are leading methods with respect to the ℓ∞-norm setting. Building on RayS, ADBA leverages an
approximate decision boundary to enable efficient perturbation comparisons, significantly reducing
query usage. Due to their ℓ∞-norm constraint, both methods are limit to non-targeted attacks Chen &
Gu (2020); Wang et al. (2025). Although RayS and ADBA are originally designed for the ℓ∞-norm
attacks, SeRI can still be applied to refine their perturbations, enabling improved performance under
the ℓ2-norm constraint. Similar to SeRI, PAR is a region-sensitivity-aware perturbation optimizer
for the decision-based setting. It can serve as a noise-initialization module for other decision-based
attacks, enhancing their noise-compression capability.

We evaluate SeRI across 12 attack configurations: the four base attackers (HSJA, CGBA, RayS, and
ADBA), their respective “Attacker + SeRI” variants, and their “Attacker + PAR” counterparts. All
configurations are assessed based on attack performance under the ℓ2-norm constraint.

Benchmark datasets and models. we conduct comprehensive experiments on two datasets us-
ing three representative models: ImageNet Deng et al. (2009) with VGG19 Simonyan & Zisser-
man (2015) and the Vision Transformer (ViT) Dosovitskiy (2020) architecture, and CIFAR-100
Krizhevsky et al. (2009) with an adversarial trained WideResNet model from Wang et al. (2023).

Hyperparameter settings. We adopt the recommended hyperparameter settings in Chen et al.
(2020a); Chen & Gu (2020); Shi et al. (2022); Reza et al. (2023); Wang et al. (2025). Specifically,
for all four competing algorithms and SeRI, the decision boundary search tolerance τ = 10−5. We
also follow hyperparameter settings of PAR in Shi et al. (2022) and set the initial and minimum patch
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size to 56 and 1, respectively. In SeRI, according to the parameter sensitive analysis in Appendix C,
the thresholds ǩ = 0.2 and k̂ = 1.8, and the query budget percentage P is set to P = 20%.

5.2 EXPERIMENT RESULTS

For each model, we randomly select 1000 test images. Tables 1 and 2 present the average and
median ℓ2-norms achieved by all competing approaches under query budgets of 2,000, 5,000, and
10,000, for both non-targeted and targeted attacks. The best values are highlighted in bold.

Main results. As shown in Table 1, CGBA+SeRI achieves the best non-targeted attack performance
at both 5,000 and 10,000 queries, outperforming others in terms of average and median ℓ2-norms. At
2,000 queries, it achieves the best median performance, while ADBA+SeRI obtains the lowest av-
erage ℓ2 norm. For targeted attacks, HSJA+SeRI consistently achieves the best performance across
all query budgets. As evidenced in Table 2, CGBA+SeRI consistently outperforms other methods in
both non-targeted and targeted attacks at 5,000 and 10,000 queries, achieving the lowest average and
median ℓ2 norms. The only exception is at 2,000 queries for targeted attacks, where HSJA+SeRI
performs better.

The results show that the “Attacker + SeRI” variants consistently deliver the best performance across
all attack settings. For any given base attacker (e.g., CGBA), combining it with SeRI outperforms
both the attacker alone and its “Attacker + PAR” counterpart. Particularly, for the targeted attack
results in Table 1, “Attacker + SeRI” achieves superior performance across all query budgets. These
results confirm that SeRI’s region sensitivity estimation significantly enhances the query efficiency
of decision-based attacks.

Table 3: Average (median) ℓ2 perturbation norms for non-
targeted attacks on CIFAR100 using a WideResNet model.

Total Query 2,000 5,000 10,000
HSJA 3.26(2.22) 1.75(1.15) 1.26(0.88)

HSJA+PAR 2.59(1.74) 1.52(0.79) 1.18(0.83)
HSJA+SeRI 2.08(1.41) 1.40(0.70) 1.13(0.63)

CGBA 2.20(1.54) 1.48(1.01) 1.19(0.84)
CGBA+PAR 1.71(1.14) 1.22(0.73) 1.07(0.65)
CGBA+SeRI 1.48(0.86) 1.14(0.67) 1.02(0.62)

RayS 3.17(2.22) 2.68(1.84) 2.49(1.69)
RayS+PAR 2.54(1.79) 2.29(1.70) 2.15(1.49)
RayS+SeRI 1.79(1.28) 1.55(1.08) 1.44(1.01)

ADBA 2.93(2.13) 2.62(1.77) 2.46(1.67)
ADBA+PAR 2.41(1.80) 2.18(1.63) 2.09(1.50)
ADBA+SeRI 1.74(1.23) 1.50(1.09) 1.43(1.04)

Results on adversarially trained
WRN model. Similar to the results
on non-adversarially trained VGG
and ViT models, Table 3 shows that
CGBA+SeRI achieves the best per-
formance at 2,000, 5,000, and 10,000
queries. Additionally, in Table 3,
“Attacker + SeRI” reduces the ℓ2-
norm of perturbations by approxi-
mately 30% compared to “Attacker +
PAR”. It also reduces the ℓ2-norm by
15% compared to “Attacker + PAR”,
as evidenced in Tables 1 and 2. These
results indicate that SeRI provides a
greater performance gain on adver-
sarially trained WRN models than
on non-adversarially trained models.
This performance advantage is likely due to the increased difficulty of attacking adversarially trained
WRN models, which demands more precise and adaptive perturbation optimization. PAR’s binary
decision mechanism is less effective against the stronger defenses of adversarially trained WRN
models. In contrast, SeRI’s fine-grained sensitivity search enables significantly better performance
in this challenging setting.

5.3 HEATMAPS GENERATED BY SERI

Figure 2 shows the heatmaps over sensitivity regions generated by SeRI across different optimiza-
tion iterations and queries. More heatmaps generated by SeRI and PAR can be found in Appendix D.
In these heatmaps, regions with stronger red intensity indicate areas where SeRI increases perturba-
tion strength, while regions with stronger blue intensity mark non-sensitive areas where perturbation
strength is reduced. In Figure 2-(a), the class ‘Lacewing’ is initially misclassified as ‘Walking Stick’.
With more iterations, the high-intensity regions in the heatmap increasingly converge and concen-
trate on the lacewing itself. This example demonstrates the precise thermal grading capability of
our SeRI method, which is superior than competing PAR method (see Appendix D for details). At
the 504th iteration, the background is completely marked as blue low-intensity regions, most of the
lacewing area is highlighted in intense red, indicating high sensitivity. The transitional areas, includ-
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ing the lacewing’s wings and boundaries with the background, are marked in orange, corresponding
to moderate-intensity regions. This precise thermal grading not only accelerates perturbation opti-
mization but also aligns with human perception, making it highly interpretable.

Similarly, in Figure 2-(b), the final heat regions converge on the bald eagle’s head and left wing areas.
In the targeted attack shown in Figure 2-(c), the heatmap concentrates primarily on the Minivan’s
wheel and door regions in the target image, which enables successful perturbations that misclassify
the bald eagle as a Minivan. Note that the interpretive patterns suggested by these heatmaps are
secondary effects of the optimization process and should not be interpreted as a complete explanation
of model behavior.

5.4 FAILURE CASES AND WHEN SERI UNDER-PERFORMS

While SeRI generally improves decision-based attack performance, its effectiveness can vary across
different conditions. First, SeRI may under-perform on images with weak or diffuse salient structure,
such as cluttered or texture-dominated scenes. In these cases, regional sensitivity becomes less
informative, and SeRI provides only modest gains over the base attacker. Second, SeRI requires
a moderate query budget to reliably estimate regional importance. Under very low query budgets
(e.g., fewer than 50 queries), the region partition becomes too coarse for meaningful refinement,
leading to diminishing improvements. Third, similar to all decision-based attacks, SeRI assumes
stable outputs from the target model. Therefore, it is not applicable to randomized or stochastic
defenses that introduce noise into model predictions, since such randomness breaks the boundary-
consistency assumptions required for reliable sensitivity estimation. Recognizing these limitations
helps clarify when SeRI is most effective and guides future extensions.

6 CONCLUSION AND FUTURE WORK

Sensitive regions in images play a crucial role in determining adversarial vulnerability. However, un-
der strict decision-based black-box settings, it is challenging to identify such regions using only top-
1 model predictions. To address this problem, we introduced a novel definition of region sensitivity
based on perturbation decision boundaries. This formulation provides a principled and fine-grained
way to characterize regional importance and is naturally suited for decision-based attacks. Building
on this definition, we proposed SeRI, a new sensitivity-guided decision-based attack framework that
adaptively allocates perturbations across regions. Extensive experiments demonstrate that SeRI not
only improves the attack performance of state-of-the-art decision-based methods but also produces
heatmaps that reliably highlight sensitive image areas, offering clear interpretability benefits.

While our study focuses on image classification, the core idea of SeRI is general and can be extended
to other vision tasks such as object detection and semantic segmentation. For multi-output models,
SeRI can be adapted by replacing the current decision-boundary–based perturbation comparison
with score-based or multi-output perturbation comparisons. This allows SeRI to estimate region
sensitivity by examining how perturbations affect task-specific outputs. Exploring these extensions,
as well as studying SeRI under stronger or task-specific defenses, represents a promising direction
for future research.
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THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, large language models (LLMs) were used sparingly to
enhance grammar, clarity, and readability. All conceptual contributions, technical methods, analy-
ses, and experimental results are entirely original and were developed solely by the authors. The
authors have carefully verified the accuracy of all claims and take full responsibility for the content
of this paper, in alignment with the ICLR Code of Ethics.

ETHICS STATEMENT

This research advances the field of AI security by developing efficient query-based black-box ad-
versarial attacks to explore vulnerabilities in deep learning models. As with all security research,
there is a potential for dual use, as these techniques could be misused to threaten AI system integrity.
However, we firmly believe that proactively uncovering and understanding these vulnerabilities is a
critical step towards building more robust and reliable AI systems. By addressing these weaknesses,
this work contributes to building more reliable and trustworthy AI, enhancing security across a wide
spectrum of applications. Furthermore, we emphasize that SeRI is designed solely for research into
adversarial robustness, with the goal of advancing defenses and ensuring the safe deployment of
machine learning systems.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The code is provided via the
anonymized link in the Abstract as well as in the supplementary material. In Section 4, we further
provided the full algorithm pseudocode. In Section 5.1, detailed parameter settings and experiment
environment are elucidated.
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A THEORETICAL ANALYSIS OF SERI

In this appendix, we provide a formal theoretical analysis of SeRI to analyze its convergence and op-
timality properties. Let g(d) denote the decision-boundary corresponding to perturbation direction
d as defined in eq.4. A smaller value of g(d) implies a more effective adversarial perturbation.

A.1 ASSUMPTIONS

To analyze the convergence and optimality properties of SeRI, we introduce the following standard
assumptions commonly used in decision-based attack theory.

Assumption 1 (Local Lipschitzness of the decision boundary). There exist L > 0 such that for
all perturbations d1, d2 in a neighborhood of the search trajectory:

|g(d1)− g(d2)| ≤ L∥d1 − d2∥2.

Assumption 2 (Bounded curvature of the decision boundary). Let κ = ∥∇2f(x)∥ denote the
local curvature of the classifier’s decision boundary. There exists a constant C > 0 such that κ ≤ C
in the neighborhood of interest.

Assumption 3 (Deterministic hard-label output of the target model). The classifier f is query-
stable: for any input z, repeated queries to the black-box oracle always return the same top-1 label,
i.e., f(z) is deterministic.

In particular, there is no randomized defense mechanism such as randomized smoothing, random
input transformations (e.g., random translation, rotation, crop), or stochastic ensembling that would
change the hard label between queries.

Lemma 1 (Stable ADBA comparison). Under Assumption 3, the outcome of ADBA’s comparison
between any two perturbations d1, d2 is deterministic: running ADBA multiple times with the same
hyperparameters and query budget always yields the same ordering between g(d1) and g(d2).

Proof. ADBA is a deterministic algorithm once the sequence of oracle outputs is fixed. Under
Assumption 3, the hard-label oracle is deterministic, so the entire sequence of labels queried during
ADBA is fixed. Therefore, the returned boundary estimates and the induced ordering between g(d1)
and g(d2) are also deterministic.

These assumptions are mild and standard: Assumption 1 holds for ReLU, ViT, and CNN classifiers
almost everywhere; Assumption 2 states that the decision boundary has locally bounded curvature;
Assumption 3 follows from the concentration guarantees of ADBA Wang et al. (2025).

Assumption 3 acknowledges that SeRI, like all decision-based black-box attacks, may degrade
or even fail under randomized defenses such as random cropping, random resizing, randomized
smoothing, or stochastic input transformations. This is not a limitation specific to SeRI: in the
decision-based setting, the attacker only has access to a single hard label per query, and it is fun-
damentally impossible to detect or compensate for stochastic transformations applied inside the
black-box oracle. Consequently, all existing decision-based attacks, including HSJA, CGBA, RayS,
ADBA, and region-based baselines such as PAR, are equally unable to guarantee stable compar-
isons under such randomized defenses. Our assumption therefore reflects an inherent limitation of
the decision-based black-box threat model rather than a deficiency of SeRI itself.

A.2 SERI CAN GENERATE FINE-GRAINED SENSITIVITY HEATMAPS

Here, we demonstrate that our SeRI approach can produce fine-grained sensitivity heatmaps. Sup-
pose SeRI performs I iterations to generate such a heatmap. In each iteration, it either increases
the perturbation strength within a selected region by a factor k1 = 1.8, or decreases it by a factor
k2 = 0.2. To analyze this process, we reformulate the problem as follows: Given any initial per-
turbation pixel p̃ ∈ [−1, 1] with p̃ ̸= 0, we aim to show that, after I iterations of multiplicative
updates that either p̃← 1.8 · p̃ or p̃← 0.2 · p̃, the perturbation can be adjusted to approach any target
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value p̃∗ ∈ [−1, 1]. This guarantees that SeRI can converge to an optimal perturbation configuration
consistent with fine-grained sensitivity patterns.

Perturbation Adjustability of SeRI. Let p̃0 ∈ [−1, 1] \ {0} be an initial perturbation value, and let
p̃∗ ∈ [−1, 1] be an arbitrary target value. Under the multiplicative update rule:

p̃i+1 =

{
1.8 · p̃i (increase),
0.2 · p̃i (decrease),

(11)

for any ϵ > 0, there exists a finite sequence of I such updates such that:

|p̃I − p̃∗| < ϵ. (12)

Proof. We prove the theorem in two parts: (1) by showing that the ratio p̃I/p̃0 can approximate
any positive real number arbitrarily closely using multiplicative updates, and (2) by extending this
to match the signed target value p̃∗.

Step 1: Logarithmic Density of the Multiplicative Process. After I updates of comprising m in-
creases (×1.8) and n = I −m decreases (×0.2), the perturbation becomes:

p̃I = p̃0 · (1.8)m · (0.2)n (13)

Taking logarithms:

log p̃I = log |p̃0|+m log 1.8 + n log 0.2 (14)

Let α = log 1.8 and β = log 0.2. Then:

log

(
|p̃I |
|p̃0|

)
= mα+ nβ (15)

Since α/β /∈ Q, the set of linear combinations {mα + nβ | m,n ∈ Z} is dense in R (this is a
standard result from Diophantine approximation Hardy & Wright (1979)).

Exponentiating both sides, the set {(1.8)m(0.2)n | m,n ∈ Z} is dense in R+. Thus, for any positive
target ratio r = |p̃∗|/|p̃0| and any δ > 0, there exist integers m,n such that:

|(1.8)m(0.2)n − r| < δ (16)

Step 2: Matching Sign and Closeness

Choose δ = ϵ/|p̃0|. Then:

|p̃0 · (1.8)m(0.2)n − |p̃∗|| < ϵ (17)

Now, since all multiplicative updates preserve the sign of p̃0, we ensure that:

If p̃∗ > 0, use p̃0 > 0 If p̃∗ < 0, use p̃0 < 0

This ensures the **sign of p̃I matches that of p̃∗**.

Hence:

|p̃I − p̃∗| < ϵ (18)

Since m and n are finite, the total number of operations I = m+n is also finite. The corresponding
update sequence can be constructed by applying m increases and n decreases in any order, due to
the commutativity of multiplication.
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Conclusion. Therefore, for any ϵ > 0, any initial p̃0 ∈ [−1, 1] \ {0}, and any target p̃∗ ∈ [−1, 1], a
finite sequence of updates exists such that:

|p̃I − p̃∗| < ϵ (19)

A.3 MONOTONIC IMPROVEMENT OF SERI UPDATES

In each iteration i, SeRI constructs three candidate perturbations: {di, ďi, d̂i}, where ďi and d̂i are
obtained by scaling the perturbation on the selected region bi by factors ǩ < 1 < k̂ (followed by
ℓ2-norm to match ∥di∥2), as described in Algorithm 1.

Theorem 1 (Monotonic Decision-Boundary Descent). Under Assumptions 1-3, the iterates of SeRI
satisfy

g(di+1) ≤ g(di)

for all iterations i.

Moreover, suppose that the selected region bi has nonzero sensitivity, i.e.,

∂g(di)

∂di[bi]
̸= 0,

and that the scaling factors ǩ < 1 < k̂ are chosen sufficiently close to 1 so that the corresponding
perturbation changes remain in a local neighborhood of di where a first-order descent direction
exists. If, in addition, the ADBA tolerance τ is chosen sufficiently small and thus can successfully
compare the decision boundary of di, ďi and d̂i, then the inequality is strict:

g(di+1) < g(di).

However, if the scaling factors are chosen too close to 1, then the perturbation updates in each
refinement iteration become excessively small, which slows down the optimization process and
reduces the overall attack efficiency. Therefore, the scaling factors should strike a balance: they
must be close enough to 1 to ensure that the updates stay within the local descent region, yet not
so close that the algorithm makes negligible progress in each iteration. Based on the empirical
results reported in Section C, we adopt ǩ = 0.8 and k̂ = 1.2 as suitable choices that satisfy both
requirements.

Proof. By Lemma 1 and Assumption 3, the hard-label oracle is deterministic, hence ADBA pro-
duces a deterministic approximation ĝ(d) of the true decision boundary g(d) for each candidate
perturbation. The stopping criterion of ADBA implies that there exists a tolerance τ > 0 such that
|ĝ(d)− g(d)| ≤ τ for all candidates considered in SeRI at iteration t.

Let di be the current perturbation and let di+1 denote the candidate selected by SeRI among
{di, ďi, d̂i} using ADBA’s estimates. Then we have

ĝ(di+1) ≤ ĝ(di),

which implies
g(di+1) ≤ ĝ(di+1) + τ ≤ ĝ(di) + τ ≤ g(di) + 2τ.

Thus, up to an additive error of order τ , the update is non-increasing.

We now show strict descent under the additional conditions. Let ui denote the perturbation direction
that is nonzero only on the selected region b∗, so that the effect of scaling on bi can be parameterized
by a scalar α along ui. Consider the one-dimensional function

φi(α) = g(di + αui).

The assumption ∂g(di)/∂di[bi] ̸= 0 is equivalent to φ′
i(0) ̸= 0. By continuity of φ′

i and the local
Lipschitz property in Assumption 1, there exists α0 > 0 and a constant c > 0 such that, along the
descent direction, we have

φi(α) ≤ φi(0)− cα for all α ∈ (0, α0].
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The multiplicative scaling on region b∗ induces two perturbations ďi and d̂i which can be written as

ďi = di + αǩu
i, d̂i = di + αk̂u

i,

for some scalars αǩ, αk̂ determined by ǩ, k̂ and the subsequent normalization. By choosing ǩ <

1 < k̂ sufficiently close to 1, we can ensure that both |αǩ| and |αk̂| lie within (0, α0], i.e., the two
scaled candidates stay inside the local neighborhood where the first-order descent behaviour of φi

is valid.

Therefore, at least one of the two scaled candidates, say d′i ∈ {ďi, d̂i}, satisfies

g(d′i) = φi(α
′) ≤ φi(0)− c|α′| ≤ g(di)− c′,

for some constant c′ > 0 that depends on c and the chosen scaling factors. Choosing τ < c′/2 yields

g(di+1) ≤ g(d′i) + 2τ ≤ g(di)− c′ + 2τ < g(di),

which gives strict descent.

If no region has nonzero sensitivity, then φ′
i(0) = 0 for all directions considered, and the candidates

coincide up to higher-order terms and numerical tolerance. In that case, the above argument shows
that the update is non-increasing but not necessarily strictly decreasing.

Theorem 1 establishes that SeRI is a greedy descent method for minimizing the decision boundary
distance. This formally justifies the empirical observation that SeRI consistently strengthens the
attack.

A.4 CONVERGENCE OF THE ITERATIVE PERTURBATION PROCESS

We now show that SeRI converges to a fixed point under the above assumptions.
Theorem 2 (Convergence to Stationary Point). Assume Theorem 1 holds and that g(·) is lower
bounded. Then the sequence {g(di)} converges, and any limit point d⋆ satisfies:

∂g(d⋆)

∂d[b]
= 0 for all subregions b.

Proof. Since g(di+1) ≤ g(di) and g is non-negative, the sequence is monotonically decreasing
and bounded below. Thus it converges. If a limit point d⋆ had nonzero partial derivative in some
region b, the multiplicative update with sufficiently small scaling factor would strictly decrease g,
contradicting convergence. Hence all directional derivatives vanish.

This establishes that SeRI converges to a stationary perturbation under its multiplicative refine-
ment mechanism.

A.5 CONSISTENCY OF THE REGION-SENSITIVITY ESTIMATION

Recall that SeRI recursively partitions current region b into four equal sub-regions (Algorithm 2),
producing a quad-tree hierarchy. Let S∗ denote the true optimal pixel-wise sensitivity map, and let
Sk denote the piecewise-constant approximation obtained after k refinement iterations.

To formalize the convergence analysis, we first define the notion of the cell size of a region.

Definition (Cell size). For any region b ⊂ R2, we define its cell size h(b) as the side length of the
smallest axis-aligned square containing b. Equivalently, h(b) is proportional to the diameter of b up
to a constant factor:

diam(b) ≤
√
2h(b).

Under the 2×2 recursive split used by SeRI, every refinement iteration reduces the cell size by half.
If h0 denotes the initial cell size (corresponding to the entire image domain), then the cell size after
k refinement levels is

hk = 2−kh0.
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Regularity assumption. We assume that S∗ is piecewise Hölder continuous of order α > 0,
meaning that the image domain can be partitioned into finitely many subdomains {Ωi} such that for
each Ωi,

|S∗(x)− S∗(y)| ≤ C∥x− y∥α, ∀x, y ∈ Ωi,

for some constant C > 0. This assumption allows S∗ to have discontinuities across object bound-
aries or semantic edges, while maintaining smoothness within each piece.
Theorem 3 (Consistency of Region Refinement). Let Sk be the region-wise sensitivity estimate
produced after k levels of quad-tree refinement. If S∗ is piecewise Hölder continuous of order
α > 0, then

∥Sk − S∗∥2 = O(2−kα).

Sketch. Consider any region b at refinement level k. Since Sk assigns a constant value to b, the
approximation error on this region satisfies

sup
x∈b
|Sk(x)− S∗(x)| ≤ C h(b)α = C hα

k ,

by the Hölder condition on each smooth piece. Summing over the quad-tree cells and noting that
the number of cells grows only polynomially while the per-cell error decays as hα

k , we obtain

∥Sk − S∗∥22 = O(h2α
k ) = O(2−2kα),

which proves the stated O(2−kα) convergence rate in the L2 norm.

This theorem shows that SeRI’s region-refinement strategy is provably consistent: as the quad-tree
becomes finer, the region-wise sensitivity estimate Sk converges to the true underlying sensitivity
S∗. In Appendix B.1, we further conduct an empirical comparison among several partitioning strate-
gies (1× 2, 2× 2, 3× 3, and 4× 4). The results show that the 2× 2 split provides the best trade-off
between refinement granularity and query efficiency, while the other strategies produce comparable
but slightly inferior results. This empirical evidence supports the theoretical analysis by demonstrat-
ing that recursive region refinement is robust to the exact splitting scheme, and that the 2×2 strategy
achieves both strong practical performance and favorable theoretical properties.

A.6 ROBUSTNESS UNDER MODEL VARIATIONS

Using Assumption 2, we show that ADBA remains robust even under boundary curvature.
Proposition 1 (ADBA Robustness Under Bounded Curvature). Let d1, d2 be two candidate pertur-
bations. Under Assumption 2,

|g(d1)− g(d2)| ≤ O(∥d1 − d2∥2) +O(κ∥d1 − d2∥22).

Thus, for perturbations differing only on a single region scaling (as in SeRI), the second-order term
is negligible, and ADBA’s ranking of candidates is stable.

Sketch. A second-order Taylor expansion of the boundary distance along the perturbation direction
yields the claim.

This establishes that SeRI is robust to model architectural variations, since curvature only affects
second-order terms.

A.7 CONNECTION BETWEEN DECISION-BOUNDARY AND ATTACKABILITY

In this subsection we clarify why minimizing the decision-boundary g(d) is closely aligned with
improving the attackability of a model. Recall that for a fixed clean image x and perturbation
direction d, the decision-boundary distance is defined as

g(d) = min{r > 0 : I(x+ r d/∥d∥2) = 1},

that is, the smallest radius at which the perturbed point leaves the original class (non–targeted attack)
or enters the target class (targeted attack).
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Attackability under an ℓ2 norm budget. Suppose an attacker is allowed to use any perturbation
with ℓ2 norm at most ϵ > 0. For a fixed direction d, the attack succeeds within this budget if and
only if there exists r ≤ ϵ such that I(x + r d/∥d∥2) = 1, which is equivalent to g(d) ≤ ϵ. Hence,
for a fixed ϵ we have

1{attack succeeds within norm ϵ} = 1{g(d) ≤ ϵ}.
Consequently, among two perturbation directions d1 and d2, if g(d1) < g(d2) then for any fixed
norm budget ϵ,

1{g(d1) ≤ ϵ} ≥ 1{g(d2) ≤ ϵ}.
This shows that a smaller decision-boundary is strictly more favorable for achieving successful
attacks under the same ℓ2 constraint: any budget for which d2 can succeed, d1 can also succeed,
while the converse is not true.

Attackability under random perturbation magnitudes. The above argument can be generalized
to randomized attack procedures. Let R be a non–negative random variable describing the perturba-
tion magnitude produced by some attack algorithm along direction d (for example, the final radius
found by a boundary search under a fixed query budget). The attack succeeds if R ≥ g(d). Denot-
ing the cumulative distribution function of R by FR(r) = Pr(R ≤ r), the success probability for
direction d is

Pr(success | d) = Pr(R ≥ g(d)) = 1− FR

(
g(d)

)
.

If FR is strictly increasing, then for any two directions d1 and d2

g(d1) < g(d2) =⇒ 1− FR

(
g(d1)

)
> 1− FR

(
g(d2)

)
,

which means that a smaller decision-boundary distance implies a larger success probability under the
same attack procedure and query budget. Therefore, minimizing g(d) is equivalent to maximizing
the attack success probability for any fixed distribution of perturbation magnitudes.

Empirical correlation between g(d) and attackability. To complement this theoretical argu-
ment, we conduct an additional experiment where, for each test image, we record the estimated
decision-boundary distance ĝ(d) produced by ADBA and the corresponding attack outcome (suc-
cess or failure) under a fixed norm threshold ϵ. We then group samples by quantiles of ĝ(d) and
report the empirical attack success rate in each bin. The results, shown in Figure A.7, display a
clear monotone trend: bins with smaller ĝ(d) exhibit substantially higher attack success rates, while
bins with larger ĝ(d) have markedly lower success rates. This empirical evidence supports our the-
oretical analysis, and confirms that SeRI’s objective of reducing the approximate decision-boundary
distance directly translates into higher attackability under practical query budgets.

B PSEUDOCODE OF SERI

In Algorithm 1, SeRI iteratively enhances or reduces the perturbation strength within the selected
sub-region to identify whether the selected sub-region is sensitive to perturbation, and then splits
the sub-region into four smaller parts. Splitting each region into four parts offers the best trade-off
between precision and efficiency. As shown in both our theoretical analysis and the experimental
results in Appendix B.1, this strategy achieves superior performance compared to alternative parti-
tioning schemes. The initial region b0 has a shape of C ×W ×H . Algorithm 2 splits b0 into four
smaller sub-regions, forming the initial sub-region set B (see Appendix B.1 for details).

In line 2 of Algorithm 1, at each iteration, the sub-region b∗ with the hightest ℓ2-norm perturba-
tion is selected. Then in lines 3-5, SeRI generates two new perturbations, ďi and d̂i, by respectively
reducing and enhancing the perturbation within sub-region b∗. The reduction and amplification mul-
tipliers are denoted by ǩ and k̂, respectively. In line 5, the perturbations ďi and d̂i are normalized
to match the overall perturbation strength of di, ensuring a fair comparison among di, ďi and d̂i

as defined in Eq. 8. In line 6, we use ADBA Wang et al. (2025) to compare the decision bound-
aries of di and ďi to determine the best perturbation (see Algorithm 3 in Appendix B for details).
Specifically, Algorithm 3 takes as input the current best perturbation di, along with its approximate
decision boundaries Rmin and Rmax (lower and upper bounds of the true decision boundary), as well
as a candidate perturbation ďi. The algorithm then outputs the superior perturbation ds together
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Algorithm 1 Perturbation Optimization via Gradient-Free Sensitivity Region Identification
Input: Original image x, initial adversarial example x̃0, indicator I(·), query budget Q;
Output: Adversarial sensitive region heatmap S, optimized adversarial example x̃;
Initialization: Iteration number i ← 1, initial perturbation d1 ← x̃0 − x, approximation decision
boundary Rmin ← 0, and Rmax ← 1; initial region b0 ← {1 : C, 1 : W, 1 : H}, sub-region set
B ←Algorithm 2 (b0); perturbation multipliers ǩ ← 0.2, and k̂ ← 1.8;

1: while remaining query budget > 0 do
2: b∗ ← argmax

b∈B
∥di[b]∥2

3: ďi, d̂i ← di.copy(), di.copy()

4: ďi[b], d̂i[b] ← ǩ · di[b], k̂ · d
i
[b]

5: ďi, d̂i ← ∥di∥2

∥ďi∥2
· ďi, ∥di∥2

∥d̂i∥2

· d̂i

6: ds, Rmin, Rmax ← Algorithm 3 (di, Rmin, Rmax, ďi)
7: if ds = ďi then
8: di+1 ← ďi

9: else
10: ds, Rmin, Rmax ← Algorithm 3 (di, Rmin, Rmax, d̂i)
11: if ds = d̂i then
12: di+1 ← d̂i

13: else
14: di+1 ← di

15: end if
16: end if
17: B ← (B \ {b∗})∪Algorithm 2 (b∗);
18: i← i+ 1
19: S ← di ⊘ d1 // sc,w,h = dic,w,h/d

1
c,w,h

20: x̃← x+Rmax · di
21: end while
22: return S, x̃

Algorithm 2 Split Perturbation Into Four sub-regions
Input: Initial region b0 ← {1 : C, x1 : x2, y1 : y2};
Output: sub-region set of b0;

1: xmid ←
⌊
x1+x2

2

⌋
, ymid ←

⌊
y1+y2

2

⌋
2: b1 ← {1 : C, x1 : xmid, y1 : ymid}
3: b2 ← {1 : C, xmid + 1 : x2, y1 : ymid}
4: b3 ← {1 : C, x1 : xmid, ymid + 1 : y2}
5: b4 ← {1 : C, xmid + 1 : x2, ymid + 1 : y2}
6: return {b1, b2, b3, b4}

with updated boundary estimates Rmin and Rmax. If ďi outperforms di, as determined in line 7-8,
this indicates that perturbations within region b∗ do not contribute positively to the attack’s success.
Hence ďi is deemed the best perturbation among di, ďi and d̂i, and the updated perturbation di+1 is
set to ďi. In line 10, if di performs better than ďi, di is further compared with d̂i using Algorithm 3.
In lines 11–15, di+1 is updated to match the better perturbation between di and d̂i, based on their
decision boundaries. In line 17, the selected region b∗ is removed from the sub-region set B and
replaced with its four child sub-regions generated by Algorithm 2. In line 19, the heatmap S is up-
dated by performing element-wise division between di and d1. Subsequently in line 20, the current
adversarial example x̃ is updated. In lines 21–22, if the query budget is reached, the algorithm stops
and returns the sensitive region heatmap S together with the optimized adversarial example x̃ as the
final output.
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Table 4: Average (median) ℓ2 norms for non-targeted attacks on ImageNet using a VGG model.

Total Query 2,000 5,000 10,000
1×2 split 3.292(1.429) 1.630(0.811) 1.024(0.569)
2×2 split 3.234(1.385) 1.589(0.771) 1.020(0.562)
3×3 split 3.290(1.410) 1.598(0.776) 1.029(0.569)
4×4 split 3.311(1.444) 1.645(0.800) 1.040(0.570)

B.1 SPLIT SELECTED REGION INTO FOUR SUB-REGIONS

To capture adversarial perturbation sensitivity at a fine granularity, the current region b0 is divided
into four sub-regions after each iteration. The detailed procedure is shown in Algorithm 2. In line
1, xmid and ymid denote the horizontal and vertical midpoints of the current region b0. Lines 2–5
generate four sub-regions b1, b2, b3, b4 based on these midpoints. Line 6 returns the set of newly
created sub-regions.

To determine the optimal number of sub-regions per split, we conducted an experimental compar-
ison of a 2×2 split against three alternatives: a 1×2 binary split (direction chosen by aspect ratio),
a 3×3 split, and a 4×4 split. The evaluation was performed on 100 images from the ImageNet
dataset using a VGG model. We report the average (median) ℓ2 perturbation norms achieved by the
“CGBA+SeRI” attack. The results, presented in Table 4, demonstrate that the 2×2 split yields the
best performance across 2,000, 5,000, and 10,000 total queries. However, the performance of other
split settings is comparable, as their norms are only marginally higher (by approximately 3%). This
indicates that the overall performance of SeRI is not highly sensitive to the exact number of splits.

B.2 COMPARE TWO PERTURBATIONS USING APPROXIMATION DECISION BOUNDARY

To compare perturbations effectively in decision-based attack setting, we follow the cutting-edge
Approximate Decision Boundary Approach (ADBA) recently proposed in Wang et al. (2025).
ADBA avoids the need to precisely compute decision boundaries with high query cost. Instead,
it compares two perturbations by identifying a perturbation strength where one successfully fools
the model but the other fails. This indicates that the successful perturbation has a smaller decision
boundary and is more effective.

The main idea of ADBA is that, it is unnecessary to precisely identify the decision boundaries of
two perturbations to compare them. Instead, if we can identify an Approximate Decision Boundary
(ADB), such that at this perturbation strength, one perturbation d1 successfully fools the model
while another direction d2 fails, then we can infer that the decision boundary of d1, g(d1), is smaller
than that of d2, i.e., g(d1) ≤ ADB < g(d2)). This implies that d1 outperform d2.

The procedure is summarized in Algorithm 3. In this algorithm, Rmax and Rmin represent the upper
and lower bounds of the ADB for d1. Specifically, d1 successfully fools the model at perturbation
strength Rmax (i.e., I(x + Rmax · d1) = 1, indicating g(d1) ≤ Rmax), but fails to fool the model at
perturbation strength Rmin (i.e., I(x + Rmin · d1) = 0, indicating Rmin < g(d1))). In lines 1-3, if
perturbation d2 fails to fool the model at ADB Rmax, it indicates that its true decision boundary is
greater than Rmax, i.e., g(d1) ≤ Rmax < g(d2). In this case, d2 is less effective than d1 and Algo-
rithm 3 return d1 as the superior perturbation. Otherwise, in lines 4-6, if perturbation d2 successfully
fools the model at ADB Rmin, it indicates that its true decision boundary is smaller than Rmin, i.e.,
g(d2) ≤ Rmin < g(d1). This implies that d2 is more effective than d1, and Algorithm 3 returns
d2 as the superior perturbation. In lines 7-13, if both d1 and d2 either succeed or fail at the current
approximation R, then Rmax or Rmin are updated accordingly to narrow the search interval for R. In
lines 14–17, if the current value of R leads to a successful attack for one perturbation but not the
other, the successful perturbation is returned along with the updated ADBs, Rmin and Rmax. These
updated bounds are carried into the next iteration to narrow the search range and reduce the number
of queries required in lines 1–6 of Algorithm 3.

Finally, in line 20, if the search interval Rmax−Rmin becomes smaller than a search tolerance thresh-
old τ , indicating that g(d1) and g(d2) are nearly equivalent, it becomes unnecessary to distinguish
between them. Hence, the algorithm directly returns d2 along with the current Rmin and Rmax.
Returning d1 produces similar results in our experiments.
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Algorithm 3 Compare Two Perturbations Using Approximation Decision Boudnary
Input: Current best perturbation d1 with approximation decision boundaries Rmin, Rmax; candidate
perturbation d2, and search tolerance τ = 10−5;
Output: Superior perturbation ds with updated approximation decision boundary Rmin,
Rmax.

1: if I(x+Rmax · d2) = 0 then
2: return d1, Rmin, Rmax
3: end if
4: if I(x+Rmin · d2) = 1 then
5: return d2, 0, Rmin
6: end if
7: while Rmax −Rmin > τ do
8: if I(x+R · d2) = 1 and I(x+R · d1) = 1 then
9: R← (Rmin +Rmax)/2

10: Rmax ← R
11: else if I(x+R · d2) = 0 and I(x+R · d1) = 0 then
12: R← (Rmin +Rmax)/2
13: Rmin ← R
14: else if I(x+R · d2) = 1 and I(x+R · d1) = 0 then
15: Rmax ← R
16: return d2, Rmin, Rmax
17: else if I(x+R · d2) = 0 and I(x+R · d1) = 1 then
18: Rmax ← R
19: return d1, Rmin, Rmax
20: end if
21: end while
22: return d2, Rmin, Rmax

C PARAMETER SENSITIVITY ANALYSIS

Our SeRI approach summarized in Algorithm 1 introduces several parameters, including the thresh-
olds ǩ = 0.2 and k̂ = 1.8, as well as the SeRI query budget percentage P = 20%. These parameter
settings are based on preliminary experiments with the ImageNet-VGG19 model. Similar results
have been observed across other datasets and models.

Table 5: ℓ2-norm of perturbation for varying SeRI hyperparameters (k̂, ǩ) under 5,000 query budget.

k̂ = 1.7 k̂ = 1.8 k̂ = 1.9 k̂ = 2.0

ǩ = 0.05 1.261 1.258 1.257 1.262
ǩ = 0.10 1.258 1.251 1.251 1.259
ǩ = 0.15 1.251 1.247 1.260 1.249
ǩ = 0.20 1.243 1.239 1.246 1.255
ǩ = 0.25 1.258 1.256 1.251 1.265

Table 6: ℓ2-norm of perturbation for varying SeRI hyperparameter P under different query budget.

Total Query→ 2,000 5,000 10,000 20,000
P = 10% 3.475 1.330 0.857 0.700
P = 20% 3.112 1.259 0.823 0.670
P = 30% 3.304 1.480 0.873 0.747
P = 40% 3.332 1.719 0.994 0.819
P = 100% 4.174 2.826 2.237 1.914

To evaluate the impact of different parameter settings, we conduct a sensitivity analysis. Specifically,
we vary the threshold ǩ and k̂ (Table 5) and the percentage P (Table 6) across a range of values. For
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Figure 3: Decrease of the perturbation ℓ2-norm under different P settings of SeRI on the ImageNet-
VGG model.

each setting, attack performance is assessed using the ℓ2-norm of the final perturbation. The total
query budget is set to 5,000 for threshold ǩ and k̂. Regarding P , we evaluate the attack under query
budgets of 2,000, 5,000, 10,000, and 20,000. This analysis examines whether the optimal choice of
P depends on the total query budget. A lower ℓ2-norm indicates a more effective attack.

We conduct experiments on the ImageNet dataset using VGG19 model for non-targeted attack. This
model have been introduced in Subsection 4.1. The results are presented in Tables 5 and 6, with the
best values highlighted in bold.

Our experimental results demonstrate that the parameter combination (k̂ = 0.2, ǩ = 1.8) and P =

20% consistently yields the best performance. As shown in Table 5, the setting (k̂ = 0.2, ǩ = 1.8)
achieves the lowest ℓ2-perturbation of 1.239. Additionally, Table 6 confirms that P = 20% results
in the lowest ℓ2-perturbation across all four query budget settings.
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We also plot the decrease of the perturbation ℓ2-norm under different P settings of SeRI on the
ImageNet-VGG model (Fig.3). From the figure, we observe that when the query budget is small
(before approximately 1900 queries), the setting P = 0% achieves the lowest ℓ2-norm. However,
as the query budget increases, the performance of P = 0% becomes significantly worse. This
is expected because P = 0% corresponds to initializing SeRI with a random perturbation, which
allows for a rapid early reduction of the ℓ2-norm but provides no meaningful optimization direction
for later refinement.

For P = 20%, 40%, 60%, and 80%, we observe a noticeable “jump” in the ℓ2-norm when SeRI
begins operating, indicating that SeRI can effectively refine and further optimize the perturbation
produced by the base attacker.

The setting P = 100% corresponds to using the base attacker alone (CGBA) with no SeRI refine-
ment. In this case, no second-stage improvement occurs, and thus the ℓ2-norm does not decrease
significantly at 10,000 queries.

D COMPARISON OF HEATMAPS GENERATED BY SERI, PAR, LIME, AND
SHAP

Figure4 provides a qualitative comparison of seven input images alongside the corresponding
heatmaps and perturbation produced by SeRI and PAR. In this experiment, we adopt CGBA as
the base attacker and set the total query budget to 10,000. As illustrated in the figure, the proposed
SeRI method yields significantly more informative and concentrated heatmaps than PAR, leading
to both improved interpretability and attack quality. The advantages of SeRI can be summarized in
two major aspects:

1. Semantically concentrated perturbations. SeRI naturally guides perturbations toward semanti-
cally meaningful object regions (e.g., a dog’s head or a whale’s tail), while PAR often generates
artifacts scattered across background areas. These background perturbations are visually disruptive
and lack semantic relevance. By effectively suppressing such noise, SeRI achieves a substantially
reduced perturbation strength and produces adversarial examples that are less perceptible to human
observers.

2. Continuous and fine-grained saliency modeling. SeRI provides continuous-valued regional im-
portance estimates: highly influential areas are highlighted in dark red, moderately relevant areas
appear in orange or yellow, and unimportant background regions are represented in blue. This con-
tinuous sensitivity landscape more faithfully reflects the underlying structure of the model’s decision
surface. By contrast, PAR applies a binary patch-retention mechanism, either preserving or remov-
ing an entire patch, thus failing to capture nuanced differences in regional contributions and often
hindering the optimization performance.

Furthermore, the heatmaps generated by SeRI enhance the interpretability of the attack, exhibit-
ing strong consistency with those produced by classical explainable AI (XAI) methods. Figure5
compares the heatmaps generated by SeRI, PAR, LIME, and Kernel SHAP.

LIME is a model-agnostic local explanation method based on superpixel perturbation and sparse
regression. In our implementation, LIME is configured with 1,000 perturbation samples and uses
superpixel boundaries (yellow contours) to highlight high-importance regions.

Kernel-based SHAP is the black-box variant of SHAP, requiring only model output scores rather
than gradients. It estimates Shapley values by solving a locally weighted linear regression. In our
experiments, Kernel SHAP is configured with 50 superpixels (SLIC segmentation), 300 sampled
coalition evaluations. Regions important to the model are visualized in red, moderately relevant
areas in yellow/green, and unimportant areas in blue.

To quantify the agreement between our sensitivity maps and classical XAI methods, we compute
the Pearson correlation coefficient (PCC) between the heatmaps produced by SeRI/PAR and those
generated by LIME and SHAP. As shown in Table7, SeRI achieves PCC scores of 0.723 with LIME
and 0.786 with SHAP values commonly interpreted as indicating strong correlation. In comparison,
PAR exhibits noticeably lower correlations (0.610 with LIME and 0.637 with SHAP). These results
suggest that SeRI captures more consistent and meaningful saliency structure than PAR, and aligns
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The input images
The heatmaps and perturbations 

generated by SeRI
The heatmaps and perturbations 

generated by PAR

Figure 4: Heatmaps and perturbations generated by SeRI and PAR.

more closely with the explanations provided by established XAI methods, despite relying only on
hard-label queries.

This quantitative evidence is further supported by the qualitative comparisons in Figure5. For the
first-row dog example, both LIME and SHAP assign the highest importance to the dog’s head,
and SeRI similarly concentrates its heatmap on this region. A similar pattern is observed in the
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The Input images
The heatmaps 

generated by SeRI
The heatmaps 

generated by PAR
The heatmaps 

generated by LIME
The heatmaps 

generated by SHAP

Figure 5: Heatmaps generated by LIME, SHAP, SeRI, and PAR.

second-row bird image: LIME and SHAP highlight the bird’s torso, wings, and legs, and SeRI again
identifies these same regions with high saliency.

Interestingly, the third-row whale-tail example reveals an even clearer distinction. While LIME
and SHAP partially capture the whale’s tail but fail to fully localize it, SeRI successfully places
nearly all of its saliency on the tail, closely matching the true decision-critical region. This high-
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Table 7: Average Pearson Correlation Coefficient (PCC) between the heatmaps produced by
SeRI/PAR and those from LIME and SHAP.

Method PCC w/ LIME PCC w/ SHAP
SeRI 0.723 0.786
PAR 0.610 0.637

lights SeRI’s ability to more accurately approximate the model-dependent sensitivity landscape than
existing black-box XAI baselines.

Overall, both the quantitative PCC analysis and qualitative heatmap comparisons indicate that SeRI
not only delivers more semantically accurate and interpretable region sensitivity estimates than PAR,
but also maintains a strong alignment with classical XAI methods such as LIME and SHAP. These
results further validate the reliability and effectiveness of SeRI’s boundary-driven sensitivity estima-
tion framework.

E COMPARE ATTACK SUCCESS RATE (ASR), STRUCTURAL SIMILARITY
INDEX (SSIM), AND STANDARD DIVISION OF ℓ2-NORM (ℓ2-STD)

To further verify that SeRI provides advantages beyond ℓ2-norm reduction, we conduct additional
experiments on three complementary metrics: (1) Attack Success Rate (ASR), (2) Structural Simi-
larity Index (SSIM), and (3) Standard Deviation of ℓ2-norm (ℓ2-STD). These metrics jointly capture
attackability, perceptual imperceptibility, and optimization stability.

We evaluate on ImageNet, CIFAR-100, and MNIST datasets with diverse model architectures:
ResNet50, Inception-v3, VGG19, ViT, WideResNet (WRN), Engstrom Wong & Kolter (2018), and
Lipschitz Tsuzuku et al. (2018). For each model, we randomly sample 500 images from the test set.
We adopt untargeted attacks with a query budget of 10,000 queries. Perturbation thresholds are set
to ϵ = 2.5 on ImageNet, ϵ = 1.0 on CIFAR-100, and ϵ = 3.0 on MNIST. We evaluate two base
attackers, CGBA and ADBA, optionally enhanced with PAR or SeRI.

Table 8: Attack success rate (ASR) of SeRI measured under a query budget of 10,000.

Imagenet Imagenet Imagenet Imagenet CIFAR100 CIFAR100 MNIST
-ResNet50 -InceptionV3 -VGG19 -Engstrom -ViT -WRN -Lipschitz

CGBA 49.8% 77.6% 86.4% 28.4% 79.4% 55.6% 76.6%
CGBA+PAR 56.0% 82.8% 87.2% 38.8% 84.6% 58.4% 82.8%
CGBA+SeRI 64.6% 86.8% 91.0% 46.8% 87.2% 61.8% 88.0%

ADBA 46.0% 58.6% 61.2% 18.0% 36.0% 27.2% 51.2%
ADBA+PAR 52.6% 62.8% 71.0% 41.0% 47.8% 36.6% 72.6%
ADBA+SeRI 57.8% 66.2% 79.4% 49.8% 58.0% 43.8% 87.0%

Table 9: Average Structural Similarity Index (SSIM) of SeRI on the ImageNet dataset, measured
under a query budget of 10,000.

Imagenet Imagenet Imagenet Imagenet CIFAR100 CIFAR100 MNIST
-ResNet50 -InceptionV3 -VGG19 -Engstrom -ViT -WRN -Lipschitz

CGBA 0.959 0.982 0.994 0.903 0.996 0.964 0.449
CGBA+PAR 0.963 0.985 0.996 0.940 0.998 0.971 0.751
CGBA+SeRI 0.964 0.986 0.996 0.946 0.998 0.973 0.786

ADBA 0.962 0.972 0.982 0.903 0.981 0.910 0.445
ADBA+PAR 0.966 0.977 0.983 0.951 0.985 0.930 0.723
ADBA+SeRI 0.967 0.979 0.984 0.958 0.987 0.933 0.745

The results in Tables 8, 9, and 10 collectively highlight the clear and consistent advantages brought
by SeRI across all datasets and model architectures. Most notably, SeRI provides a substantial
improvement in attackability, achieving the highest ASR in every tested setting and outperforming
both base attacker and PAR by large margins. This demonstrates that SeRI’s sensitivity-guided
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Table 10: STD of ℓ2-norm under a query budget of 10,000.

Imagenet Imagenet Imagenet Imagenet CIFAR100 CIFAR100 MNIST
-ResNet50 -InceptionV3 -VGG19 -Engstrom -ViT -WRN -Lipschitz

CGBA 7.404 4.297 1.318 16.99 0.484 1.001 3.214
CGBA+PAR 5.972 3.661 1.265 4.891 0.432 0.933 1.997
CGBA+SeRI 4.636 2.398 1.124 3.628 0.390 0.853 0.939

ADBA 3.648 3.700 2.294 7.508 1.321 1.902 1.034
ADBA+PAR 3.211 3.505 2.007 4.659 1.165 1.451 0.871
ADBA+SeRI 2.789 3.448 1.856 3.653 1.032 1.126 0.738

refinement is highly effective in driving perturbations toward the true decision boundary even under
strict query constraints.

At the same time, SeRI preserves exceptional perceptual quality, achieving SSIM scores that match
or exceed both the base attackers and PAR, and often approaching values near 1.0, indicating that
SeRI generates adversarial examples that remain visually indistinguishable from clean images.

Furthermore, SeRI consistently achieves the lowest ℓ2-STD, revealing that its continuous region-
aware optimization yields far more stable and reliable perturbation magnitudes across images. Im-
portantly, these improvements occur simultaneously: higher ASR, better perceptual quality, and
greater optimization stability, demonstrating that SeRI offers a comprehensive enhancement rather
than a trade-off. Overall, the results confirm that SeRI is a robust and broadly effective refinement
module that significantly strengthens decision-based black-box attacks across diverse architectures
and evaluation metrics, establishing it as a strong and practical advancement for the field.
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